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0.1 Why R?

• software of choice for professional Statisticians
• Just about every statistical method ever invented is available in R
• any method invented recently is likely available only in R
• R is used more and more by non-statisticians. In many fields like Biology, Sociology etc

it has replaced other software like SPSS, SAS and Minitab.
• The main strength of R likely is its users. They form a very large community of people

who contribute actively to the development of R.
• What can you do with R? Actually, what can’t you do? For example, this workshop

was written entirely in R!
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0.2 Setting things up

0.2.1 Installation of base R

You can get a free version of R for your computer from a number of sources. The download
is about 70MB and setup is fully automatic. Here are some links:
Windows
MacOS
FOR MAC OS USERS ONLY
There are a few things that are different from MacOS and Windows. Here is one thing you
should do:
Download XQuartz - XQuartz-2.7.11.dmg
Open XQuartz
Type the letter R (to make XQuartz run R)
Hit enter Open R Run the command .First()
Then, every command should work correctly.

0.2.2 RStudio

there is a program called RStudio that a lot of people use to run R (including me). You can
download it at RStudio. Again it is free and setup is fully automatic.

0.2.3 Packages / Libraries

• one of the great strength of R
• self contained sets of routines and data that somebody wrote to help with a specific task
• you have an analysis problem? google it and almost always you will find that someone

has already done it for you
The main repository for R packages is at https://cran.r-project.org/. As of October 1st there
are over 13000!
To install a package (here a package called ggplot2) run
install.packages("ggplot2")

you will be asked to choose a mirror site, any of them will do.
Once a package is installed you can load it into R with
library("ggplot2")

• or use RStudio!
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0.2.4 Updating

• new versions of R are released about every three months
• Usually these are minor updates and it is not necessary to update your version every

time
• When you do want to update simply download the latest version and install it on top of

the old one
• After updating R also update your packages with

update_packages(dependencies = TRUE)

0.3 Further Reading

• For a more extensive introduction to R go here
• I teach a one semester graduate level course on R. For details go to Computing with R
• There are literally 100s of books dedicated to R. A short list of those that I have found

useful is
– Learning R
– Introduction to Data Science with R
– R Cookbook
– Advanced R

0.4 Getting Started

Once you have started a session the first thing you see is some text, and then the > sign.
This is the R prompt, it means R is waiting for you to do something.
Let’s start with
ls()

shows you a “listing”" of the files (data, routines etc.) Of course in the beginning there isn’t
anything there.
Everything in R is either a data set or a function. It is a function if it is supposed to do
something (maybe calculate something, show you something like a graph or do something
else). If it is a function it ALWAYS NEEDS (). Sometimes there is something (an argument)
in between the prentices. Sometimes there isn’t like in the ls(). But the () has to be there
anyway.
R has a nice recall feature, using the up and down arrow keys. Also, typing
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history()

shows you the most recent things entered.
In RStudio you can type the first three letters of a command and then type CTRL-ˆ (up
arrow key) to get a list of the recent times you ran a command with these three letters.
RStudio has a lot of useful keyboard shortcuts, see which at Tools - Keyboard Shortcuts
Help.
R is case-sensitive, so a and A are two different things.
Often during a session you create objects that you need only for a short time. When you no
longer need them use rm to get rid of them:
x <- 10
x^2

## [1] 100
rm(x)

the <- is the assignment character in R, it assigns what is on the right to the symbol on the
left. (Think of an arrow to the left).

0.5 Data Entry

0.5.1 With the keyboard

For a few numbers the easiest thing is to just type them in:
x <- c(10, 2, 6, 9)
x

## [1] 10 2 6 9

c() is a function that takes the objects inside the () and combines them into one single object
(a vector).

0.5.2 From a file

Say you have a text file with numbers in it called mydata1.txt in a folder called c:/myexamples.
You can read it into R with
dta <- scan("c:/myexamples/mydata1.txt")

if the data is not numbers but characters you need to use
dta <- scan("c:/myexamples/mydata1.txt",

what="char")

R assumes the numbers and/or characters are separated by an empty space. If instead they
are separated by (say) a ; use
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dta <- scan("c:/myexamples/mydata1.txt",
sep=";")

Often your data is in the form of a table, with different variables in different columns. Then
you can use
dta <- read.table("c:/myexamples/mydata1.txt")

Very popular is data that comes as an Excel worksheet. In that case you can save it as a
comma delimited file and read it into R with
dta <- read.csv("c:/myexamples/mydata1.csv")

There are a number of packages designed to help with data input/output. A very good one
is called rio.

0.6 Data Types in R

R has the following basic data types:
• numeric
• character
• logical (TRUE/FALSE)

• factor
the last one is specific to Statistics. It is data with relatively few values that repeat many
times. Examples are things like gender and treatment labels.

0.7 Data Formats

0.7.1 Vectors

the most basic type of data in R is a vector, simply a list of values. However they all have
to be of the same data type.
Say we want the numbers 1.5, 3.6, 5.1 and 4.0 in an R vector called x, then we can type
x <- c(1.5, 3.6, 5.1, 4.0)
x

## [1] 1.5 3.6 5.1 4.0

Often the numbers have a structure one can make use of:
# read 1 to 10
1:10

## [1] 1 2 3 4 5 6 7 8 9 10
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10:1

## [1] 10 9 8 7 6 5 4 3 2 1
1:10*2

## [1] 2 4 6 8 10 12 14 16 18 20
c(1:5, 1:5*2)

## [1] 1 2 3 4 5 2 4 6 8 10

Instead of numbers a vector can also consist of characters (letters, numbers, symbols etc.)
These are identified by quotes:
c("A", "B", 7, "%")

## [1] "A" "B" "7" "%"

Notice the automatic conversion fo 7 from a number to a character!

0.7.2 Data Frames

The most common data type in R is a data frame. This is a collection of vectors, arranged as
columns:
df <- data.frame(ID=1000:1005,

Gender=c("Male", "Female", "Female",
"Male", "Female", "Male"),

Age=c(20, 23, 19, 21, 23, 18),
T.Shirt.Size=c("Small", "Medium", "Small",

"Large","Medium", "Small"))
df

## ID Gender Age T.Shirt.Size
## 1 1000 Male 20 Small
## 2 1001 Female 23 Medium
## 3 1002 Female 19 Small
## 4 1003 Male 21 Large
## 5 1004 Female 23 Medium
## 6 1005 Male 18 Small

The last variable is defined as a character vector. If we did a table R would sort it alphabeti-
cally:
table(df$T.Shirt.Size)

##
## Large Medium Small
## 1 2 3

This can be fixed using an ordered factor :
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T.Shirt.Size <- factor(c("Small", "Medium", "Small",
"Large","Medium", "Small"),
levels=c("Small", "Medium", "Large"),
ordered=TRUE)

df$T.Shirt.Size <- T.Shirt.Size

table(df$T.Shirt.Size)

##
## Small Medium Large
## 3 2 1

0.8 Basic Commands

x <- c(1.4, 5.1, 2.0, 6.8, 3.5, 2.1, 5.6, 3.3, 6.9, 1.1)
length(x)

## [1] 10
dim(df)

## [1] 6 4
colnames(df)

## [1] "ID" "Gender" "Age" "T.Shirt.Size"

0.9 Subsetting

The elements of a vector or a data frame are accessed with the bracket [ ] notation:
x[3]

## [1] 2
x[1:3]

## [1] 1.4 5.1 2.0
x[c(1, 3, 8)]

## [1] 1.4 2.0 3.3
x[-3]

## [1] 1.4 5.1 6.8 3.5 2.1 5.6 3.3 6.9 1.1
x[-c(1, 2, 5)]

## [1] 2.0 6.8 2.1 5.6 3.3 6.9 1.1

In the case of a data frame we need to specify the row(s) and the column(s):
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df[1, 2]

## [1] "Male"
df[1:3, 1]

## [1] 1000 1001 1002
df[, 3]

## [1] 20 23 19 21 23 18
df[, -3]

## ID Gender T.Shirt.Size
## 1 1000 Male Small
## 2 1001 Female Medium
## 3 1002 Female Small
## 4 1003 Male Large
## 5 1004 Female Medium
## 6 1005 Male Small

Subsetting is often done with logic conditions:
x

## [1] 1.4 5.1 2.0 6.8 3.5 2.1 5.6 3.3 6.9 1.1
x[x > 4]

## [1] 5.1 6.8 5.6 6.9
x[x>4 & x<6]

## [1] 5.1 5.6

these are often used as conditions:
x[x>4]

## [1] 5.1 6.8 5.6 6.9
df[df$Age>20, ]

## ID Gender Age T.Shirt.Size
## 2 1001 Female 23 Medium
## 4 1003 Male 21 Large
## 5 1004 Female 23 Medium
df[df$Gender=="Female", ]

## ID Gender Age T.Shirt.Size
## 2 1001 Female 23 Medium
## 3 1002 Female 19 Small
## 5 1004 Female 23 Medium
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Notice the use of $ to access the column names of a data frame.

0.10 Vector Arithmetic

R allows us to apply any mathematical function to a whole vector:
x <- 1:10
2*x

## [1] 2 4 6 8 10 12 14 16 18 20
x^2

## [1] 1 4 9 16 25 36 49 64 81 100
log(x)

## [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
## [8] 2.0794415 2.1972246 2.3025851
sum(x)

## [1] 55
y <- 21:30

x+y

## [1] 22 24 26 28 30 32 34 36 38 40
x^2+y^2

## [1] 442 488 538 592 650 712 778 848 922 1000
mean(x+y)

## [1] 31

0.11 Programming in R

One of the great strengths of R lies in the fact that it is a full fledged computer language. It
includes all the usual things like if-else, for loops etc.
Most data analyses involve many steps:

• getting the data
• cleaning it
• processing it
• analysing it
• presenting the results with graphs and tables
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Having all of these steps together in one function is a very good idea. It allows for quick
changes, it allows us to easily make the analysis available to everyone, it allows ourselves to
remember what we did some years ago!

0.12 Case Study: UPR Admissions

consider the upr data set . This is the application data for all the students who applied and
were accepted to UPR-Mayaguez between 2003 and 2013.
dim(upr)

## [1] 23666 16

tells us that there were 23666 applications and that for each student there are 16 pieces of
information.
colnames(upr)

## [1] "ID.Code" "Year" "Gender" "Program.Code"
## [5] "Highschool.GPA" "Aptitud.Verbal" "Aptitud.Matem" "Aprov.Ingles"
## [9] "Aprov.Matem" "Aprov.Espanol" "IGS" "Freshmen.GPA"
## [13] "Graduated" "Year.Grad." "Grad..GPA" "Class.Facultad"

shows us the variables
head(upr, 3)

## ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
## 1 00C2B4EF77 2005 M 502 3.97 647
## 2 00D66CF1BF 2003 M 502 3.80 597
## 3 00AB6118EB 2004 M 1203 4.00 567
## Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
## 1 621 626 672 551 342 3.67
## 2 726 618 718 575 343 2.75
## 3 691 424 616 609 342 3.62
## Graduated Year.Grad. Grad..GPA Class.Facultad
## 1 Si 2012 3.33 INGE
## 2 No NA NA INGE
## 3 No NA NA CIENCIAS

shows us the first three cases.
Let’s say we want to find the number of males and females. We can use the table command
for that:
table(Gender)

## Error: object 'Gender' not found

What happened? Right now R does not know what Gender is because it is “hidden” inside
the upr data set. Think of upr as a closed box. We need to tell R where to look for Gender:
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table(upr$Gender)

##
## F M
## 11487 12179

Let’s answer a few questions regarding the upr admissions data:
1. How did the number of applications change over the years?

table(upr$Year)

##
## 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
## 2253 2158 2300 2235 2464 2438 2417 2031 1772 1748 1850

2. Did the highschool GPAs change over the years?
yr <- unique(upr$Year)
mean.gpa.year <- 0*yr
for(i in seq_along(yr)) {

tmp.gpa <- upr$Highschool.GPA[upr$Year==yr[i]]
mean.gpa.year[i] <- round(mean(tmp.gpa), 2)

}
plot(yr, mean.gpa.year,

pch=20,
xlab="Year",
ylab="Mean GPA")
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There are often many ways in R to do the same thing. Here is another, much nicer but also
a bit more complicated solution:
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mean.gpa.year <- round(tapply(upr$Highschool.GPA,
upr$Year,
mean), 2)

df <- data.frame(GPA = mean.gpa.year,
Year = 2003:2013)

ggplot(data=df, aes(Year, GPA)) +
geom_point() +
scale_x_continuous(breaks = 2003:2013) +
scale_y_continuous(breaks = 3.6+0:15/100) +
labs(x="Year",

y="Mean GPA",
title="Change of GPA by Year\n with non-parametric fit") +

geom_smooth(se=FALSE)
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3. How many female students applied between 2009 and 2012 to study Arts and who had
a highschool GPA over 3.5?

table(upr$Class.Facultad)

##
## ADEM ARTES CIAG CIENCIAS INGE
## 2492 4124 2326 7014 7710
df <- upr[upr$Gender=="F", ]
nrow(df)

## [1] 11487
df <- df[df$Year>=2009 & df$Year<=2012, ]
nrow(df)
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## [1] 3760
df <- df[df$Highschool.GPA>3.5, ]
nrow(df)

## [1] 2948
df <- df[df$Class.Facultad=="ARTES", ]
nrow(df)

## [1] 508

Note in logic conditions we can use
• == equal to"
• < less than
• <= less or equal to
• > greater than
• >= greater or equal to

• & AND
• | OR

• ! NOT

0.13 Random Variates - Simulations

Not surprisingly many standard distributions are part of base R. For each the format is
• dname = density

• pname = cumulative distribution function

• rname = random generation

• qname = quantile function
Note we will use the term density for both discrete and continuous random variable.
Example Poisson distribution
We have X ∼ Pois(λ) if

P (X = x) = λx

x! e
−λ, x = 0, 1, ...

#density
dpois(c(0, 8, 12, 20), lambda=10)

## [1] 0.00004539993 0.11259903215 0.09478033009 0.00186608131
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#cumulative distribution function
ppois(c(0, 8, 12, 20), 10)

## [1] 0.00004539993 0.33281967875 0.79155647639 0.99841173934
#random generation
rpois(15, 10)

## [1] 9 14 9 6 12 8 12 8 9 12 5 7 8 7 11
#quantiles
qpois(1:4/5, 10)

## [1] 7 9 11 13

Example: what is the probability that an observation drawn from a normal distribution with
mean 20 and standard deviation 5 is between 13 and 23?

• exact calculation:
diff(pnorm(c(13, 23), 20, 5))

## [1] 0.6449902

• simulation:
x <- rnorm(1e4, 20, 5)
length(x[x>=13 &x <=23])/1e4

## [1] 0.6463

0.14 Dealing with Character Strings

Here are some basic examples of how to deal with character vectors.
the data set tom.sawyer has the entire book by Mark Twain:
## THE ADVENTURES OF TOM SAWYER, BY MARK TWAIN (Samuel
## Langhorne Clemens), Part 1 , PREFACE: Most of the
## adventures recorded in this book really occurred; one or,
## two were experiences of my own, the rest those of boys
## who were, schoolmates of mine. Huck Finn is drawn from
## life; Tom Sawyer also, but, not from an individual--he is
## a combination of the characteristics of, three boys whom
## I knew, and therefore belongs to the composite order of,
## architecture. The odd superstitions touched upon were all

• how is the text organized?
length(tom.sawyer)

## [1] 6288
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tom.sawyer[1:10]

## [1] "THE" "ADVENTURES" "OF" "TOM" "SAWYER,"
## [6] "BY" "MARK" "TWAIN" "(Samuel" "Langhorne"

so each word is an element in a vector. This also tells us that the book has 6288 word.
• how many letters does the book have?

sum(nchar(tom.sawyer))

## [1] 30344

• how many sentences does it have?
A sentence ents with either . ! or ? These appear at the end of a word, so
length(tom.sawyer[endsWith(tom.sawyer, ".")])

## [1] 284
length(tom.sawyer[endsWith(tom.sawyer, "!")])

## [1] 67
length(tom.sawyer[endsWith(tom.sawyer, "?")])

## [1] 39

In todays session we will use R to analyze a number of data sets. I will assume that you are
familiar with basic concepts such as confidence intervals and hypothesis testing. If you
are not you can read up on them on the web page of my courses ESMA 3101: Introduction
to Statistics I and ESMA 3102: Introduction to Statistics II.

0.15 Basic Summaries and Graphs

We have talked about the upr admissions data before. Here are some simple things to do
when looking at this kind of data:

0.15.1 Tables

Gender <- table(upr$Gender)
names(Gender) <- c("Female", "Male")
Percentage <- round(Gender/sum(Gender)*100, 1)
cbind(Gender, Percentage) # Put them together as columns

## Gender Percentage
## Female 11487 48.5
## Male 12179 51.5
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0.15.2 Contingency Tables

table(upr$Year, upr$Gender)

##
## F M
## 2003 1102 1151
## 2004 1040 1118
## 2005 1162 1138
## 2006 1137 1098
## 2007 1208 1256
## 2008 1219 1219
## 2009 1180 1237
## 2010 958 1073
## 2011 853 919
## 2012 769 979
## 2013 859 991

0.15.3 Bar Charts

barplot(table(upr$Gender, upr$Year), beside = TRUE)
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0.15.4 Numerical Summaries

mean(upr$Freshmen.GPA)
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## [1] NA

this gives an error because for some students the Freshmen GPA is missing (students that
dropped out almost immediately, before getting any grades). There is an easy way to deal
with such missing values:
round(mean(upr$Freshmen.GPA, na.rm=TRUE), 3)

## [1] 2.733
round(median(upr$Freshmen.GPA, na.rm=TRUE), 3)

## [1] 2.83
round(sd(upr$Freshmen.GPA, na.rm=TRUE), 3) # Standard Deviation

## [1] 0.779
round(quantile(upr$Freshmen.GPA,

probs = c(0.1, 0.25, 0.75, 0.9),
na.rm=TRUE), 3) # Quantiles and Quartiles

## 10% 25% 75% 90%
## 1.71 2.32 3.28 3.65

Notice also that I have rounded all the answers. Proper rounding is an important thing to do!

0.15.5 Histogram and Boxplot

par(mfrow=c(1, 2))
hist(upr$Freshmen.GPA,

breaks=50,
main="",
xlab="GPA after Freshmen Year")

boxplot(upr$Freshmen.GPA)
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GPA after Freshmen Year
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0.15.6 Two Quantitative Variables

round(cor(upr$Year, upr$Freshmen.GPA,
use="complete.obs"), 3)

## [1] 0.097
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plot(upr$Year + rnorm(length(upr$Year), 0, 0.05),
upr$Freshmen.GPA,
xlab="Year",
pch=".",
ylab="GPA after Freshmen Year")
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0.16 Inference for a Population Mean

The basic R command for inference for a population mean is t.test:
Example: Simon Newcomb’s Measurements of the Speed of Light
Simon Newcomb made a series of measurements of the speed of light between July and
September 1880. He measured the time in seconds that a light signal took to pass from his
laboratory on the Potomac River to a mirror at the base of the Washington Monument and
back, a total distance of 7400m. His first measurement was 0.000024828 seconds, or 24,828
nanoseconds (109 nanoseconds = 1 second).
We want to find a 95% confidence interval the speed of light.
t.test(newcomb$Measurement)

##
## One Sample t-test
##
## data: newcomb$Measurement
## t = 18770, df = 65, p-value < 0.00000000000000022
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
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## 24823.57 24828.85
## sample estimates:
## mean of x
## 24826.21

The assumptions for this method are:
• data comes from a normal distribution

• or data set is large enough
Let’s check:
par(mfrow=c(1, 2))
boxplot(newcomb$Measurement)
qqnorm(newcomb$Measurement)
qqline(newcomb$Measurement)
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It seems there is at least one serious outlier on the lower end. This should not happen if the
data came from a normal distribution.
We could proceed in one of two ways:

• eliminate outlier:
sort(newcomb$Measurement)[1:5]

## [1] 24756 24798 24816 24816 24819
x <- newcomb$Measurement[newcomb$Measurement>24800]
t.test(x)$conf.int

## [1] 24826.48 24829.02
## attr(,"conf.level")
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## [1] 0.95

• do analysis based on median:
median(newcomb$Measurement)

## [1] 24827

but now we need to find a confidence interval for the median. That can be done with the
non-parametric Wilcoxon Rank Sum method:
wilcox.test(newcomb$Measurement, conf.int = TRUE)

##
## Wilcoxon signed rank test with continuity correction
##
## data: newcomb$Measurement
## V = 2211, p-value = 0.000000000001633
## alternative hypothesis: true location is not equal to 0
## 95 percent confidence interval:
## 24826.0 24828.5
## sample estimates:
## (pseudo)median
## 24827.5

Example: Resting Period of Monarch Butterflies
Some Monarch butterflies fly early in the day, others somewhat later. After the flight they have
to rest for a short period. It has been theorized that the resting period (RIP) of butterflies
flying early in the morning is shorter because this is a thermoregulatory mechanism, and it is
cooler in the mornings. The mean RIP of all Monarch butterflies is 133 sec. Test the theory
at the 10% level.
Research by Anson Lui, Resting period of early and late flying Monarch butterflies Danaeus
plexippus, 1997
1. Parameter: mean µ

2. Method: 1-sample t

3. Assumptions: normal data or large sample

4. α = 0.1

5. H0 : µ = 133 (RIP is the same for early morning flying butterflies as all others)

6. H0 : µ < 133 (RIP is the shorter for early morning flying butterflies)

7.
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t.test(butterflies$RIP.sec.,
mu=133,
alternative = "less")$p.value

## [1] 0.05583963

8. p = 0.0558 < α = 0.1, so we reject the null hypothesis

9. It appears the resting time is somewhat shorter, but the conclusion is not a strong one.
Checking the assumption:
par(mfrow=c(1, 2))
boxplot(butterflies$RIP.sec.)
qqnorm(butterflies$RIP.sec.)
qqline(butterflies$RIP.sec.)
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looks good.

1 Inference for a Population Proportion

The R routine for inference for a proportion (or a probability or a percentage) is binom.test.
This implements a method by Clopper and Pearson (1934). This method is exact and has no
assumptions.
Note The formula discussed in many introductory statistic courses for the confidence interval
is
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p̂±
√
p̂(1− p̂)

n

where p̂ is the proportion of success. This leads to confidence intervals that are now known
to be quite wrong, and so this method should not be used anymore. The same is true for the
corresponding hypothesis test. This method (actually a slight improvement due to Wilson
(1927)) is implemented in R by prop.test.
Example: Jon Kerrichs Coin
The South African Jon Kerrich spent some time in a German prisoner of war camp during
world war I. He used his time to flip a coin 10000 times, resulting in 5067 heads.
Test at the 5% level of significance whether 5067 heads in 10000 flips are compatible with a
fair coin.
1. Parameter: proportion π

2. Method: exact binomial

3. Assumptions: None

4. α = 0.05

5. H0 : π = 0.5 (50% of flips result in “Heads”, coin is fair)

6. Ha : π 6= 0.5 (coin is not fair)

7.
binom.test(x = 5067, n = 10000)$p.value

## [1] 0.1835155

8. p = 0.1835 > α = 0.05, so we fail to reject the null hypothesis.

9. it appears Jon Kerrich’s coin was indead fair.
Example: Sample Size for Polling
Say some polling institute wants to conduct a poll for the next election for president. They
will then find a 95% confidence interval and they want this interval to have an error of 3
percentage points (aka ±0.03). What sample size do they need?
In Amercian politics the two parties are always very close, so in a poll with n people about
n/2 will vote for one or the other party. Let’s do a little trial and error:
n <- 100
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)
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## [1] 0.1016789

Now that is to large, so
n <- 200
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.07134157
n <- 400
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.05009211
n <- 800
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.03521797
n <- 1200
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.02867679
n <- 1100
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.02996843
n <- 1050
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.03068294

There is something quite remarkable about this result!

2 Correlation

Example: UPR Admissions data
What are the correlations between the various variables?
head(upr, 2)

## ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
## 1 00C2B4EF77 2005 M 502 3.97 647
## 2 00D66CF1BF 2003 M 502 3.80 597
## Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
## 1 621 626 672 551 342 3.67
## 2 726 618 718 575 343 2.75
## Graduated Year.Grad. Grad..GPA Class.Facultad
## 1 Si 2012 3.33 INGE
## 2 No NA NA INGE
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Let’s take out the those variables that are either not numerical or not useful for predicting
success, either because we don’t have their value at the time of the admissions process
(Freshmen.GPA) or for legal reasons (Gender)
x <- upr[, -c(1:4, 11:16)]
head(x, 2)

## Highschool.GPA Aptitud.Verbal Aptitud.Matem Aprov.Ingles Aprov.Matem
## 1 3.97 647 621 626 672
## 2 3.80 597 726 618 718
## Aprov.Espanol
## 1 551
## 2 575
round(cor(x, use = "complete.obs") ,3)

## Highschool.GPA Aptitud.Verbal Aptitud.Matem Aprov.Ingles
## Highschool.GPA 1.000 0.176 0.156 0.049
## Aptitud.Verbal 0.176 1.000 0.461 0.513
## Aptitud.Matem 0.156 0.461 1.000 0.456
## Aprov.Ingles 0.049 0.513 0.456 1.000
## Aprov.Matem 0.216 0.474 0.819 0.481
## Aprov.Espanol 0.247 0.602 0.389 0.428
## Aprov.Matem Aprov.Espanol
## Highschool.GPA 0.216 0.247
## Aptitud.Verbal 0.474 0.602
## Aptitud.Matem 0.819 0.389
## Aprov.Ingles 0.481 0.428
## Aprov.Matem 1.000 0.404
## Aprov.Espanol 0.404 1.000

notice the surpisingly low correlations between Highschool.GPA and any of the diagnostic
exams.
Example: The 1970’s Military Draft
In 1970, Congress instituted a random selection process for the military draft. All 366 possible
birth dates were placed in plastic capsules in a rotating drum and were selected one by one.
The first date drawn from the drum received draft number one and eligible men born on that
date were drafted first. In a truly random lottery there should be no relationship between
the date and the draft number.
Question: was the draft was really “random”?
Here we have two quantitative variables, so we start with the scatterplot:
plot(draft$Draft.Number, draft$Day.of.Year,

pch=20,
xlab="Day of Year",
ylab="Draft Number")
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and this does not look like there is a problem with independence.
However:
1) Parameter: Pearson’s correlation coefficient ρ
2) Method: Test for Pearson’s correlation coefficient ρ
3) Assumptions: relationship is linear and that there are no outliers.
4) α = 0.05

5) H0 : ρ = 0 (no relationship between Day of Year and Draft Number)
6) Ha : ρ 6= 0 (some relationship between Day of Year and Draft Number)
7)

cor.test(draft$Draft.Number, draft$Day.of.Year)$p.value

## [1] 0.00001263829

8) p = 0.0000 < α = 0.05, so we reject the null hypothesis,
9) There is a statistically significant relationship between Day of Year and Draft Number.

3 Categorical Data Analysis - Tests for Independence

Example: Drownings in Los Angeles
Data is from O’Carroll PW, Alkon E, Weiss B. Drowning mortality in Los Angeles County,
1976 to 1984, JAMA, 1988 Jul 15;260(3):380-3.
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Drowning is the fourth leading cause of unintentional injury death in Los Angeles County.
They examined data collected by the Los Angeles County Coroner’s Office on drownings that
occurred in the county from 1976 through 1984. There were 1587 drownings (1130 males and
457 females) during this nine-year period
drownings

## Male Female
## Private Swimming Pool 488 219
## Bathtub 115 132
## Ocean 231 40
## Freshwater bodies 155 19
## Hottubs 16 15
## Reservoirs 32 2
## Other Pools 46 14
## Pails, basins, toilets 7 4
## Other 40 12

Here we have two categorical variables (Method of Drowning and Gender), both categorical.
We want to know whether the variables are independent. The most popular method of
analysis for this type of problem is Pearson’s chi square test of independence. It is
done with the command chisq.test and it has the assumption of no expected counts less than
5.
1. Parameters of interest: measure of association

2. Method of analysis: chi-square test of independence

3. Assumptions of Method: all expected counts greater than 5

4. Type I error probability α=0.05

5. H0: Classifications are independent = there is no difference in the method of drowning
between men and women.

6. Ha: Classifications are dependent = there is some difference in the method of drowning
between men and women.

7.
chisq.test(drownings)

##
## Pearson's Chi-squared test
##
## data: drownings
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## X-squared = 144.48, df = 8, p-value < 0.00000000000000022

8. p = 0.000 < α=0.05, we reject the null hypothesis, there is a statistically significant
difference between men and women and where they drown.

Let’s see whether there is a problem with the assumptions:
round(chisq.test(drownings)$expected, 1)

## Male Female
## Private Swimming Pool 503.4 203.6
## Bathtub 175.9 71.1
## Ocean 193.0 78.0
## Freshwater bodies 123.9 50.1
## Hottubs 22.1 8.9
## Reservoirs 24.2 9.8
## Other Pools 42.7 17.3
## Pails, basins, toilets 7.8 3.2
## Other 37.0 15.0

and we see that the expected counts of Pails, basins, toilets and Female is 3.2. In real life
this would be considered ok, but it would also be easy to fix:
newmale <- c(drownings[1:7, 1], 7+40)
newfemale <- c(drownings[1:7, 2], 4+12)
newdrown <- cbind(newmale, newfemale)
newdrown

## newmale newfemale
## [1,] 488 219
## [2,] 115 132
## [3,] 231 40
## [4,] 155 19
## [5,] 16 15
## [6,] 32 2
## [7,] 46 14
## [8,] 47 16
out <- chisq.test(newdrown)
round(out$expected, 1)

## newmale newfemale
## [1,] 503.4 203.6
## [2,] 175.9 71.1
## [3,] 193.0 78.0
## [4,] 123.9 50.1
## [5,] 22.1 8.9
## [6,] 24.2 9.8
## [7,] 42.7 17.3
## [8,] 44.9 18.1
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round(out$p.value, 4)

## [1] 0

3.1 Comparing the Means of Several Populations - ANOVA

Example: Mothers Cocain Use and Babies Health
Chasnoff and others obtained several measures and responses for newborn babies whose
mothers were classified by degree of cocain use.
The study was conducted in the Perinatal Center for Chemical Dependence at Northwestern
University Medical School. The measurement given here is the length of the newborn.
Source: Cocaine abuse during pregnancy: correlation between prenatal care and perinatal
outcome
Authors: SN MacGregor, LG Keith, JA Bachicha, and IJ Chasnoff
Obstetrics and Gynecology 1989;74:882-885
boxplot(mothers$Length~mothers$Status)

Drug Free First Trimester Throughout

40
45

50
55

out <- matrix(0, 3, 3)
colnames(out) <- c("Size", "Mean", "SD")
rownames(out) <- unique(mothers$Status)
out[, 1] <- tapply(mothers$Length,

mothers$Status, length)
out[, 2] <- round(tapply(mothers$Length,

mothers$Status, mean), 2)
out[, 3] <- round(tapply(mothers$Length,
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mothers$Status, sd), 2)
out

## Size Mean SD
## Drug Free 39 51.1 2.9
## First Trimester 19 49.3 2.5
## Throughout 36 48.0 3.6

The standard method for this problem is called ANOVA (Analysis of Variance) and is run
with the aov command.
1. Parameters of interest: group means
2. Method of analysis: ANOVA
3. Assumptions of Method: residuals have a normal distribution, groups have equal variance

4. Type I error probability α=0.05

5. Null hypothesis H0: µ1 = µ2 = µ3 (groups have the same means)

6. Alternative hypothesis Ha: µi 6= µj (at least two groups have different means)

7.
fit <- aov(mothers$Length~mothers$Status)
summary(fit)

## Df Sum Sq Mean Sq F value Pr(>F)
## mothers$Status 2 181.4 90.69 9.319 0.000208
## Residuals 91 885.6 9.73

8. 0.0002 < 0.05, there is some evidence that the group means are not the same, the babies
whose mothers used cocain tend to be a little shorter (less healthy?)

In step 3 we have the assumptions
a. residuals have a normal distribution

qqnorm(fit$res)
qqline(fit$res)
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looks fine
b. groups have equal variance

the boxplot shows that the withing group variances re quite similar.
Often if the null of no difference is rejected, one wants to go a step further and do a pairwise
comparison:

• is Drug Free different from First Trimester?

• is First Trimester different from Throughout?
There are a number of methods known for this problem, a popular one is by Tukey:
tuk <- TukeyHSD(fit)
plot(tuk)
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95% family−wise confidence level

Differences in mean levels of mothers$Status

this draws confidence intervals for the difference in means of all pairs. If an interval does not
contain 0, the corresponding pair is statistically significantly different.
Here that is the case only for Drug Free - Throughout, so the other two pairs are not
statistically significantly different. Remember, however that failing to reject H0 is NOT the
same as accepting H0. The fact that those pairs are not statistically significantly different is
almost certainly due to a lack of sample size.

3.2 Regression

Example: Predicting the Usage of Electricity
In Westchester County, north of New York City, Consolidated Edison bills residential cus-
tomers for electricity on a monthly basis. The company wants to predict residential usage,
in order to plan purchases of fuel and budget revenue flow. The data includes information
on usage (in kilowatt-hours per day) and average monthly temperature for 55 consecutive
months for an all-electric home. Data on consumption of electricity and the temperature in
Westchester County, NY.
head(elusage)

## Month Year Usage Temperature
## 1 8 1989 24.828 73
## 2 9 1989 24.688 67
## 3 10 1989 19.310 57
## 4 11 1989 59.706 43
## 5 12 1989 99.667 26
## 6 1 1990 49.333 41
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plot(elusage$Temperature, elusage$Usage,
pch=20,
xlab="Temperature",
ylab="Usage")
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We want to find a function Usage = f(Temperature).
1. Linear Model

fit <- lm(Usage~Temperature, data=elusage)
summary(fit)

##
## Call:
## lm(formula = Usage ~ Temperature, data = elusage)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.305 -8.163 0.559 7.723 28.611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 116.71619 5.56494 20.97 <0.0000000000000002
## Temperature -1.36461 0.09941 -13.73 <0.0000000000000002
##
## Residual standard error: 11.35 on 53 degrees of freedom
## Multiple R-squared: 0.7805, Adjusted R-squared: 0.7763
## F-statistic: 188.4 on 1 and 53 DF, p-value: < 0.00000000000000022

How do we know that this is a good model? The main diagnostic is the Residual vs Fits plot:
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draw.fit <- function(fit) {
plot(fitted.values(fit), resid(fit),

pch=20,
xlab="Fitted Values",
ylab="Residuals")

abline(h=0, col="blue")
fit.loess <- loess(resid(fit)~fitted.values(fit))
x.range <- seq(min(fitted.values(fit)),

max(fitted.values(fit)),
length=100)

y <- predict(fit.loess, newdata=x.range)
lines(x.range, y, lwd=2, col="blue")

}
draw.fit(fit)
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the idea is that if the model is good, the residuals and the fitted values should be independent,
and so this graph should not show any pattern. Adding the non-parametric fit and a horizontal
line shows that this is not the case here.

• polynomial model
Let’s add a quadratic term to the model
Temperature2 <- elusage$Temperature^2
quad.fit <- lm(Usage~Temperature + Temperature2,

data=elusage)
draw.fit(quad.fit)
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and that is much better.
• Transformations

here we use some transformation (functions) of the data:
log.usage <- log(elusage$Usage)
log.temp <- log(elusage$Temperature)
log.fit <- lm(log.usage~log.temp)
draw.fit(log.fit)
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and that is also not to bad.
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How do we choose among these models? A standard measure of the quality of the fit is the
Coefficient of Determination. It is defined as

R2 = cor(Observed Values, Predicted Values)2100%

Here we find
#Linear Model
round(100*unlist(summary(fit)$r.squared), 1)

## [1] 78
#Quadratic Model
round(100*unlist(summary(quad.fit)$r.squared), 1)

## [1] 84.7
#Log Transfrom Model
round(100*unlist(summary(log.fit)$r.squared), 1)

## [1] 81.1

but we need to be careful here: the linear model is a special case of the quadratic model, and
so it’s R2 can never be smaller. There are other ways to choose between such nested models,
for example the F test, but here this is not an issue because the linear model is bad anyway.
Now the R2 of the quadratic model is 84.7% and that of the log transform model is 81.1%,
so the quadratic one is better.
Finally let’s have a look what those models look like:
x <- seq(min(elusage$Temperature),

max(elusage$Temperature), length=100)
y.quad <- predict(quad.fit,

newdata=data.frame(Temperature=x,
Temperature2 = x^2))

y.log <- exp(predict(log.fit,
newdata=data.frame(log.temp=log(x))))

plot(elusage$Temperature, elusage$Usage,
pch=20,
xlab="Temperature",
ylab="Usage")

lines(x, y.quad, lwd=2, col="blue")
lines(x, y.log, lwd=2, col="red")
legend(50, 100, c("Quadratic Model", "Log Model"),

lty=c(1, 1), lwd=2,
col=c("blue", "red"))
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