
Dr. Wolfgang Rolke

University of Puerto Rico - Mayaguez

Terascale Statistics School 2017

DESY - Hamburg

Table of Content
 What is R, and why should you care?

 History of R

 Installation

 Help!

 Further Help: Tutorials

 Packages

 Data Structures: Vectors

 Subsetting a Vector

 Linear Algebra

 I/O - Data Entry and Export

Type Conversion

Vector Arithmetic

Character Manipulation

Basic Statistics

Model Notation and
Regression/Fitting

Random Variates and
Probability Functions

R as a Computer Language

Customizing R: .First and .Rprofile

Graphics

Rcpp – Use C++ code in R

ROOT-R Interface

What is R, and why should you care?

 Simply the best computer program for analyzing

data. (Think ROOT for Statisticians)

 Used by every professional Statistician in the

world today

 If it exists, it exists in R

 Runs on Windows, Mac(OS) and Linux

 It is a full fledged computer language

 And best of all: it’s free!

History of R

 S: language for data analysis developed at Bell Labs circa

1976

 Licensed by AT&T/Lucent to Insightful Corp. Product name:

S-plus (Cost: $1000+).

 R: initially written & released as an open source software

by Ross Ihaka and Robert Gentleman at U Auckland during

90s (R plays on name “S”)

 Since 1997: international R-core team ~15 people & 1000s

of code writers and statisticians happy to share their

libraries!

Installation
Installation is fully automatic. For installation files go the R
homepage at CRAN (Comprehensive R Archive Network):

https://cran.r-project.org/

When starting R (after some stuff) you get to the R prompt: >

Now it is time to type in the commands.

There a number of GUIs out there (for example Rcdr) but it is
much better to learn to use R directly. (You guys are used to
this anyway!)

Many people run R via RStudio, also free, which has some
nice tools to look at data sets etc.

https://cran.r-project.org/
https://cran.r-project.org/
https://cran.r-project.org/

and Running R

R is project-centric: everything belonging to a project (data and programs) are in one file with the
extension .RData

You can download the file for this talk: RDesy.RData

use up and down arrow keys to recall commands. Also history()

use rm() to remove objects

to finish an R session type q() or click on the x in the upper right corner

Be careful: R does NOT save anything automatically.

 All my projects have a routine called sv. Running sv() saves everything to the folder and file I
want. I run this basically every 10 minutes or so.

> sv <- function () {

 save.image(paste(getwd(),"/Desy2017.RData",sep=""))

}

http://academic.uprm.edu/wrolke/research/RDesy.RData

Help!
R has a help system that is quite good (especially for a freeware program)

> args(lm)

function (formula, data, subset, weights, na.action, method = "qr",

 model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,

 contrasts = NULL, offset, ...)

> args(mean) # doesn’t always work so good…

function (x, ...)

> ?mean # or help(mean)

brings up a web browser with everything you want to know about the mean
command:

 List of arguments

 List of output values

 References

 related functions

 Examples

R User Groups

Further Help: Tutorials
Each of the following tutorials are in PDF format.

 P. Kuhnert & B. Venables, An Introduction to R:

Software for Statistical Modeling & Computing

 J.H. Maindonald, Using R for Data Analysis and

Graphics

 B. Muenchen, R for SAS and SPSS Users

 W.J. Owen, The R Guide

 D. Rossiter, Introduction to the R Project for

Statistical Computing for Use at the ITC

 W.N. Venebles & D. M. Smith, An Introduction to

R

http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip
http://cran.r-project.org/doc/contrib/Kuhnert+Venables-R_Course_Notes.zip
http://cran.r-project.org/doc/contrib/usingR.pdf
http://cran.r-project.org/doc/contrib/usingR.pdf
http://rforsasandspssusers.googlepages.com/RforSASSPSSusers.pdf
http://cran.r-project.org/doc/contrib/Owen-TheRGuide.pdf
http://cran.r-project.org/doc/contrib/Rossiter-RIntro-ITC.pdf
http://cran.r-project.org/doc/contrib/Rossiter-RIntro-ITC.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf

Further Help: Web Links
 Paul Geissler's R tutorial
 Dave Robert's Excellent Labs on Ecological

Analysis
 Excellent Tutorials by David Rossitier
 Excellent tutorial an nearly every aspect of R (c/o

Rob Kabacoff
 Introduction to R by Vincent Zoonekynd
 R Cookbook
 Data Manipulation Reference

Dozens (Hundreds?) of books on all aspects of R

http://casoilresource.lawr.ucdavis.edu/drupal/node/www.fort.usgs.gov/BRDScience/LearnR.htm
http://casoilresource.lawr.ucdavis.edu/drupal/node/www.fort.usgs.gov/BRDScience/LearnR.htm
http://ecology.msu.montana.edu/labdsv/R/labs/
http://www.itc.nl/personal/rossiter/pubs/list.html#pubs_m_R
http://www.itc.nl/personal/rossiter/pubs/list.html#pubs_m_R
http://www.statmethods.net/index.html
http://zoonek2.free.fr/UNIX/48_R/all.html
http://zoonek2.free.fr/UNIX/48_R/all.html
http://www.r-cookbook.com/node/40
http://wiki.r-project.org/rwiki/doku.php?id=guides:overview-data-manip

Packages

Packages (Libraries) are a great way to add

functionality to R. They are essentially collections of

function and data sets designed for specific tasks.

There are strict rules what a package has to

include, for example help files for each function.

This makes writing them a bit of work, but makes

using them much easier!

Installation:

> install.packages("ggplot2")

better:

> install.packages("ggplot2", lib =

"C:/R/library“,repos="http://cran.rstudio.com/")

> library(ggplot2)

to see what libraries are loaded:

> search()

 [1] ".GlobalEnv" "package:ggplot2" "package:stats" "package:graphics"

 [5] "package:grDevices" "package:utils" "package:datasets" "package:methods"

 [9] "Autoloads" "package:base"

To see what is in a library use ls(k) where k is the position of the library in the search list:

> ls(2)[1:3] #has over 400 objects!

[1] "%+%" "%+replace%" "aes“

In principle, whatever you want to do, there is probably a library that does it.

Actually, there are usually many, and the hard part is trying to figure out which of them is
best!

As of today (February 4, 2017) CRAN, the official online repository for R packages, has
10033 (!!!!) of them.

New versions of R come out every few month. Often

changes are slight. I update my R version maybe

once a year.

If you update R you also MUST update the libraries.

It is easy to do:

> update.packages()

I run R on a number of machines. Trying to make sure all needed packages are
installed and loaded on all machines is a bit painful. So I wrote a routine that makes it
easy:

checkPackages <-

function (pack)

{

 if(!("utils" %in% search()))

 library(utils)

 for(i in 1:length(pack)) {

#package already installed?

 if(!(pack[i] %in% rownames(installed.packages())))

 install.packages(pack[i],repos=c(CRAN =

 "http://cran.rstudio.com/"))

#package already loaded?

 if(!(pack[i] %in% search()))

 library(pack[i],character.only=TRUE)

 }

 NULL

}

I have about a dozen of these routines to do house keeping chores.

Data Structures: Vectors

> Ages <- c(29,23,19,24,29,31,24)

<- is the assignment character (= works also, but is

discouraged for good but somewhat esoteric

reasons)

c “concatenate” combines things into one vector

R is case-sensitive (ages is not Ages)

Elements of a vector can be numeric, character, logical or NA:

Vector can not be a mix of numeric and character

> c(1,4,5,7)

[1] 1 4 5 7

 > c("A","B","C","D")

[1] "A" "B" "C" "D“

> c("A",2,"C",4)

[1] "A" "2" "C" "4" #automatic type conversion!

> c(1,2,NA,3,TRUE,F)

[1] 1 2 NA 3 1 0

> 1:10>5 # Boolean Expressions

 [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

> sum(1:10>5)

[1] 5

If possible you can force the type conversion

> x <- 1:10

> y <- as.character(x)

> y

 [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10 "

> as.numeric(y)

 [1] 1 2 3 4 5 6 7 8 9 10

> as.numeric(c("1","2","3", "a"))

[1] 1 2 3 NA

Warning message:

NAs introduced by coercion

If you need a vector with some structure there are two useful
routines – rep and seq

> rep(1,10)

 [1] 1 1 1 1 1 1 1 1 1 1

> rep(1:2,5)

 [1] 1 2 1 2 1 2 1 2 1 2

> rep(1:2,each=5)

 [1] 1 1 1 1 1 2 2 2 2 2

> rep(1:3,c(2,3,4))

[1] 1 1 2 2 2 3 3 3 3

> rep(1:3,rep(3,3))

[1] 1 1 1 2 2 2 3 3 3

> seq(0,1,0.1)

 [1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

> seq(0,1,length=10)

 [1] 0.0000000 0.1111111 0.2222222 0.3333333

0.4444444 0.5555556 0.6666667 0.7777778

0.8888889 1.0000000

Some more useful routines:

> length(x)

> names(x) # can also be used to assign

 names

> head(x) # first six elements, also tail

> ls() # listing of all objects in file

Subsetting a Vector
> Age<-c(20,21,27,18,25,23,24)

> names(Age)<-LETTERS[1:7]

> Age[1]

 A

20

> Age[1:3]

 A B C

20 21 27

> Age[c(2,5)]

 B E

21 25

> Age[-c(2,5)]

 A C D F G

20 27 18 23 24

> Age["A"]

 A

20

> Age[c("A","B")]

 A B

20 21

> Age[Age>=21]

 B C E F G

21 27 25 23 24

> Job<-c(T,T,F,T,T,F,T)

> Age[Job]

 A B D E G

20 21 18 25 24

> Age[Job & Age>20]

 B E G

21 25 24

Data Types: Matrices

a rectangular array of numbers OR characters

> cbind(1:3,rep(0,3),c(2,4,6))

 [,1] [,2] [,3]

[1,] 1 0 2

[2,] 2 0 4

[3,] 3 0 6

> matrix(1:6,ncol=3,byrow=T)

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

> diag(2)

 [,1] [,2]

[1,] 1 0

[2,] 0 1

> x<-matrix(1:6,ncol=3,byrow=T)

> colnames(x) <- c("A","B","C")

> rownames(x) <- c("X","Y")

> x

 A B C

X 1 2 3

Y 4 5 6

> dim(x)

[1] 2 3

> ncol(x) # also nrow

[1] 3

> x <- matrix(1:10,ncol=5)

> dimnames(x) <-
list(LETTERS[1:2],letters[1:5
])

> x

 a b c d e

A 1 3 5 7 9

B 2 4 6 8 10

> x[1,1]

[1] 1

> x[1,2:3]

b c

3 5

> x[,2:3]

 b c

A 3 5

B 4 6

> x["A",2:3]

b c

3 5

> dim(x)

[1] 2 5

> ncol(x)

[1] 5

> colnames(x)

[1] "a" "b" "c" "d" "e“

> rownames(x)

[1] "A" "B"

> dimnames(x)

[[1]]

[1] "A" "B"

[[2]]

[1] "a" "b" "c" "d" "e“

> colnames(x) <- 1:5

> dimnames(x) <-

list(1:2,1:5)

Linear Algebra
> x<-matrix(1:4,2,2)

> solve(x)

 [,1] [,2]

[1,] -2 1.5

[2,] 1 -0.5

> y<-c(2,2)

> solve(x,y)

[1] -1 1

> eigen(x)

$values

[1] 5.3722813 -0.3722813

$vectors

 [,1] [,2]

[1,] -0.5657675 -0.9093767

[2,] -0.8245648 0.4159736

qr, singular value
decomposition, sparse
matrices…

Data Types: Dataframes
Most common type of data structure in R. It is like a matrix,
but different columns can have different data types

Example: Lengths of newborn babies and drug habit of
mothers

 Cocaine abuse during pregnancy: correlation between prenatal care
and perinatal outcome
Authors: SN MacGregor, LG Keith, JA Bachicha, and IJ Chasnoff
Obstetrics & Gynecology 1989;74:882-885

> head(mothers,3)

 Status Length

1 Drug Free 44.3

2 Drug Free 45.3

3 Drug Free 46.9

subsetting with [,] as well as commands dim, ncol,

nrow, dimnames, colnames work the same as with

matrices. Also:

> table(Status)

Error in table(Status) : object 'Status' not found

> attach(mothers)

> table(Status)

Status

 Drug Free First Trimester Throughout

 39 19 36

> search()

 [1] ".GlobalEnv" "mothers" ….

> detach(mothers) #when you are done

Creating your own data frame is easy:

> x<-1:10

> y<-letters(1:10)

> z<-data.frame(x,y)

Yet more ways to do subsetting: $ and [[]]

> head(mothers$Length)

[1] 44.3 45.3 46.9 47.0 47.2 47.8

> head(mothers[[1]])

[1] "Drug Free" "Drug Free" "Drug Free" "Drug Free"

"Drug Free" "Drug Free“

Data Types: Lists
Most general structure, simply
a list of objects of any kind:

> x<-1:10

> y<-c("A","B")

> fun<-function(x) x^2

> all.of.it<-list(x=x,y=y,fun=fun)

On some deep level every data
object in R is a list:

> x <- 1:10

> x[[1]]

[1] 1

> all.of.it

$x

 [1] 1 2 3 4 5 6 7 8 9 10

$y

[1] "A" "B"

$fun

function (x)

x^2

> all.of.it$fun(all.of.it[[1]])

 [1] 1 4 9 16 25 36 49 64
81 100

Many Other Data Types

Example: factor - character vector with explicitly assigned
levels

> y<-rnorm(90)

> x<-rep(c("Low","Medium","High"),each=30)

> tapply(y,x,mean)

 High Low Medium

-0.06274664 0.23318756 -0.12049278

> x<-
factor(x,levels=c("Low","Medium","High"),ordered=T)

> tapply(y,x,mean)

 Low Medium High

 0.23318756 -0.12049278 -0.06274664

I/O - Data Entry and Export

There are many ways to get electronic data into R. For
a simple vector we have

> scan(“folder/file.r”)

> scan(“folder/file.r”, what=“char”)

For spreadsheets and tables use

> read.table(“folder/file.r”)

There are also routines for I/O from many other
programs, for example read.csv for entry from Excel
spreadsheets. A number of packages are also
available, for example foreign.

I/O: R to R

the routines dump and source allow easy transfer

from one R project to another. The nice thing is that

all formatting is done automatically:

> x<-1:10

> y<-list(a=rep(1,3),b=c("A","B"))

> fun<-function(x) x^2+log(x)

> dump(c("x","y","fun"),"c:/tmp/stuff.r")

stuff.r

x <-

1:10

y <-

structure(list(a = c(1, 1, 1), b = c("A", "B")), .Names =

c("a", "b"))

fun <-

function(x) x^2+log(x)

Now in the other RData just run

> source("c:/tmp/stuff.r")

Type Conversion
Already saw: numeric + character → character

> x<-matrix(1:100,ncol=5) #data frame
> x[1:2,] #data frame

> x[1,] #vector!

Basic principle: R automatically converts to most basic data
type possible.

Greatly simplifies writing routines, but can get you in trouble!

You can keep it from happening, though:

> x[1, ,drop=FALSE]

Vector Arithmetic
(Almost) all R functions are written to work on vectors:

> x<-1:5;y<-6:10

> x^2

[1] 1 4 9 16 25

> log(x)

[1] 0.0000000 0.6931472 1.0986123 1.3862944
1.6094379

> x+y

[1] 7 9 11 13 15

This even works with matrices:

> x<-matrix(1:10,ncol=5)

> x

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 3 5 7 9

[2,] 2 4 6 8 10

> x^2

 [,1] [,2] [,3] [,4] [,5]

[1,] 1 9 25 49 81

[2,] 4 16 36 64 100

but not always!

There are some functions written specifically for
vectorizing calculations:

> x<-matrix(1:100,ncol=5)

> apply(x,1,sum)

 [1] 205 210 215 220 225 230 235 240 245 250 255
260 265 270 275 280 285 290 295 300

> apply(x,2,mean)

[1] 10.5 30.5 50.5 70.5 90.5

This not only yields short code but also runs much
faster!

Other data types have their own versions:

> x<-list(A=1:10,B=20:30)

> lapply(x,mean)

$A

[1] 5.5

$B

[1] 25

Notice an inconsistency here: no type conversion! But:

> sapply(x,mean)

 A B

 5.5 25.0

R library: plyr

Character Manipulation
There are a number of routines to work on character vectors:

> x <- c("try this", "and try that", "but not the other")

> nchar(x)

[1] 8 12 17

> substring(x,1,3)

[1] "try" "and" "but“

> grep("try",x)

[1] 1 2

> sub("try","do",x)

[1] "do this" "and do that" "but not the other“

> paste(c("a","b","c"),"d")

[1] "a d" "b d" "c d "

> paste(c("a","b","c"),"d",sep="+")

[1] "a+d" "b+d" "c+d "

> paste(c("a","b","c"),"d",sep="")

[1] "ad" "bd" "cd "

> paste(c("a","b","c"),"d",collapse=" ")

[1] "a d b d c d "

> paste("a",1:5,sep="")

[1] "a1" "a2" "a3" "a4" "a5 "

R Library: stringr

Basic Statistics

As one would expect, any basic statistics calculation is easily
done in R:

Example: UPR (University of Puerto Rico) student data

> attach(upr)

> nrow(upr)

[1] 23666

> colnames(upr)

 [1] "ID.Code" "Year" "Gender" "Program.Code"
"Highschool.GPA“ "Aptitud.Verbal" "Aptitud.Matem"
"Aprov.Ingles" "Aprov.Matem" "Aprov.Espanol" "IGS"
"Freshmen.GPA" "Graduated" "Year.Grad." "Grad..GPA"

"Class.Facultad"

> mean(Freshmen.GPA,na.rm=T)

[1] 2.733214

> sd(Freshmen.GPA,na.rm=T)

[1] 0.7791875

> median(Freshmen.GPA,na.rm=T)

[1] 2.83

> quantile(Freshmen.GPA,c(0.2,0.4,0.6,0.8),na.rm=T)

 20% 40% 60% 80%

2.17 2.65 3.00 3.39

> tapply(Freshmen.GPA,Gender,mean,na.rm=T)

 F M

2.829027 2.642715

> tapply(Freshmen.GPA,Gender,quantile,

 probs=c(0.25,0.75),na.rm=T)

$F

 25% 75%

2.44 3.34

$M

 25% 75%

2.20 3.22

> t.test(Freshmen.GPA[Gender=="F"],

 Freshmen.GPA[Gender=="M"])

 Welch Two Sample t-test

data: Freshmen.GPA[Gender == "F"] and
Freshmen.GPA[Gender == "M"]

t = 18.487, df = 23398, p-value < 2.2e-16

alternative hypothesis: true difference in means is not
equal to 0

95 percent confidence interval:

 0.1665591 0.2060660

sample estimates:

mean of x mean of y

 2.829027 2.642715

> cor.test(Highschool.GPA, Freshmen.GPA)

 Pearson's product-moment correlation

data: Highschool.GPA[ok] and Freshmen.GPA[ok]

t = 73.673, df = 23449, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to

0

95 percent confidence interval:

 0.4230958 0.4438828

sample estimates:

 cor

0.433547

> cor.test(Highschool.GPA,Freshmen.GPA,method="kendall")

 Kendall's rank correlation tau

data: Highschool.GPA and Freshmen.GPA

z = 73.456, p-value < 2.2e-16

alternative hypothesis: true tau is not equal to 0

sample estimates:

 tau

0.3263772

> cor.test(Highschool.GPA,Freshmen.GPA,method="spearman")

 Spearman's rank correlation rho

data: Highschool.GPA and Freshmen.GPA

S = 1.1495e+12, p-value < 2.2e-16

alternative hypothesis: true rho is not equal to 0

sample estimates:

 rho

0.4652149

Example: Machine Learning

Model Notation and

Regression/Fitting

Many routines in R use the ~ notation. This is based

on the predictor response paradigm, with what is on

the left of the ~ being the response.

Example: data set mtcars has info on car mileage,

weight, number of gears, number of cylinders, etc. of

42 cars

> head(mtcars)

 mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4

4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4

4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3

1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3

2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Say we want to predict mpg by hp:

> print(lm(mpg ~ hp,data=mtcars))

Coefficients:

(Intercept) hp

 30.09886 -0.06823

__

How about a no-intercept model?

> print(lm(mpg ~ hp-1,data=mtcars))

Coefficients:

 hp

0.1011

Include cyl:

> print(lm(mpg ~ hp+cyl,data=mtcars))

Coefficients:

(Intercept) hp cyl

 36.90833 -0.01912 -2.26469

__

and the product term:

> print(lm(mpg ~ hp*cyl,data=mtcars))

Coefficients:

(Intercept) hp cyl hp:cyl

 50.75121 -0.17068 -4.11914 0.01974

Everything and the kitchen sink:

> print(lm(mpg ~ .^2,data=mtcars))

Coefficients:

(Intercept) cyl disp hp drat wt qsec

 -976.14836 107.63710 -0.71673 5.20820 93.64459 88.58589 -29.84482

 vs am gear carb cyl:disp cyl:hp cyl:drat

 13.95220 -519.42892 293.48749 -56.76076 0.61839 -0.53007 -4.57518

 cyl:wt cyl:qsec cyl:vs cyl:am cyl:gear cyl:carb disp:hp

 -21.69425 7.96779 70.54442 126.80477 -77.85856 3.04024 -0.01392

 disp:drat disp:wt disp:qsec disp:vs disp:am disp:gear disp:carb

 0.28869 0.03281 -0.28755 0.30314 -0.59288 0.62584 0.17424

 hp:drat hp:wt hp:qsec hp:vs hp:am hp:gear hp:carb

 -0.74773 0.39209 0.22681 -3.07399 NA NA NA

 drat:wt drat:qsec drat:vs drat:am drat:gear drat:carb wt:qsec

 NA NA NA NA NA NA NA

 wt:vs wt:am wt:gear wt:carb qsec:vs qsec:am qsec:gear

 NA NA NA NA NA NA NA

 qsec:carb vs:am vs:gear vs:carb am:gear am:carb gear:carb

 NA NA NA NA NA NA NA

Random Variates and

Probability Functions

As you would expect R has a lot of functions built in

for probability. They generally have the format

dname – probability density

pname – distribution function

rname – generate events

qname - quantiles

Example: Normal Distribution

> round(dnorm(seq(-3,3,0.5)),3)

 [1] 0.004 0.018 0.054 0.130 0.242 0.352 0.399 0.352
0.242 0.130 0.054 0.018 0.004

> round(pnorm(seq(0,30,5),mean=10,sd=5),3)

[1] 0.022 0.158 0.500 0.841 0.977 0.998 1.000

> round(rnorm(5,mean=10,sd=5),3)

[1] 10.400 3.343 11.449 10.076 4.531

> round(qnorm(seq(0.01,0.99,0.2)),3)

[1] -2.326 -0.806 -0.228 0.279 0.878

 For the beta distribution see dbeta.

 For the binomial (including Bernoulli) distribution see dbinom.

 For the Cauchy distribution see dcauchy. (Breit-Wigner)

 For the chi-squared distribution see dchisq.

 For the exponential distribution see dexp.

 For the F distribution see df.

 For the gamma distribution see dgamma.

 For the geometric distribution see dgeom. (This is also a special case of the
negative binomial.)

 For the hypergeometric distribution see dhyper.

 For the log-normal distribution see dlnorm.

 For the multinomial distribution see dmultinom.

 For the negative binomial distribution see dnbinom.

 For the normal distribution see dnorm.

 For the Poisson distribution see dpois.

 For the Student's t distribution see dt.

 For the uniform distribution see dunif.

 For the Weibull distribution see dweibull.

Many others can be found in packages online, for example mvtnorm.

http://127.0.0.1:24220/library/stats/help/dbeta
http://127.0.0.1:24220/library/stats/help/dbinom
http://127.0.0.1:24220/library/stats/help/dcauchy
http://127.0.0.1:24220/library/stats/help/dchisq
http://127.0.0.1:24220/library/stats/help/dexp
http://127.0.0.1:24220/library/stats/help/df
http://127.0.0.1:24220/library/stats/help/dgamma
http://127.0.0.1:24220/library/stats/help/dgeom
http://127.0.0.1:24220/library/stats/help/dhyper
http://127.0.0.1:24220/library/stats/help/dlnorm
http://127.0.0.1:24220/library/stats/help/dmultinom
http://127.0.0.1:24220/library/stats/help/dnbinom
http://127.0.0.1:24220/library/stats/help/dnorm
http://127.0.0.1:24220/library/stats/help/dpois
http://127.0.0.1:24220/library/stats/help/dt
http://127.0.0.1:24220/library/stats/help/dunif
http://127.0.0.1:24220/library/stats/help/dweibull

Sampling from a finite set:

> sample(1:100,5)

[1] 17 80 29 7 53

> sample(1:3,size=10,replace=T)

 [1] 2 1 2 2 2 3 3 3 3 2

> table(sample(1:3,size=1000,replace=T,prob=c(1,5,2)))

 1 2 3

146 622 232

set.seed
> set.seed(1000);rnorm(5)

[1] -0.44577826 -1.20585657 0.04112631 0.63938841
-0.78655436

> set.seed(1000);rnorm(5)

[1] -0.44577826 -1.20585657 0.04112631 0.63938841
-0.78655436

> rnorm(5)

[1] -0.38548930 -0.47586788 0.71975069 -0.01850562
-1.37311776

R as a Computer Language
R is a full-fledged computer language with all the usual
parts:

> y<-rep(0,1000)

> for(i in 1:1000) {

+ x<-rnorm(1e4)+2*rnorm(1e4,0.5)

+ if(max(x)>10) y[i]<-1

+ }

> table(y)/1000

y

 0 1

0.764 0.236

Writing your own Routines

Just open an editor and write your function!

> fix(myfun)

You can use your favorite editor:

> options(editor=“myfaveditor”)

R will do a basic syntax check. If there is a problem
you get an error message and can go back to fix it
with edit()

Some people prefer to always write their routines

outside of R, save them as ASCII files and then use

source to import them into R.

Advantage: you always have an independent version

of the source code.

Disadvantage: one extra step (switch to and from R)

Customizing R: .First and .Rprofile

Each of us likes to set things up in a certain way.

There are two routines to help with this:

.First is a routine inside an RData. Whatever

commands are part of it are executed at startup. I use

this mostly to load packages that I need in this project

but not necessarily in any others.

.Rprofile is an ASCII file that sits in a folder which is in

the search path of R. It has commands that will get

executed at startup whenever ANY R session starts.

I use this for a lot of things, for example to set the

editor. I also have a number of routines that I wrote for

repeating tasks. Rather than having to copy-paste

them from an old project when I start a new one, they

are always there!

At this writing my .Rprofile has 620 lines of code. You

can have a look at it at

http://academic.uprm.edu/wrolke/research/.Rprofile

Graphics

Among the strongest features of R are its graphics

capabilities.

Graphs play a huge role in any statistical analysis:

Exploratory Data Analysis

Diagnostics

Presentation

There is a long history of graphs in Statistics:

 The Visual Display of Quantitative Information –

Edward R. Tufte

 Visualizing Data – William S. Cleveland

 Exploratory Data Analysis - John W. Tukey

 The Grammar of Graphics – Leland Wilkinson

ggplot2

There are a number of packages available to make

graphs in addition to the built-in ones, but the clear

current leader is ggplot2.

Advantage: gorgeous graphs!

Disadvantage: very strange syntax, huge learning

curve

Example: data set mtcars has info on car mileage, weight,
number of gears, number of cylinders, etc. of 42 cars

> head(mtcars)

 mpg cyl disp hp drat wt qsec vs am gear carb

Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4
4

Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4
4

Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3
1

Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
2

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

First we make some changes to the data frame. This

is just to get better labels:

> mtcars$gear <- factor(mtcars$gear,levels=c(3,4,5),

+ labels=c("3gears","4gears","5gears"))

> mtcars$am <- factor(mtcars$am,levels=c(0,1),

+ labels=c("Automatic","Manual"))

> mtcars$cyl <- factor(mtcars$cyl,levels=c(4,6,8),

+ labels=c("4cyl","6cyl","8cyl"))

Kernel density plots for

mpg grouped by number of

gears (indicated by color):

> qplot(mpg, data=mtcars,

geom="density", fill=gear,

alpha=I(.5),

 main="Distribution of Gas

Milage", xlab="Miles Per

Gallon",

 ylab="Density")

qplot – “quick plot” – basic routine to get ggplot2 started

mpg, data=mtcars – use variable mpg of data frame mtcars

geom="density" – geometry(shape) of graph (histogram,
scatterplot etc)

fill=gear – variable to use for grouping

alpha=I(.5) – control amount of shading

 main="Distribution of Gas Milage“

 xlab="Miles Per Gallon"
 ylab="Density"

Histogram for mpg

grouped by number of

gears (indicated by color):

> qplot(mpg, data=mtcars,

geom=“histogram", fill=gear,

alpha=I(.5),

 main="Distribution of Gas

Milage", xlab="Miles Per

Gallon",

 ylab="Density")

Deeper shading:

> qplot(mpg, data=mtcars,

geom="density", fill=gear,

alpha=I(.9),

 main="Distribution of Gas

Milage", xlab="Miles Per

Gallon",

 ylab="Density")

Scatterplot of mpg vs. hp

qplot(hp, mpg, data=mtcars,

xlab="Horsepower",

ylab="Miles per Gallon")

Notice: no geom, scatterplot is

the default if two numeric

vectors are give.

Scatterplot of mpg vs. hp by

gears:

qplot(hp, mpg, data=mtcars,

shape=am, color=am,

size=I(3),

xlab="Horsepower",

ylab="Miles per Gallon")

shape: different plotting

symbols

color: different colors

Scatterplot of mpg vs. hp for

each combination of gears

and cylinders. In each facet,

transmission type is

represented by shape and

color

qplot(hp, mpg, data=mtcars,

shape=am, color=am,

facets=gear~cyl,

size=I(3),

xlab="Horsepower",

ylab="Miles per Gallon")

Separate regressions of mpg
on weight for each number of
cylinders:

qplot(wt, mpg, data=mtcars,
geom=c("point",
"smooth"),
method="lm", se=F,

formula=y~x, color=cyl,
main="Regression of MPG
on Weight",
 xlab="Weight", ylab="Miles
per Gallon")

With error bands (actually

the default, suppress the

bands with se=F)

qplot(wt, mpg, data=mtcars,

geom=c("point", "smooth"),

method="lm",

formula=y~x, color=cyl,

main="Regression of MPG

on Weight",

 xlab="Weight", ylab="Miles

per Gallon")

Non-parametric regression

with LOESS

qplot(wt, mpg, data=mtcars,

geom=c("point", "smooth"),

method="loess",

formula=y~x, color=cyl,

main="Regression of MPG

on Weight",

 xlab="Weight", ylab="Miles

per Gallon")

and by gear:

qplot(wt, mpg, data=mtcars,

geom=c("point", "smooth"),

method="loess",

formula=y~x, color=cyl,

facet=gear~cyl,

main="Regression of MPG

on Weight",

xlab="Weight",

ylab="Miles per Gallon")

Use ggplot for more Control
> plt <-

ggplot(data=mtcars,

aes(x = wt, y = mpg,

color=factor(cyl))) +

geom_point()

> print(plt)

aes – (aesthetics) which

variable goes where in the

graph

fix axis labels:

> plt<-plt+

labs(x="Weight (kg)",

y="Miles per

Gallon",color="Cylinders")+

theme(legend.title =

element_text(colour="blue",

size=10, face="bold"))

> print(plt)

We can move the legend

around:

> plt<-plt+

theme(legend.position="bott

om")

> print(plt)

Let’s add a non-parametric

regression fit with a larger

smoothing parameter than

the default:

> plt<-plt+

geom_smooth(span=1.5)

> print(plt)

88

Graphs are easily saved in a number of formats:

> png("c:/folder/mygraph.png")

>print(plt)

>dev.off() #return to R console

Function Output to

pdf("mygraph.pdf") pdf file

win.metafile("mygraph.wmf") windows metafile

png("mygraph.png") png file

jpeg("mygraph.jpg") jpeg file

bmp("mygraph.bmp") bmp file

postscript("mygraph.ps") postscript file

Got interested?

for an online tutorial of ggplot2 graphs go to

https://www.datacamp.com/courses/data-visualization-

with-ggplot2-1

Rcpp – Use C++ code in R

R is great for writing programs – vectorization and

other features make code very short

This has a price: R code can be

VEEERY SLOOOOW

One way to speed things up – write some parts in

C++

Also useful if you already have a program written in

C++ and want to execute it inside R

Example: say we want to do a coverage study of the

classic confidence interval for the mean of a normal

distribution with unknown standard deviation.

William S. Gosset (aka Student) 1908: A 100(1-ɑ)%
confidence interval for the population mean is given by

𝑋±𝑡𝑛−1,ɑ/2
𝑠

𝑛

and we are concerned about the sample size n. So we

write a simulation in R:

RcppExample1 <-

function (B=1000,npoints=50,alpha=0.95,mu=0,sigma=1)

{

 n<-1:npoints+4

 Coverage<-rep(0,npoints)

 for(j in 1:npoints) {

 crit <- qt(1-(1-alpha)/2, n[j]-1)

 counter=0;

 for(i in 1:B) {

 x<-rnorm(n[j],mu,sigma)

 if(mean(x)-crit*sd(x)/sqrt(n[j])>mu) counter=counter+1

 if(mean(x)+crit*sd(x)/sqrt(n[j])<mu) counter=counter+1

 }

 Coverage[j]<-100-counter/B*100

 }

 plot(n,Coverage,ylim=c(90,100),pch="0",col="red")

 abline(h=alpha*100,lwd=2)

}

Running this on my desktop takes just about 5 seconds.

Now let’s redo the inner loop in Rcpp. First we write a C++ program as
follows:

#include <Rcpp.h>

// [[Rcpp::export]]

double ci(int n, double mu, double sigma, int B, double crit) {

 double Coverage;

 Rcpp::NumericVector x(n);

 int counter=0;

 for(int i=0;i<B;++i) {

 x=Rcpp::rnorm(n,mu,sigma);

 if(mean(x)-crit*sd(x)/sqrt(n)>mu) ++counter;

 if(mean(x)+crit*sd(x)/sqrt(n)<mu) ++counter;

 }

 Coverage=100-counter*(100.0/B);

 return Coverage;

}

__

Notice: almost exactly the same code as in R, including the use of vector
arithmetic!

in R we first have to compile the code:

> sourceCpp("C:/Desy R/ci.cpp")

and write the rest of the R routine:

RcppExample2 <-

function (B=1000,npoints=50,alpha=0.95,mu=0,sigma=1)

{

 n<-1:npoints+4

 Coverage<-rep(0,npoints)

 for(j in 1:npoints) {

 crit <- qt(1-(1-alpha)/2, n[j]-1)

 Coverage[j]<-ci(n[j],mu,sigma,B,crit)

 }

 plot(n,Coverage,ylim=c(90,100),pch="0",col="red")

 abline(h=alpha*100,lwd=2)

}

__

Time to run this: 0.2 seconds, OR ALMOST 25 TIMES FASTER

L. Moneta / CERN EP-

SFT

ROOT-R Interface
ROOT-R package to use R in the ROOT environment (in C++)

not to access ROOT tools inside R
Simple way to call R functions from ROOT prompt or C++ code
Conversion between ROOT/C++ objects and R objects
Class TRDataFrame to support also r data-frame objects

Plug-ins can be developed to hide detail of ROOT-R interface
ROOT Minimizer plug-in using optimisation packages from R
(RMinimizer)
Interface to use Machine Learning tools from R in the ROOT
TMVA (RMVA library)

See the ROOT-R Users Guide and the tutorials (in tutorials/r)

95

auto r = ROOT::R::TRInterface::Instance();

//executing simple r commands with the operator <<

r << "print('hello ROOTR')";

r << “vec=c(1,2,3)" << "print(vec)";

https://root.cern.ch/doc/master/md_bindings_r_doc_users-guide_ROOTR_Users_Guide.html

 Thanks!

