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A b stra ct

We develop a theory of entropy, where entropy is defined as the Legendre - Fenchel 
transform  of the logarithm ic moment generating function of a probability measure 

on a Banach space. A variety of properties relating the  probability measure and 

its entropy are proven. It is shown th a t the entropy of a large class of stochastic 

processes can be approxim ated by the entropies of the finite - dimensional distri
butions of the process. For several types of measures we find explicit formulas for 

the entropy, for example for stochastic processes w ith independent increments and 

for Gaussian processes. For the entropy of Markov chains, evaluated at the obser

vations of the process, we prove a central lim it theorem . Theorems relating weak 

convergence of probability measures on a finite dimensional space and pointwise 

convergence of their entropies are developed and then used to give a new proof of 

Donsker’s theorem . Finally the use of entropy in statistics is discussed. We show 

the connection between entropy and Kullback’s m inim um  discrimination informa

tion. A central lim it theorem  yields a test for the independence of a sequence of 

observations.
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Chapter 0 

Introduction

In the 1930’s Harold Cram er became interested in the following question : Given 

a sequence of independent and identically distributed random  variables 

w ith E X \  =  0 and V a r X i  =  1 we know from the law of large numbers th a t 

n —> 0 in probability. W hat can be said about the rate  of convergence?

If the random  variable X i  has a finite moment generating function, then a 

simple calculation using Chebyshev’s inequality shows the following :

P  ^  Ai > =  P  ^exp[A l ^  Ai] >  exp[Aæ])

<  P e x p [ A l S t i ^ i ]  _  { E e i ^ ^ y
~  exp[Ax]

=  exp (Ax — rzlogFJc"^^)}

for all A, z  >  0. Taking the infimum over all A > 0 on the right hand side gives 

P  ^  X i  >  <  exp sup ^Az — rzlog |

=  exp

or

— log P  ^  At >  <  —I{x)



where

I{x)  =  sup I  Ax — log I
A>o ^

and so we find th a t the convergence in probability is exponentially fast.

It is easy to show th a t the sup in the definition of I  above can be taken over all 

A 6  P , see for example Deuschel and Stroock [2], Lemma 1.2.3 i, and so we are led 
to  the definition of the entropy of a probability measure on the real line :

Let G P (P ) ,  X Ci R,  then

A*(x) =  sup I  Ax — log J  : A €

This functional is also called the large deviation rate function or the Legendre 

- Fenchel transform  of the log moment generating function.

In this dissertation we provide an indepth study of the entropy of probability 

measures in Banach spaces.
Entropies arise not only in large deviation theory as described above bu t also

in statistics as the Kullback’s m inim um  discrim ination information, in signaling
theory and in other fields.

In C hapter 1 we define the entropy of a probability measure on a Banach space as 
the  convex-conjugate or Legendre-Fenchel transform  of the log moment generating 

function of the measure. We prove a variety of properties of the entropy, such as 

convexity, lower-semicontinuity, non-negativity and th a t it is zero at the mean of 

the  measure. We also prove th a t the entropy is additive for independent measures, 

th a t is, if / ,̂ 7/ G P ( P )  are independent, x ,y  G E  then

+  ^2(3/)

This property will be used extensively in later Chapters.

In C hapter 2 we establish the connection between entropy and relative entropy 

defined as follows: For //, 7/ G V {E )  the relative entropy of i/ w ith respect to  is 

defined by

H(u\/i) =  { - f e / lo g /d / i  if 1/ < < /J  and /  =
GO otherwise



Using techniques from large deviation theory we show th a t

A*(x) =  inf 1 / 7(7/ 1//) : i / £ V { E )   ̂ =  x |

This identity  gives an alternative m ethod of com puting the entropy A*, or a t least 

an upper bound.

In C hapter 3 we tu rn  to the study of the entropy of measures on R^. First 

we prove a series of structure theorems, showing a strong connection between the 

support of the m easure and the set of values for which the entropy is finite. A useful 

inequality between the entropy of a measure and the entropies of its marginals is 

established. Finally a theorem  is proven relating weak convergence of measures 

w ith pointwise convergence of the entropies. The completeness of these theorems 

is shown w ith some counterexamples.
In C hapter 4 we show th a t the entropy of a stochastic process with sample paths 

in the space of right continuous functions with left hand limits can be approxim ated 

by the entropies of the finite-dimensional distributions of the process. As examples 

we use this approxim ation to find the entropy of Brownian m otion and of the 

Poisson process. This approximation can also be used to estim ate the entropy of a 

process from a finite num ber of observations.
In C hapter 5 we use the approximation from C hapter 4 to give a new proof 

of Donsker’s theorem , namely th a t if { A n } ^ i is a sequence of independent and 

identically d istributed random  variables with mean 0 and variance 1 and if

1 [”7]

then

Sn B

where B is standard Brownian Motion.

In C hapter 6 we tu rn  to  the study of entropies of Caussian processes. We show 

the connection between the entropy of a Caussian process and the eigenvalues 

and eigenfunctions of the covariance function of the process, and also between the



entropy and the norm  of the reproducing kernel H ilbert space of the covariance 

function.
In C hapter 7 we consider the entropy of finite-state Markov processes. An 

explicit formula is found for two-state chains and a central lim it theorem  is proven 

for n -state chains.
In C hapter 8 we will study the usefulness of the entropy in statistics. We will 

show the close connection between entropy and Kullback’s m inim um  discrim ination 

inform ation. We will derive a nonparam etric test for a distribution on a finite 

s ta te  space, and finally we will develop a test for independence in a sequence of 

observations.



Chapter 1

Entropy

In this Chapter we will define the entropy of a probability m easure on a Banach 

space as the complex-conjugate of the  log moment generating function of the  prob

ability measure. We will sta te  some results from the theory of convex functions 

and use these to derive several im portant properties of the entropy.

Let (E , p) be a separable Banach space w ith m etric p induced by the norm, and 
let p G V{E)^  the space of probability measures on E. We will denote by (A,x) the 

natu ra l pairing of the Banach space E  and its dual E*. The log moment generating 

function of p is defined by

A^(A) =  \og j^eyjp[{\ , t )]p{dt) X e  E* 

Throughout this dissertation we will assume th a t

0 <  J^exp[a \\ t \\]p(dt) < 0 0  Va >  0

and we will denote the space of all probability measures on E  satisfying this con

dition by 'P (E ). Note th a t this assum ption also implies A^(A) <  00 because by the 

Schwartz inequality:

|{ A ,^ > |< | |A | | . |U | |  y t e E  v a g e *

Let L{E)  be the  class of lower-semicontinuous and convex functions on E.



D efin itio n  1.1 Let /  G L{E*).  Then the Legendre-Fenchel transform  T L F  : 

L{E*)  I— >- L (E )  is defined by :

r { x )  : = T L F { f ) { x )  = sup { { X , x ) - f { \ )  : X £ E*} x £ E

N o te
f*  is also called the convex-conjugate of / .  The Legendre-Fenchel transform  

has been studied extensively in the theory of convex functions, especially for the 

case of d-dimensional Euclidean space. For further information, see Rockafellar [9].

L em m a 1.1 We will need the following properties o f  the Legendre-Fenchel trans

form:

1. Let f , g E  L{E*) with f  > g . Then f* < g*.

2. Let { / n , / }  Ç L{E*) and f n ~ ^ f  pointwise. Then

l i^ m f  y%(x) >  f*{x)  ' ix  £ E

that is, f*  is lower-semicontinous, or l.s.c.

3. I f  f  is not identically infinite, then

f{X) = s n p { { X ,x )  -  f*{x)  : X £ E ]  

fo r  all X £ E * . In other words, {f*)* = f .

P roof.

1. Let A G E*. Then

/(A ) >  ^(A)

=> ( A ,x ) - / ( A )  <  (A ,x > -^ (A )

=> f*{x)  < g*{x)



2.

=  Im in f  sup {(A, x) —/„(A) : X £ E*} 

> ln n in f{ (A ,x ) -A (A )}  VA G E* 

=  ( A ,x ) - / ( A )  VA G E*

3. See Deuschel, Stroock, Theorem  2.2.15 [2].

□

Now we can define the entropy of //, A*, as the Legendre-Fenchel transform  of 

the  log m om ent generating function of the measure :

A* : E  I— > [0, g o ]

and
A%(x) :=  T L F(A ^)(x) =  sup {(A,x) -  A^(A); A G E*}

L e m m a  1 .2  V z/ G P (E )  we have

1 . I f  we let S  = {x £ E  : A*(x) <  g o } ,  then S  is convex.

2 . a ;  >  0 .

3. A* is l.s.c and convex.

4 . fE tp{d t)  = x  => A*(x) =  0.

5. A*(x) =  A*(x) Vx G E  4 = ^  p  =  p.

P roof.

1. Assume x , y  £ S  , a  G (0 ,1) and 2: =  a x  +  (1 — a)y.  Then

A*(z) =  sup{(A,z) - lo g ^ e x p [(A ,< )]/i(d ()  : X £ E*}

=  sup{a(A, x) — a  log J  exp[(A, ^)]/i(d^)



+  (1 -  a){A,î/) -  (1 -  a )lo g ^ex p [(A ,^ )]//(d ^ ) : X £ E*}

< a A l ( x ) (1 -  a )A l (y )  < oo

and so 2T G  5.

2.
A*(x) >  (0 ,x> -  lo g ^ e (° '^ )/z (a )  =  0

3. Assume lim^^oo || x„ — x ||=  0 w ith x  £ E .  Then for each X £ E*

= (A,x) — log J^exp[(A ,t)]//(d t) VA G  E

Hence

^lim A;(a;„) >  A%(z)

The convexity of A* follows from an application of Holder’s inequality.

4. By Jensen’s inequality we have

(A,x) -  log ^  ^  (A, a;) -  J^{X,t )p(dt)

= (A, a:) — {X, J^ tp (d t ) )  = 0

5. ” => ” By Lemma 1.1 we have

A^(A) =  AX A) V A G E"

” 4=” Trivial.

□



It will be convenient to  define the entropy of a random  variable on the Banach 

space E.  Let % be a random  variable on E,  and assume th a t p  is the law of X .  
Then we can define the entropy of X  as the entropy of its law p  ;

Next we will show th a t the entropy is additive for independent random  variables. 

This property will play a central role throughout this dissertation :

L e m m a  1.3 Let X, Y  he independent random variables on E .  Then for  x,y £ E

A (x ,r ) ( ( ^ î  2/)) — A x ( ^ )  T  A y(?/)

P ro o f .

From the independence of X  and Y  it follows th a t

£ [ex p ({ (A ,,A ,) ,(X ,r)))]  =  £[exp((A „A :))] • E [exp ((A „y))]

and so

sup{((A i,A 2) , K 2/) ) - lo g E [e x p (( (A i,A 2) ,(X ,y ) ) ) ]  :

=  sup{(A i,x ) - lo g E [ex p ((A i,X ))]}  + su p { (A 2, 2/) -  log jF[exp((A2, F ))]}

□

E x a m p le  1 .1  As a first example of entropies we will com pute the entropy of a 

d-dimensional normal random  vector. Let X  be norm al w ith mean vector m  £ E f  

and covariance m atrix  E £ . We assume X  to be nondegenerate, i.e. E is

positive definite. Hence there exists a unitary  m atrix  A  such th a t

A E A ^  = D  =
f

0

( 0

0 0 > 

0

AI y



where Aj, • • •, Â  are the eigenvalues of E. The Banach space pairing is now the 

scalar inner product, and so

(A,%) =  A'X =  X A ^ A X  = { A \ A X )

and A X  is a m ultivariate normal random  vector w ith mean A m  and covariance 

m atrix  Z), i.e. independent components. Hence

£[exp{(A ,X )}] =  E [exp{^(A A ),(A % ),}]
Î=1

=  n  JE[exp{(AA)i(AX).}]
Î=1

Because A  has full rank, we have

{AA ; A e R f ]  =  if'

and so
sup{(A,x) — logF[exp{A 'X }]; A G

d
=  sup{(AA, A X ) -  g lo g E [ex p {(A A ),(A X ),} ]; AA €  if '}

i=l

i=i

So we see th a t it suffices to  find the entropy of a normal random  variable on B}. 

Suppose Y  N { m ,  <r̂ ). Then

Ay(î/) =  s u p j t î /— logE[e*^] : t £  R ]  = s\ip{ty — t m : t £ R ] .  

^ { t y  — trn — = y — m  — cr^t = 0

10



and so

Note th a t {AX ) i  ~  N {{A m )i ,X - )  and so we get :

A x(^) =  =  ^[A (x -  m ) f D  ^A(x  -  m)

=  i ( x  — m ) ^ A ^ D ~ ^ A ( x  — m) = i ( x  — m )^ E “ ^(x — m)

E x a m p le  1.2 As a second example we will com pute the entropy of standard  Brow

nian motion. By W iener’s theorem  there exists a unique m easure VV on

0  =  {6> €  C([0, oo);R '') : 0(0) =  0 and  ^lim i l f i l  = 0 }

w ith the  property th a t

r fo o  roo
Aw(A) =  log[ J  exp[(A, x)]W (dx)] =  1/2 y j  s A t  X{ds) • X(dt) A G 0*

In the  following we will consider only those A G 0* which are non-atomic and have 
com pact support. These are dense in 0* and so the  suprem um  will be the same. 

Let be the  space of functions x G 0  with the  property th a t

x(^) =  J  x{s)ds y t  > 0

where x G and = i>^([0, oo); Note th a t

roo roo roo
I I  s A t X{ds) ' X{dt) = I I A((^, oo))|

Jo Jo Jo

First assume th a t x G Then we get

roo roo
AJv(^) =  sup{y x(f)A((f, oo))d^ — 1 /2  J  |A((f, oo))| dt : A G 0*}

=  sup{(x ,(^)£,2 -  i  II (f\\l2 : ( p e L ‘̂ }

= 1/2 II â:||^2

11



Here the first equation holds because A G 0* with compact support implies A(*, oo) G

and because each <p £  gives rise to  a A G 0* by A(*, oo) =  (p.
Now assume th a t A ^ (x ) <  oo. Let y  G oo) and define A G 0* by

tp(t) = X(( t ,oo)) , t  > 0. Then

/oo
-  x{t)<p(t)dt -  1/2 II (p\\e2 = (A, x) -  Aw(A) <  A;^(x) 

and so there exists a unique x £ such th a t

J fo o  roo
' x{t)(f{t)dt  =  I x{t)if{t)dt.
0 * / 0

Hence x £ and we have

A. _  f
oo otherwise.

12



Chapter 2

Entropy and relative entropy

In this chapter we will introduce the concept of relative entropy and show its 

connection with the entropy as it was defined in the previous chapter. Assume 
th a t there is a signed measure A defined on E.  Further assume we have probability 

measures £ V { E )  such th a t /x <C A , z/ <C A and we let g , f  be the Radon- 
Nikodym derivatives of p, p, respectively, w ith respect to A. Then we define the

relative entropy of p  w ith respect to p, denoted by H{p  | p) as follows:

H {v  I /i) =  (I OO o t h e r w i s e

L em m a 2.1 V/x, i/ £ V { E )  we have

H{p  I /i) >  0 

with equality i f  and only i f  f  = g a.e. [A].

P ro o f .

If H{p  I //) =  oo , there is nothing to prove. So assume H (p  \ p) < oo , th a t is,

p p . Let h{t) — . Then

f { t )  log ^ ^ \ { d t )  = h{t) log h{t)p{dt)

13



Let (^{t) = t \ o g t , t  > 0 . Since 0 <  h(x)  < oo a.e. [p] , a Taylor series expansion 
of gives :

<p(h(x)) =  y?(l) 4- <p(l){h{x) — 1) 4- 2 ^ (& )(^ (^ ) “  1)^

where lies between h{x)  and 1 , which implies 0 <  (^ <  oo. Since y)(l) =

0 , ÿ ( l )  =  1 and (f(t) =  , we get

/  <p(h(x))p(dx) = f  { h { x ) - l ) p ( d x )  + ^  f  {h(x) -  i f  p{dx)
J E  J E  I  J E

and equality holds iff A =  ^ =  1 a.e. [A].
□

There is a variational formula for H  as shown in the next lemma;

L e m m a  2 .2  V p,p  £ V { E )  we have

H{p  I p) =  sup{ (fdp — log e'^dp ; : G Cb{E, R)}

P ro o f.

See Lemm a 3.2.13 in Deuschel & Stroock [2].

D e f in itio n  2 .1  We define the I-functional oî p on E  as follows:

7^(x) =  inf{ H{p \ p) \ 7/ G V { E ) ,  /  =  —  and = x}

Now we can prove the following relationship between entropy and relative en

tropy:

□

14



T h e o re m  2.1 Let E  be a separable Banach space and assume p £ V { E )  . Let 

X £ E .  Assume that Va £ [0, oo)

J  p{dt) < oo

Then we have :

K i ^ )  =

P ro o f .
The proof of this theorem  relies heavily on the theory of large deviations. Let 

f t  = E ^  w ith the  product topology. Next, for n G N  , we use Xn  : f t  '— > E  to  

denote the coordinate m ap . Let Sn = ^  Z)?=i • For p £ V ( E )  let P  = p ^
and let pn be the  distribution of Sn under P.  Now by a theorem  of Donsker and 

Varadhan, (Theorem  3.3.11 in Deuschel Sz Stroock [2],) we know th a t A* is a good 

ra te  function for the large deviations of {pn'j'Ti >  1}. B ut by Lemma 2.2.1 in 
Deuschel & Stroock [2] rate functions are unique, hence it suffices to show th a t 

is also a good rate  function th a t governs the large deviations of {pn ,n  >  1}. To 

this end let pn G V ( V { E ) )  be the distribution of Ln under where Ln is defined 

as follows:
1

a  = (cTi,.., (Tn) € E ” I— > Ln{cr) =  -  X /
^ i=i

Then by Sanov’s theorem . Theorem  3.2.17 in Deuschel & Stroock [2], //(•  | p)  is 

a good, convex ra te  function on P ( E )  and {pn : n >  0} satisfies the full large 

deviation principle w ith rate  function //(•  | p). Next define the m apping m : 

V { E )  I— >• E  by

m(p) — f  tp{dt)

In the next step we will construct an increasing sequence of closed sets Fl such 

th a t m is continuous on Ff, V T >  0 and we will use this to  prove th a t {pn^n >  1} 

satisfies the large deviation principle w ith ra te  function To this end define 

f : E ^ R + h y

f { x )  = sup {a  II X Ilf; -  log ^  exp [a || t \\E]p{dt) : a  >  0 }

15



and V iy >  0 let

Tz, =  {i/ e  V { E )  : j ^ f ( x ) u { d x )  < L}

Then by Lemma 3.3.8 and Lemma 3.3.9 in Deuschel & Stroock [2] we have th a t Vl 

is closed V T >  0 and th a t m  is continuous on V T >  0. By the  definition of 

the  measures {{inin >  0} we see th a t they are concentrated on elements of V {E )  

of the  form p = \  Z!r=i • For those we have for some Z >  0 :

/  f {x )v {d x )  =  <  L
J E n

Hence if we define Too =  Ul>o Fl we have

An(Foo) =  1

Let X i ,  X 2 , ... be i.i.d. p  , then f { X i ) ,  / ( X 2), ... is an i.i.d sequence of 
real-valued random  variables w ith law p  o / “ .̂ Now for t  £ R  and X  ^  p we get :

^f(X){t)  :=  log E[e^'B^)] < -  log(l - t )  0 < t  < 1

where the  inequality follows from Lemma 3.3.10 in Deuschel &: Stroock [2].

Because /  >  0, we have th a t A/(x) is finite in a neighborhood of 0. Hence by 

Lemm a 1.2.3 (ii) in Deuschel & Stroock [2]

A /(x)(^) —+ 00 as I X |—> 00

For f >  0 and using Chebyshev’s inequality w ith the  exponential function we 

get:

i = l ^
Using the  independence of the % /s  we get

- l o g P { - J 2 f ( X i ) > L )
^ ^ t=l

<  — sup{tL  — lo g E[exp{t f{Xi)]  :  ̂ >  0}

16



for L  big enough so th a t the  sup over is the same as the  sup over R  by Lemma 

1.2.3 in Deuschel & Stroock [2], where the last equality follows from the fact tha t 

f  >  0. So now we have
1

lim sup -  log/in ( r^ )
n —*-oo n

=  lim sup -  log P { -  f i ^ i )  > L}
n —*oo Tl n

Now, there exists a sequence { m n } ^ i Q C{V{E) ,  E)  such th a t rrin |r„ =  kn* 
{pn in  >  0} satisfies the large deviation principle w ith ra te  function H, and so:

- i n f  Zf(- I p) < l im s u p - lo g / tn ( r^ )  <  -A }(x)(Z )
i 2, n-*-oo Tl

=> H ( i ^ \ n )  > ^}^x){L)  V z / e r i

We want to  apply Lemm a 2.1.4 in Deuschel Sz Stroock [2] to  prove our assertion. 

To this end, we need the  following :

Jirn sup { p{mn{p) ,m{p))  : u G V{E) ,  and H { p \ p)  <  L}

= J irn s u p  { p(mn{p) ,m(p) )  : p £  and H{u \ p) < L}

=  0 V Z  >  0

The first equation follows from the choice of nin because nin |r„ =  |r„ implies

p{mn{p)^m{p))  =  0 for p £ Fn- The second equation holds because p  £ implies

A}(x)(«) <  E ( i /  \ ti) < L

Since > oo as n —» oo the set eventually becomes em pty for a finite n.

We also have th a t

17



lim  lim su p ilo g /(n ({ z / € V { E )  : /o(mz,(i/), (m (i/)) >  6})
L —►oo n —.oo Tl

< lim lim sup — log/«n(r£) =  —oo V6 >  0
L—►oo n —̂ oo Tl

So the  conditions of Lemma 2.1.4 are satisfied and we get th a t 
{fjLnOm~^ ; n >  1} satisfies the large deviation principle w ith rate function /^. But

Î=1 Î=1

and so pn o m~^ = pn and we get th a t

A/2 — I rL

□

E x a m p le  2 .1  In this example we will use the /-functional described in the above 

theorem  to  find the entropy of a normal random  variable on R  w ith m ean m  and 

variance . T hat is we have to  find

inf{y  f { t ) l o g ^ ^ d t ;  J  f { t )d t  = l , J  t ■ f { t )d t  = x , f  > 0 a.e.}

where

Let T  : C ^ { R )  i— > R  , where is the space of infinitely differentiable 

functions th a t vanish a t infinity, be defined by

m
9{i )

First we will find the G ateaux differential of T:

T { f )  = r  /(<) log
J —oo

dt

lim  l { r ( /  +  ark) -  T { f ) }  = E  [log ^  +  1]-
«-►0 a  J-CX) Q \ t )g(t)

18



So using Lagrange m ultipliers we get a necessary condition for the infimum:

J  [log +  1 +  Ax +  r] • 'tp{t)dt =  0

for all xp E Cg°{R) . Hence using ^ ’s close to point masses we get

log  ̂ - |- 1 -|- Ax -|- T =  0 Wt G R  
9(t)

or

f i t )  =  g(t )  ■ e (i+A=+r) =  - ^ = =  e x p { - ^ [ ( <  -  m)^ +  2<r^(l +  Ax +  r)]}  

e x p { - - i - ( i  -  (m  — A<t^))^} • exp{iA^<r^ -  Am -  r  — 1}
\ / 27r cr̂  2cr̂  2

B ut /  is the density of a random  variable w ith mean x, and so we get the following

conditions for A and r  :

—X^cr  ̂— Am — r  — 1 =  0 
2

m  — Xcr^ =  X

and then the infimum is atta ined  for /o, where fo is the  density of a normal random

variable w ith mean x and variance . So

fo[ t )  log

I roo
J  [(  ̂“  ~  ~  ]fo{t)dt

1 (x — m)^

E x a m p le  2.2 In many cases it is impossible to find a closed expression for A*, 

b u t it is relatively easy to  find upper bounds using the relative entropy. As an 

exam ple, consider the uniform distribution on the points {1, 2 , ..,n}  and let fi be 

the  measure associated w ith this distribution. Then

A ^A) =  -  è  X e R

19



Hence

A*(x) =  sup | ax — log(5^ +  logn  : A € i ? |

^  { Ax -  lo g ( Ê  e^‘ ) +  log „ }  =  X -  =  0

~  k)e^^ =  0
t= i

and th is equation in general can not be solved explicitly if n >  5. B ut if Y  has a 

d istribution on {1, ..,n }  , say P { Y  = k} = pk and if E Y  = x  , then denoting by v 

the  m easure associated with Y  we get

n

A*(x) <  H{p\p) =  logn  +  Ŷ Pk̂ ogpk
k—\

and any choice of {pfc}*=i w ith J2k=i Pk = and J2k=i k • pk = x  will give an upper 
bound for A*(x).

E x a m p le  2 .3  Let X ~  A^(0,1) and Y ^ N{x̂ cr'̂ ). Let H{Y\X) be the relative 

entropy of the  measures of X and Y . Then

A ^(x) <  H{Y I X )

=  -  l ) r ^  +  2x F  -  x^) -  log a]

= — 1) -  log <7

Taking the infimum over all cr we get

A%(z) <  tx ^

We already com puted A ^(x) =  |x ^  , so in this case the bound is sharp. We can 

also see th a t in some cases it suffices to take the infimum of H over a much smaller 

class of functions.

20



Chapter 3 

Entropy of measures on finite dimensional 

spaces

In this chapter we will study the entropy of random  variables on R^. Note th a t on 

R^  the natural Banach space pairing am ounts to  the inner product :

d
{A, x) =  A'x =  ^  \{Xi 

2 =  1

Throughout this chapter we assume th a t X  is a random  variable on R^^ th a t it

has law p and th a t <  oo Va >  0.
F irst we will study the relationship between the set of values for which the 

entropy A* is finite and the support of the m easure p, , th a t is, the set of all values 

X G R^  w ith the property th a t for any open set G  with x E G we have fJ^{G) > 0.

In the following we denote by the convex hull of the support of p.

L em m a 3 .1  I f  x ^ the closure o f  C^, then A*(x) =  oo

Proof.
By the Hahn-Banach theorem  there exists Aq E E* and a,n a E R  such th a t

(Ao, z )  <  a  V z  G Cfx

and

( A o , x )  >  a
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So we get

A ;(x) >  {n ■ Ao,x> -  log /
J Cfx

>  n - ( ( A o , x ) — a) —> oo as n  —> oo 

because p-{C^) =  0. Hence

A*(x) =  oo

□

Note th a t the  proof did not depened on the finite dim ensionality of the  space 

E.  So this lem m a is also true  in the  infinite-dimensional case. Let riCfi denote the 

interior of Cfj, relative to  the  smallest linear manifold on which fi is concentrated. 

Then we have the  following lemma:

L e m m a  3.2 I f  x E riC^, then A*(x) <  oo

P ro o f .

Let = { z  E  : (A,z) >  (A,x)}. Then

(A,x) -  log /

< ( A , x ) - l o g ^

<  (A, X> -  log{e<""':> . =  -  log{/,(FfA,.)}

Let = { x  E R^  : II X — 2/ II<  <̂} be an open set in R^. Then for

X  E riC^ 3 {ya}a€A and a <̂ >  0 such th a t p{{yaY )  > 0 Va E  A, and V A 6 

R̂  ̂ 3 a  E A  such th a t y a E H \ .  As a m a tte r of fact, in R^  we can find a finite A  

w ith the  above property, and so

> min{//({î/a}^) >  0 V A G

Hence

A%(x) <  SUp{-log//(ifA,a:)} <  CO

□
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Now we know th a t for points in the interior of the convex hull of the  support 

of the m easure the entropy is finite. We can also say something about where the 

suprem um  m ight be attained:

L e m m a  3 .3  Let {fJ>a}aeh where I  is some index set, he a collection of probability 
measures on , and let x  G R ^ . Assume that there exists a finite number o f  points 

«!?• * ■ In R^ and a S > 0 such that x lies in the interior o f  the convex hull of  
the a i ’s and, for  all t  G R^ and all â  ’s, we have

Pai iy  : t'y > t'üi}) > 6 > 0 .

Then there exists an L  > 0, independent o f  a,  with

=  s u p jf 'x - lo g ^ ^ e ^ 'V c .( c ? 2/) : |K|| <

P ro o f.
Let t E R^  w ith ||f || =  1. The assum ption th a t x  be in the interior of the convex 

hull of the  a* implies th a t t 'x < fa* for some i. Then

t 'x  -  log f e^'ypaidy)
JR^

< fX -  log /  e^'^paidy)
J  { y f  y > t ' a i }

< f ( x  -  a*) -  \ogpa{{y  : t 'y > fa*})

<  t \ x  — ai) — \og6

(rf) 'x  — log /  pa{dy) < r f ( x  — a*) — log 6 <  0
JR^

for r E R  big enough. Here the right side does not depend on a , and so r  does not 

depend on a.  Of course the  entropy is positive, and so all values of t th a t make the 

expression inside the suprem um  negative can be ignored. By the  above derivation 

th a t is true  for all t w ith ||^|| >  r.
□
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Let X  be a random  variable on By Lemma 1.1 we know th a t E X  =  m 

implies A ^(m ) =  0. Now we will show th a t in finite dimensions the converse is also 

true.

L e m m a  3 .4  Let X  = ( X i , X j )  he a random vector on and suppose A^^(m;fc) =

0. Then ( E X ) k  = mk

P ro o f .

F irst note th a t the  overall assum ption E[e°‘̂ ^^^ < oo Va >  0 implies the  exis

tence of E X  and th a t

E X  =  |,=(o,.,o)

Then Ax^{rnk) = 0

Let f >  0, then

trrik — log < 0  Wt E R

=> y t E  R

ptXk _  1 ptruk _  1

{ E X )k  > l«=o=

Analogously w ith f <  0 we get {E X )k  <  ruk, and so we have

□

R e m a rk

If A ^(m ) =  0 for some m  E R^, then E X  =  m.

In the next lem m a we show th a t this relationship between means of random  

variables and zeros of their entropies also holds for a sequence of random  variables 

whose means converge.
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L e m m a  3 .5  Let be a sequence o f  random variables on such that
f { x )  := lim„_^oo A^^(x) exists for  all x  6 R^, where infinity is admissible as a 

limit. Assume there exists an x  E R^ with

f { x )  =  0 and f { x )  > 0  Vx ^  x

Then

X n  :=  E[Xn] —>• X

P roof.
Using Jensen’s inequality w ith we see th a t the assum ption <  oo Va E

R  implies th a t E  || Xn  ||<  oo. Now let F =  {x : / ( x )  <  oo}, then  /  is continuous 
on F because it is lower semicontinuous and convex.

Next note th a t A^^(x„) =  0 Vn >  1 by Lemma 1.2 part 4. Now assume tha t 

X n 7A X . This implies th a t there exists a subsequence {n^;} and a ^ >  0 such tha t 

II ^nk — ^ ||>  ^ for all k > 1 . Let

m  =  in f{ /(x )  : X G F and  || x — x ||=  6 }

Then m >  0 by compactness and continuity, and using the convexity of /  we have 

f i ^ u k )  ^  for all k > 1. Note th a t this is trivially true if Xn, ,  ^  F. B ut now there 

exists an M  >  1 such th a t

m
>  Y  >  0 V m > M  

which is a contradiction to  A^^^(xnfc) =  0 V/: >  1.
□

In the next lem m a we will study the  relationship between the  entropy of a 

m easure and the entropy of its marginals. The inequality proven in the next lemma 

will also be true for measures on an infinite dimensional space and will be useful 

in C hapter 4 when we consider the entropy of stochastic processes.
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L e m m a  3 .6  Let be the k ’th marginal o f  p and let p i, ..,pd be positive numbers
with X  -j- J- =  1. ThenPi Pd

k=\

where x  =  ( x i , X j ) ^ .  We also have A*(x) >  A*(fe)(x^) fo r  all 1 < k < d. 

P ro o f .

For the  first part, let z =  ( z i , z ^ ) ^ .  Then using Holder’s inequality, we get

d
 ̂ "  Pfe/  exp[fz]//(dz) <  n ( /  e^p\pktkZk]y^^\dzk))^*

J R  t = i

=> t 'x  — log /  exp[f z]/i(dz)
JR^

> y ]  1̂ *̂ * -  — log f  exp[p*fz*]//(')(dz*)l 
i = l  I Pi dR J

=  y ]  — ( p ifx i  -  log /  exp[pifz*]//^*^(dzi)| 
i = l  P» ^

and the  first assertion follows by taking the sup over t on both  sides. The second 

follows from the  first if we let pk —*■ I, because then pj —> oo Vj ^  k.
□

The rest of this chapter will be devoted to the study of the relationship between 

weak convergence of measures and pointwise convergence of entropies.

L e m m a  3 .7  Let { p n ,y }  E V{R^)  and pn =>- p. Assume that x  € C^, the interior 

of  in R^. Then 3 N  > 1  such that x  € Vn >  N .

P ro o f .

X E 3 { y k } T = i  ; >  0 such th a t p d y k V )  >  e >  0 , 1 < k  < m  and x
lies in the  interior of the convex hull of the i/fc’s. But by the weak convergence of 

{pn}  and the Portm anteau lem m a we have

I m i n f //„({î/fe}^) >  P-dykY) > e > 0
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[VkY  € C 2„ n > J V  l < f c < m

□

In the  next lem m a we will show th a t our assum ptions on the measures are 

enough so th a t weak convergence implies convergence in mean of some functions of 

the  measures. This will be needed in the la ter theorems.

L e m m a  3 .8  Let G V{R^)  with pn => P- ip be a measurable function
such that there exists ^  >  0 with

ip{t)e~^^^^ —)• 0 as t ^  oo

boundedly and pointwise, and assume that our basic assumption holds for  all pnOip~^ 

and for  p  o ip~^, namely

exp (a  II t II) (pn o 'ip~^)(dt) <  oo Vn >  1

and
[  exp (a  II t II) {po ip  ^){dt) < oo

Then {pn o 'tp~^} is uniformly integrable and

f ^ i t )pn(d t)  f é{t)p{dt)
VRd JR^

P ro o f .

It suffices to  show this lem m a for ip{t) =  By Propositions 2.2 and 2.3, 

A ppendix 3 in in E thier, K urtz [4] it sufficies to  find an increasing convex function 

ip on [0 , oo) w ith —> oo as f —>• oo and

sup I p{\t\)pn{dt)  
n J

<  OO
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Let if{t) = w ith a  > j3. Then p  clearly fulfills the first three conditions. 

Let L >  0. By weak convergence and the usual approxim ation with continuous 

functions we have

<  J  = : C <  oo

Hence by the monotone convergence theorem  we get

lim sup f p{\t\)pn{dt) < 2C
n —*-oo J

<  OO

□

Note th a t with ÿ (f)  =  t  the  last lemma implies the  convergence of the  means 

and w ith it implies convergence of the m om ent generating functions.

T h e o re m  3.1 Let {//„,//} E V(R^)  and denote by the d-dimensional normal
random variable with mean vector 0 and covariance matrix cr^Id- Then i f  pn
we have

lim  lim A* * (x) =  A*(x) Vx E R"̂a-*0n-^OO / MV /

where pn * pa is the convolution of  pn and p̂ j 

P ro o f.

By the  previous lem m a rjn :=  f  zpn{dz)  —> /  zp(dz)  = : y. Let Xn ^  Pn and

Z(j ~  A^(0, cy^Id) w ith X„ independent of Vn >  1 , cr >  0. Note th a t

0 =  =  sup [t'yn -  : t E R"^}

^  t'Vn — Vf E R^

and so
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^nn*pÀd  =  logE[exp{f(X** -f Z„)}]

— log E[exp{f'Xn }] +  log E[exp{f'Z(x}]

=  A^„(f) H- Il t  11̂

^  l'Vn  +  2 ^ ^  Il ^ 11̂

where we also used the result of Example 1.1. Then

^  II ^  I I — )- o o  
II t  II "  "

We also see th a t is strictly  convex, and so there exists a unique tn,a E

such th a t for fixed x E R^

V {^ n ,< T  ^  =  X  —  ^ P n * P < r i ^ r i , a )  =  0

By weak convergence and Lemma 3.8 

and by strict convexity plus differentiability

Jim  =  V A ^ .,,(()  V <eÆ ''

Also by strict convexity the inverse function of denoted by (vA^n+Pa)”^

exists, is continuous and converges pointwise to the inverse function of vA^*p^, 

denoted by But

tn,a =  (VA/i„*p„.) (3?) (vA/i*p^) (^) =• l'a

as n ^  00 and V cr >  0. Hence

— ^ ~  Ap„*p^(f„,or)}
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  X  A p*p^(f<y) ---

Now

A ;.^ ,(x ) >  t 'x  -  K„{t) -  II « IP V t 6  O '

=J- l i^ n fA ; ,^ ^ (x )  >  A ;(x)

bu t |cr^ II t  |p >  0 and so

A ;,p ,(x ) <  A ;(x)

and we have

i!l% A ;.,,(x ) =  A%(x)

□

R e m a rk

The statem ent of the previous theorem  is not true  w ithout the  convolution with 

pa. As an example, consider pn = the point mass a t ^ on R.  Then pn 60, 

bu t

Ap„(0) =  su p { ~ — : t E R}  = 00  Vn > 1 

On the  other hand, AJ^(O) =  0 , and so

A L (0 ) 74 A;^(0)

T h e o re m  3 .2  Let {pn, p} E V{R^)  with pn p. Let x  E R"̂  be such that x  ^  SC^, 

the boundary o f  C^. Then

A%(x) as n - ^  00

P ro o f .

If X 0  Cp, then A*(x) =  00 . But also 3A E a E R  such th a t

p[Hx)  =  1
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where H \  = {z  E : A'z < a < A'x} is an open set, and by the Portm onteau 
lem m a the weak convergence implies th a t

lim sup //„({z  : A'z >  a}) <  p{H^)  =  0
n-*-oo

Now for any m  >  1
( m \ ) ' x  -  log

=  mX'x  — log fin(dz) + fi„(dz)j

> m V x -  log

^ ,, t f IliTW fH‘ ‘ g ^ d z )
> m X x - m a - \ o g { M H x ) )  e”»>„(gA)

because by Taylor’s theorem

log(x y) = log X <  log x +  ^

where (  lies between x and x T  y. Pick M  > 0. Then there exists m >  1 such th a t

m(A'x — a) > 2 M

and there exists #  >  1 such th a t for all n >  #

Jhc e^^'^pn(dz)
  ------- 777^----  <  Af

e---pn{Rx)

This is possible because fjjc pn(dz)  —̂ 0 as n —)■ oo by weak convergence.

A ;„(x) > M  V n > N

B ut M  was arbitrary, and so A*^(x) -4̂  oo as n oo.

So now assume x E (7°. This means there exist «!,•••,«„*  and 6 >  0 such

th a t X lies in the  interior of the  convex hull of the ads and for all t E R^  we have
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p{{y  : t'y > t 'ai}) >  By the weak convergence and the  Portm anteau lem m a we 

have

lim inf Pn{{y : t*y > cli)  > hn —koo

Hence by Lemm a 3.3 we know there exists N  > 1 and an L >  0 such th a t

=  £ x  -  lo g ^ ^  e*'’'«fx„(dy) ||<„|| <  L 

then  there exists a convergent subsequence —> to such th a t

lim sup (x) =  lim sup ( C ^ x -  log f  (dy) \
k—>-oo k—>-oo L J J

=  I'qX -  log J^^e*°^p{dy) < A%(x)

where the  convergence of the moment generating functions follows from Lemma 

3.8. The opposite inequality follows from the usual estim ate with the sup and so 

the  theorem  is proven.
□

L e m m a  3 .9  Let {pn}  C V{R^)  and define

f i x )  =  lim  inf A* (x) Vx G R^
 ̂ '  n-*-oo /

I f  there exists a hounded set F Ç R^ such that f { x )  = 0 Vx G F and f { x )  > 0 Vx ^  

F, then {pn} is tight.

Proof.
First we note th a t as the lim inf of convex functions, /  is convex, and because 

F is bounded, we have by convexity / ( x )  -4> co as || x ||-4> oo. Denote by plf^ the 

m arginal of //„. Then for x G F

0 <  /<*'>(x*:) =  liinm f A’ (a)(x*,) <  lm m fA ;^ (x )  = f ( x )  = 0 

=> / ^ ( x * )  =  0 V x  €  r  ; l < f c < < i
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Next we will show th a t -4  oo as | x |-4  oo. Assume this is wrong. Then

w ithout loss of generality there exists a sequence {xm}m=i w ith Xm ^  00  such th a t 
< M  < 0 0 . Then

lim inf A* (fc)(x) <  M  Vxq < x  <  XmM—*00 An

where xq =  Xk for some x G T and Vm >  1. T hat means there exists a subsequence 

{rij} such th a t

A^(fc)(x) <  2 M  Vxo < X < X m V j  > J.

fx — log £'[exp{fX^^^}] <  2 M

Vxo <  X <  x*n, Vj >  J, Vf G R .  B ut Xm  - 4  OO, and so

E[exp{(%M}] =  oo

Vf >  0 and j  > J .  B ut by our overall assum ption E[e*'^] <  oo, so using f =  

(0 ,.., 0, fA:, 0.., 0)^ w ith tk > 0 we get a contradiction. Next we will show th a t all 
th e  moment generating functions of the  marginals are bounded uniformly in n  on 

a neighborhood of 0 : f i ^ \ x )  —4 oo as | x |—4 oo implies th a t there exists an x >  0 

such th a t / ( x )  >  3. Hence there exists an N  such th a t Vn > N  A*^(x) >  2, and 

th a t means there exist a such th a t

tnX — log ]̂ >  1

N ote th a t lim inf^-f fn ^  0 because

1 <  L x  -  lo g £ [e ‘"^"*’]x -  log£;[e‘”^"‘’] <  £ ( x  -  £[X<*>])

33



Now let t =  liminfn-.^ fn- By Lemma 1.2.3 in Deuschel &: Stroock [2] we know th a t 

f >  0. Let 0 <  f <  f . Then f /f  >  1, and w ith Jensen’s inequality we get

<  oo

Vf € (0, f ) and Vn >  N .  Using x <  0, we can get the  same result for —6  <  f <  0 

and so the claim  is proven. Now we are in a  position to  prove the tightness of the 

marginals {//^)}. Using Chebyshev’s inequality w ith the exponential function we 

get

çt\R

for some fi >  0 and

^ - t2R -

for some f2 <  0.

^  lim supf,W ([-A ,A ]'= ) <  ^ 0
n —*-oo

as R  —̂ oo. This proves the  tightness of for I < k < d, and the tightness of

{pn}  follows by E thier, K urtz [4].
□

E x a m p le  3.1 Let //„ be the law of a bivariate normal w ith mean 0 and covariance 

m atrix
’’ n 1 

1 1
E =

Then using exam ple 1.1 we get

V (x ,y)^  with X =  0. Here of course {pn}  is not tight and the  conditions of the 

lem m a are not fulfilled.
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T h e o re m  3 .3  Let {pn}^=i Q and assume that the limit f { x )  =  lim** A*^(x)
exists. Here infinity is allowed as a limit. Assume there exists x E R^ with f ( x )  =  0 

and f { x )  > 0  Vx ^  x.  Then there exists a p E ^ { R ^ )  such that f { x )  =  A*(x) Vx E 

and pn => p.

P ro o f .

As the lim it of convex functions, /  is convex, and the  assum ptions imply th a t 

f { x )  —)■ oo as II X |(—4 oo. Hence by Lemma 3.6, {pn}  is tight. T h a t means we can 

find a convergent subsequence, say { p u d  w ith => p for some p E Let

pa = # ( 0 ,  cr^L). Then by Theorem  1.1:

B ut limfc_^oo A*^^(x) =  / ( x )  and so we have / ( x )  =  A*(x). 

If {pnj}  is another subsequence w ith pnj => f/, then

A ;(x) =  f ( x )  =  A :(x) Vx e  A" 

and so p — 1/, and the theorem  is proven.
□

E x a m p le  3 .2  Let X , X i, X 2, .. be independent and identically d istribu ted  real val

ued random  variables with m ean m. Let Sn = ^  ^k= i  Then

and so

|A x  — l o g =  n • X — l o g V X e R  

^  ^ S n ( ^ )  ~  ^  ' A ^ (x )  -4 Ag^(x)

where

=  {  1  otherwise

=> — y ^ .X k  => Sm
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In the next exam ple we will prove the central lim it theorem  for independent 

and identically d istributed  random  variables.

E x a m p le  3 .3  Let X ,X i ,X 2, be independent and identically d istribu ted  real 

valued random  variables w ith m ean 0 and variance 1, and let

Sn =

Then

A5n(0 =  lo g E [ e ^ ^ * = i^ ’]

=  n lo g E [e '^ ^ ]  =  n '
y/n

Note : Ax(0) =  0, A % ( 0 )  =  E X  =  0 and A%(0) =  E X ^  =  1. Then by Taylor’s 

theorem  we have

Let Za be a normal random  variable w ith mean 0, variance cr ,̂ and independent 

of the X*’s. Then

=  sup j t x  -  j

>
n-

=  t x  — z= t x  — 4- l)f^

for all t E R,  and so taking the sup over t E R  on the right side gives

i l ls ,  ^

To proof the inequality in the  opposite direction, we need to use Lemma 3.3 for 

Sn-\- Za. F irst we need to  show th a t Sn can be both  positive and negative for all n\
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For X  we know th a t E X  = 0 and V a r X  =  1. Therefore there  exists an ei >  0 
and a p >  0 such th a t P { X  >  ci) =  p. Then by independence we get

P{Sn  >  ei>/n) =  >  cin)
2 =  1

>  P ( X i  > Ci, • • • , Xn ^  Cl) = > 0

Analogously there is an 62 >  0 and a ç >  0 such th a t P ( X  < —C2) = q > 0 and

P { S n  ^ — C2 \ / n )  ^  ç” > 0

This first of all implies th a t AJ^(x) <  00 for all x G i? and n  big enough. It also

implies th a t for all x G R and cr >  0 there is a p*̂  > 0  such th a t P{Sn A  >

a; T  1) >  Pa and a >  0 such th a t P{Sn A  Z„ < x  — 1) > q^, where and q^ do 
not depend on n. Hence we can use the last lemma, and we get th a t there exists 

an La > 0 , independent of n, such th a t

A L + z ,(x ) =  • X -

Now any bounded sequence has a convergent subsequence, say tnk,a fa, and 
so again using Taylor’s theorem  we get

1 1 7»2
=  t , X  -  -(<T  ̂ +  l ) t l  <

2 ' '  '  -  2 0-2 +  1 

bu t the  right hand side is independent of the  choice of subsequence, and so we have

2(72 +  1
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for all cr >  0. Therefore we see th a t as a function of cr linv_oo is right-

continuous a t 0 and so
Jh n  AJ„(x) 

i™ , A;^+% (x)

Vx € R.  Hence it follows from the last theorem  th a t
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Chapter 4

Approximation theorems

In this chapter we will show th a t for a large class of continuous tim e stochastic 

processes there is an approxim ation of their entropies in term s of the  entropies of 

their finite - dimensional distributions.

We will denote by Dr[0 , T] the space of right - continuous functions from [0, T] 

into R  having left lim its, and we endow this space w ith th e  Skorohod topology. 

Then Dr[0,T]  is not a Banach space, but this will not m atte r in the following.

F irst we will find the  dual of Dr[0,T].  Obviously, Cr[0,T]  C Z>h[0,T], where 
Cr[0, T] is the space of continuous functions from [0, T] into R  w ith the  sup-norm. 

T he pairing (z ,x ) defines a bounded linear functional on Cr[0,T]  and by the 

Riesz Representation Theorem  we know th a t every bounded linear functional y  

on Cr[0 , T] is of the form

f T
y(x) =  ii ,̂x)c„[o,T] =  J x(t)di^(t)

where x  E C r [0,T] and p is a regular complex Borel m easure w ith || y  || =  

|/i|([0 ,T ]). Here \p\ is the to ta l variation of p.
Noting th a t every bounded linear functional is continuous, we can extend this 

representation to  D r [0,T]: If x E D r [0,T], then there exists a  sequence {x^} € 

Cr [0,T] such th a t Xn{t) <  x(f) Vf E [0,T],Vn >  1 and || x,* — x ||-4  0. Then

f T  r T
y (x ) =  lim y(xn) =  /  x„(f)p(df) =  /  x{t)p{dt)n—*̂oo Jq Jq

by Lebesgue’s dom inated convergence theorem .
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Next we will investigate w hat kind of measures p  can arise in this way. F irst 

note th a t y  is assumed to  be real-valued. Let 0 <  a <  6 <  T. Then the indicator 

function I[a^) G D r [0,T] and

=  / '( [“ >*')) 6  A

B ut intervals of th e  form [a, b) are dense in the Borel sets of [0, T], and so p  has to 

be real-valued.

Denote by I [ a ,T ]  the  indicator function of the  interval [a, T], then  I [ a ,T \  E -Dh[0, T] 
for all a >  0. Now bounded linear operators are continuous, and so

fT
=  lim / pidi)  =  l i m p ( [ a h , T ] )  

h ioJa+ h^  ^

-r

because I [ a + h , T ]  —̂ ^[a,T] E D,  and so p has no atom  at a.
From this it follows th a t A(f) :=  //([O, f]) is continuous. Therefore the  dual of 

Di?[0,T] is contained in C r [ 0 , T ]  and

(A,x) =  [  x{ t )d \{ t )  
Jo

w ith X  G D r [ 0 , T ]  and A G C r [ 0 , T ] .  Note th a t A is also of bounded variation 

because p  has a finite to ta l variation. In the  following we will denote the space of 

real-valued continuous functions of bounded variation on [0, T] by C B r [ 0 , T ] .

Now define iTnT • % [0 ,  T] i— > by

T̂ nTX :=  (^x(-), . . . ,x ( i ^ ^ ) ^
\  n n y

w ith X  G D r [ 0 , T ] .  W ith these prelim inaries we get:

A ^y(x) =  sup I J  x{ t )d \{ t )  — log E  [exp {J  X{t)dX{t)}]  : A G C R h [0 ,T ] |
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and

H n T ]  [nT]
=  sup^]^(xnT a;)fcA ;k-logF;[exp{5^(7rnT X )A :A jt}]  : A €

{ A:=l A:=l

r w  , M  . )
=  s u p ^ E  *(-)A/i -  log £ [ex p {^  %(-)At}] : A € \

^  k = l  ^  }

L e m m a  4 .1  V n >  1;

0 <  K„Txi'^nTX) <  A ij ,(x )

P ro o f .

We always have A* >  0.

A ; „ ^ x ( ’T n Tx)

=  sup j  y  x ( t ) d \ { t ) — log E [ e x p { J  AT(<)ciA(<)}] : A =  7 !  t)

<  A ^ ^ ( x )

where the sup is taken over all a  €  because every continuous function can

be approxim ated by step functions.
□

T h e o re m  4.1 Vx G D r [0,T] we have

il™ A;__^x(’̂ nTX) =  A J^(x)

P ro o f .

F irst note th a t if A G C B r [0, T] and if we let

[nT]J 1c /  h — 1 '
£ W - g x ( ^ ) ( A ( ^ ) - A ( V )

then
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f  [ " U  L  L  L  _  1 1
e x p { /„ (X )}  <  e x p | E  I AT(-) 1 • | A (-)  -  A( — ( |

<  exp{ || % Il - Il A 11}

So with our basic assum ption and the dom inated convergence theorem  we have

Jim

F irst assume th a t A ^^(x) =  oo. Then there exists a sequence {A^} Ç CBp\f),T]  

such th a t

x(f)dA ^(f) — logFJ[exp{j^ X ( i ) d X m ( t ) } ]  — oo 

as m ^  oo. Let K  > 0, then  there exists M  > 1 such th a t for all m  >  M

x{t)dXm{t)—logE[exp{J^ X { t ) d X m { t ) } ]  >  2K

and there exists N  > 1 such th a t for all n >  X

>  K

B ut K  was arbitrary, and so

=  oo

Now assume A ^^(x) = L  < oo. Let e >  0, then there exists A G C B r [ 0 , T]  such 

th a t

J  x(f)dA(f) — log E [ex p { y  X(f)dA(f)}] > L

Then there exists X  >  1 such th a t for all n >  X

— e

k - i
n

) - l o g E
h. /  L ^ _  1 \

e x p { g < ) ( A ( ^ ) - A ( V ) ) l

> L - 2 e
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Al^^xi '^nTx) > L - 2 e

and using Lemma 4.1 we get

I lS L ^ k rx i ' ^ r .T x )  = L  =  A ^^(x)

□

E x a m p le  4.1 In this exam ple we will use the technique of the  last theorem  to 

find the  entropy of Brownian m otion G [0, T]} w ith initial distribution

B (0) — 0 a.s. In this case TTnxB has a [nT] - dimensional normal d istribution with 

m ean vector 0 and covariance m atrix  E given by E*j =  ^  for i , j  = 1, • • •, [nT], or

( l 1 1 • . 1 \

1 2 2 • • 2

E =  -  
n

1 2 3 • • 3

, 1 2 3 • • [nT] )

By exam ple 1.1 we know th a t

K n r B i ' ^ n T x )  =  ^ (7 T , , t^ ) ^ E  ^(TTnTx)

E  ̂ is found to  be

E  ̂ =  n •

2 - 1  0 0 0 * •  * 0

- 1 2 - 1 0 0 •  •  • 0

0 - 1  2 - 1 0 * * * 0
1

. . . 0

0 ....................................... 0 - 1  2 - 1

0 • • • • • • 0 0 - 1 1
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and so we get

= ^ ( tTvT x Y

- x ( i )  +  2 x ( f ) - x ( f )

- z ( m)  +  2®(S) -  z(n)  

x ( t ^ )  +  2 x ( l 2 ^ ) - x ( I f l )

[nT]-l 7 [nT] 7 JL _  1 r„
2 E  -  2 E 4 - M ^ )  +

k=\ n k=i n n n

[nT]

=

x\

k=l n n

2 /(T if X exists a.e.2

oo otherwise

T h e o re m  4 .2  Let { X ( t ) ; t  €  [0,T]} he a time-homogeneous process with indepen

dent increments and assume %(0) =  0 a.s. Then

[nT]

^Tr„Txi'^nTx) — M 72 ^
Ar=l

P ro o f .

[nT]

^;[exp{y(7r„x^)}] =
k=l

exp{(A  ̂ \ ) k ( X { - ) - X { —-  ))}
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where A  is the [nT] x [nT] m atrix

A  =

f 1 0 0 0
- 1 1 0  0 
0 - 1 1 0

0 •  •  •

. . .  Q 

. . .  Q 

. . .  Q

. 0
- 1  1

Now

K r.rx (^nTx)

[nT]

=  sup < y  (TTnTx) -  ^  log E
t=l

exp{(A  ̂ ~ —- — ))}

[nT]

-

k=l
exp{(A   ̂ A)/.(X(—) —X ( —- — ))}

A G

: A G

( h k — I
=  sup S ^ (a :(-)  -  x {  )) -  log E

t= i I ^  ^
O e R

=  ^  72 • -  X { — -----) )  • ( - -----------  )
t= l n ' 72 72 72 72

□

E x a m p le  4.2 Let { N t \ t  >  0} be a Poisson process w ith ra te  function rj, i.e N  

has independent increm ents and N( t )  — N( s )  ~  P(v(^)  ~  v{^))^ a Poisson random  
variable w ith param eter r](t) — r](s). We will assume th a t rj is differentiable in [0, T]. 

Using the last theorem  and the fact th a t the log m om ent generating function of a 

Poisson random  variable X  w ith param eter s is given by

log =  s(e^ — 1)

45



and noting th a t — is a  Poisson random  variable w ith param eter r){ky 

V ( ^ )  we get

=  sup la w  — { v ( ~ ) ~ v { —~— ))(e* -  1) : or € i î j

B ut
A .
da

j o r u  -

=   - ) )e "  =  0n n

implies
1 uo: =  log

and so

^(A) -  v { ^ )n n

where u G R  and — v { ^ A )  ^  Then

K ^ r N i^ n T x )

5  .  ̂ k — l  k k — 1

Jq x(t) log ^l^dt — x{T)  +  t]{T)  if i  exists a.e. 

oo otherwise
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Assume th a t we have a process X  w ith independent increm ents as in the theorem  

above. Assume th a t A  is the generator of X  and th a t the function J\{x)  =  is 

in the  dom ain of A.  Then

l i m — ---------------------------/lio h

l i m Ehio

and
lo g E

lim --------hiO

h [

gA(Xp+/i)-Xp))

Hence it follows from the theorem s in this chapter th a t

A x^(x) >  { E [ e - ^ ^ ^ \ A h ) { X { t ) ) ] Y  {x(t))dt

if X exists a.e., and oo otherwise. If the interchange of lim  and sup can be justified, 

then  equality holds.

E x a m p le  4 .3  Consider s tandard  Brownian motion. Then (Ae^' ) (x)  

Hence

=  5 ^ '

A g^(x) >  sup |A x(1) --  |a ^  : A e  æ } dt

dt
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Chapter 5 

Donsker’s theorem

In this chapter we will use the  techniques developed in the  previous chapters to 

give a  new proof of a famous theorem  by Donsker. For a discussion of Donsker’s 

theorem  see D urrett [3].

T h e o re m  5.1 Let ' ' ' be a sequence of  independent and identically dis
tributed random variables on R  with mean 0 and variance 1 and assume that Xk  

has a moment generating function. Let

1 [nt]
Sn(t) = ^ j : x ,  

k= i

Then
Sn B

where B  is Brownian motion on R.

P ro o f .

We will use Theorem  7.2. and Theorem  7.8. in C hapter 3 of E thier, K urtz [4], 

T ha t is, we have to verify the  following two conditions:

1) The finite-dimensional distributions of Sn converge weakly to  those of B, 

th a t is there exists a D  C [0, oo) dense such th a t

{ S n { h ) ,  ' , S n ( t k ) )  { B { t i ) ,  • • • ,  B { t k ) )

for all finite collections {fi, • • •, fjt} C D.

4 8



2) The sequence {5n} is relatively com pact in Di?[0, oo).

Let D  =  { ( ^ ,  • • • Î ^ )  : A;, iV >  1 , 0 <  <  • • • <  jjt}- Then D  is a dense sub
set of [0, oo). For notational convenience only we will restrict ourselves to  SnN- 

Now fix Then

where

1 nji 1 njk

y /n N
M

Xo

\  ^njk f

M  =

1 0

1 0

V

where the  row of M  has a one in the  first nji  positions and zeroes thereafter. 

Let X £  and define x  G R^^’’ by

(^)* = {xi -  X/_i)
nji -  n j i - i

for n j i - i  < i < nji,  / =  1, • • •, A: where we set Zo =  0 and jo — 0. Then

M  - X  =  X

and

AJr»(x) =  sup — log E  : A G

njk
= sup  ̂ (M  A) X — log E

*=i
: AGi ? '
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{
n j k  r 1

rj^x — ^  log E  l̂ e

n j k  Ç r ^

=  ^ s u p  < axi  — lo g E  \ey^

Xi

aXi

k nji

T) e  72"̂ *

a  G i ? |

=  ]C 0* -  i t - i  ) sup I ^\ / Ï V^ -  n log E  
t=i I Ji — Ji - i

=  X )0* ~  ^*-1 ) sup I I ^ V N ^ _  log E  
i=l I Ji -  Ji-1

Ya=1

: OL ^  R

y 9 G i ? |

: / ? €  i î |

=  Z ( À - À - i ) A L m  [ A ' - r A )
1 = 1  \  J i  J i  \  /

and using Exam ple 3.3 we get

11» A W .)  .
î = l  N  N

Now • • •, -S (^ )  has a m ultivariate norm al distribution with m ean vector 0

and covariance m atrix  E with

S  =
N

 ̂ j l j l j l j l  • ■ i C

j l J2 J2 J2 • • js

j l J2 j s j s  • • js

Then

S - '  =  N

(  +  +3i 32—3\
1

j 2 - j l  

0
0

\  J l  32  J 3  3 a 3 k  )

3 2 — 31 

. 1 . _L 
J2 —j l  33  — j 2 3 3 — 32

3k—3 k - l  3k

0 
0

_1___
- j k - 1  J
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From Exam ple 1.1 we know th a t the entropy of a m ultivariate normal random  

variable w ith mean vector 0 and covariance E is given by

=  5  E  -  2 ^ - ^ x , X i _ i )  -
2 i - i  \  J i  — J i - l  J i + l  — J i  J i  — J i - 1  )  — J k - 1

  1 (^t  l )

"  2 &  •

and so we have

Jim  A J,(x ) <  

for all X Ç: . On the  other hand

AJ„(x) =  s u p { A ^ i - lo g £ '[ e ^ ’'®"] : A €  Æ*}

A

njk
=  sup < A z  — ^  log E

t = l
: X e R '

n j k

> A ^ x - ^ l o g E
2 = 1

k nj i

=  A ^ x - ^  E  lo g ^
î = l  l—n j i - i  +1

k

= X ^ x -  J2U i  -  j i -1  log E  
2 = 1

= -  J2 (ji ~  i*-l) log ^
2 =  1

for all X £ R^,  and again using Example 3.3 we get
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Jim  A J„(x) >  A^x -  g O 'i  -  Z

= A ^ x - Z O \ - À - i ) ^  (ZA.)

Taking the suprem um  on the right side we get

J im  AJ„(x) >  sup IA ^x  -  Z O 'i  -  ( Z  A
f  t = l  \ s = i

: X e R ^

=  s u p | a^ x - | Z ( T A ) ?  : A 6 / ? ' ' |  

=  sup |a ^ x  -  ^ A ^ r^ rA  ; A e i î * ’}

where

T  =
0
0 0

21
N \/ n ~ n

y / è  ~  N

y u

It is easy to  com pute T  =  E, and

/ i i _ i l
!  N N

h . _ h .
/  N N

2K _ 3 k -1
N N

so

and we can conclude th a t

J.im AJ„(æ) -

for all X  £ R ^ . Note th a t

1 ( x \  ^  {Xj  -  X j - i Y

2 V #  *=2 #  -  ^  .
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is equal to  0 if and only if a? =  0, and so using theorem  4.3 we get 

5" =  • • •, 5 „ ;v ( ^ ) )  { b ( ^ ) ,  ■ • •, B ( | ) )

as n —> OO, and so the first condition is fulfilled.

For the second condition we will use Theorem  8.8 in C hapter 3 of E thier-K urtz 
[4], th a t is, we will show th a t for all n >  1 and ^ >  0

£ f | 5 „ ( i  +  / î ) - 5 „ ( i ) p - | 5 „ ( < ) - 5 „ ( < - / î ) p l  <  16k"

F irst note th a t if ^ ^  then one of the two term s in the expectation is 0, and

the  inequality follows trivially. So now assume h > Then

E  -f- /i) — • |6'm(^) — Sn{t — h)\‘

= E
[nt]

Z  -\yÿ= Z  -A.
V  A:=[nf]+1 V l= [ n ( f —A )]+ l

=  E
1 L'tyt.-rtt/j

1 4  E  ^ .1
V  A:=[nt]+1

E
[nt]z

1 /  1 h(«+^)] \  /  1 [nt]< A 4 z ExA- i -^ z
A:=[nt]+1 k = \ n ( t -

{[n{t 4- h)] — [nt]) • {[nt] — [n{t — h)])

< [n{t 4- h)] — [n(f — h)]
n

Of course we have

and so we get

[n(f +  h)] < n{t 4- h) and [n{t — h)] > n{t — h) — 1
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[n{t +  h)] -  [n(f — A)] V
n

<  I A h) — n{t — h) A  _  ^ n h  +  l \  ^  ^^^^2

because h >  implies 1 <  2 nh,  and so the  theorem  is proven.
□
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Chapter 6

Entropy of Gaussian processes

In this chapter, we will study  the  entropy of Gaussian processes. We already 

com puted the entropy of Brownian m otion, and the techniques used, especially the 

approxim ation using the entropy of the  finite-dimensional d istributions, are still 

valid here.

We start by giving a  short introduction into the theory of Gaussian processes 

on the space D^[0, T], T  >  0. This exposition follows closely the  article by N. Jain  

and M. M arcus in Kuelbs [6].

A process { X { t ) , t  £  [0,T]} is called Gaussian if the finite-dim ensional vectors 

(A '(U), • • * ^X{tn))  have a normal d istribution for all finite collections U, • • •, fn € T. 
If the  m ean of the  vector is zero, than  is called a centered Gaussian process.

In the  following we will also assume th a t { X ( t ) , t  £  [0,T]} is square-integrable,

i.e. E X { t y  < oo, t  £  [0, T].

The m ean function m  and the  covariance function F of a Gaussian process are 

defined as follows :

m{t)  = E X { t )  , t  £ [0,T]

T{t ,s )  = E { X ( t )  — m ( t ) ) { X ( s )  — m(s))  , s , t  £  [0,T]

D efin itio n  6.1 Let T >  0. A real-valued function F on [0, T]  ̂is called a covariance 

kernel if

T (s , t )  = T ( t , s )
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and r  is nonnegative definite, i.e. given fi, • • •, fn and «i, • • •, E R

3̂ k

In the  rem ainder of this chapter we will assume th a t F is a continuous mapping 

from [0, T]^ —> R.  To the covariance kernel F we can a ttach  a H ilbert space H(T)  

of real-valued functions as follows : Let

On S  define an inner product by

E  •), E  •) =  E  E  s,)
ij=l k=l )  i=l A:=l

Let f  £ S,  then  we have

/(^) — U)F(U, t)
3 = 1

Next

( / ,  / )  =  E  tj) > 0
i j

because F is positive definite. Assume ( / , / )  =  0, then

l / ( i ) l " = | ( / , r ( t , - ) ) r < ( / , / ) - r ( < , t )  =  0

where the  inequality is the  Schwartz inequality for semi-inner products. Therefore 

we have an inner product on S.  Furtherm ore, if {/„} £  S,  then

\ M t ) - U t )  P = | ( /„ - /™ ,r (< , - ) )  P

< 1 1 / n - / ™  IP
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Hence if {/«} is Cauchy with respect to  the inner product norm  on S,  then  it 

is pointwise Cauchy. We close S  under this norm  and identify the lim it elements 

w ith the  pointwise lim its. The closure will be denoted by H{T)  and is called the  

reproducing kernel H ilbert space (rkhs) of F.

T h e o re m  6.1 Let T be a covariance kernel on [0,T]^. Then there exists a Hilbert 

space H{T) such that

1 .

F ( f , . ) G ^ ( F )  V fG [0 ,T ]

jg.

(/,r(i, •)) = /(<) v /€ ^ (r ) ,  <e[o,T]

T h e o re m  6 .2  Let V be a covariance kernel on [0,T]^. Let H  be a Hilbert space of  
real-valued functions on [0,T] with inner product (•, -)i. Suppose

L
F(f, .) € H  Vf € [0,T]

(/,r(i,-)), = /Wv/Gi7(r) , t€[o,T]

then H  =  H{T).

Proofs for these two theorem s can be found in Kuelbs [6].

Next we will find a com plete orthonorm al system  (CONS) for H{V)  in term s of 

the eigenvalues and eigenfunctions of F. If F is a continuous covariance kernel on 

[0,T]^ and /  € T^([0,T]), then  we define the operator K  by :

K f { s )  = V ( s , t ) f { t )d t

K  is a. com pact operator and hence has a countable num ber of eigenvalues, where 

the  eigenvalues are repeated according to  their m ultiplicities. The eigenspaces are 

all finite-dim ensional, and so the m ultiplicities are also finite.
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K  is self-adjoint because

( K f , g )  =  r  ( T ( ; s ) , g ) f ( s ) d s  
Jo

= f 9 {s ) f i s )d s  =  i f ,  Kg)
Jo

D efin itio n  6 .2  The eigenvalues {AJ} and eigenfunctions {^n} of a covariance ker

nel r  are defined by
r T

K “^nis)  =  /  T{s,t)'lpnit)dt 
Jo

We see th a t all the  eigenvalues are positive because if p  is an eigenvalue with 

eigenfunction then

11̂ =  {9T^t ) = { K ^ , ^ )

=  f  {T(‘,s), (f )(p{s)ds  = [  ( f ' ^{s)ds>0  
Jo Jo

Note th a t the continuity of T implies the continuity of xfn for all n >  1. We

assum e the  system  {0n} to  be normalized, i.e.

/ 'il’n{t)'4’mit)dt = Sr 
Jo

R e m a rk

Note th a t this implies M ercer’s theorem , i.e.

r ( f ,6 )  =  Yl^l.'^n{t)'4’n{s) VO <  6 , f ,<  T
n

To see this, fix s E [0, T]. Then T(s, •) E H{T)  and
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T h e o re m  6 .3  Let {%(f) , t  €  [0,T]} be a Gaussian process with covariance kernel 
r ,  and let the eigenvalues and eigenfunctions o f T  be denoted by {A^} and  {V’n}; 

respectively. Then
OO

^n i’nit)yn  +  rn{t)
n = l

where {Yn} o,re independent N { 0 , 1) random variables.

The proof of this theorem  can be found in Kuelbs [6].

R e m a r k
The above is called the  Karhunen-Loeve expansion.

We will now use this expansion to find a formula for the entropy of a Gaus
sian process { X { t ) , t  €  [0, T]} in term s of eigenvalues and the eigenfunctions of F. 

W ithout loss of generality we assume the  process to  be centered.

T h e o re m  6 .4  Let { X { t ) , t  €  [0,T]} be a centered Gaussian process with covari
ance function  F. Let {Aj} and {0n} be the eigenvalues and eigenfunctions o f T ,  

respectively. Then

1 . I f  X £ H{V) and x( t)  = Yfi t E [0, T], then

A i W  -  E #
n = l  '^n

2. I f  X ^  H{V), then A^(a:) =  oo.

P ro o f .

F irst let x £  H{T)  and note th a t

logF; exp ( J  X{s)dX(s))

lo g E
fT ^

exp( /  ^  Xjipj{s)YjdX{s))
"'O 7 = 1

^ l o g E  l^exp Xjrpj{s)dX(s))Yj
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Hence

AJ(a;) =  sup x{t)dX{t)  -  ^  ^  '^jV'j(a)dA(6)^ : A g C [0 ,T ]

The Frechet-derivative is found to  be

x(3)d/i(s) -  ^  A| V^j(s)dA(s)^ 'i/3j{s)dh{s)^

where h £  C°°[0,T], and so because of concavity, a necessary and sufficient condi

tion for an optim um  is

dh{s)  =  0j  -  E  Ay 4  V’y(0<^A(<))

for all h £  (7°°[0, T], or

®(«) =  E  Ay ^y(()dA(()) V>y(«)

Let X  £ H{T).  Then there exists an expansion of x  in term s of the  eigenfunctions 

of r ,  i.e. there exists {«y} with

00
Vs G [0,T ]

1

Let A be defined by
oo f ,  .

3 = 1  4

Then A satisfies the equation above and so it is an optim izing elem ent in (7[0,T]. 

Hence
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A i(® )

J.' j '  OO oo . 1 oo /  .X  oo ^ '

 ̂ “  9  E  A n  /  4> j{s ) ' I l - y iM s )d s
0 y = i  ,= 1  ' ^ i  ^  j = i  V O  .^1 A •

= E  j  V’.(«)V’y(«)<i5 -  5 E  A? ^ E  ^  j( yk,(«)0y(s)ds

=  I f f !2 j A?

It rem ains to  show p art 2 ). To do th a t, assume th a t A^(æ) <  oo. We will show 

th a t th is implies x £  H(T).  Let

rT
Un = x{t)'lpn{t)dt

Jo

Then it suHicies to  show th a t a j  <  oo. But we have

fT  1 oo /  fT \  ^
jT x(t)X(t)dt  -  g E  A  ̂ ( xl}„{t)X{t)dtj < A ^(x ) <  oo

for all A G C[0, T].
Now let

A"^(0 =  <G [0,T]A271=1 n

<  OO

then  Xn  £ C[0, T] V Æ >  1 and

r T  1 /  f T  \  ^
x( t )X ’̂ {t)dt -  g E  An i ’n( t)X'^{t)dtj  < A i(x )

r T  ^  n  ] I  r T  ^  n
'  i ^ n { l ) d t  —  % ^  AH /  i ’ i { t ) ^ A ' ' ^ n { t ) d t

•'O n = l  '^n ^  i = l  V °  n = l

f  _  I f  <

1 ^
^  <  OO
^ n = l  '^n
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for all JV >  1, and so

n = l  '^n

bu t K  is a bounded linear operator and so

A! <  II II <  oon

oo oo ^2

^  E  “n ^  II A' II E  ^  <  0°
n = l  n —1 n

□

R e m a rk

For a Gaussian random  variable X  on w ith m ean zero and positive definite 

covariance m atrix  E we found the  entropy to  be

E'xix)  =

where x  £ R^.  E positive definite implies the  existence of a un itary  m atrix  U and 

positive eigenvalues Aj, • • •, Â  such th a t

U'^T.U =  D

where D  is a diagonal m atrix  w ith entries the eigenvalues of E. T he eigenvectors 

form a  com plete basis of R"̂  and so there exist a = (a i, • • •, such th a t x = Ua. 

Hence

A]^(x) =  ix " '( t /£ » f /" ') “ ' x  

=  h u ' ^ x f D - ^ U ' ^ x

=  I " ' " - ' " -  i l l

So we see th a t the  form ula above is the infinite analog of the  form ula for the 

entropy of a Gaussian random  variable in finite dimensions.

E x a m p le  6 .1  Now we use the  form ula above to find the  entropy of the  Ornstein- 

Uhlenbeck process, i.e. of a mean zero Gaussian process w ith covariance function
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r ( s , f )  =  e /? >  0. F irst we have to  find an equation for the eigenvalues and

eigenfunctions of F.

An^n(^) =  /  T{s,t)ll3n{t)dt 
Jo

Differentiating w ith respect to  s gives 

An^n(«) =  - /?
J O  J  g

and

A"^Â„(3)

=  r  + ,0' rJo Js
So we get

^n'i’n(^) = ~  2^) 0n(-s)

w ith boundary condition

An̂ n(O) =

or

An (^n(*s) — /?0n(-5)) — —2/3'lpn{s)

Now let a: € Ff(F). To make the  com putations somewhat easier, we will assume 

th a t X is twice differentiable. Define an =  Jq x{t)il3n{t)dt. Then

CX) 2

2 -A x (^ )  =  S t 7
n = l

=  E  An  ̂ -  ^ V n (0 ] *2/3
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oo \ 2  f  r T  .. r T  '

E  4 ^  -  /3"j^ x ( t ) l i l n ( t ) d t

Now

f  x{t)ll?n{t) = Cn A f  ^t)'(pri{t)dt 
•/O V 0

where

Cn =  T (T )^n(T ) -  T(0)^n(0) -  %(T)V;n(T) +  %(0)^n(0)

Note th a t using the  continuity of ipn and the  differential equation above we have

C „ =  x { T ) ^ ( - / 3 I f  T { T , t ) M t ) d t ]  -  x { 0 ) ^ ( ^ / 3 I f  r { 0 , t ) M t ) d t j  

-  i ( T ) M T )  +  x { 0 ) M O )

=  - 0 x ( T ) M T )  -  0 x { O ) M O )  -  x { E ) M T )  +  i(0)V’n(0) 

=  - ( I 3 x { T )  + x { T ) ) M T )  -  (^x(O) -  i(0 ) )  V>„(0)

=: -  (a{T)i>„{T) + a(0)V>n(O))

where we define

a (f)  =  l3x{t) — x{t)

for all t E [0,T]. Then we get

2Ax(j;) =
n

~  {x{t) — ^^x{ t ) ) tkn{ t )d^

Fix a u w ith 0 <  u <  T. Then integrating by parts  gives the  following :

f  (x{t) — /3^x{t))T{u, t)dt  Jo

=  r  rJo Jo

J u  Ju
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Hence

=  i (u )  -  i(0 )e - '^“ -

— /3x(u) +  /3i(0)e~^“ ^  J
+  x(r)e'^(“-"’> -  i {u)  +  ^

+ /3 x (r)e^ ‘"-"’> -  /3x(u) -  /S r  x{t)e'^^'‘-*Ut  

=  a (0 )r (0 , u) -  2^x(u) +  a(T)T(T,  u)

8^"Ai(x)

=  EA:[»"(r)V':(T) +  a"(0 )v>̂ (0) +  2 c c { T ) a { 0 ) M T ) M 0 )
n

-  2 { a { T ) M T )  +  a(0)V'„(0)) j f { x { i )  -  ^"x(<))^«(f)A

f  f  (x{t) -  /?H (f))^^(f)(æ (s) -  I3^x{s))'ipnis)dsdt]
Jo Jo

= a " ( r )  +  2 a { T )a { 0 )e-'^^ +  a"(0)

■2a{T) r  (x(t )  -  l3 ^ x ( t ) )T {T , t )d t  -  2a (0 )  j f  ( x ( t )  -  l3 ^ x { t ) ) r {0 , t ) d t

+  f f (x{t) — ^^x( t ) ){x(s )  — P^x(s))T{s, t )dsdt  
Jo Jo

=  o ? { T )  +  2a(T)a(0)e-'^"’ +  a"(0) 

-  2a(T) (a (r )  -  2/3x(r) +  a(0)e-'’"’)

-  2a(0) («(O) -  2^x(0) +  a(r)e-®"’)

+  j  {x{t) — /3"x(i)) {a{T)e~^^^~‘̂  — 2j3x{t) +  a{0 )e~^^] dt

=  -a" (T ) -  2a(T)a(0)e"'^"’ -  a"(0) 

+  4/Sa(r)x(T) +  4/Sa(0)x(0)
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+  q (T ) (a (T )  -  2l3x(T)  +  a ( 0 )e~‘̂ '^)

+  a(0 ) (a(0 ) -  2^x(0) +  a ( r ) e " '’^)

— 2/3 f {x{t) — /3^x{t))x{t)dt 
Jo

= 2 p a {T )x {T )  -f- 2/3a{0)x{0)

2 0  \ i { T ) x { T )  — i(0 )x (0 ) — J  x^{t)dt — J  0 ^x^{t)x{t)dt

=  2 0  ̂ -f 0 x ‘̂ ( i ^  dt +  a:^(0) +  x ‘̂ {T)

and so finally

Ax(a:) =  J  f  { ^ x ^ { t )  + ^ x ^ { t ^ d t  +  x"(0) +  x " (T ))

l i X  E H  and infinity otherwise.

Note th a t in this exam ple we were able to  com pute the entropy w ithout finding 

explicit expressions for the  eigenvalues and eigenfunctions of F.

T h e o re m  6 .5  Let X { t ) , t  E [0,T] be a centered Gaussian process covariance kernel 
F. Let H{T) be the reproducing kernel Hilbert space o f T  with inner product norm  

II * ||/f(r)- Then . n  II *  i i» (o  ‘I ’  ^  « ( f )
oo otherwise

P ro o f .
By the  previous theorem , it suffices to show th a t if x G H{T)  and

x{t)  =  ^  eLfilpnif)
n

then
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B ut
I l  Ii2 t \
Il X  I f  =  { X ,  x)

— f ^  ] 0‘n'4̂ n 5 ^  1 |
\  n k }

— ^  1 O'nfl'k i'^ny ^fe)
n,k

=  E  r ( i , -)il>„(t)dt , j f  r ( s ,  -))/>fc(s)ds j

=  E  i f r l  f  f  ^ n { t ) i ’k{s) (r(<, • ) ,  r ( s ,  •) *  ds)
n,t ^n'^k •'0

=  IZ  /  f  i^n(t)'ipk{s)T(t,s) dt ds
n,k '^n'^k • ' °  " ' °

=  g  5 5  r  ( r

=  I Z  Jq ’̂ n{t)Xlxl3k{t)dt
n,k  t

=  V  —  \2
a?

n K

E x a m p le  6 .2  Let <p G C [0,T ], y  >  0 and let

X ( t )  = f*<f(s)dB{s) , 0 < t < T  
Jo

where B  is standard  Brownian Motion. Let

H  =  |x e C [ 0 , T ]  ; 3 x e i " ( [ 0 ,T ] )  w ith  x{t) = j \ ( s ) d s ]  

w ith  inner product

(^,2/) =  f
Jo

x Ç s ) ^

Now

T{t ,s )  = E  {^J ( f{u )d B {u ) ‘ J^ ip{v)dB{v)^

□
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f= ip (u)du 
Jo

T he derivative of r ( f ,  •) exists everywhere but at t and is

E r ( i , s )  =  V 5 ^ ( s ) / [ 0 , , ] ( s )

Hence F(f, •) 6 H  and

So H  is the reproducing kernel H ilbert space of F and

A M  .
[ oo otherwise

This technique is especially useful to  verify th a t a certain  expression holds for 

A* because the conditions of Theorem  6.2 are usually easy to  check.
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Chapter 7 

Entropy of finite-state Markov chains

In this chapter we will study the entropy of Markov chains on a finite s ta te  space 

S  = {0, • • •, iV}, iV >  1. For the  case of two states we will derive an explicit 

form ula for the  entropy. In th e  general case we will prove a central lim it theorem  

for ... • • •, Xn),  i.e. for the  entropy a t the observed path . We will denote

th e  in itial d istribution by i/ and the transition  probabilities by P  =  {pij). Let 

• • •, X n ) ^ ■ Then we have th e  following theorem:

T h e o re m  7.1 Let S  = {0,1}. Then fo r  x  £  S'^ we have

n—1
A x»(z) =  - \ o g P ( X i  = x i )  -

fc=l

P roof.
For A 6  we have

£ [e x p ((A ,X " » ]  

=  E

‘'(Co)PCo<ie^‘ ‘̂

exp I ^  XkXk
\&=1 >

PCn-lCn^^nCn
CG5"+i

Let (f €  C (R ^ )  be defined by

t W  = -  lo g P
A:=l

exp I
\A:=1 >
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Case 1 : Xj = 0

^  ^  E  [Xj exp ( E L i  ^kXk)\  
d \ i  E  [exp ( E L i  -

for all A € P ” . So (f is m onotonically decreasing in Aj.

Case 2 : Xj = \

^  £ ] ^ > x p ( E L i A M
dXj g [ex p (E Z = i

E[(l-% j)exp(ELi
E  [exp ( E L i

for all A € P ” . So y  is m onotonically increasing in Aj.

> 0

A^n(a;) =  sup {y(A) : A €  P ” }

lim y(A)
Afc-+(—1)̂  f̂coo

log {^qPQxiPx\X2 ' ' ' Pxn—lXn d" l^lPlx\PxxX2 ' ' ' Pxn-\Xr^
Î1 —1

=  - \ o % P { X i = X x )  -
k—\

E x a m p le  7.1 Let v = 6q and

P  =
0.2 0.8 
0.7 0.3

A ^ .( (0 ,0 ,0 ,0 ,o f )  =  - lo g P ( A - i = 0 )  -  j z^ogpoo
fc=l

=  —5 log Poo =  8.05

In order to  prove the  next result, we first have to introduce the  notion of an 

r-block. Let I  be the space of all subsets of U ^ o  C 5°®, th a t is, the space of all

paths of finite or infinite length and give it the  smallest a  -algebra th a t contains 

all paths. Let r £ S  and define an r-block B  as an elem ent of I  th a t starts
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w ith r bu t does not contain any further r. The space of r-blocks is a measurable 
subset of / ,  and we give it the relative topology. Let t i ,  T2, • • • be the  consecutive 

tim es w ith Xn  =  r. The m ’th  r-block Bm is then  the sample sequence X  from 
Tm to just before shifted to  the left so as to  s ta rt a t tim e 0. Formally, let

Ti =  inf{n : Xn =  r} if X n  =  r  for some finite n, otherwise Ti =  oo. If Tk < oo, 
then  let =  inf{n >  r* : Xn  =  r} , otherwise t^+i =  oo. On < oo, let Bm be 

the  sequence of length r^ + i — r^ ,  whose n ’th  term  is Xrm+n for 0 <  n <  Tm+i — Tm- 
On Tm = oo, let Bm = 0. Let p =  Then we have the following result due
to  Doeblin (1938):

T h e o re m  7.2 The sequence B i , B 2, ... is independent and identically distributed.

T h e o re m  7 .3  Let { X n , n  > 0} be an irreducible Markov chain on S  = {0,* • • , N }  

with stationary distribution tt. Let r £ S  and {Bm} be the sequence o f  r~blocks. 
Assume P { X \  =  r) =  1. Further let

P = e [a %^{B,)]

a^ = V a r[A l^{B , )]

Then
— TrUp

where Z  is a standard normal random variable.

Z

P ro o f.

Let (n = Yfk=i ^r(Xk)  be the num ber of visits to  r  up to  tim e n. Then by the 

additiv ity  of the  entropy for independent random  variables we have

= E  Ab. W  + A^„((r,Xc„+a,---,A:„))
k=l

Now by the standard  central lim it theorem  for iid random  variables we get

-  TT.n/x _
y/TTrTlCr
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So it rem ains to  show th a t in probability and th a t

- ^ A ^ n  ( ( r , • • •, Xn)) —>'0

in probability. B ut the first is well a  known fact from the  theory of Markov chains, 
nam ely the  ergodic theorem , and the  second follows from

□
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Chapter 8

Entropy and Statistics

In 1957 Solomon Kullback published his now classical book ”Inform ation Theory 

and S tatistics.” In this book he derives m ajor portions of m odern Statistics such 

as param eter estim ation and hypothesis testing. His starting  point is a functional 

now known as the  Kullback-Liebler infomation, which is the  same as the relative 

entropy discussed in C hapter 2. Using the notation from Kullback [7] we have the 

following : Let /  and g be densities of a dom inated set of probability measures on 

a m easurable space and let A be the  dom inating measure. Then for any Borel set 

A  we let

p{A)  :=  f g{t)X{dt)
J A

and

i^{A) := f  f { t ) \ { d t )
J A

Then the  K ullback- Lei bier inform ation is defined by

/ ( / :< ? )  =  / / ( < )  log ^ A ( A )  =  H{,^\p)

An im portant notion in Kullback [7] is the  m inim um  discrim ination information 

/ (*  : p), which is obtained by m inimizing / ( /  : g) over all members of the  dom inated 

set of probability measures subject to  the  constraint

J  T{x) i/(dx)  =  0
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where T  is a m easurable sta tistic  and 0  is a constant, th a t is, we find the m inim um  

over the set of measures for which T  is an unbiased estim ator of the param eter 0 .  

Letting T{x)  =  x  we get

/ (*  : g) =  inf | / ( /  -g)  • J  T { x ) f { x ) \ ( d x )  = 0  j

=  inf |p ( z / |/ / )  : J xv{dx)  =  0  j  =  A *(0)

where the last inequality follows from Theorem  2.1. So we see th a t for the case 

T {x)  =  X K ullback’s m inim um  discrim ination inform ation and entropy coincide. It 

is therefore no surprise th a t entropy should be of interest to the statistician .

As was shown by Kullback, using the  m inim um  discrim ination inform ation and 

therefore entropy to do statistics leads in many cases to well known procedures. As 

an exam ple, consider the  following :
We want to  study the  following simple hypothesis testing problem. Assume 

JCi, • • •, Xn  are independent samples from a normal population w ith unknown mean 
p  and standard  deviation 1. We want to test th e  null hypothesis H q : // =  0 vs. 

the  alternative H\  : // =  1. Note th a t under the  null hypothesis the  entropy is zero 

a t 0 and becomes bigger as we move farther away from zero. Therefore we choose 

the critical region of the test as follows:

-  A î f X A T i , > c }

where is the  entropy com puted under the  null hypothesis and AĴ  ̂ is the entropy 

under the  alternative.

Using the  independence of the  observations and Example 1.1 we get

{ A ^ „ ( A : i , . . - , A r „ )  -  > c )

=  >  c}
^  i = l  ^ t = l

=  -  ?  >  4
i = l
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=  ( E ^ .  >  A}
i=l

which is of course the  same critical region one gets using the likelihood ratio  sta tis

tic.

Next we will look a t another hypothesis testing procedure, bu t this tim e the 

resulting test will be different from those commonly employed.

Say we have an independent sample % i, , X n  on the set {si, • • •, s^r}, th a t
is, P ( X i  =  Sj) = a j  j  = 1, N  and i =  1, • • • , n, w ith the a*’s unknown and we 

want to  test Hq : p = j3 vs. P i  : p ^  Now again denoting by the entropy 

under the null hypothesis and letting fk  be the num ber of observations equal to 

we get
^  E L .  (X .) -

\Jn ■ yar[Ajf„(A 'i)]

E t i  -  » - E L i Æ A ^ „ K )

n ■ (E ÎL . A A g .(6 ,)  -  ( E C .  l^kAhoi^k)y)

-  nl3k)A-„„{^k)

y »  • (E f= . -  (E f= . l i k X h ( ^ k ) y )

^  V (0 ,1 )

th a t is, the  test s ta tis tic  Z  converges to a standard  normal random  variable by the 

central lim it theorem .
The test s ta tis tic  usually employed here is Pearson’s sta tistic , which is given

by
2 ^  ^  {fk -  n ^ k f

^  6  " A

Under the null hypothesis has asym ptotically a %^-distribution w ith N  — 1 

degrees of freedom.

Evidence from sim ulation suggests th a t the  entropy test based on Z  has a 

slightly larger type I error th an  the test but th a t it has a lower type II error. In 

Table 1 we have the  results of some simulations of the type I error for Sk =  k — 1, 

ctk = 0.2VA: and N  = b:
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Type I

n Z

50 0.102 0.042

100 0.121 0.045

150 0.114 0.038

500 0.102 0.046

In Table 2 we collected th e  results of a simulation for the  type II error. Again 

we have =  A; — 1, =  0 .2VA; and TV =  5 bu t now the null hypothesis specifies the

following probabilities : H q : jdi =  0.24 , ^2 :=  0.16 , =  0.2 , ^4 =  0.16 , ^5 =

0.24

Type II

n Z

50 0.653 0.773

100 0.539 0.701

150 0.435 0.572

500 0.053 0.072

Note also th a t the test sta tis tic  Z  depends explicitly on the  s ta te  space, whereas 

the  sta tis tic  is the same no m atte r w hat the  sta te  space looks like. This m ight be 

useful in some applications. As an exam ple how the type I error changes depending 

on the  s ta te  space, consider th e  results of the  sim lation shown in th e  next table. 

Here we use the  uniform distribution:

50 Si S2 S3 S4 z

-2 0 1 2 0.940

-5 0 1 5 0.106

-10 0 1 10 0.100

-20 0 1 20 0.062

-30 0 1 30 0.041

In the  last exam ple we will use the  additiv ity  property  of entropies of indepen

dent random  variables to  derive a test w hether a given sequence { X \ ,  • • • ^Xn)  is 

an independent sequence or not. Moreover, if it is not independent, we will be able 

to  tell w hether it depends linearly on an independent sequence.
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As usual we will need the assum ption th a t the population has a m om ent gen

erating function. Denoting by the law of { X i ,  • • • ,X n }  and by p  the law of X i  
we can s ta te  the null hypothesis of independence in the following way:

t = l

Of course we don’t know but we can estim ate it using the  em pirical d istri

bution function.
Under the  null hypothesis it is admissible to  split the sequence up into pieces 

of any length. We will split the sequence { X i ,  • • •, X n }  into pieces of length A; >  1. 

T he choice of the right k will be of im portance, and in general the procedure should 

be repeated w ith different values of k.
If we would use the whole sequence to estim ate the moment generating function 

and to  evaluate the entropy, than  the  resulting sum would not be the sum of 

independent random  variables. It can be shown th a t we still have

^  i=l

where the convergence is in probability, bu t evidence from sim ulations shows the 

convergence to  be very slow. Therefore we will use one part of the sequence to 

estim ate the  m om ent generating function and the  other to evaluate the test statistic.

This leads to  the  following procedure : Let 0 <  r  <  1 and s = [rn]. Let A; >  1 

and assume th a t k\s  and th a t k\n. This last assum ption is for convenience only 

and of no im portance to  the theory.

Next we split up the sequence in two pieces of lengths s and n — s, and then 

split these pieces up further into sequences of length k :

Vi
n

{ X j k + i , -  • • , X ( ^ j + i ) k )  i  —  T î  • • • 5 T  - 1
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Denote by 6w  the probability m easure in which puts probability j  at each 

point Wj and denote by 6x  the  probability measure in R  th a t puts probability ^ at 

each of the  observations X^.
Now the  estim ate for ... • • • ,X „) is given by

A ' :=  Z A L N
T=l

{  u
=  ^  sup < X'vj — log — ^  exp(A'îüi) : X £  R^

I ^  *=0

The estim ates for the expectation and the variance of A* are com puted using 

th e  respective estim ates of the  moments as follows :

i [ ( A i . ( A T i) n  =  ^ E ( V s j x o r
^ i=i

m =  1,2= i  g  («“P -  lo g l  ±  : A € æ | j

and

A =  ^ [A i.( J t ,) ]

=  £ [ ( A i , ( X i ) f ]  -  ( / i f  

Then it follows from the central lim it theorem  th a t

Z -  « ( » , ! )
V (n

where N [ 0 , 1) stands for the law of a  standard  normal random  variable.

The next tab le shows the results of a sim ulation study for this test statistic. 

In this sim ulation we generated sequences w ith 750 observations each. The first 

500 of these were used to  estim ate the  moment generating function, the last 250 to 

com pute the test s ta tis tic  Z , th a t is, we used r = We used k = 2 for Â*.
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We generated three sequences of independent standard  normal random  vari

ables Ml, Ui, • • • , M375, M375, IÜ375- Then for the column m arked ’’Independent” we 

com puted the  as follows :

X 2t—1 — Mj , X 2i — Vi

For the  column w ith ” Linearly D ependent” we used

X 2i—\ — M̂ -|- Vi , X 2i — Mj Vi

and for the column with ’’Nonlinearly D ependent” we let

X 2 i - \  =  Ui  *  Vi  *  W i  , X 2 i  =  { U i  - f  Vi )  *  W i

Number Independent Linearly

Dependent

Nonlinearly

Dependent

1 -0.909 -1.283 -1.098

2 -0.625 -0.314 1.198

3 -0.633 -1.738 -1.741

4 -1.025 -1.007 -0.364

5 -0.638 0.116 -1.466

6 0.126 -1.251 -0.618

7 0.662 0.033 -2.307

8 0.065 -1.017 -1.697

9 -1.011 -1.252 -1.194

10 -1.901 -0.064 -0.240

11 0.410 -0.682 -1.523

12 0.368 -0.056 -1.416

13 0.226 -0.063 -2.142

14 0.051 0.650 0.621

15 -0.492 0.164

This sim ulation shows th a t this test can distinguish clearly between sequences 

th a t are linearly dependent on an independent sequence and those th a t are not.
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On the o ther hand, it does not work very well to  separate independent sequences 
and those th a t are linear transform ations of an independent sequence. The reason 

for this lies in the following :

Let U  =  (mi, , Un)^ be a sequence of independent random  variables, and let 

T  be a nonsingular n x  n  m atrix . Suppose we observe X  = T  ' U. Then

=  sup{A ^X  -  log£:[e^’'^] : A €  fi"}

=  sup {{X ^T )U  -  : A €  Æ"}

=  E a : , («.)  =  E A : . ( ( r - ' x ) 0
Î=1 Î=1

and so the  entropy of the sequence is the sum  of entropies ju st as it would be for 

an independent sequence.

This can be used in the following manner: first one tests for independence as 

described above. Should the test reject the  null hypothesis, one can conclude th a t 

th e  sequence does not even depend linearly on an independent sequence. Should 

th e  test fail to  reject H q one repeats the test w ith a nonlinear transform ation of the 

d a ta  th a t preserves the independence, for exam ple Yi =  X f .  Should the  test again 

fail to  reject H q one can conclude th a t the  sequence is independent, otherwise one 

has a sequence th a t depends linearly on an independent sequence.

In a second sim ulation study, we generated an independent sequence on the set 

{0 ,1 ,2}. Here the distribution was the  uniform, and the length N  of the sequence 

was 9000. Using different values of r , we found the following values for the type I 

error:
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r a

0.222 0.35

0.333 0.25
0.444 0.16

0.555 0.13
0.667 0.12

0.777 0.07

0.888 0.11

This sim ulation shows th a t the  type I error decreases when r increases. T hat 

implies th a t it is im portant to  estim ate the m om ent generating function well.
Simulations of this test have been seriously ham pered by the lack of an ap

propriate  optim ization procedure to  com pute the  various A*’s. The usual Newton 

algorithm  where one finds improved estim ates of the maximizing A using the for

m ula
/ ' ( A „ )An + 1 =  Xn

does not work very well here because the  functions /  under consideration, namely

/ (A) = X - X -  log

are often nearly linear everywhere bu t at a neighborhood of th e  m axim um . T hat 

of course leads to f "  being nearly zero and renders the  Newton algorithm  useless. 

As an example, consider the two-point distribution P { X  =  0) =  0.99 and P { X  = 

10) =  0.01. Then

A ^(2) =  sup {a - 2 -  log(0.99-f O.Ole^^®)}

A nalytically one finds the sup a t A =  0.32, but the  Newton algorithm  fails to find 

this value for any starting  value outside of (0.13,0.63).

The problem  becomes even more serious if one tries to optim ize in higher di

mensions.

E x a m p le  8.1 We used M at lab to  illustrate this optim ization problem. Consider 

the  probability m easure in giving probability 0.001 to  the points (0,0),  (0,1),
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(1,0) and probability 0.997 to  the point (1,1). Then finding A*(l, 1) means opti
mizing the  following function:

y(A i, Xi) = Xi + X i -  log (o.OOl +  O.OOle^' +  O.OOle-'  ̂ +  0.997 *

This function is shown in the picture for —20 <  Ai <  20 and — 20 <  A2 <  20. It is 

easy to  see th a t the function is flat nearly everywhere.

The sim ulations th a t could be done supported the theory above, bu t to draw a 

final conclusion about the usefulness of this test further sim ulations using improved 

num erical algorithm s will be necessary.
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Chapter 9
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