Resma3.RData (Ver 3.1)
All these pages are also available as a single pdf here.
For a nice introduction to Statistics watch the PBS-NOVA episode Prediction by the Numbers
1.1. Syllabus
2.1. Introduction to Using the Computer and to R
2.2. Short List of Important R commands
2.3. R routines
2.4. Resma3 vs base R
3.1. Introduction to ESMA 3102
3.2. Graphs
3.3. Outliers
3.4. Describing a Population: Probability Distributions
3.5. Confidence Intervals
3.6. Hypothesis Testing - Concept
3.7. Hypothesis Testing
3.8. The Lady Tasting Tea
3.10. Bayesian Statistics
3.11. Exercises
Method | Predictor | Response |
---|---|---|
4.1. Categorical Data Analysis | Categorical | Categorical |
4.2. ANOVA | Categorical | Quantitative |
4.3. Correlation | Quantitative | Quantitative |
4.5. Non-Normal Residuals, No Equal Variance - Transformation
4.6. Non-Normal Residuals, No Equal Variance - Non-Parametric
4.7. Exercises
Method | Predictor | Response |
---|---|---|
5.1. ANOVA - Multiple Comparison | Categorical | Quantitative |
5.2. Simple Regression | Quantitative | Quantitative |
5.3. Assumptions of SLR
5.5. Prediction
5.6. Non-Normal Residuals, No Equal Variance
5.7. Non-Linear Models: Transformations and Polynomials
5.8. Coefficient of Determination and Over-fitting
5.9. Exercises
Method | Predictors | Response |
---|---|---|
6.1. Categorical Data - Simpson’s Paradox | All Categorical | Categorical |
6.2. ANOVA | All Categorical | Quantitative |
6.3. Mulitple Regression | Quantitative | Quantitative |
6.4. Regression with Dummy Variables | Quantitative/Categorical | Quantitative |
6.5. Exercises