
Introduction to (some interesting things you can do with) R

Dr. Wolfgang Rolke

Packages / Libraries

• one of the great strength of R
• self contained sets of routines and data that somebody wrote to help with a specific task
• you have an analysis problem? google it and almost always you will find that someone

has already done it for you
The main repository for R packages is at https://cran.r-project.org/. As of February 1st

there are over 15000!
Basic R paradigm: if your project has more than three routines, turn it into a package!

Rmarkdown

• best way to keep everything (text, formulas, data, code, graphs etc.) in one place
• easy syntax for a number of basic objects
• code and output are in the same place and so are always synced
• several output formats (html, latex, word, power point)
• uses html tags or (recommended) latex
• whenever I start a new project I immediately create a corresponding R markdown

document
• this workshop is one of them

Case Study: UPR Admissions

Consider the upr data set. This is the application data for all the students who applied and
were accepted to UPR-Mayaguez between 2003 and 2013.
dim(upr)

[1] 23666 16

• 23666 cases (applications)
• 16 variables (columns)

1

https://cran.r-project.org/

colnames(upr)

[1] "ID.Code" "Year" "Gender" "Program.Code"
[5] "Highschool.GPA" "Aptitud.Verbal" "Aptitud.Matem" "Aprov.Ingles"
[9] "Aprov.Matem" "Aprov.Espanol" "IGS" "Freshmen.GPA"
[13] "Graduated" "Year.Grad." "Grad..GPA" "Class.Facultad"

head(upr, 3)

ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
1 00C2B4EF77 2005 M 502 3.97 647
2 00D66CF1BF 2003 M 502 3.80 597
3 00AB6118EB 2004 M 1203 4.00 567
Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
1 621 626 672 551 342 3.67
2 726 618 718 575 343 2.75
3 691 424 616 609 342 3.62
Graduated Year.Grad. Grad..GPA Class.Facultad
1 Si 2012 3.33 INGE
2 No NA NA INGE
3 No NA NA CIENCIAS

Note that some columns are numeric, others are not. So data is in the dataframe format.
This is the standard format in R.

• How many males and females applied?
table(upr$Gender)

##
F M
11487 12179

Also possible
attach(Gender)
table(Gender)

but this is no longer recommended (or needed)
• How did the number of applications change over the years?

table(upr$Year)

##
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
2253 2158 2300 2235 2464 2438 2417 2031 1772 1748 1850

• Did the high school GPAs change over the years?
yr <- unique(upr$Year)
mean.gpa.year <-

tapply(upr$Highschool.GPA, upr$Year, mean)

2

plot(yr, mean.gpa.year,
pch=20,
xlab="Year",
ylab="Mean GPA"

)

2004 2006 2008 2010 2012

3.
64

3.
66

3.
68

3.
70

Year

M
ea

n
G

PA

• How many female students applied between 2009 and 2012 to study Arts and who had
a high school GPA over 3.5?

nrow(subset(upr, Gender=="F" &
Year>=2009 & Year<=2012 &
Highschool.GPA>3.5 &
Class.Facultad=="ARTES"))

[1] 508

Data entry with rio

The package rio provides the import and export functions. It figures out from the extension
what the file format is. Say we have an EXCEL spreadsheet called salesdata.xlsx:
library(rio)
salesdata <- import("c:/somefolder/salesdata.xlsx")

Here is a list of supported file formats:
https://cran.r-project.org/web/packages/rio/vignettes/rio.html
It can also be used to covert data on disk from one format to another. Say we want to turn
the EXCEL file into a csv (comma-separated text) file:

3

https://cran.r-project.org/web/packages/rio/vignettes/rio.html

convert("c:/somefolder/salesdata.xlsx",
"c:/somefolder/salesdata.csv")

Graphs with ggplot2

• much nicer looking graphs
• things like proper scaling done automatically
• however, a bit of a learning curve

Bar chart
ggplot(upr, aes(x=Gender, fill=factor(Year))) +

geom_bar(position = "dodge") +
scale_y_continuous(labels=scales::percent) +
labs(x="", y="Percentages", fill="Year")

0%

40 000%

80 000%

120 000%

F M

P
er

ce
nt

ag
es

Year

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

Histogram
bw <- 4/50
ggplot(upr, aes(Freshmen.GPA)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density")

4

0.0

0.2

0.4

0.6

0 1 2 3 4

x

D
en

si
ty

Boxplot
ggplot(upr, aes(Gender, Freshmen.GPA)) +

geom_boxplot()

0

1

2

3

4

F M

Gender

F
re

sh
m

en
.G

PA

Scatterplot with Least Squares Fit
ggplot(upr, aes(Highschool.GPA, Freshmen.GPA)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)

5

0

1

2

3

4

2.5 3.0 3.5 4.0

Highschool.GPA

F
re

sh
m

en
.G

PA

Scatterplot with Loess fit and error bounds, by two Groups
ggplot(upr,

aes(Highschool.GPA, Freshmen.GPA, color=Gender)) +
facet_wrap(~factor(Year)) +
geom_point(size=0.1) +
geom_smooth()

2011 2012 2013

2007 2008 2009 2010

2003 2004 2005 2006

2.5 3.0 3.5 4.0 2.5 3.0 3.5 4.0 2.5 3.0 3.5 4.0

2.5 3.0 3.5 4.0

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Highschool.GPA

F
re

sh
m

en
.G

PA

Gender

F

M

6

Bayesian Analysis with Openbugs

This analysis is based on MCMC simulation, and is computationally quite expensive!
The data set survey of the MASS library has information on smoking of University students:
library(MASS)
tbl <- table(survey$Smoke)
tbl

##
Heavy Never Occas Regul
11 189 19 17

so there are 189 students who never smoked. We want to find a 95% credible interval for the
true proportion using a Beta prior. To start we have to define a model:
model <- function() {

Prior
p ~ dbeta(1, 1)

Likelihood
y ~ dbin(p, N)

}

Notice that this is Openbugs notation, the tilde is not the usual tilde from R.
This model needs to be written to a file on disk:
library(R2OpenBUGS)
model.file <- file.path(tempdir(), "model.txt")
write.model(model, model.file)

Next we need to define some objects:
N <- as.numeric(sum(tbl)) # Number of Students
y <- N - as.numeric(tbl["Never"]) #Number of Smokers
data <- list("N", "y") #Names of Variables
params <- c("p") #Names of Parameters
inits <- function() { list(p=0.5) } #Starting Value

Next we let Openbugs do the works:
out <- bugs(data, inits, params, model.file, n.iter=10000)

As a check whether 10000 iterations was enough consider the R̂’s. They should all be less
than 1.1:
all(out$summary[,"Rhat"] < 1.1)

[1] TRUE

We can get the posterior mean and standard deviation of p from the output.

7

c(out$mean["p"], out$sd["p"])

$p
[1] 0.2014755
##
$p
[1] 0.02574684

The full info is at
print(out, digits=5)

Inference for Bugs model at "C:\Users\Wolfgang\AppData\Local\Temp\RtmpKyg2kf/model.txt",
Current: 3 chains, each with 10000 iterations (first 5000 discarded)
Cumulative: n.sims = 15000 iterations saved
mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
p 0.20148 0.02575 0.1531 0.1838 0.2009 0.2184 0.25450 1.00129 5100
deviance 6.45097 1.38373 5.4710 5.5700 5.9070 6.7770 10.47025 1.00119 6900
##
For each parameter, n.eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor (at convergence, Rhat=1).
##
DIC info (using the rule, pD = Dbar-Dhat)
pD = 0.97340 and DIC = 7.42400
DIC is an estimate of expected predictive error (lower deviance is better).

Finally the 95% credible interval:
out$summary[c("p"), c("2.5%", "97.5%")]

2.5% 97.5%
0.1531 0.2545

ROpenbUGS can be used with Coda for more detailed analyses of the results.

C++ with Rcpp

• speed up computation time by rewriting part of the code in C++

• use available C++ programs in R
library(Rcpp)
library(microbenchmark)

Example
we have a data set with points (x, y) and for each point we want to find the nearest neighbor
based on Euclidean distance.
Simple R solution:

8

nn.r <- function(x) {
n <- nrow(x)
out <- rep(0, n)
for(i in 1:n) {

d <- (x[i, 1]-x[, 1])^2+(x[i, 2]-x[, 2])^2
d[i] <- max(d)
out[i] <- which.min(d)

}
out

}

and here the Rcpp solution:
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]

IntegerVector nn_cpp(NumericVector x, NumericVector y) {
int n=x.length();
double tmp;
NumericVector d(n);
IntegerVector out(n);
for(int i=0; i<n; ++i) {

d=(x[i]-x)*(x[i]-x)+(y[i]-y)*(y[i]-y);
tmp = max(d);
for(int j=0; j<n; ++j) {

if((i!=j) & (d[j]<tmp)) {
out[i] = j+1 ;
tmp = d[j];

}
}

}
return out;

}

Notice that the R version of C++ is vectorized. It even allows us to use many standard R
functions like rnorm etc.!
Let’s see that the two routines do the same thing:
x <- matrix(round(rnorm(20), 3), ncol=2)
cbind(x, nn.r(x), nn_cpp(x[, 1], x[, 2]))

[,1] [,2] [,3] [,4]
[1,] 0.648 -0.077 6 6
[2,] 0.110 -1.001 5 5
[3,] -2.285 -1.115 4 4
[4,] -1.473 -0.205 3 3

9

[5,] 0.060 -1.571 2 2
[6,] 1.184 -0.475 1 1
[7,] -1.718 1.565 10 10
[8,] 0.128 -2.428 5 5
[9,] 0.439 2.720 10 10
[10,] -1.162 1.514 7 7

So, how fast are they?
x <- matrix(round(rnorm(1e3), 3), ncol=2)
microbenchmark(nn.r(x), nn_cpp(x[, 1], x[, 2]))

Unit: microseconds
expr min lq mean median uq max neval
nn.r(x) 2371.8 2412.00 4463.603 2497.20 2751.3 136317.3 100
nn_cpp(x[, 1], x[, 2]) 718.2 721.35 779.984 734.45 761.3 1631.3 100
cld
b
a

so the cpp version is about 4 times faster! In fact, I have seen examples with a speedups of
several orders of magnitude.

Parallel and gpu programming with parallel and gpuR

• modern computers have several processor cores.
• many simulation problems are embarrassingly parallel

Example say we have 100 data sets and want to find the nearest neighbors for them:
x <- as.list(1:100)
for(i in 1:100)

x[[i]] <- matrix(round(rnorm(1e4), 3), ncol=2)

system.time(out <- lapply(x, nn.r))

user system elapsed
22.96 0.00 23.00

Now for the parallelized version:
library(parallel)
detectCores()

[1] 6

num_cores <- detectCores()-1
cl <- makeCluster(num_cores)

system.time(out <- parLapply(cl, x, nn.r))

10

user system elapsed
0.00 0.01 6.75

Many computers have a dedicated graphics card (gpu). These are massively parallel processors,
but with very limited functionality. R has the gpuR library, mostly useful for matrix
manipulations.

Interactive web applications with shiny

shiny is a package that has routines to create interactive web applications that run in a
browser.
Here are a number of examples:

• Illustration of different sampling schemes:
library(shiny)
runUrl("http://academic.uprm.edu/wrolke/shiny/sampling.zip")

• Illustration of Integration
runApp("C:/Users/Wolfgang/Dropbox/R/shiny/integral.zip")

These apps run on my laptop. It is also possible to upload (a few) apps to the shinyapps web
site. This allows people who have no knowledge of R to run them as well:

• Taylor Polynomials
• Illustration of Bayesian Analysis

Further Reading

• I teach a two semester graduate level course on R. For details go to Computing with R
and Computational Statistics with R

• There are literally 100s of books dedicated to R. A short list of those that I have found
useful is
– Learning R
– Introduction to Data Science with R
– R Cookbook
– Advanced R

11

https://wolfgangrolke.shinyapps.io/taylor/
https://wolfgangrolke.shinyapps.io/ibayesperc/
http://academic.uprm.edu/wrolke/esma6835
http://academic.uprm.edu/wrolke/esma6836
https://www.amazon.com/Learning-R-Richard-Cotton/dp/1449357105/ref=dp_rm_title_1
http://shop.oreilly.com/product/0636920034834.do
https://www.amazon.com/Cookbook-OReilly-Cookbooks-Paul-Teetor/dp/0596809158/ref=dp_rm_title_0
https://englianhu.files.wordpress.com/2016/05/advanced-r.pdf

	Packages / Libraries
	Rmarkdown
	Case Study: UPR Admissions
	Data entry with rio
	Graphs with ggplot2
	Bayesian Analysis with Openbugs
	C++ with Rcpp
	Parallel and gpu programming with parallel and gpuR
	Interactive web applications with shiny
	Further Reading

