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0.1 Syllabus

Professor: Dr. Wolfgang Rolke
The web address is http://academic.uprm.edu/wrolke/esma3102.
The official prontuario for the course is available from the usual site. If there is any difference
between the prontuario and the information on the webpage use the webpage.
Time and Place:
Tuesday, Thursday 12:30-1:45pm SH005
Textbook: Statistics, Informed Decisions using Data, Michael Sullivan (highly recom-
mended but not required)
Office hours:
Tuesday, Thursday OF407 12-12:30, 3:15-3:45 Wednesday 1-4:00pm via email
email: wolfgang[dot]rolke[at]upr[dot]edu
when you send me an email ALWAYS start the subject line with ESMA3102
Grading:
1. Quizzes: 35%
2. Partial Exams 35%
3. Final 30%

All quizzes and exams will be done using moodle. To get to the quizzes go to https:
//ecourses.uprm.edu/, log on with your UPR ID and password. The first time use the
enrollment key: Esma 3102 - 066.
output: html_document: default pdf_document: fig_caption: no —
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1 Using the Computer and R

This page contains some basic information on how to use the computer and the R program.

To log on to computers in Ch115:
Username: .\esma ( important: do not forget to include “. " before the word esma )
Password: Mate1234 ( important: uppercase letter”M" )
To log on to computers in SH005:
Username: Estudiante
Password: salon005

The class webpages are at http://academic.uprm.edu/wrolke/esmaXXXX (3015, 3101, 3102,
6661 etc)
At the end of each session log off

1.0.1 General Info

You can get a free version of R for your computer from a number of sources. The download
is about 70MB and setup is fully automatic. Here are some links:
Windows
MacOS
After the installation is finished close R (if it is open). From now on ALWAYS open R by
clicking on the link to to the RESMA3 file on top of the homepage. You can also download
and save that file to your own computer and start R from there. The first time you do this
the program will download a number of additional stuff, just let it. Also a window might
pop up and ask whether to save something, if so click on yes.
Note
• You might be asked at several times whether you want to do something (allow access,

run a program, save a library, . . . ), always just say yes!
• You will need to connect to a reasonably fast internet for these steps.
• This will take a few minutes, just wait until the > sign appears.

FOR MAC OS USERS ONLY
There are a few things that are different from MacOS and Windows. Here is one thing you
should do:
Download XQuartz - XQuartz-2.7.11.dmg
Open XQuartz
Type the letter R (to make XQuartz run R)
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Hit enter Open R Run the command .First()
Then, every command should work correctly.

1.0.2 RStudio

there is a program called RStudio that a lot of people like to use to run R. You can download
it at RStudio. Before you can use RStudio with Resma3 you need to run Resma3 JUST
ONCE from R itself.
So do this
1) follow ALL the instructions above
2) only if everything is running correctly install RStudio.

For the purpose of the class R itself is enough, we don’t need RStudio.

1.0.3 Troubleshooting

if you try to run a command and get an error
could not find function “ggplot”
(or grid or shiny)
first try this: run the command
ls()

You should see a listing of many things (over 200). If you do not Resma3 did not load
correctly. Close R and restart it by clicking on the link to Resma3 on the homepage.
If you do see the listing, type
one.time.setup()

A number of things should be happening, just wait until you see the > again and see whether
that fixes the problem.
If this does not work turn off R and restart it with a new version of Resma3 from the top of
the class homepage.
If this also does not work send me an email with the explanation of the problem. The best
thing to do is to include a screenshot. Here is how:
Windows
MacOS
You can also just use your cell phone to take a picture of the screen, but make sure it is is
readable!

I often get an email saying that something is not working, and my answer is simply:
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RGDM
this means: Read the God-Damn Manual!
that is the answer to your problem is somewhere on these pages, and you should have found
it there before sending an email!

Throughout this class when you see something like this:
text

it means commands you should type (or copy-paste) into R.

To see whether everything is installed correctly copy-paste the following line into R and hit
enter:
hplot(rnorm(1000))

0.0

0.1

0.2

0.3

0.4

0.5

−2 0 2

rnorm(1000)

You should see a graph like this (called a histogram)
For a much more extensive introduction to R go here

Once you have started a session the first thing you see is some text, and then the > sign. This
is the R prompt, it means R is waiting for you to do something. Sometimes the prompt
changes to a different symbol, as we will see.
Let’s start with
ls()

shows you a “listing”" of the files (data, routines etc.)
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If you have worked for a while you might have things you need to save, do that by clicking on
File > Save Workspace
If you quit the program without saving your stuff everything you did will be lost. R has
a somewhat unusual file system, everything belonging to the same project (data, routines,
graphs etc.) are stored in just one file, with the extension .RData.
To quit R, type
q()

or click the x in the upper right corner.
R has a nice recall feature, using the up and down arrow keys. Also, typing
history()

shows you the most recent things entered.
R is case-sensitive, so a and A are two different things.
Often during a session you create objects that you need only for a short time. When you no
longer need them use rm to get rid of them:
x <- 10
x^2

## [1] 100
rm(x)

the <- is the assignment character in R, it assigns what is on the right to the symbol on the
left.

1.1 Data Entry

1.1.1 With the keyboard

For a few numbers the easiest thing is to just type them in:
x <- c(10, 2, 6, 9)
x

## [1] 10 2 6 9

c() is a function that takes the objects inside the () and combines them into one single object
(a vector).

1.1.2 idataio

This section can be left out unless data i/o is discussed in class
idataio won’t run in CH115 until computers have been updated
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We have data on the age and the position of people. So there were 10 old people in the first
position, and so on:
Age First Second Third
Old 10 16 21
Young 15 12 26

To get this into R use the the routine idataio.
CAREFUL: idataio currently does not work in CH115 because of old version of R!
It can be used to enter the values directly from the keyboard, a table that was copied to the
clipboard or read it from a file like an excel worksheet.
Say we want to get the table above into R. Here are three ways to do this using idataio:
x <- idataio()

this will bring up the browser with a spreadsheet and you can just enter the values. Change
Number of Cases to 2 and Number of Variables to 4. Type the column names (Age First
Second Third) in the box on the right and enter the values in the spreadsheet. Click on the
button Close App to return to R.
2) use the mouse to highlight the whole table, switch to R and run

x <- idataio()

select the Copy from Clipboard option. Change Number of Variables to 4. Highlight the table
in the browser and right-click Copy. Hit Go! and see whether the table appears correctly. If
not maybe you need to play around a bit with the Number ofr cases etc. When it is ok hit
the Close App button on top.
copying from an Excel worksheet works exactly the same way.
NOTE : the current version does not allow for empty cells. If there are any enter NA first.
Also any names can not include spaces.
3) Open Microsoft Excel and enter the info as usual. Save the file as an excel spreadsheet

(with the xlsx extension). Now run idataio and choose the Read data from file option.

1.1.3 Getting Data from Moodle Quizzes

Most moodle quizzes will require you to transfer data from the quiz to R. This is done with
the command get.moodle.data(). There are two steps:
• in moodle use the mouse to highlight the data. If it is a table with several columns

ALWAYS include the column headers (names of variables).
• switch to R and run

get.moodle.data()

Now the data should be in R. It is called x. You can always check by typing x and ENTER.
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x

## [1] 10 2 6 9

Here are some examples:
a) single set of numbers:

101.6 115.0 100.9 103.8 77.6 102.6 99.6 108.5 100.8 92.5 101.8 81.6 103.7 94.9 103.3 86.7 101.6
106.6 101.5 96.9
highlight the data with the mouse, copy it, go to R and type
get.moodle.data()
x

## [1] 101.6 115.0 100.9 103.8 77.6 102.6 99.6 108.5 100.8 92.5 101.8
## [12] 81.6 103.7 94.9 103.3 86.7 101.6 106.6 101.5 96.9

this also works if the data is not numbers:
Old Old Young Old Young Young
get.moodle.data()

## [1] "Old" "Old" "Young" "Old" "Young" "Young"

sometimes parts of the data are separated by some symbol, for example a comma. In that
case you can use the sep argument:
1.5, 2.3, 5.3, 2.4, 7.9, 8.1, 2.7, 4.2
get.moodle.data(sep = ",")

## [1] 1.5 2.3 5.3 2.4 7.9 8.1 2.7 4.2

b) data is in the form of a table with several columns:
Age Gender
25 Female
21 Male
18 Male
20 Female
18 Male
21 Female
18 Male
22 Male
18 Female
25 Female

get.moodle.data()

## Age Gender
## 1 25 Female
## 2 21 Male
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## 3 18 Male
## 4 20 Female
## 5 18 Male
## 6 21 Female
## 7 18 Male
## 8 22 Male
## 9 18 Female
## 10 25 Female

Note if the data is a single vector it is given the name x, and you can now do things like
mean(x)

if the data is a table it is immediately attached and you can use the column names, for
example
mean(Age)

Note on rare occasions the routine can fail if the data is a table but everyting is text. In that
case use the argument is.table=TRUE.
Note sometimes you might get a warning from R, as long as the data is transfered correctly
you can ignore that.

1.1.4 Data Types in R

the most basic type of data in R is a vector, simply a list of values.
Say we want the numbers 1.5, 3.6, 5.1 and 4.0 in an R vector called x, then we can type
x <- c(1.5, 3.6, 5.1, 4.0)
x

## [1] 1.5 3.6 5.1 4.0

Often the numbers have a structure one can make use of:
1:10

## [1] 1 2 3 4 5 6 7 8 9 10
10:1

## [1] 10 9 8 7 6 5 4 3 2 1
1:20*2

## [1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
c(1:10, 1:10*2)

## [1] 1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12 14 16 18 20

Sometimes you need parentheses:
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n <- 10
1:n-1

## [1] 0 1 2 3 4 5 6 7 8 9
1:(n-1)

## [1] 1 2 3 4 5 6 7 8 9

The rep (“repeat”) command is very useful:
rep(1, 10)

## [1] 1 1 1 1 1 1 1 1 1 1
rep(1:3, 10)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
rep(1:3, each=3)

## [1] 1 1 1 2 2 2 3 3 3
rep(c("A", "B", "C"), c(4,7,3))

## [1] "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "B" "C" "C" "C"

what does this do?
rep(1:10, 1:10)

1.1.4.1 Commands for Vectors

To find out how many elements a vector has use the length command:
x <- c(1.4, 5.1, 2.0, 6.8, 3.5, 2.1, 5.6, 3.3, 6.9, 1.1)
length(x)

## [1] 10

The elements of a vector are accessed with the bracket [ ] notation:
x[3]

## [1] 2
x[1:3]

## [1] 1.4 5.1 2.0
x[c(1, 3, 8)]

## [1] 1.4 2.0 3.3
x[-3]

## [1] 1.4 5.1 6.8 3.5 2.1 5.6 3.3 6.9 1.1
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x[-c(1, 2, 5)]

## [1] 2.0 6.8 2.1 5.6 3.3 6.9 1.1

Instead of numbers a vector can also consist of characters (letters, numbers, symbols etc.)
These are identified by quotes:
c("A", "B", 7, "%")

## [1] "A" "B" "7" "%"

A vector is either numeric or character, but never both (see how the 7 was changed to “7”).
You can turn one into the other (if possible) as follows:
x <- 1:10
x

## [1] 1 2 3 4 5 6 7 8 9 10
as.character(x)

## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
x <- c("1", "5", "10", "-3")
x

## [1] "1" "5" "10" "-3"
as.numeric(x)

## [1] 1 5 10 -3

A third type of data is logical, with values either TRUE or FALSE.
x <- 1:10
x

## [1] 1 2 3 4 5 6 7 8 9 10
x > 4

## [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

these are often used as conditions:
x[x>4]

## [1] 5 6 7 8 9 10

This, as we will see shortly, is EXTREMELY useful!

1.1.5 Data Frames

data frames are the basic format for data in R. They are essentially vectors put together as
columns.
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The main thing you need to know about working with data frames are the following commands:

1.1.5.1 Case Study: UPR Admissions

consider the upr data set . This is the application data for all the students who applied and
were accepted to UPR-Mayaguez between 2003 and 2013.
dim(upr)

## [1] 23666 16

tells us that there were 23666 applications and that for each student there are 16 pieces of
information.
colnames(upr)

## [1] "ID.Code" "Year" "Gender" "Program.Code"
## [5] "Highschool.GPA" "Aptitud.Verbal" "Aptitud.Matem" "Aprov.Ingles"
## [9] "Aprov.Matem" "Aprov.Espanol" "IGS" "Freshmen.GPA"
## [13] "Graduated" "Year.Grad." "Grad..GPA" "Class.Facultad"

shows us the variables
head(upr, 3)

## ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
## 1 00C2B4EF77 2005 M 502 3.97 647
## 2 00D66CF1BF 2003 M 502 3.80 597
## 3 00AB6118EB 2004 M 1203 4.00 567
## Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
## 1 621 626 672 551 342 3.67
## 2 726 618 718 575 343 2.75
## 3 691 424 616 609 342 3.62
## Graduated Year.Grad. Grad..GPA Class.Facultad
## 1 Si 2012 3.33 INGE
## 2 No NA NA INGE
## 3 No NA NA CIENCIAS

shows us the first three cases.
Let’s say we want to find the number of males and females. We can use the table command
for that:
table(Gender)

## Error: object 'Gender' not found

What happened? Right now R does not know what Gender is because it is “hidden” inside
the upr data set. We need to make it visible to R first:
attach(upr)
table(Gender)
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## Gender
## F M
## 11487 12179

there is also a detach command to undo an attach, but this is not usually needed because
the attach goes away when you close R.
Note: you need to attach a data frame only once in each session working with R.
Note: Say you are working first with a data set “students 2016” which has a column called
Gender, and you attached it. Later (but in the same R session) you start working with a
data set “students 2017” which also has a column called Gender, and you are attaching this
one as well. If you use Gender now it will be from “students 2017”.

1.2 Subsetting of Data Frames

Consider the following data frame (not a real data set):
students

## Age GPA Gender
## 1 22 3.1 Male
## 2 23 3.2 Male
## 3 20 2.1 Male
## 4 22 2.1 Male
## 5 21 2.3 Female
## 6 21 2.9 Male
## 7 18 2.3 Female
## 8 22 3.9 Male
## 9 21 2.6 Female
## 10 18 3.2 Female

Here each single piece of data is identified by its row number and its column number. So for
example in row 2, column 2 we have “3.2”, in row 6, column 3 we have “Male”.
As with the vectors before we can use the [ ] notation to access pieces of a data frame, but
now we need to give it both the row and the column number, separated by a ,:
students[6, 3]

## [1] "Male"

As before we can pick more than one piece:
students[1:5, 3]

## [1] "Male" "Male" "Male" "Male" "Female"
students[1:5, 1:2]

## Age GPA
## 1 22 3.1
## 2 23 3.2
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## 3 20 2.1
## 4 22 2.1
## 5 21 2.3
students[-c(1:5), 3]

## [1] "Male" "Female" "Male" "Female" "Female"
students[1, ]

## Age GPA Gender
## 1 22 3.1 Male
students[, 2]

## [1] 3.1 3.2 2.1 2.1 2.3 2.9 2.3 3.9 2.6 3.2
students[, -3]

## Age GPA
## 1 22 3.1
## 2 23 3.2
## 3 20 2.1
## 4 22 2.1
## 5 21 2.3
## 6 21 2.9
## 7 18 2.3
## 8 22 3.9
## 9 21 2.6
## 10 18 3.2

1.3 Vector Arithmetic

R allows us to apply any mathematical functions to a whole vector:
x <- 1:10
2*x

## [1] 2 4 6 8 10 12 14 16 18 20
x^2

## [1] 1 4 9 16 25 36 49 64 81 100
log(x)

## [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
## [8] 2.0794415 2.1972246 2.3025851
sum(x)

## [1] 55
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y <- 21:30

x+y

## [1] 22 24 26 28 30 32 34 36 38 40
x^2+y^2

## [1] 442 488 538 592 650 712 778 848 922 1000
mean(x+y)

## [1] 31

Let’s try something strange:
c(1, 2, 3) + c(1, 2, 3, 4)

## [1] 2 4 6 5

so R notices that we are trying to add a vector of length 3 to a vector of length 4. This
should not work, but it actually does!
When it runs out of values in the first vector, R simply starts all over again.
In general this is more likely a mistake by you, check that this is what you really wanted to
do!

1.4 Subsetting

One of the most common tasks in Statistic is to select a part of a data set for further analysis.
There is even a name for this: data wrangling.

1.4.1 Case Study: New York Air Quality Measurements

Description: Daily measurements of air quality in New York, May to September 1973.
A data frame with 154 observations on 6 variables.
Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island
Solar.R: Solar radiation in Langleys in the frequency band 4000-7700 Angstroms from 0800
to 1200 hours at Central Park
Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport
Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.
Source: The data were obtained from the New York State Department of Conservation (ozone
data) and the National Weather Service (meteorological data).
head(airquality)

16



## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6

Let’s say that instead of looking at the whole data set we want to consider only the months
of August and September. Those have Month = 8, 9 and we can select this part of the data
set with the [ , ] notation we discussed earlier:
attach(airquality)
airAugSept <- airquality[Month>=8, ]
head(airAugSept)

## Ozone Solar.R Wind Temp Month Day
## 93 39 83 6.9 81 8 1
## 94 9 24 13.8 81 8 2
## 95 16 77 7.4 82 8 3
## 96 78 NA 6.9 86 8 4
## 97 35 NA 7.4 85 8 5
## 98 66 NA 4.6 87 8 6

This task of data wrangling is so important, there are quite a lot of routines that are helping
with it. One of them is isubset.
Here is what you do:
airAugSept<- isubset(airquality)

The app lets you use up to three conditions, we just have one (Month ≥ 8), so we can leave
that alone. Now choose the condition and then hit “Click when ready to run”
Here is a screenshot:
now hit Close App and return to R.
In this example we used a very simple condition: Month ≥ 8. These conditions can be much
more complicated using & (AND), | (OR) and !(NOT).
Let’s say what we want only those days in August and September with a Temperature less
than 80:
airAugSeptTemp80 <- isubset(airquality)

Finally let’s say we want only either those days in August and September with a Temperature
less than 80, or days with Wind>10:

Let’s get back to the days in August and September. What we want to do with those days is
to find the mean Ozone level:
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Figure 1:
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Figure 2:
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Figure 3:
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airAugSept <- isubset(airquality)
mean(Ozone)

## [1] NA

Oh! Something went wrong! The problem is that the column Ozone has missing values,
which R codes as NA. These are just what it says, for some days the Ozone level was not
measured and so is missing. One way to go is to tell R to ignore the missing values:
mean(Ozone, na.rm=TRUE)

## [1] 42.12931

or we could use:
stat.table(Ozone)

## Warning: 37 missing values were removed!

## Sample Size Mean Standard Deviation
## Ozone 116 42.1 33

OK!
But wait a minute: we are told there are 37 missing values and 116 “good” ones, for a total
of 37+116=153. But there are supposed to be only 61 rows (or observations) in airAugSept.
Let’s check:
length(Ozone)

## [1] 153
nrow(airAugSept)

## [1] 61

What’s wrong?
The problem is that Ozone still comes from the original airquality data set, but our Ozone is
still hidden inside airAugSept. One solution would be to
attach(airAugSept)

but as R is warning us, now there are two Ozones, and it can get quite confusing. To be sure
we work with the correct data we can do this:
detach(airquality)
stat.table(Ozone)

## Warning: 6 missing values were removed!

## Sample Size Mean Standard Deviation
## Ozone 55 44.9 35.2

21



1.4.2 Case Study: Age and Gender in Puerto Rico in 2000

Breakdown of the population of USA and Puerto Rico by age and gender, according to the
2000 Census
head(agesex)

## Age Male Female
## 1 Less than 1 29601 28442
## 2 1 29543 28130
## 3 2 30252 28881
## 4 3 30643 28867
## 5 4 31248 29799
## 6 5 31621 29696
tail(agesex)

## Age Male Female
## 98 97 282 418
## 99 98 189 296
## 100 99 123 196
## 101 100 - 104 258 448
## 102 105 - 109 47 59
## 103 Over 110 17 27

shows us that the data set consists of three vectors: the ages, the number of males and the
number of females. The first one is a character vector (“less than 1”) and the other two are
numeric.

Let’s answer a few questions about the age and gender in PR in 2000:
• What was the number of men and women in PR in 2000?

attach(agesex)
sum(Male)

## [1] 1833577
sum(Female)

## [1] 1975033

• How many people where there in PR?
Simple:
sum(Male)+sum(Female)

## [1] 3808610

we will need the column with the Male and Female counts a few more times, so maybe we
should do it this way:
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People <- Male + Female
head(People)

## [1] 58043 57673 59133 59510 61047 61317
sum(People)

## [1] 3808610

Note
we now have another variable called People among the data sets, as we can see with
ls()

It will stay there until we close R. If we want to keep it for the next time we use R we need
to save everything with File > Save Workspace. If we want to save the workspace but not
this variable we first have to
rm(People)

• How many newborns were there?
People[1]

## [1] 58043

• How many teenagers were there?
teenagers (Age from 13 to 19) are in rows 14 - 20, so
sum(People[14:20])

## [1] 433764

• What percentage of the population was male, rounded to 1 digit behind the decimal
point?

sum(Male)/sum(People)*100

## [1] 48.14294
round(sum(Male)/sum(People)*100, 1)

## [1] 48.1

• In how many age groups were there more males than females?
Let’s start with
Male > Female

## [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## [12] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
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## [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE FALSE FALSE FALSE

and now we can find
sum(Male > Female)

## [1] 21

• What age group had the largest population?
max(People)

## [1] 64795
People==max(People)

## [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
## [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [23] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [34] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [45] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [56] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [67] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [78] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [89] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
## [100] FALSE FALSE FALSE FALSE
Age[People==max(People)]

## [1] " 10"

Note == is the symbol for “is equal to”. The others are
• < “is less than”
• <= “is less or equal to”

• > “is greater than”
• >= “is greater or equal to”

So the age group of 10 year olds is the largest. Why is this answer a bit strange?
Here is another way to do this:
order(People, decreasing = TRUE)

## [1] 11 21 19 18 20 10 6 8 17 5 22 23 16 7 13 12 15
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## [18] 14 9 4 3 24 1 2 25 26 30 35 36 29 31 37 28 38
## [35] 27 41 40 34 39 33 32 43 44 46 42 45 51 53 47 48 54
## [52] 50 49 52 55 56 57 58 59 61 60 62 63 64 66 65 68 67
## [69] 69 70 72 71 73 74 75 76 77 78 79 80 81 82 83 84 85
## [86] 86 87 88 89 90 91 92 93 94 95 96 97 101 98 99 100 102
## [103] 103
head( agesex[ order(People, decreasing = TRUE), ])

## Age Male Female
## 11 10 33188 31607
## 21 20 32441 32154
## 19 18 32216 31705
## 18 17 32735 31070
## 20 19 32038 31744
## 10 9 31798 30101

another useful command is sort, which we can use to order one variable, by default from
smallest to largest:
sort(People)

## [1] 44 106 319 485 700 706 847 1122 1332 1728 2285
## [12] 2694 3640 4466 5261 6278 7279 8414 8726 9132 10436 11659
## [23] 13449 14211 15293 16657 17514 19403 19673 20588 21421 21865 23123
## [34] 24982 25596 26222 26929 30387 30552 30690 32035 32737 34118 34715
## [45] 36268 38544 39146 40807 44265 45004 45280 45875 45926 46155 46311
## [56] 46579 48142 48987 49262 49499 50003 50009 50828 50951 51259 52213
## [67] 52395 52553 52795 52807 53293 53573 53709 54352 54815 55124 55313
## [78] 55754 56337 57673 58043 58725 59133 59510 60020 60112 60216 60221
## [89] 60456 60695 60707 60748 60786 61047 61221 61231 61317 61899 63782
## [100] 63805 63921 64595 64795

• What was the mean age of the population?
Because the data is grouped the mean is found as follows:

(0× newborns + 1× one year olds + 2× two year olds + ...+)
total population

Age is a character variable but we need a quantitative one to do arithmetic, so let’s make
one as close to Age as possible:
Ages <- c(0:99, 102, 107, 112)
Ages

## [1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
## [18] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
## [35] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
## [52] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
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## [69] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
## [86] 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 102 107
## [103] 112
round(sum(Ages*People)/sum(People), 1)

## [1] 34

2 Short List of Important R Commands

• head: show the first k elements of a dataset
head(agesex, 3)

## Age Male Female
## 1 Less than 1 29601 28442
## 2 1 29543 28130
## 3 2 30252 28881

• ls: list of all elements of the RData file
head(ls())

## [1] "acorn" "Ages" "agesex" "agesexUS" "aids"
## [6] "airAugSept"

• attach: make column names of a data frame usable
table(Gender)

## [1] "Error: object Gender not found"
attach(upr)
head(Gender)

## [1] "Male" "Male" "Male" "Male" "Female" "Male"

• args: show arguments of a routine
args(stat.table)

## function (y, x, Mean = TRUE, Sort = FALSE, ndigit = 1)
## NULL

this does not always work:
args(mean)

## function (x, ...)
## NULL

in that case use
• ?: show details of routine
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?mean

will open a help file in a browser.
• length: number of elements of a vector
• dim: number of row and columns of a data frame
• colnames: names of columns of a data frame
• rownames: names of rows of a data frame
• sum, mean, sd
• table: count the number of occurances

table(Gender)

## Gender
## F M
## 11487 12179
table(Gender, Year)

## Year
## Gender 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
## F 1102 1040 1162 1137 1208 1219 1180 958 853 769 859
## M 1151 1118 1138 1098 1256 1219 1237 1073 919 979 991

3 Routines in Resma3

3.0.1 Interactive Apps

idataio input and output of data into R.
isummary - graphs and numerical summaries, with or without groups.
ihist - histogram
isplot - scatterplot, with or without groups
isubset - data subsetting

3.0.2 Routines

barchart - Barcharts, one or two Variables
bplot - Boxplot
change.order - Change Ordering of Categorical Variable
chi.gof.test - Chisquare Goodnes-of-fit Test
chi.ind.test - Chisquare Test for Independence
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ci.mean.sim - Simulation of Confidence Intervals for one Mean
dlr - Least Squares Regression with one Dummy Variable
dlr.predict Prediction for SLR with Dummy Variable
fivenumber - Five Number Summary
flplot - Fitted Line Graph
get.moodle.data - read data from moodle quizzes
hplot - Histogram
iplot - Interaction Plot
kruskalwallis - Kruskal-Wallis test
mallows - Best Subset Regression
mlr Multiple Regression
mlr.predict - Prediction for Multiple Regression
mplot - Marginal Plot
multiple.graphs - Combine Several Graphs into one
nplot - Normal Probability Plot
one.sample.t - Infrerence for one Mean
one.sample.prop - Inference for one Proportion
one.sample.wilcoxon - Wilcoxon Rank Sum Test, non parametric alternative to one.sample.t
oneway - One-way ANOVA
pearson.cor - Test and Interval for Correlation
prop.ps - Power and Sample Size for one Proportion
slr - Regression for One Predictor
slr.predict Prediction for Regression with one Predictor
splot Scatterplot, also with groups
stat.table - Summary Statistics
t.ps - Power and Sample Size for one Mean
test.mean.sim - Simulation of Hypothesis esting for one Mean
tukey - Tukey Multiple Comparison, one or two Factors
twoway - Two-way ANOVA
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3.1 Interactive Apps

These are apps that open a new window and then allow the user to do all the work using
(mostly) point and click.
Most of these apps are called with data sets as arguments. They will accept any number
of arguments, which can be either vectors, matrices or data frames. If any of the the later
arguments do not match the first one in length they are ignored. Some apps also return a
data set.
Most of the apps also show the commands that could be used in R directly to produce the
same results, either with the Resma3 commands or without them.

3.1.1 idataio

Routine to read data into R and export data to a file. It allows for
• data entered from the keyboard into a spreadsheet
• data read from a file
• data downloaded from the internet
• data copied from another program such as a browser or an Excel spreadsheet

Almost all standard file formats are supported, such as csv, excel, html, etc. For a complete
list see
Examples:
dta <- idataio()

3.1.2 isummary

graphical and numerical summaries of one numerical vector, optionally rouped by a categorical
variable
Examples
attach(mtcars)
isummary(mtcars)
isummary(mpg)
isummary(mpg, gears)

3.1.3 ihist

draws histograms
Examples
ihist(mtcars)

29



3.1.4 isplot

scatterplots
Examples
isplot(mtcars)
isplot(mpg, disp, gear, cyl)

3.1.5 isubset

subsetting a data frame or vector
Examples:
new.mtcars <- isubset(mtcars)

4 General Comments on Resma3 Routines

The routines I wrote for this course all use the following standard (where it makes sense)
first argument y is a numeric vector (“Response”)
second argument x is either a numeric or categorical vector or matrix (“Predictor” or “Factor”)
Sometimes there is a third argument z, always a categorical vector (“Group”)
Obvious exceptions: routines for categorical data analysis (barchart, chi.ind.test, chi.gof.test)

Many of the routines have the following arguments:
return.result=FALSE (Optional): if TRUE returns results as vector for further use. This
allows storing the results, for example to do simulation.

You can get all the routines and data sets by downloading and opening Resma3.RData

sometimes you might make a mistake entering the data, or you want to change a few values.
In that case use
students <- edit(students)

This brings up the spreadsheet and you can do the changes there!
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4.1 Standard R Routines

4.1.1 attach

Arguments
x: a data frame
makes column names “visible” to R
Examples:
attach(mothers)
mean(Length)

Note: you need to do this only once in any R session, it will stay until you close R.

4.1.2 mean, median, sd, IQR, quantile, cor

Summary statistics for quantitative data
Arguments
x: a numeric vector
na.rm = FALSE
Examples:
mean(Length)

median(Length)

sd(Length)

IQR(Length)

quantile(Length, c(0.25,0.75))

Note: all these routines have an argument na.rm = FALSE, so if the data set has missing
values (NA) the result is NA. Simply use na.rm = TRUE

4.1.3 table

Tables and cross-tabulation for categorical data
Arguments:
x: either a categorical vector or a data frame with two categorical columns
y: a second categorical vector (if x is a vector as well)
Examples:
head(rogaine,3)
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table(rogaine)

4.1.4 cor

Pearson’s correlation coefficient Arguments:
x: either a numeric vector or a data frame with two or more numeric columns
y: a second numeric vector (if x is a vector as well)
use = “everything”, set to use=“complete.obs” if NA’s in the data
Examples:
x <- rnorm(50)
y <- rnorm(50)
cor(x, y)

cor(cbind(x,y))

4.1.5 subset

find a subset of a data set based on some condition(s)
Arguments:
x: a data frame
cond: some logical condition
select (Optional): which columns should be returned, default is all of them
drop=FALSE, if just one column is selected as output use drop=TRUE
Examples:
head(subset(wrinccensus, Satisfaction>=4, select=Income),3)
head(subset(wrinccensus, Satisfaction>=4 & Gender=="Male"),3)
head(subset(wrinccensus, Satisfaction>=4 & Gender=="Male", select=c(Income,Job.Level)),3)
head(subset(wrinccensus, Satisfaction>=4 & Gender=="Male", select=Income),3)

Note that the last one results in a data frame with one column. You might want it as a
numeric vector:
head(subset(wrinccensus, Satisfaction>=4 & Gender=="Male", select=Income, drop=TRUE),3)

NOTE: see also interactive app isubset

5 Resma3 routines

5.0.1 get.moodle.data

read data from moodle quizzes
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highlight the data, use mouse to copy, switch to R and run
get.moodle.data()

5.1 Routines for Summary Statistics

5.1.1 stat.table

tables of summary statistics, with or without groupsArguments y: numeric vector (Required)
x: categorical variable (Optional) Mean=TRUE: if set to FALSE table finds medians and
IQRs Examples:
stat.table(Length)
stat.table(Length,Status)
stat.table(Length,Status,Mean=FALSE)

5.2 Routines for One Variable

5.2.1 fivenumber

five number summary and IQR, with or without groups
Arguments:
y: quantitative vector x: (optional) categorical vector
Example:
fivenumber(Length)

5.2.2 one.sample.t

Confidence interval or hypothesis test for one mean
Arguments:
y: either a vector with numbers or the sample mean of the data shat, n: standard deviation
and sample size (only needed if y is sample mean)
mu.null: mean in null hypothesis (if missing confidence interval is found)
alternative = “equal”: alternative hypothesis
conf.level = 95
ndigit = 1 (number of digits for rounding)
Examples:
one.sample.t(Length, conf.level=90)
one.sample.t(49.55, 3.38, 94, conf.level=90, ndigit=2)
one.sample.t(Length, mu.null=50, alternative="less")
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5.2.3 t.ps

power and sample size calculations for one mean
Arguments:
n: sample size diff: difference in means
sigma: standard deviation
power: power of test
E (optional): error of confidence interval (for sample size calculation only)
conf.level=90: confidence level of confidence interval (for sample size calculation only)
alpha = 0.05: type I error probability
alternative = “equal”: alternative hypothesis
routine finds whatever argument is left out (n, diff or power)
Examples:
t.ps(n=100, diff=1.23, sigma=5, alpha=0.1, alternative="greater")
t.ps(power=90, d=1, sigma=13, alpha=0.1, alternative="greater")
t.ps(sigma= 0.5, E=0.125, conf.level=99)

5.2.4 wilcoxon

Wilcoxon rank sum test for one quantitative variable - non parametric alternative to
one.sample.t
Arguments:
y: quantitative vector
mu.null: mean in null hypothesis (if missing confidence interval is found)
alternative = “equal”: alternative hypothesis
conf.level = 95
Examples:
wilcoxon(Length, conf.level=90)
wilcoxon(Length, mu.null=50, alternative="greater")

5.2.5 one.sample.prop

Confidence interval or hypothesis test for one proportion (percentage, probability)
Arguments:
x: number of successes
n: number of trials
pi.null: proportion in null hypothesis (if missing confidence interval is found)
alternative = “equal”: alternative hypothesis
conf.level = 95
Examples:
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one.sample.prop(40, 100, conf.level=90)
one.sample.prop(40, 100, pi.null=0.5, alternative=less)

5.2.6 prop.ps

Power and sample size calculations for one proportion
Arguments:
n: sample size phat: alternative proportion
pi.null: proportion under null hypothesis
power: power of test
E (optional): error of confidence interval (for sample size calculation only)
conf.level=90: confidence level of confidence interval (for sample size calculation only)
alpha = 0.05: type I error probability
alternative = “two.sided”: alternative hypothesis
routine finds whatever argument is left out (n, phat or power)
Examples:
prop.ps(n=100, phat=0.65, pi.null=0.5)
prop.ps(power=90, phat=0.65, pi.null=0.5)

5.2.7 chi.gof.test

Chisquare test for multinomial proportions
Arguments:
x: observed counts p: hypothesized proportions
Example
chi.gof.test(c(12, 17, 20, 15, 10, 26), rep(1,6)/6)

5.3 Routines for Two Variables

5.3.1 pearson.cor

Confidence interval and hypothesis test for Pearson’s correlation coefficient
Arguments:
y: quantitative vector
x: quantitative vector
rho.null (if missing confidence interval is found, only rho.null = 0 accepted)
conf.level = 95 confidence level of interval
Note: when the routine is run R sometimes gives a
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Warning message:
Continuous x aesthetic – did you forget aes(group=. . . )?
just ignore this
Example:
pearson.cor(Draft.Number, Day.of.Year, rho.null = 0)

5.4 Routines for Simulations

5.4.1 ci.mean.sim

does a simulation for coverage of the t test confidence intervals
Arguments:
n : sample size mu: mean sigma: standard deviationconf.level: nominal coverage
Example:
ci.mean.sim(n=500,mu=75,sigma=30,conf.level=99)

5.4.2 test.mean.sim

does a simulation of the p value of the t test. If mu.null=mu it finds the true type I error α,
otherwise the power of the test. In either case it draws the histogram of p values.
Arguments:
n : sample size
mu: mean
mu.null=mu: value of mean under null hypothesis
sigma: standard deviation
alpha: nominal alpha
Examples:
test.mean.sim(n=20, mu=5, sigma=1, alpha=0.1)
test.mean.sim(n=20, mu=5, mu.null=5.5, sigma=1, alpha=0.1)

5.5 Routines for Graphs

5.5.1 barchart

bar charts
Arguments:
y: a table (often from a call to the table routine)
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Percent: if missing graph uses counts. Other values are “Grand”, “Row” or “Column” for
respective percentages
new.order: for changing the order of the bars
Polygon = FALSE if TRUE adds polygon
Examples:
attach(rogaine)
barchart(table(Growth))
barchart(table(Growth), Percent="Grand")
barchart(table(Growth), Percent="Grand",Polygon=TRUE)
barchart(table(rogaine))
barchart(table(rogaine),Percent="Row")

5.5.2 hplot

Histogram, if desired with fitted density
Arguments:
x: numerical data
f: name of distribution (Optional)
par: parameters of distribution(Optional)
n: number of bins (Optional) label_x, main_title: x axis label and graph title (Optional)
Examples:
hplot(Length)
hplot(Length, label_x = "Length of Babies (cm)", main_title = "Mothers, Babies and Cocain Use")
hplot(Length, f = "norm", par = c(mean(Length), sd(Length)))

5.5.3 bplot

Boxplot / do.violinplot
Arguments:
y: numeric vector or matrix or data frame
x: catagorical vector (Optional)
do.violin = FALSE: if TRUE does violin plot
orientation=“vertical”, if orientation=“horizontal” boxplot is drawn horizontally
new_order: change the order of the boxes. Either a vector of position numbers or “Sort”,
then sorted from smallest mean to largest.
label_x, label_y, main_title: axes labels and graph title (Optional)
Examples:
bplot(Length)
bplot(Length, Status)
bplot(Length, Status, label_y = "Length of Babies (cm)",
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label_x = "Drug Status",
main_title = "Mothers, Babies and Cocain Use")

5.5.4 splot

Scatterplot, possibly with groups and fits
Arguments:
y: numeric vector , y axis
x: numeric vector, x axis
z: catagorical variable (Optional)
w: second catagorical variable (Optional)
plot.points=TRUE: if FALSE dots are not plotted add.line = 0: adds lines, if add.line=1
least squares regression line, if add.line=2 LOESS, if add.line=3 it does the line graph
jitter = FALSE: if true jitters dots
use.facets = FALSE: if TRUE usess facets instead of colors for z
errorbars = FALSE: if TRUE adds error band to fit
label_x, label_y, label_z, main_title: axes labels and graph title (Optional)
add.text, add.text_x, add.text_y: add text to graph (Optional)
plotting.size = 1: size of plotting symbols
plotting.symbols: change plotting symbols. can use either symbols added on keyboard or
numbers corresponding to R symbols key(Optional)
plotting.colors: change colors, can use either numbers corresponding to R color key or explicit
text : pcolor=“red” (Optional)
ref_x, ref_y: add reference lines (Optional)
log_x = FALSE, log_y = FALSE: change to log scale
no.legends = FALSE: rmove all alegends
Examples:
attach(salaries)
splot(Salary,Years)
splot(Salary,Years, add.line=1)
splot(Salary,Years, Level, add.line=1)
splot(Salary,Years, add.line=3)

attach(upr)
splot(y = Freshmen.GPA, x = IGS, z = Gender, use.facets = TRUE, add.line = 1, label_y = "Freshmen GPA", label_x = "Indice de Ingreso", main_title = "UPR Admissions", jitter=TRUE, plotting.symbols = ".", plotting.colors = "blue", ref_x = 300, ref_y=3.5)

NOTE: see also ineractive app isplot

5.5.5 mplot

Marginal plot with scatterplot and boxplots

38



Arguments:
y: numeric vector , y axis
x: numeric vector, x axis
z: catagorical variable (Optional)
add.line = 0: adds lines, if add.line=1 least squares regression line, if add.line=2 LOESS, if
add.line=3 it does the line graph
Examples:
mplot(Salary, Years)

Note: when the routine is run R sometimes gives a Warning message: Continuous x aesthetic
– did you forget aes(group=. . . )? Just ignore that

5.5.6 flplot

Fitted line plot, allows for log transforms or polynomial fitting
Arguments:
y: numeric vector , y axis
x: numeric vector, x axis
z: catagorical variable (Optional)
additive = FALSE: if true fits parallel lines
logx = FALSE, logy = FALSE: if true applies log transforms
polydeg = 1: degree of polynomial to be fit
jitter = FALSE: if true jitters dots
Examples:
attach(longjump)
flplot(LongJump, Year)
flplot(LongJump, Year, polydeg=2)
attach(elusage)
flplot(elusage[,3], elusage[,4], logx=TRUE, logy=TRUE)

5.5.7 nplot

Normal probability plot
Arguments:
y: numerical vector
x: categorical vector (Optional)
Examples:
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nplot(euros[,1])

5.5.8 iplot

Interaction plot
Arguments:
y: numerical vector
x and z: categorical vectors
Examples:
attach(fermentation)
iplot(Ethanol, Sugar, Oxygen)

5.5.9 multiple.graphs

combine (up to four graphs) in one

5.5.9.1 Arguments:

ggplt objects, likely generated using other graph functions with the argument return-
Graph=TRUE
titles (Optional) titles for each graph
Examples:
attach(gasoline)
plt1 <- bplot(MPG, Gasoline, returnGraph=TRUE)
plt2 <- bplot(MPG, Automobile, returnGraph=TRUE)
multiple.graphs(plt1,plt2)

x<-rnorm(1000)
multiple.graphs(

hplot(x, n=10, returnGraph=TRUE),
hplot(x, n=25, returnGraph=TRUE),
hplot(x, n=50, returnGraph=TRUE),
hplot(x, n=100, returnGraph=TRUE),
titles = paste(c(10, 25, 50, 100), "bins")
)

5.6 Routines for Testing with two or more Variables

5.6.1 chi.ind.test

Chisquare test of independence
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Arguments:
x: a table of counts
Examples:
chi.ind.test(table(rogaine))

5.6.2 oneway

ANOVA with one factor
Arguments:
y: numeric vector
x: categorical vector
ndigit = 1: rounding answer to 1 digit
var.equal = TRUE: assume equal variance
conf.level = 95: in the case of a categorical variable with 2 levels finds a 95% confidence
interval for the difference in means
Examples:
oneway(Length, Status)

5.6.3 kruskalwallis

Non-parametric ANOVA
Arguments:
y: numeric vector
x: categorical vector
Examples:
kruskalwallis(Length, Status)

5.6.4 twoway

ANOVA with two factors
Arguments:
y: numeric vector
x, z: categorical vectors
with.interaction = TRUE: assume interaction is present (defaults to FALSE if there are no
repeated measurements)
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Examples:
attach(gasoline)
twoway(MPG, Gasoline, Automobile)
twoway(MPG, Gasoline, Automobile, with.interaction="FALSE")

5.6.5 tukey

Tukey’s Multiple Comparison in ANOVA
Arguments:
y: numeric vector
x : categorical vector
z : second categorical vector (Optional)
with.interaction = TRUE: assume interaction is present (defaults to FALSE if there are no
repeated measurements)
which=“first”: do comparison for first categorical variable (x), or change to which=“second”
or which=“interaction”
Examples:
tukey(mothers[,2], mothers[,1])
tukey(MPG, Gasoline, Automobile, which="first")
tukey(MPG, Gasoline, Automobile, which="interaction")

5.6.6 slr

Linear Regression with one predictor, including polynomial regression
Arguments:
y, x: numerical vectors
no.intercept = FALSE: fit intercept?
polydeg = 1: fit polynomial of higher degree?
show.tests=FALSE: if TRUE t tests for coefficients are shown
Examples:
slr(wine[,3],wine[,2])
slr(wine[,3],wine[,2],polydeg=2)
slr(log(wine[,3]),wine[,2],polydeg=2)

5.6.7 slr.predict

Prediction for simple linear regression
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Arguments:
same as slr. In addition:
newx = x: predict for values for x (can be vector). If missing predict for values in data set.
interval: either “PI” for prediction intervals or “CI” for confidence intervals
conf.level = 95
Examples:
slr.predict(wine[,3], wine[,2],newx=c(2,2.5,3), interval="PI", conf.level=90)

5.6.8 mlr

Linear Regression with more than one predictor
Arguments:
y: numerical vector
x: numeric matrix with predictors in columns
show.tests=FALSE: if TRUE t tests for coefficients are shown
returnModel=FALSE, if TRUE fit object is returned (and can be used in other routines)
Examples:
mlr(houseprice[,1], houseprice[, -1])

5.6.9 mlr.predict

Prediction for regression with more than one predictor
Arguments:
same as slr.predict but here x and newx are matrices
Examples:
newx <- cbind(c(2000, 2100, 2200), rep(1, 3), rep(2, 3), rep(2, 3))
mlr.predict(houseprice[,1], houseprice[, -1], newx=newx, interval="PI", conf.level = 99)

5.6.10 mallows

Best subset regression with Mallow’s Cp
Arguments:
same as mlr
Examples:
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mallows(houseprice[,1], houseprice[, -1] )

5.6.11 dlr

Linear regression with one dummy variable
Arguments:
y: numerical vector
x: numeric vectorz: categorical vector
additive = FALSE: if parallel lines set to TRUE
show.tests=FALSE: if TRUE t tests for coefficients are shown
Examples:
dlr(salaries[,1], salaries[,2], salaries[,3])
dlr(salaries[,1], salaries[,2], salaries[,3], additive=T)

5.6.12 dlr.predict

Prediction for regression with a dummy variable
Arguments:
same as slr.predict but also needs newz: values of categorical variable for prediction
Examples:
dlr.predict(salaries[, 1], salaries[, 2], salaries[, 3],

newx=5, newz="Low", interval="PI")

5.7 Miscellaneous Routines

5.7.1 change.order

Change the order of a categorical variable
Arguments:
z: categorical variable
NewOrder: can be a numeric vector specifying a certain order or a categorical vector with
ordered values of z
Examples:
bplot(Length, Status)
bplot(Length, change.order(Status,c(2,1,3)))
bplot(Length, change.order(Status,c("Throughout","First Trimester","Drug Free")))
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6 Resma3 vs Basic R

In this section we will see how some of our problems could be done with base R.

6.1 Graphs

6.1.1 Histogram

x <- rnorm(1000, 10, 2)
hplot(x, n=50)
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6.1.2 Boxplot

bplot(x)
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boxplot(x)
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attach(mothers)
bplot(Length, Status)
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boxplot(Length~Status)
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6.1.3 Scatterplot

attach(wine)
splot(Heart.Disease.Deaths, Wine.Consumption)
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plot(Wine.Consumption, Heart.Disease.Deaths)
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6.2 Summary Statistics

fivenumber(x, ndigit = 2)

## Minimum Q1 Median Q3 Maximum
## 3.35 8.69 10.04 11.35 15.85
## IQR = 2.66
round(c(min(x), quantile(x, 0.25), median(x), quantile(x, 0.75), max(x)), 2)

## 25% 75%
## 3.35 8.69 10.04 11.35 15.85
stat.table(x, ndigit = 2)

## Sample Size Mean Standard Deviation
## x 1000 10.02 1.98
round(c(length(x), mean(x), sd(x)), 2)

## [1] 1000.00 10.02 1.98

6.3 Confidence Intervals/Hypothesis Tests

6.3.1 Mean

one.sample.t(x, conf.level = 90, ndigit = 3)
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## A 90% confidence interval for the population mean is (9.919, 10.125)
t.test(x, conf.level = 0.9)

##
## One Sample t-test
##
## data: x
## t = 160.32, df = 999, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 90 percent confidence interval:
## 9.919363 10.125213
## sample estimates:
## mean of x
## 10.02229
one.sample.t(x, mu.null = 10,

alternative = "greater", ndigit = 3)
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## p value of test H0: mu=10 vs. Ha: mu > 10: 0.3608
t.test(x, mu=10, alternative = "greater")

##
## One Sample t-test
##
## data: x
## t = 0.35652, df = 999, p-value = 0.3608
## alternative hypothesis: true mean is greater than 10
## 95 percent confidence interval:
## 9.919363 Inf
## sample estimates:
## mean of x
## 10.02229

the t.ps command does not exist in base R.

6.3.2 Proportion

one.sample.prop(60, 100, conf.level = 90, ndigit = 3)

## A 90% confidence interval for the population proportion is (0.513, 0.682)
prop.test(60, 100, conf.level = 0.9)

##
## 1-sample proportions test with continuity correction
##
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## data: 60 out of 100, null probability 0.5
## X-squared = 3.61, df = 1, p-value = 0.05743
## alternative hypothesis: true p is not equal to 0.5
## 90 percent confidence interval:
## 0.5127842 0.6816248
## sample estimates:
## p
## 0.6
one.sample.prop(60, 100, pi.null = 0.5,

alternative = "greater", ndigit = 3)

## p value of test H0: pi=0.5 vs. Ha: pi > 0.5: 0.0287
prop.test(60, 100, p=0.5, alternative = "greater")

##
## 1-sample proportions test with continuity correction
##
## data: 60 out of 100, null probability 0.5
## X-squared = 3.61, df = 1, p-value = 0.02872
## alternative hypothesis: true p is greater than 0.5
## 95 percent confidence interval:
## 0.5127842 1.0000000
## sample estimates:
## p
## 0.6

the prop.ps command does not exist in base R.

6.3.3 Correlation

attach(draft)
pearson.cor(Draft.Number, Day.of.Year, conf.level = 90)
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## A 90% confidence interval for the
## population correlation coefficient is ( -0.306, -0.143 )
cor.test(Draft.Number, Day.of.Year, conf.level = 0.9)

##
## Pearson's product-moment correlation
##
## data: Draft.Number and Day.of.Year
## t = -4.4272, df = 364, p-value = 1.264e-05
## alternative hypothesis: true correlation is not equal to 0
## 90 percent confidence interval:
## -0.3061994 -0.1427007
## sample estimates:
## cor
## -0.2260414
pearson.cor(Draft.Number, Day.of.Year, rho.null = 0)

## p value of test H0: rho=0 vs. Ha: rho <> 0: 0.000

6.3.4 Regression

• Simple Regression
slr(Draft.Number, Day.of.Year)
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## The least squares regression equation is:
## Draft.Number = 225.009 - 0.226 Day.of.Year
## R^2 = 5.11%
summary(lm(Draft.Number~Day.of.Year))

##
## Call:
## lm(formula = Draft.Number ~ Day.of.Year)
##
## Residuals:
## Min 1Q Median 3Q Max
## -210.837 -85.629 -0.519 84.612 196.157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 225.00922 10.81197 20.811 < 2e-16
## Day.of.Year -0.22606 0.05106 -4.427 1.26e-05
##
## Residual standard error: 103.2 on 364 degrees of freedom
## Multiple R-squared: 0.05109, Adjusted R-squared: 0.04849
## F-statistic: 19.6 on 1 and 364 DF, p-value: 1.264e-05

• Multiple Regression
attach(houseprice)
mlr(Price, houseprice[, -1])
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## The least squares regression equation is:
## Price = -67.62 + 0.086 Sqfeet - 26.493 Floors - 9.286 Bedrooms + 37.381 Baths
## R^2 = 88.6%
summary(lm(Price ~ ., data=houseprice))

##
## Call:
## lm(formula = Price ~ ., data = houseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.018 -5.943 1.860 5.947 30.955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.61984 17.70818 -3.819 0.000882
## Sqfeet 0.08571 0.01076 7.966 4.62e-08
## Floors -26.49306 9.48952 -2.792 0.010363
## Bedrooms -9.28622 6.82985 -1.360 0.187121
## Baths 37.38067 12.26436 3.048 0.005709
##
## Residual standard error: 13.71 on 23 degrees of freedom
## Multiple R-squared: 0.8862, Adjusted R-squared: 0.8665
## F-statistic: 44.8 on 4 and 23 DF, p-value: 1.558e-10

• Best Subset Regression
library(leaps)
mallows(Price, houseprice[, -1])
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## Number of Variables Cp Sqfeet Floors Bedrooms Baths
## 1 8.83 X
## 2 8.81 X X
## 3 4.85 X X X
## 4 5 X X X X
leaps(houseprice[, -1], Price)

## $which
## 1 2 3 4
## 1 TRUE FALSE FALSE FALSE
## 1 FALSE FALSE FALSE TRUE
## 1 FALSE FALSE TRUE FALSE
## 1 FALSE TRUE FALSE FALSE
## 2 TRUE FALSE FALSE TRUE
## 2 TRUE TRUE FALSE FALSE
## 2 TRUE FALSE TRUE FALSE
## 2 FALSE FALSE TRUE TRUE
## 2 FALSE TRUE FALSE TRUE
## 2 FALSE TRUE TRUE FALSE
## 3 TRUE TRUE FALSE TRUE
## 3 TRUE FALSE TRUE TRUE
## 3 TRUE TRUE TRUE FALSE
## 3 FALSE TRUE TRUE TRUE
## 4 TRUE TRUE TRUE TRUE
##
## $label
## [1] "(Intercept)" "1" "2" "3" "4"
##
## $size
## [1] 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5
##
## $Cp
## [1] 8.834171 92.088525 104.303380 161.057329 8.812489 10.306028
## [7] 10.812154 66.886236 77.214388 87.881962 4.848657 10.794275
## [13] 12.289752 66.450032 5.000000

6.3.5 ANOVA

• oneway
oneway(Length, Status)
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## p value of test of equal means: p = 0.000
## Smallest sd: 2.5 Largest sd : 3.6
summary(aov(Length~Status))

## Df Sum Sq Mean Sq F value Pr(>F)
## Status 2 181.4 90.69 9.319 0.000208
## Residuals 91 885.6 9.73

• twoway
attach(gasoline)
twoway(MPG, Gasoline, Automobile)

## Df Sum Sq Mean Sq F value Pr(>F)
## x 3 25.405 8.468 90.464 3.21e-13
## z 2 0.527 0.263 2.813 0.0799
## x:z 6 0.909 0.151 1.618 0.1854
## Residuals 24 2.247 0.094
## [,1]
## Gasoline p = 0.0000
## Automobile p = 0.0799
## Interaction p = 0.1854
G <- as.factor(Gasoline)
A <- as.factor(Automobile)
summary(aov(MPG ~ G * A))

## Df Sum Sq Mean Sq F value Pr(>F)
## G 3 25.405 8.468 90.464 3.21e-13
## A 2 0.527 0.263 2.813 0.0799
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## G:A 6 0.909 0.151 1.618 0.1854
## Residuals 24 2.247 0.094
twoway(MPG, Gasoline, Automobile, with.interaction = FALSE)

## Df Sum Sq Mean Sq F value Pr(>F)
## x 3 25.405 8.468 80.510 1.89e-14
## z 2 0.527 0.263 2.504 0.0987
## Residuals 30 3.156 0.105
## [,1]
## Gasoline p = 0.0000
## Automobile p = 0.0987
summary(aov(MPG ~ G + A))

## Df Sum Sq Mean Sq F value Pr(>F)
## G 3 25.405 8.468 80.510 1.89e-14
## A 2 0.527 0.263 2.504 0.0987
## Residuals 30 3.156 0.105

7 Introduction to ESMA 3102

This page discusses some general concepts of ESMA 3102.

7.1 3101 vs. 3102

In ESMA 3101 (3015) we were mainly concerned with answering questions about one variable
at a time. We considered problems like these:
• What is the average height of men in Puerto Rico? (Find the mean or median, or draw

a histogram or boxplot, or find a confidence interval)
• Are men in Puerto Rico on average taller than 5’10”? (do a hypothesis test)
• Has the average income in Puerto Rico gone up in the last ten years? (hypothesis test)

In ESMA 3102 we are going to study two (or more) variables simultaneously, and we are
really interested in their relationships:
• Is the average height of men in Puerto Rico different from men in the USA and from

men in Europe?
• How does the average height of men relate to things like their economic status (income),

their race, their diet, et.
• How does the average income in Puerto Rico depend on the economic policies of the

Government?
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7.2 Categorical vs. Quantitative Variables

We categorize variables as follows:

7.2.1 Quantitative

data is numeric, and arithmetic makes sense (adding, multiplying etc.)
Examples:
1) Yearly income of a family in Puerto Rico
2) Temperature in Mayaguez at 12 Noon
3) Amount paid for the phone bill

7.2.2 Categorical

everything else
Examples:
1) A students major
2) in an experiment to grow wheat three different fertilizers were labeled 1,2 and 3
3) Your student id number

Note: often whether a variable is categorical or quantitative depends on how (and how
precisely) it is measured.
Example Our variable is “rain yesterday”
• Did it rain at all yesterday? “Yes” or “No” → categorical
• We put a cup outside. The cup has marks for each cubic inch of rain. Our data is the

number of cubic inches. Values will be 0, 0.1, 0. 2 etc. → quantitiative
Categorical data comes in one of two versions - ordered or unordered:
Examples
1) grades in a course: A, B, C, D, W - ordered
2) gender: Male, Female - unordered
3) Treatments in a clinical trial: A, B, C - unordered
4) Treatments in a clinical trial: 1, 2, 3 - unordered
5) blood pressure: low medium high - ordered
6) directions: north east south west - unordered

One consequence of having an ordering is that it should be used in graphs, tables etc.
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Recognizing what the type of your data is has to be the first thing you do with
any data set. It will determine everything that you do later. Getting this wrong
likely means anything you do is wrong.
For more on data types see page 32 of the textbook.

7.3 Predictor - Response Paradigm

It is often useful to think of the problems we discuss in this class as trying to use one (or
more) variables to predict another
Predictor Response
Gender Grade in Course
Gender Income
GPA in high school, points on college GPA after the freshmen year in college
Whether fertilizer was used or not Yield of crop
Size of lot, size of house, number of bedrooms, quality of neighborhood Price of House

7.4 Types of Problems in 3102

Depending on the type of data we need to use different methods of analysis. Here is a table
to help with this:
Predictor(s) Response Method
Categorical Categorical Categorical Data Analysis
All Categorical Categorical ANOVA
At least one quantitative Quantitative Correlation and Regression

7.4.1 Warning

This table maybe the most important item for you to learn - understand - memorize - use.
Without it you can not pass this class, or do Statistics in real live!

8 Graphs

Graphs play a major role in Statistics. Here are some of the commonly used graphs:

8.1 Boxplot

This is a graph for quantitative data. It shows the numbers from the 5-number summary:
Minimum | Q1 | Median | Q3 | Maximum
plus some rules for identifying observations that are shown as stars. The boxplot is done
with the command bplot. The first argument has to be the quantitative variable and the
second one (if needed) the categorical one.

60



40

60

80

 

x

 

Here are several examples:
plt1 <- bplot(Example1, return.graph = TRUE)
plt2 <- bplot(Example2, return.graph = TRUE)
plt3 <- bplot(x, y, label_x="Example3", label_y="",

return.graph = TRUE)
multiple.graphs(plt1, plt2, plt3)
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note the use of the multiple.graphs command to combine several graphs into one. We also
need the the additional argument return.graph = TRUE.
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We use the boxplot mostly for these:

8.1.1 Are there any unusually large or small observations?

These appear as stars in the boxplot, compare the graph in the upper right corner with the
one in the upper left corner.
Connected to this is the following question:

8.1.2 Do the observations come from a normal distribution?

Most of the methods discussed in this course require that the observations of a variable come
from a normal distribution. Problems with this assumption can often be seen in the boxplot.
If there are stars (far away) from the box the normal assumption is wrong.

8.1.3 We have observations from several groups, how do they compare?

check out graph in lower left corner

8.2 Scatterplot

This graph is for two quantitative variables. It is just a Cartesion coordinate system with the
observations plotted as points. We have the command splot(y, x) to do the graph. Here y
is the variable that goes on the y axis.

0.0

2.5

5.0

7.5

10.0

0.0 2.5 5.0 7.5 10.0

x

y

62



8.3 Normal Plot

This is a graph specifically designed to check whether the observations follow a normal
distribution. If this is true the dots should (roughly) be on a line:
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we have the command nplot to do the graph.

8.3.0.1 Normal Assumption is correct:
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8.3.0.2 Normal Assumption is wrong:

0

40

80

−2 −1 0 1 2

theoretical

sa
m

pl
e

−1

0

1

2

3

4

−2 −1 0 1 2

theoretical

sa
m

pl
e

−0.25

0.00

0.25

0.50

−2 −1 0 1 2

theoretical

sa
m

pl
e

−2.5

0.0

2.5

5.0

−2 −1 0 1 2

theoretical

sa
m

pl
e

8.4 Case Study: Euro Coins

The data were collected by Herman Callaert at Hasselt University in Belgium. The euro coins
were “borrowed” at a local bank. Two assistants, Sofie Bogaerts and Saskia Litiere weighted
the coins one by one, in laboratory conditions on a weighing scale of the type Sartorius BP
310s.
Here is the boxplot and the normal plot of the weights:
attach(euros)
head(euros)

## Weight Roll
## 1 7.512 1
## 2 7.502 1
## 3 7.461 1
## 4 7.562 1
## 5 7.528 1
## 6 7.459 1
bplot(Weight)
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It appears that the weights do not come from a normal distribution.

8.5 Marginal Plot

There is a nice graph that combines a scatterplot and boxplots called the marginal plot. We
can do it with the mplot(y, x) command:
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mplot(y, x)
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9 Outliers - Detection and Treatment

Many of the methods discussed in this class don’t work well if the dataset has outliers. An
outlier is any observation that is in some way unusual/strange/weird.
We have already seen that an observation that is unusual with respect to one variable appears
as a separate dot in an R boxplot:
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Unfortunately there are no hard rules exactly when an observation becomes an outlier. To
a large part that depends on the method of analysis we want to use, some methods are
sensitive to outliers, others are more robust.
In addition to the case discussed above, there are other ways in which an observation can be
an outlier:

9.0.1 Case Study: Alcohol vs. Tobacco Expenditure

Data from a British government survey of household spending may be used to examine the
relationship between household spending on tobacco products and alcoholic beverages. The
numbers are the average expenditure for each of the 11 regions of England.
alcohol

## Region Alcohol Tobacco
## 1 North 6.47 4.03
## 2 Yorkshire 6.13 3.76
## 3 Northeast 6.19 3.77
## 4 East_Midlands 4.89 3.34
## 5 West_Midlands 5.63 3.47
## 6 East_Anglia 4.52 2.92
## 7 Southeast 5.89 3.20
## 8 Southwest 4.79 2.71
## 9 Wales 5.27 3.53
## 10 Scotland 6.08 4.51
## 11 Northern_Ireland 4.02 4.56

Here we have two quantitative variables, so the obvious thing to do is draw the scatterplot:
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attach(alcohol)
splot(Tobacco , Alcohol)
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There seems to be generally a positive relationship, but also one case that does not fit. It
seems it has the smallest value for Alcohol, and so we can easily find out which observation
it is:
alcohol[which(Alcohol==min(Alcohol)), ]

## Region Alcohol Tobacco
## 11 Northern_Ireland 4.02 4.56

So it is Northern Ireland, where there is a fairly high expenditure on Tobacco but not on
Alcohol (???)
Note that neither Alcohol nor Tobacco have any outliers by themselves:
bplot(Alcohol)

68



4.0

4.5

5.0

5.5

6.0

6.5

 

Alcohol

 

bplot(Tobacco)
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Again, it is not always obvious when an observation becomes an outlier:
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If we have two quantitative variables an outlier can happen in one of three ways:
• in the x variable, which we can check in the boxplot of x
• in the y variable, which we can check in the boxplot of y
• in the relationship between the xand the y variable, which we can check in the scatterplot

of x and y
In fact we can do all three in one step:
mplot(Tobacco, Alcohol)
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9.1 Treatment of Outliers

If we have an outlier in a dataset, what do we do then? First and foremost, don’t ignore
them! Most statistical methods are very sensitive to outliers, often they simply don’t work.
Example Is there a relationship between Alcohol and Tobacco expenditures in England?
Because we have two quantitative variables we might use Pearson’s correlation coefficient to
answer this question:
cor(Tobacco, Alcohol)

## [1] 0.2235721
cor(Tobacco[-11], Alcohol[-11])

## [1] 0.7842873

So with Northern Ireland we find a weak positive correlation, but without Northern Ireland
it is a fairly strong positive correlation.
Which one is right? Clearly the first one is wrong because of the outlier!
So, if there are outliers, what do we do?
1. Learn as much as you can about the “story” behind the data and understand why there

is an outlier. Is it an error? Is it something we should expect to see in this kind of data?
etc.

2. Find a method that is not sensitive to outliers. For example, alternatives to Pearson’s
correlation coefficient include Spearman’s rank correlation coefficient and Kendall’s
coefficient of concordance , although neither of them works any better here.

3. Try and “adjust” the outliers. We know what “caused” the Alcohol number for Northern
Ireland to be off, so maybe we can adjust it.

4. If all else fails, eliminate the outlier(s)

10 Describing a Population: Probability Distributions

Recall the following definitions from Esma 3101:
Population: all of the entities (people, events, things etc.) that are the focus of a study
Sample: any subset of the population
Parameter: any numerical quantity associated with a population
Statistic: any numerical quantity associated with a sample
How can one describe a population? Sometimes this can be done by enumeration (count-
ing):
Example: Say we are interested in the age of the undergraduate students at the Colegio. So
we go to the Registrar’s office and ask them for help. They give us a computer file with the
ages of all the students:
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21 21 19 20 23 25 19 19 . . . ..
from this we can find a table:
Age Counts
17 21
18 402
19 2109
20 2957
21 2089
22 1908
23 1105
24 788
25 208

and this table is a complete description of our population! Now it would be easy to find
various numbers for this population:
• what percentage of the students is 19 years old?

2109/11587 *100% = 18.2%
• what is the 80th percentile of the ages?

22 years
• what is the mean age of the students:

(1721+18402+..+25*208)/11587 = 20.9
These are numbers computed using the whole population, so these are parameters.
This simple way of describing a population works very rarely, in most cases we need to do
something different:
Example: We want to study the incomes of families in Puerto Rico. Now it turns out
that this kind of study has been done numerous times in many places, and Economists have
worked hard to develop theories, and when we put it all together it seems reasonable that
the income distribution in Puerto Rico looks like this:
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Here we are ignoring anyone with an income over $150000.
What is such a curve telling us? As before we can find from it many numbers of interest. For
example probabilities about the population:
Say we randomly select a family in Puerto Rico. What is the probability that this family has
an income between $20000 and $40000?
This probability is given by the area under the curve from 2 to 4:
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Finding this analytically would require some advanced math (the answer is 42.4%)

73



The basic idea here is: populations can be described by probability distributions, that is
theoretical curves. Once such a distribution is known, anything one wants to know can be
calculated from it (at least in theory, in practise the math might be quite difficult).
Notice that this is a straight-forward generalization of the enumeration method we used for
the ages of the undergraduates, only there the math is very easy because we know how to
find areas of rectangles!
Often in real live we have some theoretical reason to suspect that a certain distribution has a
certain shape:
Example say we randomly select an undergraduate student from the Colegio and measure
their height. Then in seems reasonable that the corresponding distribution looks like this:
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Now life as a Statistician would be quite difficult if we would have to invent a new distribution
everytime we study a new experiment. Instead it turns out that there are a number of basic
distributions that we encounter time and again. These have been studied in great detail, and
so we now have a lot of formulas easily available.
Example: say we randomly select an undergraduate student. We want to know whether the
student is male or female.
The crucial part here is that there are only two possibilities: male or female. Any such
experiment is called a Bernoulli trial. Here some other examples:
• student is in Arts&Sciences, or not
• student has a GPA of 3.5 or higher, or not
• student was born in Puerto Rico or not

All these experiments share the feature that there are only two answers. Of course they differ
in the probability that the answer is “yes”:
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• probability that a student is male: 50.8%
• probability that a student is a Arts & Sciences: 41.6%?
• student has a GPA of 3.5 or higher, or not: 21.8%
• student was born in Puerto Rico or not: no idea

And this is an important feature here: often from the description of the experiment we can
make a guess what the general shape of the distribution is. The exact shape, though, depends
on some numbers we often don’t know. So what do we do? Statistics!
• student was born in Puerto Rico or not: we now need to find a sample of students, find

the percentage of students born in Puerto Rico in the sample, and use that as a guess
for the percentage in the whole population.

Although it is not at all obvious why this should be so, it turns out that the most important
of these basic distributions is the Normal Distribution, characterized by a bell-shaped
histogram:
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A normal distribution has two parameters: the mean µ (which is where the peak of the curve
is) and the standard deviation σ, which tells out how far out the curve goes.

11 Confidence Intervals

One way to find out what a statistic is telling us about the corresponding parameter is to
find a confidence interval, that is a range of likely values for the parameter.

75



11.0.1 Case Study: Exam Scores

Here we will consider the variable Score, the score on two exams takes by students in a course
What can we say about the average score?
attach(examscores)
head(examscores)

## Exam Score
## 1 Exam 1 115
## 2 Exam 1 35
## 3 Exam 1 15
## 4 Exam 1 80
## 5 Exam 1 50
## 6 Exam 1 45
hplot(Score)
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shows that the histogram of the scores is roughly bell-shaped, with the peak at around 50.
More precisely we find
mean(Score)

## [1] 53.78

But this is based on exactly these 200 randomly selected scores, if we repeat the experiment
we get different ones, and therefore a (somewhat) different mean. What can we say about
the mean of all possible scores? (the population mean)
one.sample.t(Score)

## A 95% confidence interval for the population mean is (50.1, 57.4)
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So what does it mean to say a 95% confidence interval for the population mean score
of (50.1, 57.4)? The idea here is that we now know that with a high likelihood the true
population mean score is between 50.1 and 57.4.
Notice I used the word likelihood. It is very tempting (and many people do it in real live)
to use the word probability here.
Unfortunately for technical reasons to difficult for us to discuss this would be wrong!
The correct interpretation of a confidence interval is this: suppose that over the next year
statisticians (and other people using statistics) all over the world compute 100,000 95%
confidence intervals, some for the mean, others maybe for medians or standard deviations or
. . . , than about 95% or about 95,000 of those intervals will actually contain the parameter
that is supposed to be estimated, the other 5,000 or so will not.
If the chance of getting a bad interval of 5% is to high, we can change that easily, say be
finding a 99% confidence interval:
one.sample.t(Score, conf.level = 99)

## A 99% confidence interval for the population mean is (49, 58.6)

So this interval has a likelihood of 99% so we will get a wrong one just 1 in 100 times. But
there is a price:
58.6 - 49

## [1] 9.6
57.4 - 50.1

## [1] 7.3

so this interval is larger than the 95% one, which means there is a larger uncertainty on
exactly what the value is. Finding confidence intervals always involves a trade-off:
size of interval vs confidence level

11.0.2 App: confint

run.app(confint)

This illustrates the idea of confidence intervals.
What to do:
As the app starts the page on the right is empty, there is no data yet. In the panel on the
left you can choose the population parameters that you want.
Next move the slider to 1. Now on the Single Experiment tab you get on simulated dataset,
the Summary Statistics and the confidence interval calculations. You can now run the movie
and see a sequence of simulated datasets.
You can also play around and see the effects of a
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a) larger sample size n → smaller intervals
b) change population mean µ → changes location of interval but not its size
c) increase population standard deviation σ → increases range of data, increases length of

interval.
d) increase confidence level α → increases length of interval.
2) on Many Experiment tab

no matter how n, µ or σ are changed, the percentage of good intervals always matches the
chosen confidence level

12 Hypothesis Testing - An Introduction

Often a specific problem falls under the following very general heading:
we have a theory
Example 1: Is the new treatment better than the old one?
Example 2: Is the theory of evolution correct?
Example 3: Are coins fair?
and we want to do an experiment to see whether the theory is true
Example 1: Take a number of patients. Give some of them the old treatment and some of
them the new one. See whether there is a difference.
Example 2: Ask a biologoist what would make a good experiment
Example 3: Flip the coin and count the number of heads and tails.
Finally we need to compare the results of the experiment with the theory to see whether they
agree. This is what a hypothesis test does.

Now the first thing we need to recognize is
One of the principles of Science is that it is impossible to prove that a theory is
correct but it is always possible to prove that the theory is false (a theory can
be falsified)
Example 1: If the new treatment is actually better but only by a tiny little bit it might be
impossible to be sure. If it is much better it will be obvious.
Example 2: Biologists have been inventing new ways to test the theory of evolution for 150
years. None of them has ever proven the theory wrong, but that does not mean the next one
won’t do so. (Even though by now that is very unlikely!)
Example 3: If we flip the coin 100 times and get 50 heads and 50 tails, does this prove the
coin is fair? No because the same result is quite likely if the probability of heads where 0.51
(say). Of course by now we can be sure the coin is almost fair, but that is not the same as
exactly fair!
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Example 4: Theory: the tooth fairy does not exist
Now I am sure most of us are quite certain this theory is correct. After all no one has actually
seen her. But maybe that is because she has lived on the planet Zoloff for the last 500 years?
And of course, if she shows up on TV tomorrow (and can prove that she is indeed the tooth
fairy) our theory has been proven false immediately!
Example 5: Theory: all swans are white
That is what everybody thought in Europe, until in the 18th century they found black swans
in Australia!

Because of this a hypothesis test is set up so the data can proof the theory to be false:
Example 1: Null Hypothesis H_0: the new treatment is NOT better than the old one.
Example 2: Null Hypothesis H_0: the theory of evolution is correct
Example 3: Null Hypothesis H_0: the coin is fair
but NOT proving the theory is false is not the same as accepting the theory as
true!
That is why we say we fail to reject the null hypothesis instead of just saying we accept the
null hypothesis.

Let’s have a closer look at example 3. Here the experiment to check the theory is very simple,
in fact I have a shiny app that will do it for us:

12.0.1 App: coin

run.app(coin)

The app flips a coin 100 times and shows the results. By default it is a fair coin (p=0.5) but
we can change that on the left. Recall we have

H0 : p = 0.5 (coin is fair)
Ha : p 6= 0.5 (coin is not fair)

Next we can decide on the Rejection Region:
In this experiment we would reject the theory of a fair coin if the number of heads is far from
50.
What do you think this should be? Set the sliders accordingly.
Now click the Run! button and repeat the experiment 20 times. Each time you can see the
number of heads and whether or not we would reject the theory.
Doing this one at a time is a bit slow, and we really should do this many times, so switch to
the Many Runs tab. Here we see the results of 100000 runs of this experiment.
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Now move the sliders for the Rejection Region to 45 and 55. The cases in blue are those
where the 100 flips resulted in a number of heads between 45 aand 55, and we would not
reject the theory of a fair coin.
In red we have all the cases with either less than 45 or more than 55 heads, and so here we
would reject the theory of a fair coin. As we see that happens about 27% of the time.
But we are still flipping a fair coin, so we should not reject the theory at all, doing so is an
error. Soon we will call this the type I error. The 27% will be called the type I error
probability α.
Committing an error in about 1 in 4 cases (~27%) does not sound like a good idea. So let’s
make this much smaller. Move the slider to 40-60, and then then we have α = 3.5%, much
better.
But there is also a downside to this. Let’s select a Slightly unfair (p=0.6) coin. Now the
coin is NOT fair, and we should reject the theory. But we are doing so only 46% of the time,
the other 54% of the runs wrongly make the theory look ok.
This mistake is called the type II error. The 54% is called the type II error probability
β.
The percentage of runs that correctly reject the theory is called the power of the test.
Now if we go back to Rejection Region 45-55 the percentage of correctly rejected false theories
goes up to 82.3%, much better.
Of course in real life we do not know whether the coin is fair or not, so we how do we choose
the Rejection Region? We do it by choosing a type I error probability α that seems acceptable
to us. Often this is about 5%, and that leads to 41-59.
Once we have decided on α we can the do some math to see what the β might be, but this
will depend on how unfair the coin might be.

13 Hypothesis Testing

13.0.1 Case Study: A New Treatment for Skin Cancer

Let’s consider the following (artificial) example. A pharmaceutical company has developed a
new treatment for a certain type of skin cancer. In order for the treatment to be approved
by the Food and Drug Administration for use they have to show it is save (that is it has only
acceptable side-effects) and it works (that is it is as better than the existing drugs). Let’s say
they have shown the safety, and now want to show the effectiveness.
How can they do that?
Obviously they need to carry out a clinical trial: find a number of people with this type of
skin cancer, give them the new treatment and see what happens.
Question: how many subjects do they need?
Let’s say that they decide to use 40 subjects.
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What should they measure? In general there are many possibilities: time until cure, time
until death, number of cancer cells, some feature of the blood, etc. Let’s say this is a very
agressive form of skin cancer which usually is deadly, so they will measure the time until
death. They find that the subjects in the study survive on average 517 days.
Is this a long time? By itself this question cannot be answered, we need something to compare
it with. Let’s say that using the current best treatment the survival time is known to have a
mean of 485 days. So this looks good for the new treatment: 517 days is better than 485
days.
But the 517 days is the sample mean of this specific sample of 40 people, if we randomly
choose another group of 40 subjects and give them the new treatment, their mean survival is
NOT going to be 517 days again. It might be lower but it also might be higher.
Could it be as low as 485 days?
Is the difference of 517-485 = 32 days due to the fact that the new treatment is better than
the old one, or is it due to random fluctutation?

In very general terms what we have here is a question which has an answer of either yes or
no. Yes, the new treatment is better than the old one or No, it is not. In Statistics, if we
have such a yes-no question we usually answer it by doing a hypothesis test.

Let’s assume for the moment that the new treatment is NOT better than the old one, so the
increase of 32 days was just due to random chance. Let’s find the probability that if we then
select a new group of 40 subjects and use the new treatment, their mean survival time is
again 517 days, or even longer?
This probability is called the p-value of the the test.
If this probability is small (?) one of two events happened:
• our experiment had an outcome that was very unlikely
• our assumption that the new treatment is not better is false. The new treatment is

better, and that is why the subjects lived longer.

Let’s say the p-value is small, and so the hypothesis test says that the new treatment is
better than the old one. But maybe the p-value was small because in our specific group of 40
subjects several survived a long time, so their mean survival time was unusually high.
Say that in reality (but unknown to us!) the new treatment is NOT better than the old one,
but because of random fluctutation the test decided wrong. This means we committed the
type I error.
In a hypothesis test we decide before the test is done how small a p-value will lead us to
reject the null hypothesis. This cut-off probability is usually denoted by α and is often chose
as 5% (but not always!)

Of course it might also work out the other way: let’s say the p-value is NOT so small, and
so the hypothesis test says that the new treatment is NOT better than the old one. But
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maybe the p-value was not so small because in our specific group of 40 subjects several died
quickly for other reasons, so their mean survival time was unusually low. Actually, the new
treatment is better than the old one, but because of random fluctutation the test decided
wrong. This means we committed the type II error.
So you see that this hypothesis test has a lot of moving parts: the parameter of the test
(here the mean time of survival), the value for the sample (517), the value to which we
should compare this (485), the acceptable type I error α, type I and type II errors, their
probabilitites, the p-value, the decision of the test (accept or reject).

13.1 Parts of a Hypothesis Test

1) Parameter of interest

2) Method of analysis

3) Assumptions of Method

4) Type I error probability α

5) Null hypothesis H0 (in plain language and in terms of a parameter, if appropriate)

6) Alternative hypothesis Ha

7) Find p value (using R)

8) Decision and Conclusion,in plain language.
The decision on whether or not to reject the null hypothesis is easy:
p < α → reject H0

p > α → fail to reject H0

Example: We flip a coin 100 times and get 58 heads.
Question: Is this a fair coin?
1) Parameters of interest: a proportion (or percentage or probability)

2) Method of analysis: 1 proportion

3) Assumptions of Method: none

4) Type I error probability α = 0.05

5) Null hypothesis H0 : π = 0.5 (coin is fair)

6) Alternative hypothesis Ha : π 6= 0.5 (coin is not fair)
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7) p value = 0.133

8) 0.133 > 0.05, so we fail to reject H0, the coin could be fair.

13.2 More on the p-value

The p-value is the probability of repeating the experiment and observing the same result or
something even more unlikely (assuming the null hypothesis is true).
Example: coin: p value is the probability to flip the coin again 100 times and get again 58
head or even more if in truth the coin is fair.
If the p-value is small (say <0.05) we should reject the null hypothesis!

Note: actually because we are testing the alternative π 6= 0.5 the p value is the probability
of number of heads ≥ 58 or ≤ 42, but those are technical details which R will take care of for
us.

13.2.1 App pvalue

run.app(pvalue)

This app illustrates the concept of the p value. The parameter of interest here is the mean µ.
As the app starts the page on the right is shows the chosen type I error probability α, the
null and the alternative hypothesis. There is no data yet.
This illustrates one important fact about hypothesis testing: α, H0 and Ha do NOT depend
on the data, they come from the problem/experiment we are working on.
Next move the slider to 1. Now on the Single Experiment tab you get one simulated dataset
(from a normal distribution with mean µ and standard deviation σ), the p-value of the
corresponding test and the decision on the test (reject/ fail to reject H0). You can now run
the movie and see a sequence of simulated datasets.
Switch to the Many Experiment tab
Case I: µ=10, H0 is true This shows the histogram of 1000 hypothesis tests just like
the one on the Single Experiment tab. In each test if p < α (drawn in red) we reject H0,
otherwise we fail to reject H0. The app shows the percentage of tests with p < α, which
should be close to α!
Changing the sample size n or the population standard deviation σ does not change any of
this.
Changing α changes the percentage of rejected tests so that it always matches α.
Case I: µ 6= 10, H0 is false
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Move slider to µ = 11.0. Now the number of tests with p < α is much higher (63%), which is
good because this means we would correctly reject this false H0 63% of the time. Move the
slider to µ = 12.0 and now almost all the test have p < α.
Move slider to µ=11.0 and see that
• larger sample size n (=100) → reject more tests (91.3% vs 63%)
• increase population standard deviation σ (=9) → reject fewer tests (12.4% vs 63%)
d) increase confidence level α = 0.1 → reject more tests (74.4% vs 63%)

13.3 What you can conclude from the outcome of a hypothesis test

After carrying out a hypothesis test, what can you conclude? There are always the following
possibilities:
• If we rejected the null hypothesis:
— H0 is in fact false
and we made the correct decision
— H0 is in fact true and we made the wrong decision, so we committed the type I error
(but we know the probability of doing so - α)

• If we failed to reject the null hypothesis:
— H0 is actually true
and so we made the correct decision
— H0 is in fact false, so we made the wrong decision, we committed the type II error
— H0 is in fact false, so we made the wrong decision, specifically because our sample size
was to small!

13.3.1 “fail to reject H0” vs “accept H0”

If we carry out a hypothesis test and at the end find pα, we say that we** fail to reject the
null hypothesis. Why do we not just say that we accept **the null hypothesis? Let’s
illustrate the difference with an example:
Example say you pick a coin out of your pocket. It is a perfectly ordinary coin, but for
some reason you wish to test whether the probability of heads is 0.4. You flip the coin 25
times and find 13 heads (a quite realistic outcome). Now we have
one.sample.prop(13, 25, pi.null=0.4)

## p value of test H0: pi=0.4 vs. Ha: pi <> 0.4: 0.3074

1) Parameter of interest: 1 Proportion π

2) Method of analysis: test for binomial π

3) Assumptions of Method: none
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4) Type I error probability α = 0.05

5) Null hypothesis H0: π = 0.4

6) Alternative hypothesis Ha: π ne0.4

7) p-value = 0.2273

8) p > α, we fail to reject the null hypothesis
so, should we now conclude that π = 0.4? Remember, this is a completely normal coin,
almost certainly a fair coin with (just about) π = 0.5, not 0.4 So the null hypothesis is pretty
much certain to be wrong, and us “accepting” it would be wrong!
The problem is of course that flipping the coin just 25 times was not enough. Say we had
flipped the coin 100 times and got 52 heads (for the same proportion 13/25 = 52/100), but
now p-value=0.0184 < α and we would reject H0. So
We never accept a null hypothesis, we can only fail to reject a null hypothesis

13.3.2 Power of a Test

One of the most important considerations in a hypothesis test is its power. It is defined as
the probability to CORRECTLY reject a FALSE null hypothesis.

13.3.3 App power

run.app(power)

The app generates n observations from a normal distribution with mean µ and standard
deviation σ. Then it does the test
H0: µ=10.0 vs Ha: µ>10.0
To start µ=11.0, so H0 is false and should be rejected. Run the Movie and see what happens
if we do this 100 times. About half the time we make the right decision, and so the power of
this test is 50%. Select the Show Power Curve button, and you get the theoretical power
curve with the actual power, closely matching the simulation result.
Now you can change the situation by changing the true µ to 12.0, the standard deviation
from 3 to 5, the sample size from 25 to 50 and the type I error probability α from 5% to 10%.
Observe how each of these changes affects the power.
The power of a test is (among other things) a tool that helps us when we are planning an
experiment. It can help us understand whether a certain experiment is likely to be successful
(statistically!) and it can help us decide how large the experiment needs to be (the sample
size)
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14 The Lady tasting tea

In 1935 Sir R.A. Fisher wrote a book with the title The Design of Experiments. This book
and several others that he wrote were so important that today Fisher is often called the
father of Statistics.
In the book he tells the following story: one day one of his collegues at the Rothemstead
Experimental Station, Muriel Bristol (Ph.D), claimed she could tell whether in a cup of tea
the tea had been poured into the cup before the milk, or vice versa.
Fisher devised an experiment to test that claim as follows: He filled eight identical cups with
milk and tea, four with the milk first and four with the tea first. Then he randomly put them
on a table and asked Muriel to pick the four with the tea poured first. Muriel was told the
experimental setup, so she knew there were four cups of each kind.
What can we say about this experiment? Let’s write down one possible arrangement. Here
T is a cup where the tea has been poured first (of course without Muriel knowing this!),
whereas M is one with the milk first:
T M M T T T M M
Let’s also say that the first four cups are those the Lady has identified as the one with the
milk poured first. So in this case she got two correct and two wrong. Not very good!
Of course this is what we would expect to see if indeed the Lady knows what she is doing:
M M M M T T T T
Now Fisher decided to only accept Muriels claim if indeed she could identify all four cups
with milk poured first correctly. If she was just guessing, how likely was it she would get that
lucky? Well, how many possible arrangements of the cups she picks are there? Here they are:
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Figure 4:
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Want to count them? Sometimes it helps to know some math: if there are 2n cups there are(
2n
n

)
such arrangements, or here:

(
8
4

)
= 8!

4!4! = 40320
24× 24 = 70

only the first one (M M M M) is correct, so her chances of getting it right if she were to just
guess randomly were 1

70 = 0.0143.
Let’s view this experiment in light of our previous discussion on hypothesis testing:

14.0.1 1) Parameter of Interest

One can view this as an experiment with two variables (actually tea first/actually milk first
and identified as tea first/identified as milk first) and whether the two are independent or not.
In this sense the parameter is a correlation, or as we say for categorical data, an association.

14.0.2 2) Method of Analysis

this idea of counting the total number of possible answers is now know as Fisher’s Exact test.
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14.0.3 3) Assumptions of the Method

the experiment has to be set up as described above. For example, it is very important that
Muriel knew that exactly four cups had the milk poured first.

14.0.4 4) Type I error probability α

α = 0.05

14.0.5 5) Null hypothesis H_0

H_0: Muriel is just guessing.
Notice that common feature of many hypothesis tests, namely to pick the “negative option”
as the null.

14.0.6 6) Alternative hypothesis H_a

This is where it gets interesting, because there isn’t one!
The idea of an alternative hypothesis was invented a bit later by Jerzy Neyman and Egon
Pearson (son of Karl Pearson of correlation fame). Fisher never liked it. They had some very
good fights over this!
One consequence of not having an alternative hypothesis is that one can not find the power
of the test.

14.0.7 7) p-value

So, how did Muriel do? In fact she was perfect, she got all eight cups correct! Therefore we
have p = 1/70 = 0.0143.

14.0.8 8) Decision of the test

p = 0.0143 < 0.05 = α, and so we reject the null hypothesis.

14.0.9 9) Conclusion

Muriel certainly proved her claim.
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Figure 5:

14.0.10 Type I error:

Type I error =
reject the null hypothesis although it is true =
conclude that Muriel knows what she is doing although she was just guessing.

14.0.11 Type II error:

Type II error =
fail to reject the null hypothesis although it is false =
conclude that Muriel was lying although she actually knows her tea (but unfortunately made
a mistake).

14.1 Historical Importance

Using this simple experiment, Fisher established most of the fundamental principles for
hypothesis testing, which contributed to major advances across biological and physical
sciences. A careful read of the original text shows a precise use of terms, in a concise and
unambiguous presentation, in contrast with many textbooks written later that were more
confusing than helpful.

15 Methods for Univariate Data

15.1 Population Mean

The R command for testing and to find confidence intervals for a population mean µ is
one.sample.t. The assumptions for this method are: either the data comes from a normal
distribution or the sample size is large enough.

15.1.1 Case Study: Resting Period of Monarch Butterflies

Some Monarch butterflies fly early in the day, others somewhat later. After the flight they have
to rest for a short period. It has been theorized that the resting period (RIP) of butterflies
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flying early in the morning is shorter because this is a thermoregulatory mechanism, and it is
cooler in the mornings. The mean RIP of all Monarch butterlfies is 133 sec. Test the theory
at the 10% level.
Research by Anson Lui, Resting period of early and late flying Monarch butterflies Danaeus
plexippus, 1997
A) find a 90% confidence interval for the mean length of the flight times.

First we check the assumptions:
attach(butterflies)
sort(RIP.sec.)

## [1] 52 64 66 75 77 85 86 92 93 98 102 102 103 112 115 117 120
## [18] 121 124 124 124 125 132 132 134 140 142 145 148 148 152 155 156 156
## [35] 167 167 170 177 181 187
nplot(RIP.sec.)
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The graph shows that the data comes from a normal distribution.
one.sample.t(RIP.sec., conf.level = 90)

## A 90% confidence interval for the population mean is (115, 133.3)

Note the one.sample.t command does the normal plot automatically.

B) test at the 5% level whether the true mean resting period is less than 133 minutes.
one.sample.t(RIP.sec., mu.null = 133, alternative = "less")

## p value of test H0: mu=133 vs. Ha: mu < 133: 0.0558
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1) Parameter of interest: population mean
2) Method of analysis: one sample t
3) Assumptions of Method: normal data or large sample
4) α = 0.05

5) H0: µ = 133

6) Ha: µ < 133

7) p = 0.0558

8) p > α, we fail to reject the null hypothesis, the waiting time might well be 133 minutes.

C) for the test in B) what was the power of the test if the true resting period is 125 minutes?
We have the routine t.ps for power and sample size calculations:
t.ps(n = 40, diff = 125-133, sigma = sd(RIP.sec.),

alternative="less")
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## Power of Test = 41.6%

Note for this method the actual values of 125 and 133 are irrelevant, only the difference
125-133 matters!
Note the argument name for the standard deviation is sigma because ideally we would want
this to be the population standard deviation. In practice we often only have the sample
standard deviation, though. Usually that is ok.
Note The routine doesn’t just find the power for the given diff but does a whole curve, for
lots of differences!
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D) If the true resting period is 125 minutes and we tested at the 10% level, what sample
size would be needed for the test to have a power of 90%?

The same command will find the sample size if we give it the required power, and leave the
sample size n out:
t.ps(power = 90, diff = 125-133, sigma = sd(RIP.sec.),

alternative="less")

## Sample size required is 160

15.1.2 Case Study: Educational Achievements

A sociologist wants to study the educational level in some population. She randomly selects
120 people and asks them for their education, specifically the number of years (for example,
someone who finishes high school is a 12 and someone with a bachelors degree a 16). She
finds a mean of 12.3 with a standard deviation of 1.7. She wants to find a 90% confidence
interval for the population mean.
Here we don’t have the data itself, but the information given is all we need:
one.sample.t(y=12.3, shat=1.7, n=120, conf.level=90)

## A 90% confidence interval for the population mean is (12, 12.6)

Note One problem with this situation is that without the data we can not do a normal plot
and verify that the data came from a normal distribution.

If she wanted the interval to have an error of 0.2, what sample size would she need?
t.ps(E=0.2, sigma=1.7, conf.level=90)

## [1] "Sample size required is 196"

15.2 Population Proportion (Percentage / Probability)

Note: proportion = probability = percentage/100
The R command for testing and to find confidence intervals for a population proportion π is
one.sample.prop. This method has no assumptions!

15.2.1 Case Study: John Kerrichs Coin

The South African mathematician John Kerrich was in a German POW camp during World
War II. During his time there he flipped a coin 10000 times, getting 5067 heads and 4933
tails.

A) Test at the 5% level of significance whether 5067 heads in 10000 flips are compatible
with a fair coin.
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one.sample.prop(x=5067, n=10000, pi.null=0.5)

## p value of test H0: pi=0.5 vs. Ha: pi <> 0.5: 0.1835

1) Parameter: proportion π

2) Method: exact binomial

3) Assumptions: None

4) α = 0.05
5) H0: π = 0.5 (50% of flips result in “Heads”, coin is fair)
6) Ha: π 6= 0.5 (coin is not fair)
7) p = 0.1835
8) p = 0.1835 > 0.05, so we fail to reject the null hypothesis, it appears John Kerrich’s

coin was indead fair.
Note problems for proportions do not include a standard deviation σ. (actually, they do,
but it is “included” in the π)

B) If the true probability of heads for his coin was 0.505, what would have been the power
of the test?

for power and sample size calculations for percentages/proportions/probabilities we have the
prop.ps command:
prop.ps(n=10000, phat=0.505, pi.null=0.5)
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## [1] "Power of Test = 16.6%"

Note that in the case of a proportion we need both phat and pi.null, not just the difference.
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prop.ps(n=100, phat=0.5, pi.null=0.6)

## [1] "Power of Test = 53.7%"
prop.ps(n=100, phat=0.6, pi.null=0.5)

## [1] "Power of Test = 46.0%"

C) If the true probability of heads for his coin was 0.505, how often would he have had to
flip the coin so that the chance for rejecting the null would have been 90%?

prop.ps(phat=0.505, pi.null=0.5, power=90)

## [1] "Sample size required is 105281"

15.2.2 Case Study: Failure Rates

The Professors of some course are worried about the failure rates (F’s and W’s) in some
course. They are planning to randomly select students from the last few years and then find
a 99% confidence interval for the failure rate. What sample size will they need if they want
the interval to have an error of 7.5%?
prop.ps(E=0.075, conf.level=99)

## [1] "Sample size required is 295"

Note here we didn’t mention phat. In that case prop.ps will use phat=0.5:
prop.ps(E=0.075, phat=0.5, conf.level=99)

## [1] "Sample size required is 295"

Say they know that the failure rate is around 40%, what would the sample size be then?
prop.ps(phat=0.4, E=0.075, conf.level=99)

## [1] "Sample size required is 284"

Note with phat=0.5 we get 295, with phat=0.4 it is n=284. In fact phat=0.5 will always
yield a sample size larger than for any other phat. A larger sample size is always safer (yield
a smaller confidence interval).

15.2.3 Case Study: Election polling

When you read the results os an election poll it often says that the poll has a margin of error
of ±3%. This means that the error of the confidence interval is 0.03.
In the next election for governor of Puerto Rico, what sample size will be needed in a poll to
have an error of ±3%?
prop.ps(E=0.03)
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## [1] "Sample size required is 1068"

In the next election for president of the US, what sample size will be needed in a poll to have
an error of ±3%?
prop.ps(E=0.03)

## [1] "Sample size required is 1068"

Whu is this quite remarkable?

15.3 Pearson Chisquare Goodness-of-Fit Test

This test compares proportions from a sample with proportions from a population. The test
has the assumption that all expected counts be at least five.

15.3.1 Case Study: Rolling a fair die

In order to test whether a certain die is fair it was rolled 100 times. The results were
x p
12 1/6
17 1/6
20 1/6
15 1/6
10 1/6
26 1/6

Let’s enter the data in R and run the test:
x <- c(12, 17, 20, 15, 10, 26)
p <- c(1, 1, 1, 1, 1, 1)/6
chi.gof.test(x, p)

## p value of test p=0.0741

p = 0.0741 > 0.05 = α, so we fail to reject the null, the die does not appear to loaded.

15.3.2 Case Study: Gregor Mendels Genetic Experiments

Experiments in Plant Hybridization (1865) by Gregor Mendel is one of the most famous
papers in all of Science. His theory of genetics predicted that the number of Smooth yellow,
Wrinkled yellow, Smooth green and Wrinkled green peas would be in the proportions 9/16,
3/16, 3/16 and 1/16. In one of his experiments he oberved 315, 101, 108 and 32. Does this
agree with his theory?
x <- c(315, 101, 108 , 32)
p <- c(9, 3, 3, 1)/16
chi.gof.test(x, p)
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## p value of test p=0.9254

p = 0.9254 > 0.05, the data from the experiment is in agreement with Mendel’s theory.

15.3.3 Case Study: Eggs of Birds

a biologist has a theory regarding the number of eggs laid by a certain species of birds. He
does a survey of these birds and finds:
Number of Eggs Observed Theory (in%)
0 15 25
1 24 30
2 8 20
3 11 20
More than 3 4 5

Test at the 5% level whether his data agrees with his theory
x <- c(15, 24, 8, 11, 4)
p <- c(25, 30, 20, 20, 5)/100
chi.gof.test(x, p)

## Warning : some expected counts<5
## p value of test p=0.4681

Notice the warning regarding the expected counts < 5. This is because the last category
doesn’t have enough data. The solution is to combine some categories:
Number of Eggs Observed Theory (in%)
0 15 25
1 24 30
2 8 20
More than 2 15 25

Now rerun that test
x <- c(15, 24, 8, 11+4)
p <- c(25, 30, 20, 20+5)/100
chi.gof.test(x, p)

## p value of test p=0.3674

15.3.4 Coin Flipping

you flip a coin 100 times and get 60 heads. Test at the 5% level whether this is a fair coin.
Solution A:
each flip is either “heads”" or “tails”, so it is a Bernoulli trial. Therefore we can use
one.sample.prop(60, 100, pi.null = 0.5)
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## p value of test H0: pi=0.5 vs. Ha: pi <> 0.5: 0.0574

p > α, so we fail to reject the null hypothesis.
Solution B:
We can use the chisquare goodness-of-fit test:
x <- c(40, 60)
p <- c(0.5, 0.5)
chi.gof.test(x, p)

## p value of test p=0.0455

p < α, so we reject the null hypothesis.
What is going on? To begin with, both methods are perfectly ok. They are not the same
methods, so we should not expect them to give the (exactly) same answer. Also, in either
case the p values are close to 0.05, in which case one should not really either reject or fail to
reject the null hypothesis but if possible collect more data.

16 Bayesian Statistics

Say you pick a coin from your pocket. It’s just any coin, nothing special. You flip it 10 times
and get 3 heads . What can we conclude about this coin?
Now each flip is a Bernoulli trial with success parameter π. We have previously seen that the
standard estimator for π is the ratio of successes to trials, so we find π̂ = x/n = 3/10 = 0.3.
But wait just a minute! This is a regular coin, we all know that coins are (almost) fair, so we
know that really π = 0.5! 3 head in 10 flips of a fair coin is a perfectly fine outcome, in fact
the probability of 3 or less heads in 10 flips of a fair coin is 0.172, so this will happen easily.
What’s going on? The problem is that the formula π̂ = x/n is completely general, it is the
same whether we flip a coin (head vs tails), survey people (male vs female), check students
in a class ( pass vs fail) or do anything else that is a Bernoulli trial. It does not take into
account that we know a lot about this experiment “flip a coin” a priori, that is before we
ever do it, namely that (almost always) π = 0.5.
Of course there is also the issue that 10 flips is very few, just 300 heads in 1000 flips would
be a very different thing. But situations with little data are quite common, and it would still
be nice to have a more sensible answer than 0.3.
In fact, it is possible to include such a priori information in a statistical analysis, applying
what is called Bayesian Statistics. The principle idea is this:
• “encode” your knowledge of the experiment before it is done in what is called a prior

distribution.
• do the experiment and collect the data
• combine the data and the prior to get to the posterior distribution, which now

encodes our updated knowledge of what we know after having done the experiment.
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Note: the prior and the posterior are regular probability distributions like those we discussed
before.

The science of Statistics comes in two flavours: Bayesian and Frequentist. There are a number
of fundamental differences between them. One we have already seen: a Bayesian analysis not
only can but has to begin by specifying a prior distribution . This can be a strength (as in
the coin flip example above ) or a weakness, mostly in situations were we really don’t have
much prior knowledge. A Frequentist analysis on the other hand doesn’t need a prior, but
also can’t use one if there is one!
There are deeper differences as well, for example the very definition of what a probability is.
Those issues are quite fundamental to doing Statistics but unfortunately much beyond what
we can discuss in an introductory class!

So, how do we do this “combine data and prior” step? It uses something called Bayes
formula (which is where the name comes from) and a lot of heavy math, calculus and more.
This is one reason why Bayesian statistics is not yet as widely used as most Statisticians
think it should be! But more and more computer programs can take care of the calculations
for us.
I have written an “Interactive Bayesian Calculator for Percentages”, which we can use for
our problem. Run it with
ibayesprop()

when it opens it looks like this:
The first thing we need to do is specify the prior distribution.
There are several ways to do this, listed on the left side. The default option is to specify
what we think the most likely value is and what the range might be. We do think this is a
fair coin, so 50% is ok. The graph shows that any value between about 25% and 75% is ok.
You can use the box above the graph to change that if you want.
Below the graph we see the interval (30.6%, 69.3%). If our prior distribution is reasonable
for our problem than the true percentage should be inside.
Now let’s enter our data, Sample Size = 10 and Number of Successes = 3:
The blue curve is the same prior distribution as before, the red is the posterior distribution,
that is our best guess after having seen the result of the experiment. Notice that because
there were fewer heads than we expected from a fair coin it has shifted a bit to the left.
On the bottom we see the 95% Bayesian credible interval (27.4%, 60.2%), which is our best
guess after having done the experiment.
For comparison we also have the 95% confidence interval (8.1%, 64.6%).
Let’s see what would happen if we actually had 300 heads in 1000 flips:
Again the red posterior curve has shifted to the left, by now it is far away from the blue prior
one. The Bayesian interval is (27.2%, 33.2%).
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Figure 6:
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Figure 7:

101



Figure 8:
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Figure 9:

Notice that it is quite similar to the Frequentist confidence interval (27.2%, 33.0%). This is
something we see a lot: in cases were there is a lot of data (100 flips) the answers from a
Bayesian and a Frequentist analysis tend to be very similar. This of course makes good sense:
whatever our expectation was before the experiment ( as encoded in the prior distribution),
we will certainly change that expectation in the face of a lot of evidence (aka data).

16.0.0.1 Specifying a Prior Distribution

There is a vast literature on how to go about encoding our prior knowledge. In the app I
have included four ways to do so:
• Location and Range: just as it says, decide what the most likely value is and in what

range the answer should be.
Here are four examples:
1) we think the true percentage is around 50%, but it could be as low as 25% and as high

as 75%
2) we think the true percentage is around 50%, but it could be as low as 0% and as high

as 100%
3) we think the true percentage is small, maybe even 0, and no larger than 20%
4) we are quite certain that the true percentage is around 20%.
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Figure 10:
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Figure 11:

• Beta prior: this is a class of distributions which has a number of advantages. It has
two parameters α and β, and you can use sliders to get a shape that works for your
experiment.

1) we really have no idea where π might be.
This one is the default for the Beta. It looks a little funny but has some good theoretical
features (for the specialists: it is the Jeffrey’s prior for the binomial)
2) we really have no idea where π might be.

Another favorite, what is called a flat prior.
3) we think the true percentage is around 50% but we are not to sure of that.

Note that here we have α = β, which will always put the peak of the curve at 50%
4) we are quite certain that the true percentage is greater than 50%.
• Discrete prior: here we can specify the (relative) probabilities for 10 points in some

interval.
1) we really have no idea where π might be.
2) we really have no idea where π might be, but is not likely that it is either very close to

0 or very close to 100%
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Figure 12:
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Figure 13:

107



Figure 14:
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Figure 15:
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Figure 16:
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Figure 17:
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Figure 18:
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3) we think the true percentage is around 40%. Moreover, we are vey sure it is not less
than 30% and not higher than 50%.

• Enter your own function: here you can enter any R expression for any function you like!
(and that could e a prior, of course). we think the true percentage is is either around 25%

or around 75%.
Can you think of any situation where this might actually be an apprioriate prior?

16.0.0.2 Example

We have collected data from some recent classes. For each student in each class we we found
their gender. What would be an appropriate prior to use here?
Actually it will depend on the class. For example, if this is a class in engineering, the
percentage of females is likely smaller than 50% but if it is a course in nursing it likely larger
than 50%. If we don’t know what class it is we should use a prior which allows for some
range. So maybe Location and Range with most likely value = 50 and likely range of values
= 60

16.0.0.3 Example
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Figure 19:
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We have collected data from some recent introductory statistics classes. For each student in
each class we we know whether they got an A or not. What would be an appropriate prior
to use here?
Here a prior with a peak at 10% seems appropriate. Moreover, any number above 20% is
highly unlikely.
Try Beta prior with α = 2 and β = 20.

16.0.0.4 Example

We have collected data from some experiment. We know the following:
• the percentage is definitely between 70% and 90%
• the percentage is most likely between 78% and 82%
• the percentage is twice as likely to be less than 78% than it is to be over 82%.

Here is one way to encode this prior knowledge with the Discrete prior option:

16.0.0.5 Example

So, how about our coin? What should we do here?
There are really two possibilities: either the coin is fair, so π is just about 0.5, and that is
most likely the case. Or it is not fair, and then π could really be anything at all.
Here is one way to encode this:
The prior (blue) curve is flat from 0 to 100 but moves up sharply between 48 and 52. (This
is often called Lincoln’s hat function!) Under the posterior (red) curve this is still most likely
a fair coin, but there is little higher chance that it has a bias towards tails.

17 Exercise Problems 1

In this page we will practise some of the things we have learned before. You should try to
solve each problem on your own before looking at the solutions.

17.0.1 Problem 1

Some years ago an insurance company did a study of their policies and found that 30% of
them where for cars. They randomly select 532 of their current policies and find that 131 of
them are car insurances.
a. Test at the 1% level whether the percentage of car insurance policies is now smaller than

30%
b. If the true percentage of car insurance policies is 25%, what was the power of this test?
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Figure 20:
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Figure 21:
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c. If the true percentage of car insurance policies is 25%, what sample size is needed to
have a power of 95%

17.0.2 Problem 2

An insurance company is interested in the amount of money they pay on average on insurance
claims. They randomly select 42 policies and find the payouts:
1400 32400 27400 22400 3500 8300 33600 17000 9600 20500 4900 9900 33100 9600 23200
22400 3600 12400 14900 29100 4500 13500 12100 12700 16600 17000 21700 29200 16200 4000
16500 17000 41000 19000 23900 37300 32100 5200 19700 21600 400 18700
Find a 95% confidence interval for the true mean amount of payouts.

17.0.3 Problem 3

In a certain store the average sales is $48. The store ran an add in a newspaper, and they
want to see whether the add has worked. They randomly select some recent sales and find
52.35 48.34 72.55 71.55 44.68 56.64 52.43 73.98 60.55 60.29
42.33 46.84 59.45 63.04 59.04 33.28 50.67 62.3 54.13 68.65
34.21 58.72 60.99 68.24 52.45 56.88 57.81 56.29 79.69 46.88
48.73 53.77 65.79 73.71 44.55 58.53 51.48 52.95 46.26 50.98
a. Test at the 5% level whether the add was a success
b. if the add raised the mean sales to $50, what is the power of the test?
c. if the add raised the mean sales to $50, what sample size is needed to have a power of

99%?

17.0.4 Problem 4

According to a web site of the Red Cross 57% of Hispanics have blood type O, 31% have
type A, 10% type B and 2% type AB. A sample of 250 people resulted in the following blood
types:

O A B AB
147 71 28 4

Test at the 10% level whether the blood types suggest that these people were hispanics

17.0.5 Problem 5

The data set studentsurvey has the replies of students to some questionnaire.
a. find a 90% confidence interval for the mean score
b. test at the 10% level whether there are equally many male and female students.
c. test at the 5% level whether the mean GPA is less than 2.5
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d. test at the 5% level whether the poplation has equally many Freshman, Junior, Senior
and Sophomore

e. find a 90% confidence interval for the mean age of the students.

17.0.6 Problem 6

In class we talked about Bernoulli trials, that is experiments which have only two possible
outcomes. Often one is interested in how often a certain outcome happens when the experiment
is carried out a number of times. This is then called a Binomial distribution, and probabilities
can be found with the R command dbinom(k, n, p), where n is the number of trials, k how
often the outcome happens and p its probability. For example, if we want to know the
probability of 2 sixes in 10 rolls of a fair die, it is
dbinom(2,10,1/6)

## [1] 0.29071

a. if a group consists of 100 men and 90 women and if three people are chosen at random,
what is the probability all of them are men?

b. if a fair coin is flipped 10 time, what is the probability of at most 3 heads?
c. if the probability of having an accident on any one mile of road is 0.001, what is the

probability of having at least one accident when driving 10000 miles in one year?
d. if a fair coin is flipped 100 times, what is the probability of getting between 40 and 60

heads (include 40 and 60) ? (Compare that our discussion of the coin app)

17.0.7 Problem 7

The mean score in the final exam of a Calculus course over many years was 72.3. The
University wants to decide whether or not to change the text book, and so they are planning
to teach several sections of the course with a new text book. Then they will test H0: µ = 72.3
vs Ha: µ > 72.3 at the 5% level. If it is true that with this new text book the mean score
will go up to 75.5 points, how many students do they need to have so that the hypothesis
test has a power of 80%? (assume the standard deviation is 15.0)

17.0.8 Problem 8

At a certain moment in time the national unemployment rate was 6.9%. In one city among
250 randomly selected people 30 said they were unemployed. Test at the 10% level to check
whether in this city the unemplyoment rate differs from that nationwide.
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17.1 Solutions

17.1.1 Problem 1

Some years ago an insurance company did a study of their policies and found that 30% of
them where for cars. They randomly select 532 of their current policies and find that 131 of
them are car insurances.
Variables: 1 Proportion
Problem: Hypothesis test
a. Test at the 1% level whether the percentage of car insurance policies is now smaller than

30%
one.sample.prop( x = 131, n = 533, pi.null = 0.3, alternative="less")

## p value of test H0: pi=0.3 vs. Ha: pi < 0.3: 0.0036

1) Parameter: proportion π

2) Method: exact binomial

3) Assumptions: none
Assumption is ok

4) α = 0.01

5) H0: π = 0.3

6) Ha: π < 0.3

7) p-value = 0.0036

8) p-value = 0.0036 < α, so we reject the null hypothesis, the true percentage of car
insurance claims is statistically significantly smaller than 30%

b. If the true percentage of car insurance policies is 25%, what was the power of this test?
prop.ps( n = 533, phat = 0.25, pi.null = 0.3, alpha = 0.01, alternative = "less")
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## [1] "Power of Test = 63.3%"

c. If the true percentage of car insurance policies is 25%, what sample size is needed to
have a power of 95%

prop.ps( power = 95, phat = 0.25, pi.null = 0.3, alpha = 0.01, alternative = "less")

## [1] "Sample size required is 1233"

17.1.2 Problem 2

Find a 95% confidence interval for the true mean amount of payouts.
Variables: 1 mean
Problem: confidence interval
highlight the data, then in R
one.sample.t(x)

Assumptions are ok (checked boxplot and normal plot)
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## A 95% confidence interval for the population mean is (14369.7, 20825.5)

17.1.3 Problem 3

Variables: 1 mean
Problem: hypothesis test
a. Test at the 5% level whether the add was a success highlight the data, then in R

Assumptions are ok (checked boxplot and normal plot)
1) Parameter of interest: population mean

2) Method of analysis: one sample t

3) Assumptions of Method: normal data or large sample

4) Type I error probability α = 0.05

5) H0: µ = 48

6) Ha: µ > 48

7) p value = 0.000
one.sample.t( x, mu.null = 48, alternative = "greater")
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## p value of test H0: mu=48 vs. Ha: mu > 48: 0.000

8) p<α, we fail to reject the null hypothesis, the add was a success
b. if the add raised the mean sales to $50, what is the power of the test?
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## Power of Test = 31.9%
t.ps( n = 40, diff = 50-48, sigma = sd(x), alternative = "greater")

c. if the add raised the mean sales to $50, what sample size is needed to have a power of
99%?
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t.ps( power = 99, diff = 50-48, sigma = sd(x), alternative = "greater")

## Sample size required is 433

17.1.4 Problem 4

Variable: 1 categorical
Problem: hypothesis test
chi.gof.test(c(147,71,28,4), c(57,31,10,2))

## p value of test p=0.7417

so we fail to reject the proportions, these people might well have been hispanics

17.1.5 Problem 5

The data set studentsurvey has the replies of students to some questionnaire.
attach(studentsurvey)

a. find a 90% confidence interval for the mean score
Variable: 1 mean
Problem: confidence interval
Assumptions are ok (checked boxplot and normal plot)
one.sample.t(Score, conf.level = 90)
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## A 90% confidence interval for the population mean is (6.1, 6.5)
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b. test at the 10% level whether there are equally many male and female students.
Variables: 1 Proportion
Problem: Hypothesis test
table(Gender)

## Gender
## Female Male
## 111 138

1) Parameter: proportion π

2) Method: exact binomial

3) Assumptions: none
Assumption is ok

4) α = 0.1

5) H0: π = 0.5

6) Ha: π 6= 0.5

7) p-value = 0.0994
one.sample.prop( x = 111 , n = 111+138, pi.null = 0.5)

## p value of test H0: pi=0.5 vs. Ha: pi <> 0.5: 0.0994

8) p-value = 0.0994 < α, we reject the null hypothesis

9) it appears there are slightly fewer female students (but this was a very close call, we
would have failed to reject the null at the 5% level!)

c. test at the 5% level whether the mean GPA is less than 2
Variables: 1 mean
Problem: hypothesis test
Assumptions are ok (checked boxplot and normal plot) 1) Parameter of interest: population
mean
2) Method of analysis: one sample t
3) Assumptions of Method: normal data or large sample
4) Type I error probability α = 0.05
5) H0: µ = 2.5
6) Ha: µ < 2.5
7) p value = 0.000
one.sample.t( GPA, mu.null = 2.5, alternative="less")
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## p value of test H0: mu=2.5 vs. Ha: mu < 2.5: 0.0911

8) p < α, we fail to reject the null hypothesis

9) the population mean GPA is almost certainly less than 2.5
d. test at the 5% level whether the poplation has equally many Freshman, Junior, Senior

and Sophomore
Variable: 1 categorical
Problem: hypothesis test
chi.gof.test(table(Year), c(1,1,1,1)/4)

## p value of test p=0.0544

p value = 0.0544 > 0.05, so we fail to reject the proportions, but by just a bit.
e. find a 90% confidence interval for the mean age of the students. The boxplot of Age

shows a severe outlier. Further investigation shows this to be observation #220. We
should remove this observation from the calculation.

bplot(Age)
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which(Age==max(Age))

## [1] 9
bplot(Age[-220])
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one.sample.t(Age[-220], conf.level = 90)
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## A 90% confidence interval for the population mean is (19.3, 22.7)

17.1.6 Problem 6

In class we talked about Bernoulli trials, that is experiments which have only two possible
outcomes. Often one is interested in how often a certain outcome happens when the experiment
is carried out a number of times. This is then called a Binomial distribution, and probabilities
can be found with the R command dbinom(k, n, p) where n is the number of trials, k how
often the outcome happens and p its probability. For example, if we want to know the
probability of 2 sixes in 10 rolls of a fair die, it is
dbinom(2, 10, 1/6)

## [1] 0.29071

a. if a group consists of 100 men and 90 women and if three people are chosen at random,
what is the probability all of them are men?

dbinom(3, 3, 100/190)

## [1] 0.1457938

b. if a fair coin is flipped 10 time, what is the probability of at most 3 heads?
at most 3 means either 0 or 1 or 2 or 3, so
dbinom(0, 10, 1/2) + dbinom(1, 10, 1/2) + dbinom(2, 10, 1/2) + dbinom(3, 10, 1/2)

## [1] 0.171875

or quicker:
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sum(dbinom(0:3, 10, 1/2))

## [1] 0.171875

c. if the probability of having an accident on any one mile of road is 0.001, what is the
probability of having at least one accident when driving 10000 miles in one year?

Prob(at least one accident) = 1-Prob(0 accidents)
1-dbinom(0, 10000, 0.0001)

## [1] 0.632139

d. if a fair coin is flipped 100 times, what is the probability of getting between 40 and 60
heads (include 40 and 60) ? (Compare that our discussion of the coin app)

sum(dbinom(40:60, 100, 1/2))

## [1] 0.9647998

17.1.7 Problem 7

The mean score in the final exam of a Calculus course over many years was 72.3. The
University wants to decide whether or not to change the text book, and so they are planning
to teach several sections of the course with a new text book. Then they will test H0: µ=72.3
vs Ha: µ>72.3 at the 5% level. If it is true that with this new text book the mean score will
go up to 75.5 points, how many students do they need to have so that the hypothesis test
has a power of 80%? (assume the standard deviation is 15.0)
t.ps(diff=75.5-72.3, sigma=15.0, power=80, alternative="greater")

## Sample size required is 138

17.1.8 Problem 8

At a certain moment in time the national unemployment rate was 6.9%. In one city among
250 randomly selected people 30 said they were unemployed. Test at the 10% level to check
whether in this city the unemplyoment rate differs from that nationwide.
1) Parameter: proportion π

2) Method: exact binomial

3) Assumptions: none
Assumption is ok

4) α = 0.1

5) H0: π = 0.069
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6) Ha: π 6= 0.069

7) p-value=0.00223
one.sample.prop(x=30, n=250, pi.null=0.069)

## p value of test H0: pi=0.069 vs. Ha: pi <> 0.069: 0.0022

8) p-value = 0.00223 < α, so we reject the null hypothesis

9) the true unemployment rate in this city is not 6.9%

17.2 Case Study: Rogaine - Treatment for Hair Loss

Rogaine is the first treatment for hair loss approved by the Food and Drug Administration.
Here we have the results of one of the studies that were done to show that rogaine works.
A randomized clinical trial was carried out. 1431 bald men were randomly assigned to two
groups. The men in the treatment group received Rogaine, the men in the control group
received a placebo. After some time the men were examined and assigned to one of 5 groups:
• No Growth = no difference in amount of hair

• New Vellus = some hair follicles

• Min Growth = minimal hair growth

• Mod Growth = moderate hair growth

• Den Growth = dense hair growth
Basic Question: Does rogaine work?**
Type of variables:
head(rogaine)

## Growth Group
## 1 No Growth Treatment
## 2 No Growth Treatment
## 3 No Growth Treatment
## 4 No Growth Treatment
## 5 No Growth Treatment
## 6 No Growth Treatment

Growth: Values = No Growth, .., Dense Growth are text, therefore categorical
Group: Values: Treatment, Control, are text, therefore categorical
two categorical variables → categorical data analysis
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Usually the first thing to do is to just count the number of times each combination has
happened:
attach(rogaine)
table(rogaine)

## Group
## Growth Control Treatment
## No Growth 423 301
## New Vellus 150 172
## Min Growth 114 178
## Mod Growth 29 58
## Den Growth 1 5

So, does rogaine work? This is a yes-no question, so we need to do a hypothesis test. The
most popular method here is the chisquare test for independence. It has
H0: Classifications are independent (here: Rogaine does not work)
Ha: Classifications are dependent (here: Rogaine works)
But why are “Classifications are independent” and “Rogaine does not work” the same thing?
Consider: say we randomly choose one of the 1431 men that were part of this study. We do
not know whether he received Rogaine or the placebo. What is the probability that the man
had no growth? Well:
724/1431 ∗ 100 = 50.6%
Let’s assume for the moment that rogaine is useless, it does no better than the placebo. In
that case it would make no difference if we were also told that he used Rogaine, we should
make the same guess of 50.6%. So knowing the value of the predictor (Rogaine or placebo)
does not make any difference for the response (Hair growth)
they are independent
What are the assumptions of this method? They are that none of the expected counts is
less than 5.
To run the test use the chi.ind.test command. The argument has to be a table, so we run
chi.ind.test(table(rogaine))

## Some expected counts < 5!
## p value of test p=0.000

so the p value of the test is 0, and we should reject the null hypothesis of no relationship.
There is however also a warning:
Some expected counts < 5!
This part is because there is a problem with the expected counts.
This generally happens when there is not enough data for some combinations. Looking at
the table above it seems the number in the row Den Growth are to small. We can fix that by
combining the Den Growth and the Mod Growth groups:
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new.rogaine.table <- cbind(c(423, 150, 114, 29+1), c(301, 172, 178, 58+5))
new.rogaine.table

## [,1] [,2]
## [1,] 423 301
## [2,] 150 172
## [3,] 114 178
## [4,] 30 63
chi.ind.test(new.rogaine.table)

## p value of test p=0.000

So, here is the test:
1. Parameters of interest: measure of association

2. Method of analysis: chi-square test of independence

3. Assumptions of Method: all expected counts greater than 5

4. α = 0.05

5. H0: Classifications are independent = Rogaine does not work

6. Ha: Classifications are dependent = Rogaine works

7. p = 0.000

8. we reject the null hypothesis, there is a statistically significant difference between Rogaine
and Placebo, Rogaine works better than the Placebo (or doing nothing)

Note when we made the new table by combining the last two categories I didn’t bother to
add the row and column names, because the chi.ind.test command doesn’t use them anyway.
It would of course have been easy to do so:
colnames(new.rogaine.table) <- c("Control", "Treatment")
rownames(new.rogaine.table) <- c("No Growth", "New Vellus", "Min Growth", "Some Growth")
new.rogaine.table

## Control Treatment
## No Growth 423 301
## New Vellus 150 172
## Min Growth 114 178
## Some Growth 30 63
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17.2.1 Case Study : Drownings in Los Angeles

Data is from O’Carroll PW, Alkon E, Weiss B. Drowning mortality in Los Angeles County,
1976 to 1984, JAMA, 1988 Jul 15;260(3):380-3.
Drowning is the fourth leading cause of unintentional injury death in Los Angeles County.
They examined data collected by the Los Angeles County Coroner’s Office on drownings that
occurred in the county from 1976 through 1984. There were 1587 drownings (1130 males and
457 females) during this nine-year period
## Male Female
## Private Swimming Pool 488 219
## Bathtub 115 132
## Ocean 231 40
## Freshwater bodies 155 19
## Hottubs 16 15
## Reservoirs 32 2
## Other Pools 46 14
## Pails, basins, toilets 7 4
## Other 40 12

Basic Question: is there a difference between men and women and the method of
drowning?
First notice that here the data is already in the form of a table. The “original” data would
have been something like this:
Female - Private Swimming Pool
Female - Bathtub Male - Ocean
and so on
Type of variables:
This is not so trivial, at first glance it seems we have numerical data, but in fact this is
already a table, the original (“raw”) data was two pieces of information for each subject,
namely
Gender: Values: “Male”, “Female” are text, therefore categorical
Method: Values: “Private Swimming Pool”, .., “Other”, are text, therefore categorical
two categorical variables → categorical data analysis

Notice also an added difficulty here: at first glance it appears that more than twice as many
men drown in Private Swimming Pools than do women (488 vs 219), but remember, there
are twice as many men who drowned altogether, so if there were no differences between men
and women we would expect twice as men as women to drown in Private Swimming Pools.
What we need to do is calculate the percentages:
round(Male/sum(Male)*100, 1)

## [1] 43.2 10.2 20.4 13.7 1.4 2.8 4.1 0.6 3.5
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round(Female/sum(Female)*100, 1)

## [1] 47.9 28.9 8.8 4.2 3.3 0.4 3.1 0.9 2.6

and we see that the difference between men and women who drown in Private Swimming
Pools is not very large (43.2% vs. 47.9%)
Notice this was not necessary in the Rogaine data because there the groups Treatment and
Control had (almost) the same size (714 and 717). This is often the case in a designed
experiment, whereas in an observational study such the drowning example we often have
different sample sizes.
Generally, using percentages for tables (and graphs) is rarely wrong but using counts can be
(and would be here in the drowning experiment) Finally, the test.
chi.ind.test(drownings)

## Some expected counts < 5!
## p value of test p=0.000

Again we get the warning message. This time it is the Pails, basins, toilets group, which we
should combine with the Other:
newmale <- c(drownings[1:7, 1], 7+40)
newfemale <- c(drownings[1:7, 2], 4+12)
newdrown <- cbind(newmale, newfemale)
newdrown

## newmale newfemale
## [1,] 488 219
## [2,] 115 132
## [3,] 231 40
## [4,] 155 19
## [5,] 16 15
## [6,] 32 2
## [7,] 46 14
## [8,] 47 16
chi.ind.test(newdrown)

## p value of test p=0.000

1. Parameters of interest: measure of association

2. Method of analysis: chi-square test of independence

3. Assumptions of Method: all expected counts greater than 5

4. Type I error probability α=0.05

5. H0: Classifications are independent = there is no difference in the method of drowning
between men and women.
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6. Ha: Classifications are dependent = there is some difference in the method of drowning
between men and women.

7. p-value = 0.000

8. p<α, we reject the null hypothesis, there is a statistically significant difference between
men and women and where they drown.

Note In this case combining the Pails, .. and the Other category did the trick. But in the
Reservoire category there is also a small number (2). We could also have tried to combine
that one with Other. Try it to see whether it would have worked!

17.2.2 Case Study

A psychologist has developed a new method for treating depression. She wants to know
whether it works equally well on men and women. She randomly selects 25 patients and after
applying her new treatment she “measures” their level of improvement. She finds:

Male Female
No Improvement 5 6
Some Improvement 7 8
Improvement 7 5

We want to test at the 5% level whether there is a difference between men and women and
how the method works.
Type of variables:
Gender: Values: “Male”, “Female” are text, therefore categorical
Method: Values: “No Improvement”, “Some Improvement”, “Improvement” are text, therefore
categorical
two categorical variables → categorical data analyis
First we need to get the data into R. In the case of a small table like this the quickest way to
do this is to just type it in:
x <- cbind(c(5, 7, 7), c(6, 8, 5))

Notice that for the chi.ind.test command we only need the numbers, not the names, so this
is enough.
Now
chi.ind.test(x)

## p value of test p=0.7823

1. Parameters of interest: measure of association

135



2. Method of analysis: chi-square test of independence

3. Assumptions of Method: all expected counts greater than 5

4. Type I error probability α=0.05

5. H0: Classifications are independent = there is no difference in the method between men
and women.

6. Ha: Classifications are dependent = there is some difference in the method between men
and women.

7. p-value = 0.7823
8. p<α, we fail to reject the null hypothesis, there is no statistically significant difference

between men and women and how the method works.

17.2.3 Always be careful with the details

Consider the following two experiments:
Experiment 1: we randomy select 200 subjects. For each we record their gender and ask
them whether they have ever been accused of a crime. We find
Gender Yes No
Male 30 70
Female 17 83
Experiment 2: we randomly select 100 men and 100 women and ask them whether they
have ever been accused of a crime. We find
Gender Yes No
Male 30 70
Female 17 83

Note that the data in both experiments is exactly the same, but they are in fact very different
experiments. In experiment 1 the fact that we had 100 men was accidental, it could just as
easily have been 104 (say). On the other hand in experiment 2 we decided ahead of time how
many men and how many women we want in the study.
How an experiment is done is always an important consideration. For example, if we wanted
to answer the question whether there is a relationship between gender and accused, we could
use the chisquare test for experiment 1 but not for experiment 2, at least not in the form
presented here. This leads to a whole subfield of statistics called experimental design.
For more on the chisquare test for independence see section 12.2 of the textbook.

136



Figure 22:

18 Quantitative Predictor - Quantitative Response: Pearson’s
Correlation Coefficient

The method discussed here was originally developed by Karl Pearson

18.0.1 Case Study: The 1970’s Military Draft

In 1970, Congress instituted a random selection process for the military draft. All 366 possible
birth dates were placed in plastic capsules in a rotating drum and were selected one by one.
The first date drawn from the drum received draft number one and eligible men born on that
date were drafted first. In a truly random lottery there should be no relationship between
the date and the draft number.
CBS TV Broadcast
Basic question: Did the 1970 draft work the way it was supposed to?
head(draft[, 4:5])

## Day.of.Year Draft.Number
## 1 1 305
## 2 2 159
## 3 3 251
## 4 4 215
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## 5 5 101
## 6 6 224

18.0.2 Type of variables:

Day of Year : Values: 1, 2, 3, .. ,366 are numerical, therefore quantitative
Draft Number.: Values: 305, 159, 251, 215, . . . are numerical, therefore quantitative
two quantitative variables → correlation

Whenever we want ot study the relationship between two quantitative variables we should
start with the scatterplot. But before we do this, let’s consider what we expect to see. The
draft was designed as a lottery to make it fair, that is any man in the US should have had
the same chance to be picked (or not!). In terms of their birthdays, each of the 365 days
should have had the same chance of getting picked early, sometime in the middle or late. So
some of the days in January should have a small Draft Number, some a large one and some
in the middle. So in the scatterplot on the left (January=small Day number) we should see
some dots on the bottom (small Draft) some in the middle and some on top. And exactly
the same should be true for any other month:
attach(draft)
splot(Draft.Number, Day.of.Year)
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so far, so good.
Now, this graph shows that there is no obvious relationship between the variables, but
we need a bit more, we want there to be no relationship, we want Day of Year and
Draft Number to be independent. A graph such as this one is not quite enough. So let’s

138



calculate a statistic that measures the relationship between two quantitative variables, namely
Pearson’s correlation coefficient:
cor(Draft.Number, Day.of.Year)

## [1] -0.2260414

Recall some of the properties of Pearson’s correlation coefficient: - always -1 ≤ r ≤ 1
• r close to 0 means very small or even no correlation (relationship)
• r close to ± 1 means a very strong correlation
• r = -1 or r = 1 means a perfect linear correlation (that is in the scatterplot the dots

form a straight line)
• r < 0 means a negative relationship (as x gets bigger y gets smaller)
• r > 0 means a positive relationship (as x gets bigger y gets bigger)
• r treats x and y symmetricaly, that is cor(x,y) = cor(y,x)

r is a statistic (a number calculated from a sample) so it has a corresponding parameter
(a number describing a population) The parameter is usually denoted by ρ. If the lottery
worked and was fair, then we should have ρ = 0. So the question becomes: if r = -0.226
could we still have ρ = 0? Again this is answered by a hypothesis test:
pearson.cor(Draft.Number, Day.of.Year, rho.null = 0)
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## p value of test H0: rho=0 vs. Ha: rho <> 0: 0.000

1. Parameter of interest: Pearson’s correlation coefficient ρ
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2. Method of analysis: test based on normal theory

3. Assumptions of Method: relationship is linear, there are no outliers.
4. α = 0.05

5. H0: ρ = 0 (no relationship between “Day of Year” and “Draft Number”)

6. Ha: ρ 6= 0 (some relationship between “Day of Year” and “Draft Number”)

7. p = 0.000

8. p < α, so we reject H0, there is some relationship between “Day of Year” and “Draft
Number”, something went wrong in the 1970 draft.

How about the assumptions? we can check them using the marginal plot, which looks just
fine.
Here are some cases were Pearson’s correlation coefficient would not work:
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Also very important is the fact that Pearson’s correlation coefficient works only for linear
relationships:
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18.0.3 App: correlation and correlation2

these apps illustrate the correlation coefficient
correlation What to do:
Move slider around to see different cases of the scatterplot of correlated variables include a
few outliers and see how that effects that “look” of the scatterplot and the sample correlation
coefficient On the Histogram tab set ρ = -0.23 and observe that we need a sample size of
about 60 to have some reasonable chance to reject the null hypothesis of no correlation.
correlation2 What to do
click inside graph and watch the correlation

So, now that we know that there is indeed a relationship between Day of Year and Draft
Number, can we visualize it in some way? Here is an idea: let’s look at the boxplot of Draft
Number by Month:
bplot(Draft.Number, Month,

new_order = "Size")
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and here we can see that there is a tendency for the Draft Numbers to be lower for month
later in the year.
Note
if we simply run
bplot(Draft.Number, Month)
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the routine arranges the boxed alphabetically. Here we want them arranged in order. We
can always do the graph in any order we want with the new_order argument.
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Again notice the similarities and the differences between this analysis and those we have
done before: in each case we had the basic question of whether or not there is a relationship
between two variables, in each case we did the hypothesis test with the null hypothesis
H0: there is no relationship
but then we used different methods depending on the type of data:
• Categorical Predictor - Categorical Response: Chi-square test for independence
• Categorical Predictor - Quantitative Response: ANOVA
• Quantitative Predictor - Quantitative Response: Pearson’s Correlation Coefficient

For the last two there are even more similarities: for each of these methods there was some
assumption of normal distributions

18.0.4 Case Study: The 1971 Military Draft

let’s see what happened the year after:
splot(Draft.Number.1971, Day.of.Year)
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so there is no hint of a problem here (but again, that is what we thought before as well).
And the test:
pearson.cor(Draft.Number.1971, Day.of.Year, rho.null = 0)
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## p value of test H0: rho=0 vs. Ha: rho <> 0: 0.7861

1. Parameter of interest: Pearson’s correlation coefficient ρ

2. Method of analysis: test based on normal theory

3. Assumptions of Method: relationship is linear, there are no outliers

4. α=0.05

5. H0: ρ = 0 (no relationship between “Day 1971” and “Draft Number 1971”)

6. Ha: ρ 6= 0 (some relationship between “Day 1971” and “Draft Number 1971”)

7. p = 0.7861

8. p > α, so we fail to reject H0, there is no relationship between “Day 1971” and “Draft
Number 1971”. The marginal plot shows no outliers or a non linear relationship, so the
assumptions are ok.

The same command can also be used to find a confidence interval. This is done when the
rho.null argument is left off:
pearson.cor(Draft.Number.1971, Day.of.Year, conf.level = 90)
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## A 90% confidence interval for the
## population correlation coefficient is ( -0.072, 0.1 )

19 Correlation vs. Causation

Say we have found correlation between variables “x” and “y”. How can we understand and
interpret that relationship?
Toy Example
x = Number of fireman responding to a fire
y = damages done by the fire.
say there is a positive correlation between x and y (and in real live there will be!)
does this mean x causes y?
Please note saying x causes y is not the same as x determines y. There are usually many other
factors besides x that influence y, maybe even some more important than x. For example say
x=“Time studied for Exam” and y=“Score on Exam”. Let’s assume that there is a positive
correlation between x and y. It is reasonable to conclude that x causes y, that is studying
longer improves the scores. But of course there are also many other factors such as general
ability, previous experience, being healthy on the day of the exam, exam anxiety, having a
hang-over etc.

Confusing correlation with causation can sometimes lead to very strange conclusions:
Bizzare Correlations
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Figure 23:
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but the real danger are cases were ther is no causation but it is not so obvious. In fact trying
to determine whther an observed correlation is due to causation is one of the genuinely hard
problems in Statistics:

19.0.1 Case Study: Smoking and Lung Cancer

There have been hundreds of studies all over the world that have shown a correlation between
smoking rates and lung cancer deaths, usually with correlations of about 0.5 to 0.7. And
yet, none of these studies has shown that smoking causes lung cancer because all of the were
observational studies, not clinical trial.
The only perfectly satisfactory way to establish a causation is to find a random sample,
for example to do a clinical trial. An observational study is always somewhat suspect
because we never know about hidden biases. Nevertheless, even only using observational
studies the evidence for cause-effect can be quite strong: Things to look for when trying to
establish a causation:
• correlation is strong - the correlation between smoking and lung cancer is very strong
• correlation is consistent over many experiments - many studies of different kinds of

people in different countries over a long time period all have shown this correlation
• higher doses are associated with stronger responses - people who smoke more have a

higher chance of lung cancer
• the cause comes before the response in time - lung cancer develops after years of smoking.

The number of men dying of lung cancer rose as smoking became more common, with a
lag of about 30 years. Lung cancer kills more men than any other form of cancer. Lung
cancer was rare among women until women started to smoke. Lung cancer in women
rose along with smoking, again with a lag of about 30 years, and has now passed breast
cancer as the leading cause of cancer deaths among women.

• the cause is plausible - lab experiments on animals show that nicotin causes cancer.
This issue goes by the name of “Correlation does not imply Causation”, but it is not specific
to quantitative data (where we use the word “correlation”), it comes up anytime we compare
two variables:
Example Rogaine: we rejected the null hypothesis of no relationship between the treatment
(Rogaine or Placebo) and hair growth. Does this mean Rogaine causes hair to grow? There
is nothing in the statistical analysis that says so, but because this was a clinical trial with
random assignments to treatment and control there can be no latent variable, so the answer
is yes.
Example Mothers and Cocain use: we rejected the null hypothesis of no relationship between
the drug use of the mother and the length of the babies. Does this mean the drug use is the
cause for the difference?
Again there is nothing in the statistical analysis that says so, and this was an observational
study, so there is the possibility of a latent variable. It is difficult to imagine what that would
be, though.
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20 Non-Normal Residuals, No Equal Variance - Transformations

20.1 Categorical - Quantitative

20.1.1 Case Study: Cancer Survival

As we saw before, the boxplot of this data shows some severe outliers:
attach(cancersurvival)
head(cancersurvival)

## Survival Cancer
## 1 124 Stomach
## 2 42 Stomach
## 3 25 Stomach
## 4 45 Stomach
## 5 412 Stomach
## 6 51 Stomach
bplot(Survival, Cancer)
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These are often an indication that there is a problem with the assumption of normaly
distributed residuals. In fact, when we run the ANOVA and check the normal plot we can
see that this is the case:
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oneway(Survival,Cancer)
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## p value of test of equal means: p = 0.000
## Smallest sd: 209.9 Largest sd : 1239

So, what can we do? One possible solution is to use a log transformation:
bplot(log(Survival), Cancer)
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This takes care of (most) of the outliers.
Outliers often have another effect:
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stat.table(Survival, Cancer)

## Sample Size Mean Standard Deviation
## Stomach 13 286.0 346.3
## Bronchus 17 211.6 209.9
## Colon 17 457.4 427.2
## Ovary 6 884.3 1098.6
## Breast 11 1395.9 1239.0

shows we also have a problem with the equal variance: smallest stdev=210, largest stdev=1239,
3*210=630 < 1239.

In this class we will use the log transform only. In real live there are a number of other
transforms one can try, such as square root and inverse.
Note sometimes in a quantitative variable some values are 0, but log(0) does not exist!. In
this case use log(x+1). Even worse, sometimes numbers are negative, and again log(negative
number) does not exist. In that case use log(x+a) so that all x+a>0

We already know that outliers have a strong effect on the mean and the standard deviation.
It might therefore be better to use a summary table based on median and iqr:
stat.table(Survival, Cancer, Mean=FALSE)

## Sample Size Median IQR
## Stomach 13 124 350.0
## Bronchus 17 155 173.0
## Colon 17 372 330.0
## Ovary 6 406 799.8
## Breast 11 1166 969.5

Now we can finish the analysis of this dataset:
oneway(log(Survival),Cancer)
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## p value of test of equal means: p = 0.0041
## Smallest sd: 1 Largest sd : 1.6

1. Parameters of interest: group means

2. Method of analysis: ANOVA

3. Assumptions of Method: residuals have a normal distribution, groups have equal variance

4. α = 0.05

5. Null hypothesis H0: µ1 = µ2 = µ3 = µ4 = µ5 (groups have the same means)
6. Alternative hypothesis Ha: µi 6= µj (at least two groups have different means)

7. p value = 0.0041

8. 0.0041 < 0.05, there is some evidence that the group means are not the same, there are
differences in the survival times. Assumptions: a normal plot of residuals ok
b smallest stdev = 1.0, largest stdev = 1.6, 3*1.0 = 3.0 > 1.6 ok

Notice that the transformation solves both the problem of the normal residuals as well as the
problem of unequal variances! This is quite often the case, though not always.

20.1.2 Case Study: Capacity of Wells

The specific capacity of wells in the Appalachian mountain region of Pennsylvania has been
measured in four rock types. (Knopman 1990) The rock types are dolomite, limestone,
siliclastic and metamorphic. The capacities are recorded in gal/min/ft.
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attach(rocks)
head(rocks)

## Rocks Capacity
## 1 Dolomite 132.95355630
## 2 Dolomite 0.03995506
## 3 Dolomite 3.09565649
## 4 Dolomite 9.97418198
## 5 Dolomite 4.61817669
## 6 Dolomite 1.50681778
table(Rocks)

## Rocks
## Dolomite Limestone Metamorphic Siliclastic
## 50 50 50 50
bplot(Capacity, Rocks)
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Clearly there some serious outliers. Let’s try the log transform:
bplot(log(Capacity), Rocks)
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and this looks much better.
Summary Statistics
Because we used a transformation we will use the median and IQR
stat.table(Capacity, Rocks, Mean=FALSE)

## Sample Size Median IQR
## Dolomite 50 1.7 9.1
## Limestone 50 0.5 1.9
## Siliclastic 50 0.5 1.2
## Metamorphic 50 0.3 1.0

Note that the estimates of the variation differ by quite a lot (1.0 vs 9.1). This again is due to
the fact that we have many outliers in the dataset.
Now the test:
oneway(log(Capacity), Rocks)
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## p value of test of equal means: p = 0.0067
## Smallest sd: 1.4 Largest sd : 2.6

1. Parameters of interest: group means

2. Method of analysis: ANOVA

3. Assumptions of Method: residuals have a normal distribution, groups have equal variance

4. α = 0.05

5. H0: µ1 = µ2 = µ3 = µ4 (no difference in the mean Capacity for different Rocks)

6. Ha: µi 6= µj for some i and j (some differences in the mean Capacitys for different Rocks)

7. p-value = 0.0067

8. p < α, we reject H0, there are some differences in the mean Capacity for different Rocks.
Assumptions: Normal plot looks ok
smallest stdev of log(Capacity): 0.61, largest stdev: 1.11, 3*0.61 = 18.3 > 1.11, ok
Warning
If we had not done a transformation the results would have been quite different. For example,
rocks would not have been stat. significant (p-value = 0.06)
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20.2 Quantitative - Quantitative

20.2.1 Case Study: Brain and Body Weight of 62 Mammals

Brain and Body Weight (in kg) of 62 Mammals.
head(brainsize)

## Animal body.wt.kg brain.wt.g
## 1 African elephant 6654.000 5712.0
## 2 African giant pouched rat 1.000 6.6
## 3 Arctic Fox 3.385 44.5
## 4 Arctic ground squirrel 0.920 5.7
## 5 Asian elephant 2547.000 4603.0
## 6 Baboon 10.550 179.5

We have two quantitative variables, so we should start with the scatterplot:
attach(brainsize)
brainsize

## Animal body.wt.kg brain.wt.g
## 1 African elephant 6654.000 5712.00
## 2 African giant pouched rat 1.000 6.60
## 3 Arctic Fox 3.385 44.50
## 4 Arctic ground squirrel 0.920 5.70
## 5 Asian elephant 2547.000 4603.00
## 6 Baboon 10.550 179.50
## 7 Big brown bat 0.023 0.30
## 8 Brazilian tapir 160.000 169.00
## 9 Cat 3.300 25.60
## 10 Chimpanzee 52.160 440.00
## 11 Chinchilla 0.425 6.40
## 12 Cow 465.000 423.00
## 13 Desert hedgehog 0.550 2.40
## 14 Donkey 187.100 419.00
## 15 Eastern American mole 0.075 1.20
## 16 Echidna 3.000 25.00
## 17 European hedgehog 0.785 3.50
## 18 Galago 0.200 5.00
## 19 Genet 1.410 17.50
## 20 Giant armadillo 60.000 81.00
## 21 Giraffe 529.000 680.00
## 22 Goat 27.660 115.00
## 23 Golden hamster 0.120 1.00
## 24 Gorilla 207.000 406.00
## 25 Gray seal 85.000 325.00
## 26 Gray wolf 36.330 119.50
## 27 Ground squirrel 0.101 4.00
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## 28 Guinea pig 1.040 5.50
## 29 Horse 521.000 655.00
## 30 Jaguar 100.000 157.00
## 31 Kangaroo 35.000 56.00
## 32 Lesser short-tailed shrew 0.005 0.14
## 33 Little brown bat 0.010 0.25
## 34 Man 62.000 1320.00
## 35 Mole rat 0.122 3.00
## 36 Mountain beaver 1.350 8.10
## 37 Mouse 0.023 0.40
## 38 Musk shrew 0.048 0.33
## 39 N. American opossum 1.700 6.30
## 40 Nine-banded armadillo 3.500 10.80
## 41 Okapi 250.000 490.00
## 42 Owl monkey 0.480 15.50
## 43 Patas monkey 10.000 115.00
## 44 Phanlanger 1.620 11.40
## 45 Pig 192.000 180.00
## 46 Rabbit 2.500 12.10
## 47 Raccoon 4.288 39.20
## 48 Rat 0.280 1.90
## 49 Red fox 4.235 50.40
## 50 Rhesus monkey 6.800 179.00
## 51 Rock hyrax (Hetero. b) 0.750 12.30
## 52 Rock hyrax (Procavia hab) 3.600 21.00
## 53 Roe deer 83.000 98.20
## 54 Sheep 55.500 175.00
## 55 Slow loris 1.400 12.50
## 56 Star nosed mole 0.060 1.00
## 57 Tenrec 0.900 2.60
## 58 Tree hyrax 2.000 12.30
## 59 Tree shrew 0.104 2.50
## 60 Vervet 4.190 58.00
## 61 Water opossum 3.500 3.90
## 62 Yellow-bellied marmot 4.050 17.00
splot(brain.wt.g, body.wt.kg)
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unfortunately almost all the “space” in the graph is taken up by a few outliers, it is not even
possible to determine if there is a relationship between the variables. Drawing the marginal
plot show that the problem are outliers in both variables:
mplot(brain.wt.g, body.wt.kg)
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As before we can try and fix this problem by using a log transformation:
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mplot(log(brain.wt.g), log(body.wt.kg))
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which nicely fixes the problem.

Because now we have two quantitative variables the log transform could be applied to x, to y
or to both. In general we might see any of these combinations:
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→ no transformations needed
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mplot(y, x)
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x variable is bad, y variable is ok
→ log transform x, leave y alone:
mplot(y, log(x))
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mplot(y, x)
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y variable is bad, x variable is ok
→ log transform y, leave x alone:
mplot(log(y), x)
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mplot(y, x)
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both x and y variables are bad
→ log transform x and y
mplot(log(y), log(x))
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It is clear from the scatterplot that we have a strong linear relationship between log(Brain)
and log(Body), but if we want to we can now also find Pearson’s correlation coefficient:
cor(log(body.wt.kg), log(brain.wt.g))

## [1] 0.958817

Doing so for the original data would have been wrong!

21 Non-Normal Residuals, No Equal Variance - Non-Parametric
Methods

21.1 One Quantitative Variable (Alternative to 1 Sample t)

21.1.1 Case Study: Euro Coins

Data set: euros
say we are told that a one euro coin is supposed to weigh 7.5 grams. Does the data in support
that claim?
The boxplot of Weight shows severe outliers, so the usual 1 sample t test won’t work.
Unfortunately the log transfromations does not work here either:
attach(euros)
head(euros)

## Weight Roll
## 1 7.512 1
## 2 7.502 1
## 3 7.461 1
## 4 7.562 1
## 5 7.528 1
## 6 7.459 1
bplot(Weight)

162



7.2

7.4

7.6

 

Weight

 

bplot(log(Weight))

1.99

2.01

2.03

2.05

 

log(Weight)

 

This is not a surprise, by the way, because the outliers are on both sides of the box.
So, what now? For this situation we have a set of methods called non-parametric, which
make no assumptions, especially not the one of the 1 sample t test, namely normal distribution.
The name of the test that works here is Wilcoxon Signed Rank Test.
The details are
one.sample.wilcoxon(Weight, med.null=7.5)
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## p value of test H0: median=7.5 vs. Ha: median <> 7.5: 0.000

1) Parameter of interest: 1 median

2) Method of analysis: Wilcoxon Signed Rank test

3) Assumptions of Method: none

4) α = 0.05

5) Null hypothesis H0: M=7.5 (median weight is 7.5 grams)

6) Alternative hypothesis Ha: M 6= 7.5 (median weight is not 7.5 grams)

7) p value = 0.000

8) 0.000<0.05, so we reject H0, it seems the median weight is not 7.5 grams.
Actually, in this data set we could still have used the usual 1-sample t test (also with a p-value
of 0.000) because we have a very large sample (n=2000), but in general it is never clear
exactly how large a sample needs to be to “overcome” some outliers, so these non-parametric
tests are always a safe alternative.

21.1.1.1 Why not always use the non-parametric test?

If using the t test sometimes is wrong but the Wilcoxon Rank Sum test always works, why
not just always use this test and be safe? The answer is that the t test has a larger power:
In real life the power of the nonparametric tests is often almost as high as the power of
the standard tests, so they should always be used if there is a question about the normal
assumption.
The arguments of the one.sample.wilcoxon routine are the same as those of the one.sample.t
command. For example if we wanted to test
5) Null hypothesis H0: M=7.5 (median weight is 7.5 grams)

6) Alternative hypothesis Ha: M>7.5 (median weight is higher than 7.5 grams)
we could run
one.sample.wilcoxon(Weight, med.null=7.5, alternative = "greater")

## p value of test H0: median=7.5 vs. Ha: median > 7.5: 0.000

If we wanted a 90% confidence interval for median we could use
one.sample.wilcoxon(Weight, conf.level=90, ndigit=4)

## A 90% confidence interval for the population
## median is (7.5195, 7.5224)
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Figure 24:
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21.2 Categorical - Quantitative (Alternative to ANOVA)

21.2.1 Case Study: Euro Coins

Say we want to know whether the coin in the 8 different rolls have the same average weight.
The non-parametric alternative to the oneway ANOVA is the Kruskal-Wallis test:
kruskalwallis(Weight, Roll)

## p value of test of equal means: p = 0.000

1) Parameters of interest: medians

2) Method of analysis: Kruskal-Wallis

3) Assumptions of Method: none

4) α = 0.05

5) Null hypothesis H0: M1=..=M8 (group medians are the same)

6) Alternative hypothesis Ha: Mi 6= Mj for some i, j(group medians are not the same)

7) p value = 0.00

8) 0.00 < 0.05, so we reject H0, it seems the group medians are not the same

21.2.2 Case Study: Cultural Differences in Equipment Use

A US company manufactures equipment that is used in the production of semiconductors. The
firm is considering a costly redesign that will improve the performance of its equipment. The
performance is characterized as mean time between failures (MTBF). Most of the companies
customers are in the USA, Europe and Japan, and there is anectotal evidence that the
Japanese customers typically get better performance from the users in the USA and Europe.
Data: MTBF for randomly selected users in the USA, Europe and Japan.
Data set: culture
attach(culture)
head(culture)

## Country MTBF
## 1 USA 120.5
## 2 USA 127.1
## 3 USA 128.1
## 4 USA 129.7
## 5 USA 130.8
## 6 USA 132.4
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table(Country)

## Country
## Europe Japan USA
## 15 12 20
bplot(MTBF, Country)
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There is a problem with the normal assumption. We can try to fix this with the log transform,
but as we can see again this does not work:
bplot(log(MTBF), Country)
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Summary Statistics
We could not even find a transformation, so we will use the median and IQR:
stat.table(MTBF, Country, Mean=FALSE)

## Sample Size Median IQR
## USA 20 138.0 16.7
## Europe 15 140.0 24.4
## Japan 12 165.7 27.8

Because none of the transformations worked we will use the non-parametric Kruskall-Wallis
test:
kruskalwallis(MTBF, Country)

## p value of test of equal means: p = 0.00100488597092579

1) Parameters of interest: medians

2) Method of analysis: Kruskal-Wallis

3) Assumptions of Method: none

4) α0.05

5) Null hypothesis H0: M1 = M2 = M3 (group medians are the same)

6) Alternative hypothesis Ha: Mi 6= Mj for some i, j (group medians are not the same)

7) p value = 0.001
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8) 0.001 < 0.05, so we reject H0, it seems the group medians are not the same, the MTBF
is different in diffferent countries

If we had just done the ANOVA Country would not have been stat. significant (p-value =
0.098) but if you remember to check the normal plot you will see that there is a problem
with this analysis.

21.3 Quantitative - Quantitative

If the transformations fail in a regression problem things become very tricky, and far beyond
the scope of this class. Talk to a professional!

22 Exercise Problems 2

22.0.1 Case Study: Survey of Students

This is a fake data set I made up for this exercise. It is supposed to be from a survey of
students at some College. The data is in studentsurvey
The variables are
colnames(studentsurvey)

## [1] "Score" "Gender" "Year" "GPA" "Distance" "Major"
## [7] "Age"

Score is a combination of several questions designed to measure how “happy” they are to
study at the College. A high number means more happiness. Distance is how far they live
from the College. Make sure your answers are complete.
Problem 1 Is there a relationship between Score and Gender?
Problem 2 Is there a relationship between Score and Year?
Problem 3 Is there a relationship between Score and GPA?
Problem 4 Is there a relationship between Score and Distance?
Problem 5 Is there a relationship between Score and Age?
Problem 6 Is there a relationship between Gender and Major?
Problem 7 Is there a relationship between Gender and Age?

attach(studentsurvey)

Problem 1 Is there a relationship between Score and Gender? Score is a quantitative
variable and Gender is a categorical variable with two values, so this is a problem for ANOVA
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bplot(Score,Gender)
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The boxplot shows a slight difference between the genders. There are a few slight outliers,
but they are no problem.
stat.table(Score, Gender)

## Sample Size Mean Standard Deviation
## Female 111 6.7 1.7
## Male 138 5.9 2.2

The test:
oneway(Score, Gender)

170



−4

0

4

−3 −2 −1 0 1 2 3

theoretical

sa
m

pl
e

## p value of test of equal means: p = 0.0033
## Smallest sd: 1.7 Largest sd : 2.2
## A 95% confidence interval for the difference in group means is (0.3, 1.2)

1) Parameters of interest: means of scores of men and women

2) Method of analysis: two sample t test

3) Assumptions of Method: residuals have a normal distribution, or sample sizes are large
enough

4) α = 0.05

5) Null hypothesis H0: µ1 = µ2 (groups have the same mean)

6) Alternative hypothesis Ha: µ1 6= µ2 (groups have different means)

7) p value = 0.0033

8) 0.0033 < 0.05, there is some evidence that the group means are not the same, the women
tend to score higher than the men.

Assumptions:
1) Normal residuals: normal plot looks ok.

2) equal variance: 3*1.71 = 5.13 > 2.21, ok

Problem 2 Is there a relationship between Score and Year? Score is a quantitative variable
and Year is a categorical variable, so this is a problem for ANOVA
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bplot(Score, Year)
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The table of summary statistics is
stat.table(Score, Year)

## Sample Size Mean Standard Deviation
## Junior 47 6.1 2.0
## Freshman 66 6.6 1.8
## Sophomore 77 6.2 2.2
## Senior 59 6.1 2.1

The test:
oneway(Score, Year)
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## p value of test of equal means: p = 0.4855
## Smallest sd: 1.8 Largest sd : 2.2

1) Parameters of interest: means of scores by year

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, or sample sizes are large
enough

4) α = 0.05

5) Null hypothesis H0: µ1 = µ2 = µ3 = µ4 (groups have the same mean)

6) Alternative hypothesis Ha: µi 6= µj (some groups have different means)

7) p value = 0.4855

8) 0.4855 > 0.05, there is no evidence that the group means are not the same.
Assumptions:
1) Normal residuals. looks ok.

2) equal variance: 3*1.8 = 5.4 > 2.2

Problem 3 Is there a relationship between Score and GPA? Score and GPA are both
quantitative variables, so this is a problem for the Pearson’s Correlation Coefficient .
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The marginal plot shows some increase in Score as the GPA increases.
rm(Score)
rm(GPA)

mplot(Score, GPA)
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There are a few slight outlier, no problem, though.
The test:
pearson.cor(Score, GPA, rho.null = 0)
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## p value of test H0: rho=0 vs. Ha: rho <> 0: 0.000

1) Parameter of interest: Pearson’s correlation coefficient ρ

2) Method of analysis: test based on normal theory

3) Assumptions of Method: relationship is linear, there are no outliers

4) α = 0.05

5) H0: ρ = 0 (no relationship between Score and GPA)

6) Ha: ρ 6= 0 (some relationship between Score and GPA)

7) p = 0.000

8) 0 < 0.05, so we reject H0, there is a relationship between the Score and the GPA,
apparently students with a higher GPA are happier.

Problem 4 Is there a relationship between Score and Distance? Score and Distance are both
quantitative variables, so this is a problem for the Pearson’s Correlation Coefficient.
The marginal plot shows some slight outliers. The log transform fixes it.
mplot(Score, Distance)
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mplot(Score, log(Distance+1))
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some students apparently live very close to the school, Distance=0. For this reason we use
log(Distance+1).
The test:
pearson.cor(Score, log(Distance+1), rho.null = 0)
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## p value of test H0: rho=0 vs. Ha: rho <> 0: 0.7305

1) Parameter of interest: Pearson’s correlation coefficient ρ

2) Method of analysis: test based on normal theory
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3) Assumptions of Method: relationship is linear, there are no outliers

4) α = 0.05

5) H0: ρ = 0 (no relationship between Score and Distance)

6) Ha: ρ 6= 0 (some relationship between Score and Distance)
7) p = 0.7305

8) p > α, so we fail to reject H0, there is no evidence of a relationship between the Score
and the Distance.

Problem 5 Is there a relationship between Score and Age? The marginal plot shows one
severe outlier:
length(Score)

## [1] 249
length(Age)

## [1] 249
mplot(Score, Age)
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Unfortunately the log transform does not help, so the only way to preceed is to eliminate the
outlier.
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which(Age==max(Age))

## [1] 220

The test:
pearson.cor(Age[-220], Score[-220], rho.null = 0)
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## p value of test H0: rho=0 vs. Ha: rho <> 0: 0.3052

1) Parameter of interest: Pearson’s correlation coefficient ρ

2) Method of analysis: test based on normal theory

3) Assumptions of Method: relationship is linear, there are no outliers

4) α = 0.05

5) H0: ρ = 0 (no relationship between Score and Distance)

6) Ha: ρ 6= 0 (some relationship between Score and Distance)

7) p = 0.3052

8) p > α, so we fail to reject H0, there is no evidence of a relationship between the Score
and the Age.

Problem 6 Is there a relationship between Gender and Major? Gender and Major are both
categorical variables, so this is a problem for the Chisquare test of Independence.
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table(Gender, Major)

## Major
## Gender Biology English Physics Psychology Spanish
## Female 19 23 23 24 22
## Male 24 24 31 29 30
chi.ind.test(table(Gender, Major))

## p value of test p=0.9664

1) Parameters of interest: measure of association

2) Method of analysis: chi-square test of independence

3) Assumptions of Method: all expected counts greater than 5

4) α = 0.05
5) H0: Classifications are independent = Gender and Major are independent

6) Ha: Classifications are dependent = Gender and Major are not independent

7) p = 0.9664

8) 0.9664 > 0.05, there is no evidence of a relationship between gender and major.

Problem 7 Is there a relationship between Gender and Age? Age is a quantitative variable
and Gender is a categorical variable with two values, so this is a problem for the ANOVA.
The boxplot shows a few serious outliers. One could try transformations, but because the
outliers are from especially small and large observations these won’t work.
bplot(Age, Gender)
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Solution 1: non-parametric method
The table of summary statistics is
stat.table(Age, Gender, Mean=FALSE )

## Sample Size Median IQR
## Female 111 20 1
## Male 138 20 2
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Now
kruskalwallis(Age, Gender)

## p value of test of equal means: p = 0.261060279952181

1) Parameters of interest: 2 medians

2) Method of analysis: Kruskal-Wallis

3) Assumptions of Method: none

4) α = 0.05

5) Null hypothesis H0: M1=M2 (group medians are the same)

6) Alternative hypothesis Ha: M1 6=M2 (group medians are not the same)

7) p value = 0.2611

8) 0.2611 > 0.05, so we fail to reject H0, it seems the group medians are the same.
Solution 2: remove outlier
which(Age==max(Age))

stat.table(Age[-220], Gender[-220])

## Sample Size Mean Standard Deviation
## Female 111 19.9 1
## Male 137 20.0 1
oneway(Age[-220], Gender[-220])
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## p value of test of equal means: p = 0.3817
## Smallest sd: 1 Largest sd : 1
## A 95% confidence interval for the difference in group means is (-0.4, 0.1)

1) Parameters of interest: means of age by gender

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, or sample sizes are large
enough

4) α = 0.05

5) Null hypothesis H0: µ1 = µ2 (groups have the same mean)

6) Alternative hypothesis Ha: µ1 6= µ2 (some groups have different means)

7) p value = 0.3817
8) 0.3817 > 0.05, there is no evidence that the group means are not the same. Assumptions:
9) Normal residuals ok Smallest sd: 1 Largest sd : 1 , 3*1>1, ok

22.1 Categorical Predictor - Categorical Response

In the case of two categorical variables knowing that they are somehow related is usually
enough, beyond that one simply considers the percentages.
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Figure 25:

22.2 Categorical Predictor - Quantitative Response

The case of a categorical predictor with 2 groups and a quantitative response is done - the
two groups are different. The only other thing one might do is find a confidence interval for
the differences in means, see 2-sample t method.

22.2.1 Case Study: Mothers Cocain Use and Babies Health

we have previously run the ANOVA and found that there are differences between the lengths
of the babies of different groups. We can go a step further, though and ask the following
questions:
• is there a difference between the Drug Free and the First Trimester group?
• is there a difference between the First Trimester and the Throughout group?

in other words, we can try to study the pairwise differences, which is an example of a
multiple comparison study.
As we said before we could do this by running the 2 sample t test on each pair, but then we
would be doing simultaneous inference. What we need is a method that does this but in
such a way that the overall type I error probability is the desired α, no matter how many
tests are done. R has a number of such methods implemented, we will use the one due to
John Tukey, one of the founders of modern Statistics
attach(mothers)
tukey(Length, Status)

## Groups that are statistically significantly different:

## Groups p.value
## 1 Drug Free-Throughout 0

What does this tell us? To find out we first need to see the groups in the order of their means.
We already know this here but in general a nice command to get that is
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Figure 26:

stat.table(Length, Status, Sort=TRUE)

## Sample Size Mean Standard Deviation
## Throughout 36 48.0 3.6
## First Trimester 19 49.3 2.5
## Drug Free 39 51.1 2.9

Now we are told that the only stat. significant difference is between Drug free and Throughout,
so of course
• the difference between Drug Free and First Trimester is NOT stat. significant
• the difference between First Trimester and Throughout is NOT stat. significant

BUT: most importantly we need to remember the difference between failing to reject H0 and
accept H0, so this does NOT say that there is no stat. significant difference between (say)
Drug Free and First Trimester (why not?)
so now we have the following interpretation:
There is a stat. signif. difference between the mean lengths of the babies of Drug Free
mothers and those who took cocain throughout the pregnancy. Other differences are not stat.
signif., at least not at these sample sizes
Note It is theoretically possible that the oneway command find a statistically singificant
difference, but Tukey does not, and vice versa! What you want to do is this: run the oneway
command
• If it DOES NOT reject the null of some differences, DO NOTHING
• If is DOES reject the null, run tukey.

22.2.2 Case study: Cuckoo Eggs

That cuckoo eggs were peculiar to the locality where found was already known in 1892. A
study by E.B. Chance in 1940 called The Truth About the Cuckoo demonstrated that cuckoos
return year after year to the same territory and lay their eggs in the nests of a particular host
species. Further, cuckoos appear to mate only within their territory. Therefore, geographical
sub-species are developed, each with a dominant foster-parent species, and natural selection
has ensured the survival of cuckoos most fitted to lay eggs that would be adopted by a
particular foster-parent species. The data has the lengths of cuckoo eggs found in the nests
of six other bird species (drawn from the work of O.M. Latter in 1902).
Basic question: is there a difference between the lengths of the cuckoo eggs of different Foster
species?
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attach(cuckoo)
head(cuckoo)

## Bird Length
## 1 Meadow Pipit 19.65
## 2 Meadow Pipit 20.05
## 3 Meadow Pipit 20.65
## 4 Meadow Pipit 20.85
## 5 Meadow Pipit 21.65
## 6 Meadow Pipit 21.65
table(Bird)

## Bird
## Hedge Sparrow Meadow Pipit Pied Wagtail Robin Tree Pipit
## 14 45 15 16 15
## Wren
## 15
bplot(Length, Bird, new_order = "Size")
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where we ordered the boxes by size because the categorical variable here has no obvious
ordering.
we have some outliers in the Meadow Pipit species, but not to bad and we will ignore that.
Let’s look at the table of summary statistics.
stat.table(Length, Bird, Sort=TRUE)

## Sample Size Mean Standard Deviation
## Wren 15 21.1 0.7
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## Meadow Pipit 45 22.3 0.9
## Robin 16 22.6 0.7
## Pied Wagtail 15 22.9 1.1
## Tree Pipit 15 23.1 0.9
## Hedge Sparrow 14 23.1 1.1

Both the graph and the table make it clear that there are some differences in the length, so
the following is not really necessary:
oneway(Length, Bird)
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## p value of test of equal means: p = 0.000
## Smallest sd: 0.7 Largest sd : 1.1

1) Parameters of interest: group means

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) α = 0.05

5) Null hypothesis H0: µ1 = ... = µ6 (groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (at least two groups have different means)

7) p value = 0.000

8) 0.000 < 0.05, there is some evidence that the group means are not the same, the length
are different for different foster species.
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Assumptions of the method:
a) residuals have a normal distribution, plot looks ok
b) groups have equal variance

smallest stdev=0.7, largest stdev=1.1, 3*0.7=2.1>1.1, ok
So, how exactly do they differ?
tukey(Length, Bird)

## Groups that are statistically significantly different:

## Groups p.value
## 1 Meadow Pipit-Wren 0.0000
## 2 Robin-Wren 0.0000
## 3 Pied Wagtail-Wren 0.0000
## 4 Tree Pipit-Wren 0.0000
## 5 Hedge Sparrow-Wren 0.0000
## 6 Tree Pipit-Meadow Pipit 0.0475
## 7 Hedge Sparrow-Meadow Pipit 0.0429

so the eggs of Wrens are the smallest, and they are stat. significantly smaller than the eggs
of all other birds.
Meadow Pipits are next, and they are stat. significantly smaller than the eggs of Tree Pipits
and Hedge Sparrows.
no other differences are stat. significant!

On occasion one might want to see the p values of all the pairwise comparisons, for example
if one wants to use an α different from 0.05:
tukey(Length, Bird, show.all = TRUE)

## Groups p.value
## 1 Meadow Pipit-Wren 0.0000
## 2 Robin-Wren 0.0000
## 3 Pied Wagtail-Wren 0.0000
## 4 Tree Pipit-Wren 0.0000
## 5 Hedge Sparrow-Wren 0.0000
## 6 Robin-Meadow Pipit 0.9022
## 7 Pied Wagtail-Meadow Pipit 0.2325
## 8 Tree Pipit-Meadow Pipit 0.0475
## 9 Hedge Sparrow-Meadow Pipit 0.0429
## 10 Pied Wagtail-Robin 0.9155
## 11 Tree Pipit-Robin 0.6160
## 12 Hedge Sparrow-Robin 0.5726
## 13 Tree Pipit-Pied Wagtail 0.9932
## 14 Hedge Sparrow-Pied Wagtail 0.9872
## 15 Hedge Sparrow-Tree Pipit 1.0000
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Notice that the pairs in tukey are also in the order from smallest to largest: first comes
Meadow Pipit - Wren, the two birds with the smallest mean lengths.

23 Assumptions of Least Squares Regression

This page explains the assumptions behind the method of least squares regression and how
to check them.
Recall that we are fitting a model of the form

y = β0 + β1x

there are three assumptions:
1) The model is good (that is, the relationship is linear and not, say, quadratic, exponential

or something else)
2) The residuals have a normal distribution
3) The residuals have equal variance (are homoscadastic)

The second and third assumption we are already familiar with from ANOVA and correlation.
We can check these assumptions using two graphs:
• Residual vs. Fits plot: this is just what it says, a scatterplot of the residuals (on y-axis)

vs. the fitted values.
• Normal plot of residuals

Both of these graphs are done by R automatically.
1) Good Model
For this assumption draw the Residuals vs. Fits plot and check for any pattern
Example:
Linear model is good:
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Linear model is bad:
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The U shaped pattern in the residual vs. fits plot is a very common one if the linear model is
bad.
2) Residuals have a Normal Distribution
For this assumption draw the normal probability plot and see whether the dots form a
straight line, just as we have done it many times by now.
3) Residuals have Equal Variance
Previously we could check the stdev within the groups and see whether they differed by
more than a factor of 3. Now, though we don’t have groups. Instead we will again draw the
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Residuals vs. Fits plot and check whether the variance (or spread) of the dots changes as you
go along the x axis.

23.0.0.1 Example:

Equal Variance ok:
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Equal Variance not ok:
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This can be a tricky one to decide, especially if there are few observations.
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23.0.1 Case Study: Wine Consumption and Heart Disease

Let’s check the assumptions for the wine consumption data:
attach(wine)
slr(Heart.Disease.Deaths, Wine.Consumption)
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## The least squares regression equation is:
## Heart.Disease.Deaths = 260.563 - 22.969 Wine.Consumption
## R^2 = 71.03%

the normal plot is fine, and the residual vs. fits plot is fine as far the linear model assumption
goes. There is, though, an appearance of unequal variance. This judgement is made more
difficult here, though, because there is very little data in the left half of the graph, and
naturaly a few dots won’t have a large spread. It will take time for you to be able to judge
these graphs properly. In fact this one is ok. Not great, but ok.
Note a final decision on whether the assumptions are justified is ALWAYS made based on
the Residual vs. Fits Plot and the Normal plot of Residuals.
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24 Hypothesis Tests in SLR

24.0.1 Case Study: Hubble’s Constant

In 1929 Edwin Hubble published a paper showing a relationship between the distance
and radial velocity away from Earth of “extra-galactic nebulae” (galaxies). His findings
revolutionized astronomy. The “Hubble constant,” the slope of the regression of velocity (Y)
on distance (X), is still a subject of research and debate.
The data here are those Hubble published in his original paper. It also has data from much
more recent studies.
head(hubble)

## Velocity Distance Galaxy.NGC. velocity.km.s Distance.Mpc.
## 1 170 0.032 925 553 9.70
## 2 290 0.034 1326A 1831 15.81
## 3 -130 0.214 1365 1636 18.48
## 4 -70 0.263 1425 1510 20.83
## 5 -185 0.275 2090 921 11.57
## 6 -220 0.275 2541 548 12.06

The data set has the variables Velocity and Distance. Here is some info on these:

24.0.2 Velocity

Velocity (Speed with a sign) is measured in km/sec. How can one measure the speed with
which a galaxy moves relative to earth? This is done using the Doppler Effect:
For more on the Doppler Effect go to Doppler Effect
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Figure 27:

24.0.3 Distance

The unit of distance in our dataset is one Megaparsec, or 1 million parsecs. A parsec is
equal to 3.262 light years, or 19.17 billion miles. Here are some astronomical distances for
illustration:
• Earth to Moon: 240000 miles (or 1.3 light seconds)

• Earth to Sun: 92 million miles (or 8.2 light minutes)

• Earth to nearest Solar System (Alpha Centauri): 8.37 billion miles (or 4.365 light years
or 1.338 parsec)

• Earth to nearest galaxy (Andromeda): 48000 million million miles (or 2.5 million light
years or 740 000 parsec or 0.7 megaparsec)

How does one measure the distance of a galaxy (or a star)? It is done using a method called
parallax:
For more on parallax go here
attach(hubble)
splot(Velocity, Distance)
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Figure 28:
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The scatterplot of Velocity by Distance shows a strong relationship.
slr(Velocity, Distance, show.tests = TRUE)
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## The least squares regression equation is:
## Velocity = -40.784 + 454.158 Distance
## Constant: p = 0.6298
## Distance : p = 0
## R^2 = 62.35%

The two graphs show us that the assumptions of LSR are justified. Let’s discuss the next
part of the output:
• Constant: p = 0.6298

• Distance: p = 0
Whenever there is a p value, there is a hypothesis test. Here there are two. The first one is
for the

24.1 Constant:

H0 : β0 = 0 (intercept is zero)
Ha : β0 6= 0 (intercept is not zero)

If we fail to reject H0, we conclude that the constant is not statistically significantly different
from 0 (at the sample size of the data set!).
If we reject H0, we conclude that the constant is statistically significantly different from 0.
Consequences:
We are fitting the model

y = β0 + β1x
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If H0 is true then β0 = 0, so the model becomes

y = β1x

this is called a no-intercept model. To get this model we have to rerun the regression:
slr(Velocity, Distance, no.intercept=TRUE)

## The least squares regression equation is:
## Velocity = 423.937 Distance
## R^2 = 62.35%

The slope of the line 423.9 is called Hubble’s constant and is one of the fundamental constants
in the universe!
Note the slope of the no intercept model (423.9) is NOT the same as the slope of the regular
model (454.2)
Note The decision whether an intercept should be fit or not is best made based on the
background of the data and whether if x=0 then y=0 makes sense.
One consequence of this model is that if x=0 then

y = β1x = β10 = 0
so the point (0,0) is always on this line.
Example Say we have data with x = Number of Hurricanes in a year and y = $ Amount of
Damage done by the Hurricanes. Now if x=0 (there were no hurricanes) obviously y=0 (no
damage), so a no-intercept model is appropriate (even if the corresponding hypothesis test
says otherwise!)

24.2 Predictor:

H0 : β1 = 0 (slope is zero)
Ha : β1 6= 0 (slope is not zero)

Consequences: our model is
y = β0 + β1x

If H0 is true then β1 = 0, so the model becomes

y = β0 + 0x = β0

But there is no more predictor x here! So if we fail to reject H0 it means that the predictor
has no statistically significant relationship with the response (at least not for the sample size
of the dataset).
If we do reject H0 we conclude that there is a statistically significant relationship between
predictor and the response y.
Note in a simple regression model such as we have here this test is the same as the test for
Pearson’s correlation coefficient.
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24.3 Hubble data:

Constant:
1) Parameter: Intercept in SLR

2) Method: SLR

3) Assumptions: same as SLR

4) α = 0.05

5) H0 : β0 = 0 (intercept is zero)

6) Ha : β0 6= 0 (intercept is not zero)

7) p = 0.6298

8) p > α, so we fail to reject the null hypothesis, the constant is stat. consistent with 0 (at
the sample size of the dataset)

Distance:
1) Parameter: Slope in SLR

2) Method: SLR

3) Assumptions: same as SLR

4) α = 0.05

5) H0 : β1 = 0 (slope is 0, no relationship between distance and velocity)

6) Ha : β1 6= 0 (slope is not 0, some relationship between distance and velocity)

7) p = 0.000

8) p < α, so we reject the null hypothesis, there is a statistically significant relationship
between velocity and distance.

24.4 What are these tests good for?

Notice that when I ran the least squares regression command
slr(Velocity, Distance, show.tests = TRUE)

I added the argument show.tests = TRUE. Without it these tests would not be done. That
is because in many ways they are useless!
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• whether or not a no-intercept model is what we want should be decided by our under-
standing of the experiment, not the outcome of the the test for the constant

• the test for the slope is the same as Pearson’s correlation test, which we likely already
did!

I have discussed them here because you will see them in real live and so you should know
what they are.

24.5 What it all means

What are the consequences of all this for our understanding of the universe?

25 Prediction

25.1 Categorical - Categorical

25.1.1 Case Study: Treatment for Hair Loss

Say we want to know the following: what is the percentage of men who using Rogain will
grow no hair? The answer is simple: 301 of 714 for 301/714*100% = 42.2% of the men in
the treatment group had no hair growth. As always though in Statistics we also want an
estimate of the error in this prediction. We learned in 3101 how to do this:
one.sample.prop(301, 714)

## A 95% confidence interval for the population proportion is (0.385, 0.459)

Notice, though, that this calculation uses only the numbers 301 and 714, not any of the other
results of the experiment. Moreover, if we did the same calculation for all the combinations
of groups we would calculate 10 confidence intervals, and again we have a problem of
simultaneous inference.
It turns out that this is a type of problem too difficult for this class.

25.2 Categorical - Quantitative

25.2.1 Case Study - Babies and Cocain Use by the Mother

Find 95% confidence intervals for the lengths of the babies in the Drug Free group:
attach(mothers)
one.sample.t(Length[Status=="Drug Free"], ndigit = 2)

## A 95% confidence interval for the population mean is (50.16, 52.04)

The difficulty again is if we do this for all three groups:
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• Drug Free (50.16cm, 52.04cm)

• First Trimester (48.09cm, 50.51cm)

• Throughout (46.78cm, 49.22cm)
because these are individual ci’s, not a collection of ci’s with the correct confidence level. As
above we have the problem of
simultaneous inference.

25.3 Quantitative -Quantitative

25.3.1 Case Study: Quality of Fish

A study was conducted to examine the quality of fish after several days in ice storage. Ten
raw fish of the same kind and quality were caught and prepared for storage. Two of the
fish were placed in ice storage immediately after being caught, two were placed there after 3
hours, and two each after 6, 9 and 12 hours. Then all the fish were left in storage for 7 days.
Finally they were examined and rated according to their “freshness”.
Use this data set to estimate the quality of a fish that was put into ice 4 hours after being
caught.
attach(fish)
fish

## Time Quality
## 1 0 8.5
## 2 0 8.4
## 3 3 7.9
## 4 3 8.1
## 5 6 7.8
## 6 6 7.6
## 7 9 7.3
## 8 9 7.0
## 9 12 6.8
## 10 12 6.7
splot(Quality, Time)
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## The least squares regression equation is:
## Quality = 8.46 - 0.142 Time
## R^2 = 96.88%

assumptions look ok.
so we have

Quality = 8.46− 0.142 ∗ 4 = 7.9
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We can also let R do the calculation for us:
slr.predict(Quality, Time, newx=4)

## Time Fit
## 4 7.89

25.3.2 Confidence vs. Prediction Intervals

Again we want an idea of the “error” in our estimate. Previously we used confidence intervals
to do this. Here we will again use confidence intervals, but in the context of regression there
are two types of intervals:
Confidence Interval - used to predict the mean response of many observations with the
desired x value.
Prediction Interval - used to predict the individual response of one observation with the
desired x value.
Warning The terminology is a little confusing here, with the same term meaning different
things: Both confidence intervals and prediction intervals as found by the regression command
are confidence intervals in the sense discussed before, and both are used for prediction!
They differ in what they are trying to predict, on the one hand an individual response
(PI), on the other hand the mean of many responses (CI).
Example Let’s consider the Quality of Fish data. Use this data set to find a 95% interval
estimate for the quality of a fish that was put into storage after 4 hours.
We are talking about one fish, so we want a prediction interval:
slr.predict(Quality, Time, newx=4, interval="PI")

## Time Fit Lower Upper
## 4 7.89 7.6 8.19

so a 95% prediction interval for the rating of fish after 4 hours is (7.60, 8.19)
Example Again consider the Quality of Fish data. Use this data set to find a 90% interval
estimate for the mean quality of fish that were put into storage after 4 hours.
Now we are interested in the mean rating of many fish, so we want a confidence interval.
Also we want a 90% interval instead of 95%:
slr.predict(Quality, Time, newx=4,

interval="CI", conf.level = 90)

## Time Fit Lower Upper
## 4 7.89 7.81 7.97

so a 90% confidence interval for the mean rating of fish after 4 hours is (7.81, 7.97).
The two 90% intervals are shown in the next graph, the prediction interval in green and the
confidence interval in red:

202



7.0

7.5

8.0

8.5

0.0 2.5 5.0 7.5 10.0 12.5

Time

Q
ua

lit
y

Notice that the prediction intervals are always wider than the confidence intervals. They are
also the ones you want most of the time. So if you are not sure which you should use, use
the prediction interval.
The slr.predict command can also be used to find a number of fits and intervals simultaneously:
slr.predict(Quality, Time, newx=1:10,

interval="PI", conf.level = 90)

## Time Fit Lower Upper
## 1 8.32 8.07 8.57
## 2 8.18 7.93 8.42
## 3 8.04 7.79 8.28
## 4 7.89 7.66 8.13
## 5 7.75 7.52 7.99
## 6 7.61 7.37 7.85
## 7 7.47 7.23 7.70
## 8 7.33 7.09 7.56
## 9 7.19 6.94 7.43
## 10 7.04 6.80 7.29

If the newx argument is left off the predicition is done for the data itself:
slr.predict(Quality, Time,

interval="PI", conf.level = 90)

## Time Fit Lower Upper
## 0 8.46 8.20 8.72
## 0 8.46 8.20 8.72
## 3 8.04 7.79 8.28
## 3 8.04 7.79 8.28
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## 6 7.61 7.37 7.85
## 6 7.61 7.37 7.85
## 9 7.19 6.94 7.43
## 9 7.19 6.94 7.43
## 12 6.76 6.50 7.02
## 12 6.76 6.50 7.02

25.4 Prediction vs. Extrapolation

There is a fundamental difference between predicting the response for an x value within the
range of observed x values (=Prediction) and for an x value outside the observed x values
(=Extrapolation). The problem here is that the model used for prediction is only known to
be good for the range of x values that were used to find it. Whether or not it is the same
outside these values is generally impossible to tell.
Note Another word for prediction is interpolation
Example: Quality of Fish data

Prediction Extrapolation
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26 Non-Normal Residuals, No Equal Variance - Transformations

26.1 Categorical - Quantitative

26.1.1 Case Study: Cancer Survival

As we saw before we need a log transform of Survival to have normal residuals and equal
variance, and then the ANOVA shows a stat. significant difference between the groups. The
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only thing left is to do the multiple comparison. The main point here is that this also has to
be done on the log transformed data:
attach(cancersurvival)
tukey(log(Survival), Cancer)

## Groups that are statistically significantly different:

## Groups p.value
## 1 Breast-Bronchus 0.0083
## 2 Breast-Stomach 0.0158

26.1.2 Case Study: Capacity of Wells

Again, we have previously done everything except the multiple comparison:
attach(rocks)
tukey(log(Capacity), Rocks)

## Groups that are statistically significantly different:

## Groups p.value
## 1 Dolomite-Metamorphic 0.0105
## 2 Dolomite-Siliclastic 0.0275
## 3 Dolomite-Limestone 0.0434

Interpretation: Dolomite has a stat. significant larger capacity then the other rocks. Other
differences are not stat. significant, at least not at these sample sizes.

26.1.3 Case Study: Cultural Differences in Equipment Use

Previously we saw that none of the transformations worked for this dataset, and we ran
the Kruskal-Wallis test to see that there are differences in the MTBF by countries. Can we
do a multiple comparison, as we did above? The answer is yes, but that goes beyond our
discussion in 3102!

26.2 Quantitative - Quantitative

26.2.1 Case Study: Brain and Body Weight of 62 Mammals

We saw previously that we needed log transforms of both Brain and Body.
Then we find
attach(brainsize)
slr(log(brain.wt.g), log(body.wt.kg))
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## The least squares regression equation is:
## log(brain.wt.g) = 2.121 + 0.746 log(body.wt.kg)
## R^2 = 91.93%

we see that now all the assumptions are ok. We find the model

log(brain.wt.g) = 2.121 + 0.746 log(body.wt.kg)
If we had run the regression without the tranformations this is what the normal plot would
have looked like:
slr(brain.wt.g, body.wt.kg)
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## The least squares regression equation is:
## brain.wt.g = 89.912 + 0.967 body.wt.kg
## R^2 = 87.26%

Note transforming the data also has its down-side: it makes understanding the model much
harder:
Model in original units: brain.wt.g = 89.9 + 0.967body.wt.kg
Model in transformed units: log(brain.wt.g) = 2.121 + 0.746 log(body.wt.kg)
the original model tells us that each extra kg of body weight roughly adds one gram of brain
weight but what is the slope of 0.7 in the transformed model telling us?
However, sometimes with a bit of math one can rewrite the model in the original variables.
Our log-log model turns out to be the same as the model

brain.wt.g = 8.339 body.wt.kg0.746

but this is not necessarily easier to understand.

26.3 Equal Variance

Sometimes a transformation of the response variable can help with this problem as well.
Mostly, though, a more complicated method for analysing such a dataset is needed (such as
weighted regression)
detach(cancersurvival)
detach(rocks)
detach(brainsize)
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27 Nonlinear Regression Models

27.0.1 Case Study: Fabric Wear

Results from an experiment designed to determine how much the speed of a washing machine
effects the wear on a new fabric. The machine was run at 5 different speeds (measured in
rpm) and with six pieces of fabric each.
head(fabricwear)

## Speed Wear
## 1 110 24.9
## 2 110 24.8
## 3 110 25.1
## 4 110 26.4
## 5 110 27.0
## 6 110 26.6

The scatterplot of wear by speed shows a strong but non-linear relationship:
attach(fabricwear)
splot(Wear, Speed, add.line=1)
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How strong is a difficult question, because Pearson’s correlation coefficient won’t work here.
If we tried slr we would see in the residual vs fits plot that there is a problem with the
assumption of a linear model:
slr(Wear, Speed)
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## The least squares regression equation is:
## Wear = -6.947 + 0.274 Speed
## R^2 = 88.58%

So the question is: how do fit models other than straight lines?
There are two basic things we can try. The first is something we have already done, namely
the log transformation
splot(Wear, log(Speed), add.line=1)

30

40

50

4.7 4.8 4.9 5.0 5.1 5.2

log(Speed)

W
ea

r

209



splot(log(Wear), log(Speed), add.line=1)
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splot(log(Wear), Speed, add.line=1)
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unfortunately non of these looks very good
Some of these have names:
• log(y) vs. x is called an exponential model
• log(y) vs. log(x) is called a power model
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The other solution to our problem is to fit a Polynomial Model:
Linear y = β0 + β1x

Quadratic y = β0 + β1x+ β2x
2

Cubic y = β0 + β1x+ β2x
2 + β3x

3

and so on
How do we fit such a model? We can simply use the same routine with the extra argument
polydeg=. . . . For example for the quadratic model we do
slr(Wear, Speed, polydeg=2)
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## The least squares regression equation is:
## Wear = 71.199 - 0.807 Speed +0.004Speed^2
## R^2 = 97.17%

What does such a curve look like? To draw the fitted line plot, that is the scatterplot with
the fitted curve, just use
flplot(Wear, Speed, polydeg=2)
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This routine also does the log transform models:
flplot(Wear, Speed, logy=TRUE)
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Similarly use flplot(Wear, Speed, logx=TRUE) or flplot(Wear, Speed, logx=TRUE,
logy=TRUE) for the other log transforms
Note There are two big differences in the way transformations and polynomial models work:
• if we do a transformation we replace an old variable with a new one, if we do a

polynomial model we add a new predictor to the model.
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• we might transform the response, but a polynomial model is always a polynomial in the
predictor, never the response.

Mathematical Features of these Models
What “shapes” can we fit with these models?
• Transformations might work if the relationship between x and y is monotone, that is

in the scatterplot the dots either go up or down but never turn around.
• Polynomial models usually do turn around, quadratic models once, cubic models twice

and so on. Sometimes this is not apparent because we only see the graph before the
turn-around happens.

27.0.2 Prediction

Again we can use the slr.predict command to do prediction, but there are some things we
need to be careful with:
Transformations
if we use a log transformation on the predictor we have to use the log transformation also on
the newx:
slr.predict(Wear, log(Speed), newx=log(150))

## log(Speed) Fit
## 5.010635 34.82

if we use a log transformation on the response we are getting an estimate of the log of the
response. To get back to the original we can do this:
slr(log(Wear), Speed)
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## The least squares regression equation is:
## log(Wear) = 2.335 + 0.008 Speed
## R^2 = 92.64%

so we have the equation

log(Wear) = 2.335 + 0.008Speed

and now we can get an estimate with
exp(2.335 + 0.008*150)

## [1] 34.29501

All of this works ONLY for point estimation, interval estimation is much harder and needs to
be done by an expert!
In contrast, prediction using polynomials works perfectly fine as is:
slr.predict(Wear, Speed, newx=150, polydeg=2,

interval="PI", conf.level= 90)

## Speed Fit Lower Upper
## 150 31.22 28.64 33.81

If you are not sure that you got the right answer, here is a quick sanity check: draw the
scatterplot and do a visual guess of y.
Example: say we want to use the power model and predict the Wear for Speed=150:
slr.predict(log(Wear), log(Speed), newx=150)

## log(Speed) Fit
## 150 165.13

Notice that I should have written newx=log(150).
Now if I draw the fitted line plot:
splot(Wear, Speed)
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it is clear that if x=150 y should be be around 32 or so, not 165!
So I better try again:
slr.predict(log(Wear), log(Speed), newx=log(150))

## log(Speed) Fit
## 5.010635 3.52

and that’s about right because
log(32)

## [1] 3.465736

28 Exercise Problems 3

28.0.1 Case Study: Survey of Students

This is the same data set we considered in Exercise Problems 1. The data is in studentsurvey
Problem 1 What can you say about the relationship between Score and Gender?
Problem 2 What can you say about the relationship between Score and GPA? Find a 95%
interval estimate for a student with a GPA of 2.5. Is this an interpolation or an extrapolation?
Problem 3 What can you say about the relationship between Score and Distance? Find a
99% interval estimate for a student who lives 1.5 miles from the school. Is this an interpolation
or an extrapolation?
Problem 4 What can you say about the relationship between Score and Age? Find a 90%
interval estimate for the mean score of 21 year old students. Is this an interpolation or an
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extrapolation?
attach(studentsurvey)

Problem 1 What can you say about the relationship between Score and Gender?
In problem 1 of the Exercise Problems 2 we ran the ANOVA and found a statistically
significant difference between the scores of males and females. Because there are just two
groups there is no reason to run tukey, but rerunning the same command gives us a 95%
confidence interval for the difference in scores:
oneway(Score, Gender)

−4

0

4

−3 −2 −1 0 1 2 3

theoretical

sa
m

pl
e

## p value of test of equal means: p = 0.0033
## Smallest sd: 1.7 Largest sd : 2.2
## A 95% confidence interval for the difference in group means is (0.3, 1.2)

Problem2 What can you say about the relationship between Score and GPA?
In problem 3 of the Exercise Problems 2 we found a statistically significant correlation
between Score and GPA. Let’s find a good model.
slr(Score, GPA)
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## The least squares regression equation is:
## Score = 3.12 + 1.33 GPA
## R^2 = 11%

the residual vs fits plt and the normal plot looks good, so no problem with the assumptions.
We find the model

Score = 3.12 + 1.33 GPA

Find a 95% interval estimate for a student with a GPA of 2.5. Is this an interpolation or an
extrapolation?
slr.predict(Score, GPA, newx=2.5, interval="PI")

## GPA Fit Lower Upper
## 2.5 6.45 2.65 10.24

so a 95% prediction interval for a student with a GPA of 2.5 is (2.65, 10.24)
This is an interpolation because 2.5 is in the range of GPAs in the data set
Problem 3 What can you say about the relationship between Score and Distance?
In problem 5 of the Exercise Problems 2 we used a log transform on Distance. Doing so again
yields
slr(Score, log(Distance + 1))
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## The least squares regression equation is:
## Score = 6.2 + 0.042 log(Distance + 1)
## R^2 = 0.05%

the residual vs fits plt and the normal plot looks good, so no problem with the assumptions.
We find the model
Score = 6.2 + 0.042 log(Distance+1)
Find a 99% interval estimate for a student who lives 1.5 miles from the school. Is this an
interpolation or an extrapolation?
slr.predict(Score, log(Distance+1),

newx=log(1.5+1), interval="PI", conf.level = 99)

## log(Distance + 1) Fit Lower Upper
## 0.9162907 6.24 0.94 11.54

so a 95% prediction interval for a student who lives 1.5 miles from the school is (0.94, 11.54)
Note newx=log(1.5+1) because we have the predictor log(Distance+1).
This is an interpolation because 1.5 is in the range of Distances in the data set.

Problem 4 What can you say about the relationship between Score and Age?
Before we saw that observation #220 is an outlier and removed it. We do the same now.
Then
slr(Age[-220], Score[-220])
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## The least squares regression equation is:
## Age[-220] = 20.132 - 0.033 Score[-220]
## R^2 = 0.43%

Find a 90% interval estimate for the mean score of 21 year old students. Is this an interpolation
or an extrapolation?
slr.predict(Score[-220], Age[-220],

newx=21, interval="CI", conf.level = 90)

## Age[-220] Fit Lower Upper
## 21 6.13 5.82 6.44

so a 90% confidence interval for the mean score of 21 year old students is (5.82, 6.44)
This is an interpolation because 21 is in the range of Ages in the data set.

29 All Categorical - Simpson’s Paradox

(or better Yule-Simpson’s Paradox)

29.0.1 Case Study: Sex Discrimination in Graduate School Admissions

The famous Berkeley data on sex discrimination. In fall quarter, 1973, there were 8,442 men
who applied for admission to graduate school, and 4,321 women.
Source: Freeman, D., Pisani, R., Purves, R. and Adhikiri, A. (1991) Statistics (2nd edition).
WW Norton.
First we will look at the overall admittance numbers:
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attach(berkeleyadmissions)
berkeleyadmissions[1:2, 1:3]

## Overall Sex Admitted
## 1 Men: 8442 3738
## 2 Women: 4321 1494

Let’s find the percentages:
round(c(3738/8442, 1494/4321)*100, 1)

## [1] 44.3 34.6

which shows a sizable difference in admission rates. We can also do the test:
chi.ind.test(berkeleyadmissions[1:2, 2:3])

## p value of test p=0.000

1) Parameters of interest: measure of association
2) Method of analysis: chi-square test of independence
3) Assumptions of Method: all expected counts greater than 5
4) Type I error probability α=0.05
5) H0: Classifications are independent = there is no difference in the admissions rates of

men and women.
6) Ha: Classifications are dependent = there is some difference in the admissions rates of

men and women.
7) p=0.000
8) 0.000<0.05, we reject the null hypothesis, there is some difference in the admissions

rates of men and women.
Now let’s consider the data with the majors
berM <- berkeleyadmissions[ ,5:6]
berM

## Men.Applied Men.Admitted
## 1 825 512
## 2 560 353
## 3 325 120
## 4 417 138
## 5 191 53
## 6 373 22
round(berM[ ,2]/berM[ ,1]*100, 2)

## [1] 62.06 63.04 36.92 33.09 27.75 5.90
berF <- berkeleyadmissions[ ,7:8]
berF

## Women.Applied Women.Admitted
## 1 108 89
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## 2 25 17
## 3 593 202
## 4 375 131
## 5 393 94
## 6 341 24
round(berF[,2]/berF[,1]*100, 2)

## [1] 82.41 68.00 34.06 34.93 23.92 7.04

and suddenly any hint of sex discrimination is gone.
A formal hypothesis test for this is possible but outside the scope of this course.
So, we have a paradox:
• we found strong evidence (p value=0.00) of a relationship between the gender of an

applicant and whether or not they were admitted to the School.
• when we broke down the data further by the major of the applicant, this relationship

went away.
How is this possible?
Actually, we already know the answer: this is again an issue caused by confusing Cause-Effect
with Latent Variable.
There is clearly a relationship between acceptance and gender. But saying it is due to sex
discrimination is saying we have a cause - effect relationship. Instead we now know it is
because of the latent variable Major.
Can we understand this in the Berkeley Admissions case?
Majors A and B are very popular with the men - 1385 men applied vs. 133 women. Majors
A and B are also easy to get in - about 2 out of 3 of the applicants (men or women) get
accepted. So although men and women have the same acceptance rate, 10 times as many
men are accepted because 10 times as many applied.
Majors C-F are more popular with the women - 1346 men applied vs. 1702 women. But
Majors C-F are hard to get in - about 1 in 4 of the applicants (men or women) get accepted.
So these majors don’t add much to the total student body.
If in an observational study (as opposed to a clinical trial with random assignments to
“treatment” and “control”) we find an relationship (association) between two variables it is
usually very hard (impossible?) to decide whether it is due to a cause-effect relationship
or whether there is a latent variable responsible for the relationship. In the Berkeley case
it turned out that Major was a latent variable. A list of other potential latent variables
includes:
1. Prior educational achievements

2. Age

3. Financial situation of parents
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and so on.
Note that we could determine here that Majors is a latent variable explaining the relationship
between Gender and Acceptance because we had the data to do so! So generally in a study
you want to “measure” as many variables as possible because you won’t know ahead of time
which of them might turn out to be important.

30 Two Categorical Predictors - One Quantitative Response

30.0.1 Case Study: Testing Hearing Aids

Reference: Loven, Faith. (1981). A Study of the Interlist Equivalency of the CID W-22 Word
List Presented in Quiet and in Noise. Unpublished MS Thesis, University of Iowa.
Description: Percent of a Standard 50-word list heard correctly in the presence of background
noise. 24 subjects with normal hearing listened to standard audiology tapes of English words
at low volume with a noisy background. They repeated the words and were scored correct or
incorrect in their perception of the words. The order of list presentation was randomized.
The word lists are standard audiology tools for assessing hearing. They are calibrated to be
equally difficult to perceive. However, the original calibration was performed with normal-
hearing subjects and no noise background. The experimenter wished to determine whether
the lists were still equally difficult to understand in the presence of a noisy background.
head(hearingaid)

## Subject List Score
## 1 1 1 28
## 2 2 1 24
## 3 3 1 32
## 4 4 1 30
## 5 5 1 34
## 6 6 1 30

Notice that the values in both Subject and List are NOT numbers but labels, so both of
them are categorical!
As long as we have one quantitative response (Score) and all the predictors (factors) are
categorical (Subject, List) this is still an ANOVA problem, now called a twoway ANOVA
More specifically, this is a Randomized Block design with List as the factor and Subject
as a blocking variable.
attach(hearingaid)
bplot(Score, List, new_order = "Size")
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The summary statistics are:
stat.table(Score, List, Sort = TRUE)

## Sample Size Mean Standard Deviation
## 3 24 25.2 8.3
## 4 24 25.6 7.8
## 2 24 29.7 8.1
## 1 24 32.8 7.4
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Because Subject is the blocking variable one would normally not include a table of summary
statistics.
Now for the test, or better tests, because we can in general test for either Subject or List.
The routine we will use is called twoway:
twoway(Score, List, Subject)
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## No repeated measurement! Interaction term can not be included
## Df Sum Sq Mean Sq F value Pr(>F)
## x 3 920 306.82 8.446 7.41e-05
## z 23 3232 140.51 3.868 6.96e-06
## Residuals 69 2507 36.33
## [,1]
## List p = 0
## Subject p = 0

So we have two tests, one for List and one for Subject. However, only the one for List is of
interest:
1) Parameters of interest: List group means

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0: µ1 = .. = µ4 (List groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (at least two List groups have different means)
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7) p value=0.00

8) 0.000<0.05, there is some evidence that the group means are not the same, that List
means are different)

As always we need to check the assumptions. The normal plot of residuals looks fine.
Next the equal variance. In a oneway ANOVA we could just find the group standard deviations
and compare them. Now (and in general if there are more than 1 factor) this is no longer a
good idea mainy because there are to many factor level combinations (4*24 here ) and not
enough observations for each (1 here). Instead we will do the same as in the regression case,
namely check the residual vs. fits plot for a change in spread from left to right.
again, everything looks fine.
Notice that the ANOVA table also has the test for the Subject means. This is not very
interesting, the boxplot already makes it clear that different subjects have very different
hearing abilities. If that were not so, we would eliminate Subject and run a oneway ANOVA.
Because we now have two factors, we need to worry about an additional problem, namely
whether or not there is a relationship between the two factors. This is called

30.1 Interaction

To do so we will check the interaction plot
An interaction plot looks as follows:
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Here the line segments are allmost parallel. This implies that for any value of the factor A
going from one value of B to the next adds the same amount to the response. So if we go
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from B=1 to B=2 both lines move up by about 2.0, and if we go from B=2 to B=3 both
lines move down by 0.75.
Because of this we call such a model additive
Now consider the following interactions plot:
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Here as we go from B=2 to B=3 the line goes up by 4 if A=1 but it goes down by 0.5 if
A=1.
Here is another way of understanding the difference: Say you are told that you have an
additive model and the following information:

Low High
In 2.3 3.1
Out 2.7 ?

Can we make a guess for the response if Factor 1 = “high” and Factor 2 = “out”? We see
that if Factor 2 = “in” and going from “low” to “high” the response goes up by 0.4 (=2.7-2.3).
In an additive model that means the response should go up the same amount for Factor 2
= “out”, that is it should go to 3.5 (=3.1+0.4).
But if there were interaction there would be no way to make any guess at all!
Deciding from the graph whether or not there is interaction is not always easy. Here are four
interaction plots from a simulated data set, all guaranteed NOT to have any interaction:
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This is even worse because in ANOVA problems we often have very small data sets, so there
is a great amount of variation in these graphs from sample to sample.
So it would be nice if we could actually test for interaction, but that requires repeated
measurements.
In the hearing aid data we only have one observation for each combination of Subject and
List, so we need to decide on the basis of the interaction plot:
iplot(Score, List, Subject )
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There seems to be interaction between Lists and Subjects
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Finally, it would of course be interesting to study just which lists are different, that is we
could do a multiple comparison:
tukey(Score, List, Subject, which="first")

## No repeated measurement!
## Interaction term can not be included
##
## Groups that are statistically significantly different:

## Groups p.value
## 1 1-3 0
## 2 1-4 0

so List 1 is statistically sigifcantly different from Lists 3 and 4.
No other differences are statistically significant.
Because Subject is only a blocking variable we would not due a multiple comparison for it if
we wanted to we would use the command
tukey(Score, List, Subject, which="second")

## No repeated measurement!
## Interaction term can not be included
##
## Groups that are statistically significantly different:

## Groups p.value
## 1 15-21 0.0394
## 2 14-21 0.0063
## 3 9-21 0.0042
## 4 19-21 0.0012
## 5 24-21 0.0000
## 6 14-18 0.0394
## 7 9-18 0.0279
## 8 19-18 0.0093
## 9 24-18 0.0019
## 10 19-4 0.0195
## 11 24-4 0.0042
## 12 19-20 0.0394
## 13 24-20 0.0093
## 14 24-22 0.0135

30.1.1 Case Study: Gasoline Type and Milage

In an experiment to study gas milage four different blends of gasoline are tested in each of
three makes of automobiles. The cars are driven a fixed distance to determine the mpg (miles
per gallon) The experiment is repeated three times for each blend-automobile combination.
(Taken from Lyman Ott)
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Note that the interest here is indifferent gasoline blends, automobile is a blocking variable, so
this is a randomized block design.
Gasoline is numbers, but these are just codes for different blends, so it is a categorical variable
or factor.
attach(gasoline)
head(gasoline)

## MPG Gasoline Automobile
## 1 22.7 1 A
## 2 22.4 1 A
## 3 22.9 1 A
## 4 21.5 2 A
## 5 21.8 2 A
## 6 21.6 2 A

Here is an interesting calculation:
table(Gasoline, Automobile)

## Automobile
## Gasoline A B C
## 1 3 3 3
## 2 3 3 3
## 3 3 3 3
## 4 3 3 3

This shows us two things:
1. we have repeated measurements (several observations per factor-level combination)
2. we have a balanced design (the same number of repetitions in each factor-level combina-

tion)
This second feature used to be quite important because the calculations in a balanced design
are much simpler. Nowadays with fast computers this is not important anymore. There
are still good reasons why you want to design your experiment to have a balanced design if
possible, though!
bplot(MPG, Gasoline, new_order = "Size")
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the boxplots suggest a difference between blends but not between automobiles.
The summary statistics are
stat.table(MPG, Gasoline, Sort = TRUE)

## Sample Size Mean Standard Deviation
## 4 9 20.5 0.4
## 2 9 21.2 0.4
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## 3 9 21.9 0.2
## 1 9 22.8 0.4
stat.table(MPG, Automobile, Sort = TRUE)

## Sample Size Mean Standard Deviation
## C 12 21.4 0.9
## B 12 21.7 1.0
## A 12 21.7 0.8

Interaction:
iplot(MPG, Gasoline, Automobile)
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Lines are (almost) parallel, so there is no indication of interaction. We have repeated
measurements (3 per factor-level combination), so we can test for this:
twoway(MPG, Gasoline, Automobile)
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## Df Sum Sq Mean Sq F value Pr(>F)
## x 3 25.405 8.468 90.464 3.21e-13
## z 2 0.527 0.263 2.813 0.0799
## x:z 6 0.909 0.151 1.618 0.1854
## Residuals 24 2.247 0.094
## [,1]
## Gasoline p = 0.0000
## Automobile p = 0.0799
## Interaction p = 0.1854

1) Parameters of interest: Interaction

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α=0.05

5) Null hypothesis H0 : no interaction

6) Alternative hypothesis Ha: some interaction

7) p value = 0.1854
8) 0.1854 > 0.05, there is no evidence of interaction So we will now proceed without the

interaction term
twoway(MPG, Gasoline, Automobile, with.interaction=FALSE)
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## Df Sum Sq Mean Sq F value Pr(>F)
## x 3 25.405 8.468 80.510 1.89e-14
## z 2 0.527 0.263 2.504 0.0987
## Residuals 30 3.156 0.105
## [,1]
## Gasoline p = 0.0000
## Automobile p = 0.0987

the plots look fine, so no problem with the assumptions.
Now let’s test for the factors:
Test for Factor Gasoline:
1) Parameters of interest: means of gasoline groups

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = .. = µ4 (Gasoline groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (Gasoline groups have different means)

7) p value=0.000

8) 0.000<0.05, there is some evidence of differences in gasoline blends
Test for Factor Automobile is not really needed because this is a blocking variable.
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Notice that if we included the interaction the p-value for Automobile was 0.08, without the
interaction it is 0.1. One advantage of being able to fit an additive model is that often it
makes the conclusions stronger.
Because automobile is not significant and there is no interaction, we can drop automobile
from the analysis and treat this as a oneway ANOVA problem:
tukey(MPG, Gasoline)

## Groups that are statistically significantly different:

## Groups p.value
## 1 2-4 0
## 2 3-4 0
## 3 1-4 0
## 4 3-2 0
## 5 1-2 0
## 6 1-3 0

so all blends are stat. significantly different, with blend 1 having the highest miles per gallon.

30.1.2 Case Study: Film Thickness in Semiconductor Production

Chemical vapor deposition is a process used in the semiconductor industry to deposit thin
films of silicon dioxide and photoresit on substrates of wafers as they are manufactured. The
films must be as thin as possible and have a uniform thickness, which is measured by a process
called infrared interference. A process engineer wants to evaluate a low-pressure chemical
vapor deposition process that reduces costs and increases productivity. The engineer has set
up an experiment to study the effect of chamber temperature and pressure on film thickness.
attach(filmcoatings)
filmcoatings

## Thickness Temperature Pressure
## 1 42 Low Low
## 2 43 Low Low
## 3 39 Low Low
## 4 45 Low Mid
## 5 43 Low Mid
## 6 45 Low Mid
## 7 45 Low High
## 8 44 Low High
## 9 47 Low High
## 10 36 Mid Low
## 11 34 Mid Low
## 12 37 Mid Low
## 13 39 Mid Mid
## 14 39 Mid Mid
## 15 37 Mid Mid
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## 16 40 Mid High
## 17 42 Mid High
## 18 38 Mid High
## 19 38 High Low
## 20 37 High Low
## 21 37 High Low
## 22 35 High Mid
## 23 36 High Mid
## 24 33 High Mid
## 25 40 High High
## 26 41 High High
## 27 42 High High
table(Temperature, Pressure)

## Pressure
## Temperature High Low Mid
## High 3 3 3
## Low 3 3 3
## Mid 3 3 3

so again we have balanced design with repetead measurements
bplot(Thickness, Temperature)
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Notice that the order of the boxes is strange: High-Low-Mid. This is because R uses alphabetic
ordering unless told otherise. Let’s change that:
Temperature <- change.order(Temperature, c("Low","Mid","High"))
Pressure <- change.order(Pressure, c("Low","Mid","High"))
bplot(Thickness, Temperature)
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bplot(Thickness, Pressure)

36

40

44

Low Mid High

Pressure

T
hi

ck
ne

ss

Unlike in the hearing aid or gasoline experiments, here we equally interested in both factors.
This type of experiment is called a factorial design problem.
For us there is no practical difference between a randomized block design and a factorial
design but the distinction can be important in other analyses.
stat.table(Thickness, Temperature)

## Sample Size Mean Standard Deviation
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## Low 9 43.7 2.3
## Mid 9 38.0 2.3
## High 9 37.7 2.9
stat.table(Thickness, Pressure)

## Sample Size Mean Standard Deviation
## Low 9 38.1 2.8
## Mid 9 39.1 4.4
## High 9 42.1 2.8

Interaction
iplot(Thickness, Temperature, Pressure)
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The lines are not all parallel, so there is likely some interaction. Again we have repeated
measurements (3 per factor-level combination), so we can actually test for this:
twoway(Thickness, Temperature, Pressure)
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## Df Sum Sq Mean Sq F value Pr(>F)
## x 2 204.67 102.33 47.638 6.46e-08
## z 2 78.00 39.00 18.155 4.83e-05
## x:z 4 37.33 9.33 4.345 0.0124
## Residuals 18 38.67 2.15
## [,1]
## Temperature p = 0.0000
## Pressure p = 0.0000
## Interaction p = 0.0124

1) Parameters of interest: Interaction

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : no interaction

6) Alternative hypothesis Ha: some interaction

7) p value = 0.0124

8) 0.0124<0.05, there is some evidence of interaction
the graphs show that there are no problems with the assumptions

Test for Factor Temperature:
1) Parameters of interest: means of temperature groups
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2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = µ2 = µ3 (Temperature groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (Temperature groups have different means)

7) p value = 0.000

8) 0.000 < 0.05, there is some evidence of differences in temperature
Test for Factor Pressure:

9) Parameters of interest: means of pressure groups

10) Method of analysis: ANOVA

11) Assumptions of Method: residuals have a normal distribution, groups have equal variance

12) Type I error probability α = 0.05

13) Null hypothesis H0 : µ1 = µ2 = µ3 (Pressure groups have the same means)

14) Alternative hypothesis Ha: µi 6= µj (Pressure groups have different means)

15) p value = 0.000

16) 0.000<0.05, there is some evidence of differences in pressure
Finally, what we need is to find the best combination of pressure and temperature. So what
we want is a multiple comparison for Temperature and Pressure (not either of them alone!).
Easily done:
tukey(Thickness, Temperature, Pressure, which="interaction")

## Groups that are statistically significantly different:

## Groups p.value
## 1 Low:Mid-High:Low 0.0000
## 2 Low:High-High:Low 0.0000
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## 3 Low:Low-Mid:Low 0.0041
## 4 Low:Mid-Mid:Low 0.0000
## 5 High:High-Mid:Low 0.0072
## 6 Mid:High-Mid:Low 0.0397
## 7 Low:High-Mid:Low 0.0000
## 8 High:Mid-Low:Low 0.0000
## 9 Low:Mid-High:Mid 0.0000
## 10 High:High-High:Mid 0.0013
## 11 Mid:High-High:Mid 0.0072
## 12 Low:High-High:Mid 0.0000
## 13 Low:Mid-Mid:Mid 0.0023
## 14 Low:High-Mid:Mid 0.0000
## 15 Mid:High-Low:Mid 0.0397
## 16 Low:High-High:High 0.0397
## 17 Low:High-Mid:High 0.0072

This is bit hard to read. In the past we have used the tapply command to sort the groups by
their means. We want to do the same here but first we need to make a new variable that
combines the Temperature and the Pressure:
TP <- paste0(Temperature,"-",Pressure)
TP

## [1] "Low-Low" "Low-Low" "Low-Low" "Low-Mid" "Low-Mid"
## [6] "Low-Mid" "Low-High" "Low-High" "Low-High" "Mid-Low"
## [11] "Mid-Low" "Mid-Low" "Mid-Mid" "Mid-Mid" "Mid-Mid"
## [16] "Mid-High" "Mid-High" "Mid-High" "High-Low" "High-Low"
## [21] "High-Low" "High-Mid" "High-Mid" "High-Mid" "High-High"
## [26] "High-High" "High-High"
sort(round(tapply(Thickness,TP,mean), 1))

## High-Mid Mid-Low High-Low Mid-Mid Mid-High High-High Low-Low
## 34.7 35.7 37.3 38.3 40.0 41.0 41.3
## Low-Mid Low-High
## 44.3 45.3

so we see that that the combination Temperature=High, Pressure=Mid is best.
But tukey tells us that it is not stat. significantly better than either of the next three
combinations ( Mid Low, High Low or Mid Mid), at least not at these sample sizes.
Remember we made some new variables. If we are sure we won’t need them anymore we
should
rm(Temperature)
rm(Pressure)
rm(TP)

A simple idea for solving this problem seems to be this one:
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1. find the best temperature:
sort(round(tapply(Thickness, Temperature, mean), 1))

## High Mid Low
## 37.7 38.0 43.7

so Temperature=High is best
2. find the best pressure:

sort(round(tapply(Thickness, Pressure, mean), 1))

## Low Mid High
## 38.1 39.1 42.1

so Pressure=Low is best
3. take the combination: Pressure=Low, Temperature=High is best! Except it is not: we

saw before that Pressure=Mid, Temperature=High is best.
This simple idea does not work because of the presence of interaction.

30.1.3 Case Study: Water Quality and Mining

The effects of mining and rock type on water quality.
attach(mines)
head(mines)

## Rock Mine Iron
## 1 Sandstone Unmined 0.20
## 2 Sandstone Unmined 0.25
## 3 Sandstone Unmined 0.04
## 4 Sandstone Unmined 0.06
## 5 Sandstone Unmined 1.20
## 6 Sandstone Unmined 0.30
table(Rock, Mine)

## Mine
## Rock Abandoned Reclaimed Unmined
## Limestone 13 13 13
## Sandstone 13 13 13
bplot(Iron, Rock, new_order = "Size")
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We have a clear problem with the normal assumption, so use the log transform
bplot(log(Iron), Rock, new_order = "Size")
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bplot(log(Iron), Mine)
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This has solved the problem, so the analysis will be based on log(Iron)
Summary Statistics
Because we use a transformation we will base the tables on Median and IQR
stat.table(Iron, Rock, Mean=FALSE, Sort = TRUE)

## Sample Size Median IQR
## Sandstone 39 0.4 1.4
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## Limestone 39 1.3 3.6
stat.table(Iron, Mine, Mean=FALSE)

## Sample Size Median IQR
## Unmined 26 0.5 2.7
## Reclaimed 26 0.7 0.8
## Abandoned 26 1.6 10.2

Note that the IQR’s are very different. This is because this data set has a lot of outliers
which still effect the IQR.
Interaction
iplot(log(Iron), Rock, Mine)
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There seems to be some interaction. To confirm this test for it:
twoway(log(Iron), Rock, Mine)
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## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 10.15 10.154 4.629 0.034794
## z 2 45.13 22.566 10.287 0.000118
## x:z 2 43.45 21.727 9.904 0.000159
## Residuals 72 157.95 2.194
## [,1]
## Rock p = 0.0348
## Mine p = 0.0000
## Interaction p = 0.0000

1) Parameters of interest: Interaction

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : no interaction

6) Alternative hypothesis Ha: some interaction

7) p value = 0.000

8) 0.000<0.05, there is some evidence of interaction
Check the assumptions of ANOVA: both plots look ok

Test for Factor Rock:
1) Parameters of interest: means of pressure groups
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2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = µ2 (Rock groups have the same means)

6) Alternative hypothesis Ha: µ1 6= µ2 (Rock groups have different means)

7) p value = 0.035

8) 0.035<0.05, there is some evidence of differences in Rock types.
Test for Factor Mine:
1) Parameters of interest: means of pressure groups

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = µ2 = µ3 (Mine groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (Mine groups have different means)

7) p value = 0.000

8) 0.000<0.05, there is some evidence of differences in Mine types
Multiple Comparison The main interest is in mines, so
tukey(log(Iron), Rock, Mine, which="second")

## Groups that are statistically significantly different:

## Groups p.value
## 1 Abandoned-Reclaimed 0
## 2 Abandoned-Unmined 0

Interpretation: There is a stat. signif. difference between the mean iron content of abondoned
mines and the others. The difference between unmined and reclaimed mines is not stat. sign,
at least not at these sample sizes.
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31 More than One Quantitative Predictor

31.0.1 Case Study: House Prices

Prices of residencies located 30 miles south of a large metropolitan area with several possible
predictor variables. Notice the 1.7 baths!
attach(houseprice)
houseprice

## Price Sqfeet Floors Bedrooms Baths
## 1 69.0 1500.000 1 2 1.0
## 3 118.5 1880.952 1 2 2.0
## 4 104.0 1976.190 1 3 2.0
## 5 116.5 1880.952 1 3 2.0
## 6 121.5 1880.952 1 3 2.0
## 7 125.0 1976.190 1 3 2.0
## 8 128.0 2357.143 2 3 2.5
## 9 129.9 2166.667 1 3 1.7
## 10 133.0 2166.667 2 3 2.5
## 11 135.0 2166.667 2 3 2.5
## 12 137.5 2357.143 2 3 2.5
## 13 139.9 2166.667 1 3 2.0
## 14 143.9 2261.905 2 3 2.5
## 15 147.9 2547.619 2 3 2.5
## 16 154.9 2357.143 2 3 2.5
## 17 160.0 2738.095 2 3 2.0
## 18 169.0 2357.143 1 3 2.0
## 19 169.9 2642.857 1 3 2.0
## 20 125.0 2166.667 1 4 2.0
## 21 134.9 2166.667 1 4 2.0
## 22 139.9 2547.619 1 4 2.0
## 23 147.0 2642.857 1 4 2.0
## 24 159.0 2261.905 1 4 2.0
## 25 169.9 2547.619 2 4 3.0
## 26 178.9 2738.095 1 4 2.0
## 27 194.5 2833.333 2 4 3.0
## 28 219.9 2928.571 1 4 2.5
## 29 269.0 3309.524 2 4 3.0

Let’s go through the list of predictors one by one:
splot(Price, Sqfeet, add.line = 1)

247



100

150

200

250

1500 2000 2500 3000

Sqfeet

P
ric

e

cor(Price, Sqfeet)

## [1] 0.9152079

strong positive relationship (r=0.915), could be linear
bplot(Price, Floors)
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cor(Price, Floors)

## [1] 0.2910762
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weak if any positive relationship (r=0.291)
Note we used the boxplot here although Floors is a quantitative predictor. If the predictor
has only a few different values (2 here!) this is often a better choice.
bplot(Price, Bedrooms)
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cor(Price, Bedrooms)

## [1] 0.6045036

strong positive relationship (r=0.605), could be linear
bplot(Price, Baths)
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cor(Price, Baths)

## [1] 0.6525626

strong positive relationship (r=0.652), could be linear
Note there is so far no mention of regression, residual vs. fits plot or normal plot. Making
decisions about possible transformations and/or polynomial models early solely based on
scatterplots and/or boxplots is usually a good idea.
Now to run the regression we have the routine mlr. As always the first argument is the
response variable but now the second argument are all the predictors as a matrix:
mlr(Price, houseprice[, -1])
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## The least squares regression equation is:
## Price = -67.62 + 0.086 Sqfeet - 26.493 Floors - 9.286 Bedrooms + 37.381 Baths
## R^2 = 88.6%

For the assumptions there is nothing new, as before we need to check the residual vs. fits
plot and the normal plot of residuals.
This appears to be a good model and the assumptions of normally distributed residuals with
equal variance appears to be o.k.
Except,
Notice that there is something very strange about this model!
round(cor(houseprice[,-1]),3)

## Sqfeet Floors Bedrooms Baths
## Sqfeet 1.000 0.370 0.652 0.628
## Floors 0.370 1.000 -0.018 0.743
## Bedrooms 0.652 -0.018 1.000 0.415
## Baths 0.628 0.743 0.415 1.000

The highest correlation between predictors is r=0.743 (Floors-Baths)

31.1 Best Subset Regression

We have previously talked about the fact that we want our models to be as simple as possible.
Often that means a model with as few predictors as possible. So the question becomes:
Can we eliminate any of our predictors without making the model (stat. signif.)
worse?
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There are several things one can think of:
Choose based on R2

but we already know this will always lead to the model with all predictors, for the same
reason that a cubic model always has an R2 at least as high as the quadratic model.
Note:
Price by Sqfeet, Floors and Bedrooms: R2=80.1%
Price by Floors, Bedrooms and Baths: R2=68.4%
Price by Sqfeet, Bedrooms and Baths: R2=83.5%
Price by Sqfeet, Floors, Bedrooms and Baths: R2=88.2%
so model with all 4 has a higher R2 than any of the models with just 3, but this will always
be so, even if one of the predictors is completely useless.
Choose based on Hypothesis Tests
mlr(Price, houseprice[, -1], show.tests = TRUE)
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## The least squares regression equation is:
## Price = -67.62 + 0.086 Sqfeet - 26.493 Floors - 9.286 Bedrooms + 37.381 Baths
## Variable p value
## Constant 0.000
## Sqfeet 0.000
## Floors 0.0104
## Bedrooms 0.1871
## Baths 0.0057
## R^2 = 88.6%

so p_value of Bedrooms > 0.05, so eliminate Bedrooms.
This sounds like a good idea AND IT IS WIDELY USED IN REAL LIFE, but it turns out
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to be a bad one ! The reason why is bit hard to explain, though.
Use nested models test
all.preds <- mlr(Price, houseprice[, -1], return.model = TRUE)
without.bedrooms <- mlr(Price, houseprice[, -c(1, 4)],

return.model = TRUE)
nested.models.test(all.preds, without.bedrooms)

## H0: both models are equally good.
## p value= 0.1871

Again, this sounds like a good idea AND AGAIN IT IS WIDELY USED IN REAL LIFE,
but it turns out to be a dangerous one! To start, if we have several predictors we might want
to eliminate, we immediately face the issue of simultaneous inference.
There are several methods in wide use that are essentially based on this idea, such as forward
selection, backward selection and stepwise regression. These are sometimes unavoidable but
need to be done with great care!

What we need is new idea:
Best Subset Regression and Mallow’s Cp

We will find ALL possible models and calculate Mallow’s Cp statistic for each. The model
with the lowest Cp is best.
mallows(Price, houseprice[, -1])

## Number of Variables Cp Sqfeet Floors Bedrooms Baths
## 1 8.83 X
## 2 8.81 X X
## 3 4.85 X X X
## 4 5 X X X X

so the best model uses Sqfeet, Floors and Baths.
To find the model we rerun mlr, now without Bedrooms:
mlr(Price, houseprice[, -c(1,4)])
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## The least squares regression equation is:
## Price = -73.93 + 0.078 Sqfeet - 19.68 Floors + 30.579 Baths
## R^2 = 87.7%

Note that the model with all four predictors has Cp=5.0. But Cp is a statistic, its exact
value depends on the sample. So is the model with Sqfeet, Floors and Baths statistically
significantly better than the model with all four predictors? We would need a hypothesis
test to answer this question but this is not part of our course.
For more on Mallow’s Cp see page 603 of the textbook.

31.1.0.1 Prediction

Prediction works just as it did for simple regression. We have the command mlr.predict.
Say we want to find a 90% interval estimate for a house that has 2000 sqfeet, one floor and
two baths. Then
mlr.predict(Price, houseprice[ ,-c(1, 4)],

newx=c(2000, 1, 2), interval="PI", conf.level=90)

## Sqfeet Floors Baths Fit Lower Upper
## 2000 1 2 122.98 98.07 147.89

and so a 90% predicition interval is ($98,070, $147,890)
If we want to do prediction for a number of cases newx has to be a matrix:
newx <- cbind(c(2000,2100,2200), rep(1,3), rep(2,3))
newx

## [,1] [,2] [,3]
## [1,] 2000 1 2
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## [2,] 2100 1 2
## [3,] 2200 1 2
mlr.predict(Price, houseprice[ ,-c(1, 4)],

newx=newx, interval="PI")

## Sqfeet Floors Baths Fit Lower Upper
## 2000 1 2 122.98 92.93 153.03
## 2100 1 2 130.75 100.96 160.54
## 2200 1 2 138.52 108.86 168.18

Finally, not including the newx does the prediction of the dataset:
head(mlr.predict(Price, houseprice[ ,-c(1, 4)],

interval="PI"))

## Sqfeet Floors Baths Fit Lower Upper
## 1500.000 1 1 53.54 18.63 88.46
## 1880.952 1 2 113.73 83.23 144.23
## 1976.190 1 2 121.13 91.01 151.25
## 1880.952 1 2 113.73 83.23 144.23
## 1880.952 1 2 113.73 83.23 144.23
## 1976.190 1 2 121.13 91.01 151.25

31.1.1 Case study: Air Pollution and Mortality

The dependent variable for analysis is age adjusted mortality (called “Mortality”). The data
include variables measuring demographic characteristics of the cities, variables measuring
climate characteristics, and variables recording the pollution potential of three different air
pollutants.
attach(airpollution)
head(airpollution)

## Mortality JanTemp JulyTemp RelHum Rain Education
## AkronOH 921.87 27 71 59 36 11.4
## Albany-Schenectady-TroyNY 997.87 23 72 57 35 11.0
## AllentownBethlehemPA-NJ 962.35 29 74 54 44 9.8
## AtlantaGA 982.29 45 79 56 47 11.1
## BaltimoreMD 1071.29 35 77 55 43 9.6
## BirminghamAL 1030.38 45 80 54 53 10.2
## PopDensity NonWhite WhiteCollar Pop
## AkronOH 3243 8.8 42.6 660328
## Albany-Schenectady-TroyNY 4281 3.5 50.7 835880
## AllentownBethlehemPA-NJ 4260 0.8 39.4 635481
## AtlantaGA 3125 27.1 50.2 2138231
## BaltimoreMD 6441 24.4 43.7 2199531
## BirminghamAL 3325 38.5 43.1 883946
## Pop.House Income HCPot NOxPot SO2Pot NOx
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## AkronOH 3.34 29560 21 15 59 15
## Albany-Schenectady-TroyNY 3.14 31458 8 10 39 10
## AllentownBethlehemPA-NJ 3.21 31856 6 6 33 6
## AtlantaGA 3.41 32452 18 8 24 8
## BaltimoreMD 3.44 32368 43 38 206 38
## BirminghamAL 3.45 27835 30 32 72 32

next we want to look at the scatterplots and the correlations. There are 15 predictors, so
there are 15 graphs and correlations.
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## [1] -0.016
## [1] 0.322
## [1] -0.101
## [1] 0.433
## [1] -0.508
## [1] 0.252
## [1] 0.647
## [1] -0.289
## Outliers! [1] 0.368
## [1] -0.283
## Outliers! Outliers! [1] 0.419
## Outliers!

There are problems with four predictors (Pop, HCPot, NOx, and NOxPot), Let’s try the log
transform and check again for those predictors:
The easiest way to do this is to make a new matrix:
detach(airpollution)
newair <- airpollution
newair[ ,c("Pop", "HCPot", "NOx", "NOxPot")] <- log(newair[, c("Pop", "HCPot", "NOx", "NOxPot")])
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colnames(newair)[c(10, 13, 14, 16)] <- c("log(Pop)", "log(HCPot)", "log(NOx)", "log(NOxPot)")
attach(newair)
for(i in c(10, 13, 14, 16)) {

mplot(Mortality, newair[, i], add.line=1, varNames = c(colnames(airpollution)[i], "Mortality"))
print(cor(Mortality, newair[, i]), 3)

}
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## [1] 0.0853
## [1] 0.125
## [1] 0.28
## [1] 0.28

so in all cases the log transform worked, and we will use newair from now on.
Let’s find the correlations in absolute value of the predictors with the response, in order:
cors <- round(cor(newair), 2)
sort(abs(cors[ ,"Mortality"]), decreasing = TRUE)[-1]

## NonWhite Education Rain SO2Pot Pop.House JulyTemp
## 0.65 0.51 0.43 0.42 0.37 0.32
## WhiteCollar Income log(NOx) log(NOxPot) PopDensity log(HCPot)
## 0.29 0.28 0.28 0.28 0.25 0.13
## RelHum log(Pop) JanTemp
## 0.10 0.09 0.02

Next we look at the correlations between the predictors.
cors[-1, -1]

## JanTemp JulyTemp RelHum Rain Education PopDensity NonWhite
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## JanTemp 1.00 0.32 0.09 0.06 0.11 -0.08 0.46
## JulyTemp 0.32 1.00 -0.44 0.47 -0.27 -0.01 0.60
## RelHum 0.09 -0.44 1.00 -0.12 0.19 -0.15 -0.12
## Rain 0.06 0.47 -0.12 1.00 -0.47 0.08 0.30
## Education 0.11 -0.27 0.19 -0.47 1.00 -0.24 -0.21
## PopDensity -0.08 -0.01 -0.15 0.08 -0.24 1.00 -0.01
## NonWhite 0.46 0.60 -0.12 0.30 -0.21 -0.01 1.00
## WhiteCollar 0.21 -0.01 0.01 -0.11 0.49 0.25 -0.06
## log(Pop) 0.32 0.04 -0.02 -0.28 0.27 0.21 0.22
## Pop.House -0.33 0.26 -0.14 0.20 -0.39 -0.17 0.35
## Income 0.20 -0.19 0.13 -0.36 0.51 0.00 -0.10
## log(HCPot) 0.23 -0.41 0.18 -0.48 0.18 0.26 0.15
## log(NOx) 0.18 -0.30 0.10 -0.39 0.03 0.34 0.21
## SO2Pot -0.09 -0.07 -0.12 -0.13 -0.23 0.42 0.16
## log(NOxPot) 0.18 -0.30 0.10 -0.39 0.03 0.34 0.21
## WhiteCollar log(Pop) Pop.House Income log(HCPot) log(NOx)
## JanTemp 0.21 0.32 -0.33 0.20 0.23 0.18
## JulyTemp -0.01 0.04 0.26 -0.19 -0.41 -0.30
## RelHum 0.01 -0.02 -0.14 0.13 0.18 0.10
## Rain -0.11 -0.28 0.20 -0.36 -0.48 -0.39
## Education 0.49 0.27 -0.39 0.51 0.18 0.03
## PopDensity 0.25 0.21 -0.17 0.00 0.26 0.34
## NonWhite -0.06 0.22 0.35 -0.10 0.15 0.21
## WhiteCollar 1.00 0.28 -0.35 0.37 0.16 0.11
## log(Pop) 0.28 1.00 -0.26 0.41 0.48 0.50
## Pop.House -0.35 -0.26 1.00 -0.30 -0.22 -0.12
## Income 0.37 0.41 -0.30 1.00 0.29 0.25
## log(HCPot) 0.16 0.48 -0.22 0.29 1.00 0.94
## log(NOx) 0.11 0.50 -0.12 0.25 0.94 1.00
## SO2Pot -0.06 0.37 -0.01 0.07 0.57 0.68
## log(NOxPot) 0.11 0.50 -0.12 0.25 0.94 1.00
## SO2Pot log(NOxPot)
## JanTemp -0.09 0.18
## JulyTemp -0.07 -0.30
## RelHum -0.12 0.10
## Rain -0.13 -0.39
## Education -0.23 0.03
## PopDensity 0.42 0.34
## NonWhite 0.16 0.21
## WhiteCollar -0.06 0.11
## log(Pop) 0.37 0.50
## Pop.House -0.01 -0.12
## Income 0.07 0.25
## log(HCPot) 0.57 0.94
## log(NOx) 0.68 1.00
## SO2Pot 1.00 0.68
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## log(NOxPot) 0.68 1.00

We find:
a) there are sizable correlations (for example cor(NonWhite,JulyTemp)=0.60)
b) LOGT(NOxPot) and LOGT(NOx) are perfectly correlated. Because of a) unterpreting

(understanding) the final model will be difficult.
Using perfectly correlated predictors is not possible so we eliminate one of them, say log(NOx):
detach(newair)
newair <- newair[ ,-16]
attach(newair)

Next we fit a model with all the predictors and check the assumptions:
mlr(Mortality , newair[, -1] )
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## The least squares regression equation is:
## Mortality = 1230.17 - 1.885 JanTemp - 1.793 JulyTemp + 0.532 RelHum + 1.414 Rain - 7.569 Education + 0.004 PopDensity + 5.012 NonWhite - 1.796 WhiteCollar + 2.828 log(Pop) - 34.656 Pop.House - 0.001 Income - 22.638 log(HCPot) + 27.848 log(NOx) + 0.091 SO2Pot
## R^2 = 77%

The residual vs fits plot looks fine, so there is no problem with the model.
The normal plot is ok, so no problem with the nomal assumption. The residual vs fits plot
looks fine, so there is no problem with the equal variance assumption.
Next we use the best subset regression to see whether we can find a model with fewer
predictors.
mallows(Mortality, newair[, -1])

## Number of Variables Cp JanTemp JulyTemp RelHum Rain Education
## 1 56.46
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## 2 30.59 X
## 3 18.61 X X
## 4 9.07 X X
## 5 4.98 X X X
## 6 4.32 X X
## 7 4.9 X X
## 8 6.05 X X X
## 9 6.98 X X X
## 10 8.14 X X X X
## 11 9.55 X X X X
## 12 11.29 X X X X X
## 13 13.14 X X X X X
## 14 15 X X X X X
## PopDensity NonWhite WhiteCollar log(Pop) Pop.House Income log(HCPot)
## X
## X
## X
## X
## X
## X X X
## X X X X
## X X X X
## X X X X
## X X X X X
## X X X X X
## X X X X X
## X X X X X X
## X X X X X X X
## log(NOx) SO2Pot
##
##
##
## X
## X
## X
## X
## X
## X X
## X
## X X
## X X
## X X
## X X

It suggests a model based on JanTemp, Rain, PopDensity, NonWhite, WhiteCollar and
LOGT(NOx) with Mallow’s Cp=4.32
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mlr(Mortality,
newair[, c("JanTemp", "Rain", "PopDensity", "NonWhite",

"WhiteCollar", "log(NOx)")])
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## The least squares regression equation is:
## Mortality = 944.275 - 1.942 JanTemp + 1.924 Rain + 0.006 PopDensity + 4.194 NonWhite - 2.723 WhiteCollar + 17 log(NOx)
## R^2 = 74.2%

Because the best model does still include one of the pollution variables, we can conclude that
pollution adds to the mortality rate.
And we are done!

32 How to include a Caterorical Predictor in a Regression

32.0.1 Case Study: Environmental, Safety and Health Attitudes

Environment, Safety and Health Attitudes of employees of a laboratory. Employees are given
a questionaire, which is then collated into an average score from 1(bad) to 10(good). We also
have available the length of service of the employee and their gender.
head(esh)

## ES.H Yrs.Serv Sex
## 1 7.6 5 Female
## 2 9.0 30 Female
## 3 8.0 12 Female
## 4 6.8 7 Female
## 5 7.4 7 Female
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## 6 9.8 27 Female

One of the predictor variables (Sex) is actually categorical. A categorical variable used in a
regression model is often refered to as a dummy variable.
Let’s start by looking at each predictor separately.
• Years is quantitative, so do the scatterplot:

attach(esh)
splot(ES.H, Yrs.Serv, add.line = 1)
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• Sex is categorical, so do the boxplot:
bplot(ES.H, Sex)

262



4

6

8

10

Female Male

Sex

E
S

.H

The values in Sex (Male, Female) are text but in a regression we need everything to be
numeric, so in order to use Sex in a regression model we first have to code the variable as
numbers, for example Female=0 and Male=1. Then
SexCode <- rep(0, length(Sex))
SexCode[Sex=="Male"] <- 1
X <- cbind(Yrs.Serv, SexCode)
mlr(ES.H, X)
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## The least squares regression equation is:
## ES.H = 7.035 + 0.097 Yrs.Serv - 2.591 SexCode
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## R^2 = 83.9%

The residual vs. fits and normal plot look good, so this is a good model.

Or is it?
Let’s do the following: what would the equation look like if we knew the person was female?
(or male). Well:

Female ES.H =
7.035 + 0.097Yrs.Serv− 2.591 · 0 =
7.035 + 0.097Yrs.Serv

Male ES.H =
7.035 + 0.097Yrs.Serv− 2.591 · 1 =
4.444 + 0.097Yrs.Serv

Notice that both equations have the same slope, so we have parallel lines.
Note such a model is also often called an additive model, similar to an ANOVA without
interaction!
What does this look like? Here it is:
flplot(ES.H, Yrs.Serv, Sex, additive=TRUE)
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Now a model with parallel line may or may not make sense for our data, but it does not have
to. Except that no matter what, the way we used the categorical variable (simply code it
and use it) we will always result in parallel lines!
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Is there a way to see whether this is ok here? Yes, but it is a bit tricky: what we need is a
version of the residual vs fits plot that identifies the plotting symbols by Sex. If the model is
good, this residual vs fits plot should also show no pattern. We can get it easy if we use the
dlr routine instead of the mlr:
dlr(ES.H, Yrs.Serv, Sex, additive=TRUE)
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## The least squares regression equation is:
## ES.H = 7.035 + 0.097 Yrs.Serv - 2.591 Sex
## R^2 = 83.9

and as we can see there is a definite pattern in the colors.
So, how do we get away from parallel lines? This can be done by adding a variable
Yrs.Serv*SexCode.
predictors <- cbind(Yrs.Serv, SexCode, Yrs.Serv*SexCode)
colnames(predictors)[3] <- "Yrs.Serv*SexCode"
mlr(ES.H, predictors)
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## The least squares regression equation is:
## ES.H = 7.323 + 0.072 Yrs.Serv - 3.203 SexCode + 0.065 Yrs.Serv*SexCode
## R^2 = 85.9%

and now:

Female ES.H =
7.323 + 0.072Yrs.Serv− 3.203 · 0 + 0.065 · Yrs.Serv*0 =
7.323 + 0.072Yrs.Serv

Male ES.H =
7.323 + 0.072Yrs.Serv− 3.203 · 1 + 0.065 · Yrs.Serv*1 =
4.120 + 0.138Yrs.Serv

and so this fits two separate lines.
flplot(ES.H, Yrs.Serv, Sex)
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Note you can get the same two equations by splitting up the dataset into two parts, the
score and years of the Females and the score and years of the Males, and then doing a simple
regression for both:
slr(ES.H[Sex=="Female"], Yrs.Serv[Sex=="Female"])

slr(ES.H[Sex=="Male"], Yrs.Serv[Sex=="Male"])

Doing one multiple regression has some advantages, though. For example you get one R2

for the whole problem, not two for each part. Moreover, usually this R2 will be higher than
either of the other two.
So now we have two models:
• parallel lines: ES.H = 7.035 + 0.097 Yrs.Serv - 2.591 Sex R2 = 83.9%
• two separate lines: ES.H = 7.323 + 0.072 Yrs.Serv - 3.203 SexCode + 0.065

Yrs.Serv*SexCode
R2=85.85%
Clearly the second one has a higher R2, but then the first one is a special case of the second
(nested models) and so the model with parallel lines will never have an R2 higher than the
model with separate lines, and usually always has an R2 a bit lower.
Of course the parallel lines model has two terms while the other one has three, and the third
one is more complicated, so we would prefer the parallel lines model, if possible.
What we want to know is whether the model with two separate lines is statistically
significantly better than the model with parallel lines. So we need a hypothesis test with:
H0: the two separate lines model is NOT statistically significantly better than the parallel
lines model.
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Ha: the two separate lines model is statistically significantly better than the parallel lines
model.
Notice that the parallel lines model is a special case of the ttwo independent lines model,
and so we can use the nested.models.test to decide which is better:
parallel.lines <- dlr(ES.H, Yrs.Serv, Sex,

return.model=TRUE)
independent.lines <- dlr(ES.H, Yrs.Serv, Sex, additive=TRUE,

return.model=TRUE)
nested.models.test(independent.lines, parallel.lines)

## H0: both models are equally good.
## p value= 0.1608

gives a p-value of 0.1608 > 0.05, so the parallel lines model is just as good as the model with
two separate lines.
Note in this command the bigger model has to come first!

32.0.1.1 Prediction

We have the dlr.predict command to do prediction. Let’s find 95% interval estimates for
female employees with 0, 1, 2,..,10 years of service:
dlr.predict(ES.H, Yrs.Serv, Sex, newx=0:10,

newz=rep("Female", 11), additive=TRUE, interval="PI")

## Yrs.Serv Sex Fit Lower Upper
## 1 0 Female 7.04 5.21 8.86
## 2 1 Female 7.13 5.32 8.94
## 3 2 Female 7.23 5.43 9.03
## 4 3 Female 7.33 5.54 9.11
## 5 4 Female 7.42 5.65 9.20
## 6 5 Female 7.52 5.75 9.29
## 7 6 Female 7.62 5.86 9.38
## 8 7 Female 7.71 5.96 9.47
## 9 8 Female 7.81 6.06 9.56
## 10 9 Female 7.91 6.16 9.65
## 11 10 Female 8 6.26 9.75

32.1 Lines and Interaction

Above we explained the problem of using categorical predictors in a regression model in terms
of parallel lines vs. two independent lines. But in fact this another example of the issue of
interaction, or more generally of a relationship between the predictors. Parallel lines are ok if
the categorical and the continuous predictors are essentially independent. Often terms such
as Yrs Serv*SexCode are also called interaction terms.
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For your purposes in this class (and later when doing work such as this) simply remember to
include product terms when you have categorical predictors. Then you can test if that term
is really needed, and drop it if it is not.

32.1.1 Case Study: Sales of Shoes

The number of shoes sold by year and type.
head(shoesales)

## Sales Year Type
## 1 1539 1 Mens
## 2 12984 1 Kids
## 3 25809 1 Ladies
## 4 5742 2 Mens
## 5 30058 2 Kids
## 6 34764 2 Ladies

Let’s have a look at the data. Previously we used two graphs, we can also use a version of
the scatterplot that identifies the dots by the categorical variable:
attach(shoesales)
splot(Sales, Year, Type, add.line=1)
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We want to find a model for predicting Sales from Year and Type. Again Type is a categorical
variable and so we need to code it. The most obvious thing to do would be to code:
• Mens= 0

• Kids= 1
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• Ladies = 2
but that is dangerous. Unlike a categorical variable numbers always have an order and a size.
So by coding in this way we are saying that Mens comes before Kids. Worse , we are saying
that the “distance” from Mens to Kids is the same as the “distance” from Kids to Ladies!
Whether this matters or not dependes on the specific problem. There is however a way to
include such a variable without introducing order or size:
d1 <- rep(0, length(Type))
d1[Type=="Kids"] <- 1
d2 <- rep(0, length(Type))
d2[Type=="Ladies"] <- 1

Notice that by knowing d1 and d2 we now exactly what the type is:
• d1=0, d2=0 → Mens

• d1=1, d2=0 → Kids

• d1=0, d2=1 → Ladies
so we have not lost any information, but we have also not introduced any order or size!
Now
predictors <- cbind(Year, d1, d2)
colnames(predictors) <- c("Year", "d1", "d2")
mlr(Sales, predictors)
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## The least squares regression equation is:
## Sales = 1429.126 + 1551.562 Year + 12774.478 d1 + 26986.87 d2
## R^2 = 85.6%
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Note if there is one categorical predictor with just two values (binary data) we can use the
dlr command. If the categorical variable has three or more values or if there is more than
one categorical variable we can use the mlr command but we have to work a bit on getting
the matrix of predictor variables right.
This is of course an additive model, again we should worry about interaction. But now we
have two categorical predictors, so we need to add two product terms:
predictors <- cbind(Year, d1, d2, Year*d1, Year*d2)
colnames(predictors) <- c("Year", "d1", "d2", "Year*d1", "Year*d2")
mlr(Sales, predictors)
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## The least squares regression equation is:
## Sales = 7000.455 + 1087.285 Year + 8862.217 d1 + 14185.146 d2 + 326.022 Year*d1 + 1066.81 Year*d2
## R^2 = 88.9%

And again we can test whether the product terms are needed:
with.interaction <- mlr(Sales, predictors, return.model=TRUE)
without.interaction <- mlr(Sales, predictors[,1:3],

return.model=TRUE)
nested.models.test(with.interaction, without.interaction)

## H0: both models are equally good.
## p value= 0.000

and we find that here the interaction is needed (p= 0.000).
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33 Exercises 4

33.0.1 Case Study: Survey of Students

This is the same data set we considerd in the previous exerceises.
Problem 1 Find the best model to predict Score from GPA and Distance.
Problem 2 Analyse the data with score as the response and Gender and Years as factors
(predictors).
Problem 3 Find a 90% interval estimate for the score of a male student with a GPA of 2.15.
Is this an interpolation or an extrapolation?
Problem 4 Find a 95% interval estimate for the score of a 20 year old male student who
lives 2 miles from school. (code the variable Gender, ignore the issue of parallel lines)

attach(studentsurvey)

Problem 1 Find the best model to predict Score from GPA and Distance.
In Exercise Problems 3 we found a linear model in GPA and a log model in Distance, so let’s
try this:
mlr(Score, cbind(GPA, log(Distance + 1)))
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## The least squares regression equation is:
## Score = 3.089 + 1.329 GPA + 0.024
## R^2 = 11%
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the plots look good, so no problem with the assumptions.
Notice that the name of the variable Distance is missing. If we want to fix that we can do
this:
X <- cbind(GPA, log(Distance + 1))
colnames(X) <- c("GPA", "log(Distance + 1)")
mlr(Score, X)
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## The least squares regression equation is:
## Score = 3.089 + 1.329 GPA + 0.024 log(Distance + 1)
## R^2 = 11%

Can we simplify the model?
mallows(Score, X)

## Number of Variables Cp GPA log(Distance + 1)
## 1 1.04 X
## 2 3 X X

the smallest Cp is for the model with GPA only, so this is best.
slr(GPA, Score)
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## The least squares regression equation is:
## GPA = 1.845 + 0.083 Score
## R^2 = 11%

Problem 2 Analyse the data with score as the response and Gender and Years as factors
(predictors).
this is a twoway ANOVA problem. In Exercise Problems 2 we already looked at the boxplots
and the summary statistics. Next we need to consider any possible interaction:
In problem 3 of the Exercise Problems 2 we found a statistically significant correlation
between Score and GPA. Let’s find a good model.
iplot(Score, Gender, Year)
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there seems to be interaction here. Can we test for it? We would need repeated measurements:
table(Gender, Year)

## Year
## Gender Freshman Junior Senior Sophomore
## Female 28 23 26 34
## Male 38 24 33 43

which we have. So
twoway(Score, Gender, Year)
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## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 35.2 35.23 8.742 0.00342
## z 3 11.4 3.79 0.940 0.42212
## x:z 3 7.9 2.63 0.652 0.58255
## Residuals 241 971.3 4.03
## [,1]
## Gender p = 0.0034
## Year p = 0.4221
## Interaction p = 0.5825

the plots look good, so no problems with the assumptions.
The test for interaction has p=0.5825 , so there is no evidence of interaction. We can refit
with out it:
twoway(Score, Gender, Year, with.interaction=FALSE)
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## Df Sum Sq Mean Sq F value Pr(>F)
## x 1 35.2 35.23 8.780 0.00335
## z 3 11.4 3.79 0.944 0.42013
## Residuals 244 979.2 4.01
## [,1]
## Gender p = 0.0033
## Year p = 0.4201

The test for Year has p=0.42, so Year does not effect score and so we can drop the term as
well. We are now back to a oneway of Score by GPA, which we already analysed in Exercise
Problems 2 and 3.

Problem 3 Find a 90% interval estimate for the score of a male student with a GPA of 2.15.
Is this an interpolation or an extrapolation?
We have a quantitative response (Score), a quantitative predictor (GPA) and a catgorical
predictor( Gender), so this is a regression problem with a dummy variable.
dlr(Score, GPA, Gender)
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## The least squares regression equation is:
## Score = 6 + 0.287 GPA - 5.162 Gender + 1.877 GPA*Gender
## R^2 = 19.6

do we need the product term?
independent.lines <- dlr(Score, GPA, Gender, return.model=TRUE)
parallel.lines <- dlr(Score, GPA, Gender, additive=TRUE,

return.model=TRUE)
nested.models.test(parallel.lines, independent.lines)

## H0: both models are equally good.
## p value= 0.000

gives p=0.000, so the product term is indeed necessary.
Next we want a 90% interval estimate for the score of a male student with a GPA of 2.15:
dlr.predict(Score, GPA, Gender, newx=2.15,

newz="Male", interval="PI", conf.level=90)

## GPA Gender Fit Lower Upper
## 1 2.15 Male 5.49 2.45 8.53

Is this an interpolation or an extrapolation?
range(GPA[Gender=="Male"])

## [1] 0.71 3.46

shows that 2.15 is in the range of data values for males, so this is an interpolation.
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Problem 4 Find a 95% interval estimate for the score of a 20 year old male student who
lives 2 miles from school. (code the variable Gender, ignore the issue of parallel lines)
As before we need to remove observation #220 from the data set and we need to use the log
tranform on Distance:
X <- data.frame(Distance=log(Distance[-220]+1), Age=Age[-220], Gender=ifelse(Gender[-220]=="Male", 1, 0))
mlr(Score[-220] , X)
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## The least squares regression equation is:
## Score[-220] = 8.905 + 0.082 Distance - 0.118 Age - 0.745 Gender
## R^2 = 3.8%

When doing prediction there is usually no reason to simplify the model, so we won’t use
Mallows Cp. Now
newx <- cbind(Distance=log(2)+1, Age=20, Gender=1)
mlr.predict(Score[-220], X, newx=newx, interval="PI")

## Distance Age Gender Fit Lower Upper
## 1.693147 20 1 5.95 1.99 9.91
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