
HOSA Workshop on R

Dr. Wolfgang Rolke

April 20, 2021

Why R?

• software of choice for professional Statisticians

• Just about every statistical method ever invented is available in R

• any method invented recently is likely available only in R

• R is used more and more by non-statisticians. In many fields it has replaced other
software like SPSS, SAS and Minitab.

• The main strength of R likely is its users. They form a very large community of people
who contribute actively to the development of R.

• What can you do with R? Actually, what can’t you do? For example, this workshop
was written entirely in R!

Setting things up

Installation of base R

You can get a free version of R:
CRAN
Versions are available for Windows, MacOS and Linux

RStudio

Most people use R via the front-end **RStudio*. You can download it at RStudio. Again
it is free.
Here is what it looks like:

1

https://cran.r-project.org
https://www.rstudio.com/

Packages / Libraries

• one of the great strength of R

• self contained sets of routines and data that somebody wrote to help with a specific
task

• you have an analysis problem? google it and almost always you will find that someone
has already done it for you

The main repository for R packages is again CRAN. Currently there are over 17500! (One
of them was written by me).
To install a package (here a package called ggplot2) click on the Packages tab in the upper
right portion of RStudio.
Once a package is installed you can load it into R with

library("ggplot2")

Updating

• new versions of R are released about every three months

• Usually these are minor updates and it is not necessary to update your version every
time

• When you do want to update simply download the latest version and install it on top
of the old one

2

https://cran.r-project.org/

• After updating R also update your packages with

update_packages(dependencies = TRUE)

Further Reading

• For a more extensive introduction to R go here

• I teach a one semester graduate level course on R. For details go to Computing with R

• There are literally 100s of books dedicated to R. A short list of those that I have found
useful is

– Learning R
– Introduction to Data Science with R
– R Cookbook
– Advanced R

R Studio Projects

Rstudio organizes everything in terms of projects, so if you should start by creating a new
one each time you start a (well..), project. A nice feature is that a project can be linked to
a GITHUB repository, which is useful for automatic backup and collaboration.
Once you have started a session the first thing you see is some text, and then the > sign in
the Console pane. This is the R prompt, it means R is waiting for you to do something.
Let’s start with

ls()

shows you a “listing”" of the files (data, routines etc.) Of course in the beginning there isn’t
anything there.
Everything in R is either a data set or a function. It is a function if it is supposed to do
something (maybe calculate something, show you something like a graph or do something
else). If it is a function it ALWAYS NEEDS (). Sometimes there is something (an argument)
in between the parentheses. Sometimes there isn’t like in the ls(). But the () has to be there
anyway.
R has a nice recall feature, using the up and down arrow keys. Also, typing

3

http://academic.uprm.edu/wrolke/research/Introduction%20%20to%20R.pdf
http://academic.uprm.edu/wrolke/esma6835
https://www.amazon.com/Learning-R-Richard-Cotton/dp/1449357105/ref=dp_rm_title_1
http://shop.oreilly.com/product/0636920034834.do
https://www.amazon.com/Cookbook-OReilly-Cookbooks-Paul-Teetor/dp/0596809158/ref=dp_rm_title_0
https://englianhu.files.wordpress.com/2016/05/advanced-r.pdf

history()

shows you the most recent things entered. Finally in RStudio you can type the first three
letter of a command and then CTRL-↑ to see a list of when you used commands that start
with these three letters

RStudio has a lot of useful keyboard shortcuts, see which at Tools - Keyboard Shortcuts
Help.
R is case-sensitive, so a and A are two different things.
Often during a session you create objects that you need only for a short time. When you no
longer need them use rm to get rid of them:

x=10
x^2

[1] 100

rm(x)

Sometimes instead of = people use = as the assignment character in R, the two do the same
thing.

Data in R

Data Entry

• With the keyboard

4

For a few numbers the easiest thing is to just type them in:

x = c(10, 2, 6, 9)
x

[1] 10 2 6 9

c() is a function that takes the objects inside the () and combines them into one single object
(a vector).
Useful commands for creating vectors are:

1:5

[1] 1 2 3 4 5

rep(1, 5)

[1] 1 1 1 1 1

rep(1:5, 3)

[1] 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

rep(1:5, each=3)

[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

seq(0, 10, length=101)

[1] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
[16] 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
[31] 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4
[46] 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9
[61] 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4
[76] 7.5 7.6 7.7 7.8 7.9 8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9
[91] 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

and these can be combined:

c(rep(1, 3), rep(2, 5), rep(3, 2))

[1] 1 1 1 2 2 2 2 2 3 3

If it is not numbers it needs quotes:

5

c("Adam", "Karla", "Linda", "@")

[1] "Adam" "Karla" "Linda" "@"

• data from a file

Say you have a text file with numbers in it called mydata1.txt in a folder called
c:/myexamples. You can read it into R with

dta = scan("c:/myexamples/mydata1.txt")

if the data is not numbers but characters you need to use

dta = scan("c:/myexamples/mydata1.txt", what="char")

R assumes the numbers and/or characters are separated by an empty space. If instead they
are separated by (say) a ; use

dta = scan("c:/myexamples/mydata1.txt", sep=";")

Often your data is in the form of a table, with different variables in different columns. Then
you can use

dta = read.table("c:/myexamples/mydata1.txt")

Very popular is data that comes as an Excel worksheet. In that case you can save it as a
comma delimited file and read it into R with

dta = read.csv("c:/myexamples/mydata1.csv")

There are a number of packages designed to help with data input/output. A very good one
is called rio.

Data Types

R has the following basic data types:

• numeric
• character
• logical (TRUE/FALSE)

• factor

the last one is specific to Statistics. It is data with relatively few values that repeat many
times. Examples are things like gender and treatment labels.

6

Data Formats

• Vectors

the most basic type of data in R is a vector, simply a list of values. However they all have
to be of the same data type.
Say we want the numbers 1.5, 3.6, 5.1 and 4.0 in an R vector called x, then we can type

c(1.5, 3.6, 5.1, 4.0)

[1] 1.5 3.6 5.1 4.0

c(1.5, 3.6, 5.1, 4.0, "A")

[1] "1.5" "3.6" "5.1" "4" "A"

Notice how this last one has all quotes, even so I didn’t write them first. This is because if
one element in a vector is not a number, none of them can be and R turns everything into
a character.

• Data Frames

The most common data type in R is a data frame. This is a collection of vectors, arranged
as columns:

df = data.frame(ID=1000:1005,
Gender=c("Male", "Female", "Female",

"Male", "Female", "Male"),
Age=c(20, 23, 19, 21, 23, 18),
T.Shirt.Size=c("Small", "Medium", "Small",

"Large","Medium", "Small"))
df

ID Gender Age T.Shirt.Size
1 1000 Male 20 Small
2 1001 Female 23 Medium
3 1002 Female 19 Small
4 1003 Male 21 Large
5 1004 Female 23 Medium
6 1005 Male 18 Small

The last variable is defined as a character vector. If we did a table R would sort it alpha-
betically:

7

table(df$T.Shirt.Size)

##
Large Medium Small
1 2 3

But of course we would expect Small to come before Medium! This can be fixed using an
ordered factor :

T.Shirt.Size = factor(c("Small", "Medium", "Small",
"Large","Medium", "Small"),
levels=c("Small", "Medium", "Large"),
ordered=TRUE)

df$T.Shirt.Size = T.Shirt.Size

table(df$T.Shirt.Size)

##
Small Medium Large
3 2 1

• other formats

other common formats are

a. matrices: data frames were all columns have the same data type

b. arrays: higher dimensional matrices

c. lists: collections of data of various types and lenghts. Often used as output from
functions.

Basic Commands for Vectors and Data Frames

x = c(1.4, 5.1, 2.0, 6.8, 3.5, 2.1, 5.6, 3.3, 6.9, 1.1)
length(x)

[1] 10

dim(df)

[1] 6 4

8

colnames(df)

[1] "ID" "Gender" "Age" "T.Shirt.Size"

Subsetting

The elements of a vector or a data frame are accessed with the bracket [] notation:

x[3]

[1] 2

x[1:3]

[1] 1.4 5.1 2.0

x[c(1, 3, 8)]

[1] 1.4 2.0 3.3

x[-3]

[1] 1.4 5.1 6.8 3.5 2.1 5.6 3.3 6.9 1.1

x[-c(1, 2, 5)]

[1] 2.0 6.8 2.1 5.6 3.3 6.9 1.1

In the case of a data frame we need to specify the row(s) and the column(s):

df[1, 2]

[1] "Male"

df[1:3, 1]

[1] 1000 1001 1002

df[, 3]

[1] 20 23 19 21 23 18

9

df[, -3]

ID Gender T.Shirt.Size
1 1000 Male Small
2 1001 Female Medium
3 1002 Female Small
4 1003 Male Large
5 1004 Female Medium
6 1005 Male Small

Subsetting is often done with logic conditions:

x

[1] 1.4 5.1 2.0 6.8 3.5 2.1 5.6 3.3 6.9 1.1

x > 4

[1] FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE

x[x > 4]

[1] 5.1 6.8 5.6 6.9

and these can be more complicated:

x[x>4 & x<6]

[1] 5.1 5.6

df[df$Age>20,]

ID Gender Age T.Shirt.Size
2 1001 Female 23 Medium
4 1003 Male 21 Large
5 1004 Female 23 Medium

df[df$Gender=="Female",]

ID Gender Age T.Shirt.Size
2 1001 Female 23 Medium
3 1002 Female 19 Small
5 1004 Female 23 Medium

Notice the use of $ to access the column names of a data frame.

10

Vector Arithmetic

R allows us to apply any mathematical function to a whole vector:

x = 1:10
2*x

[1] 2 4 6 8 10 12 14 16 18 20

x^2

[1] 1 4 9 16 25 36 49 64 81 100

log(x)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
[8] 2.0794415 2.1972246 2.3025851

sum(x)

[1] 55

y = 21:30

x+y

[1] 22 24 26 28 30 32 34 36 38 40

x^2+y^2

[1] 442 488 538 592 650 712 778 848 922 1000

mean(x+y)

[1] 31

Programming in R

One of the great strengths of R lies in the fact that it is a full fledged computer language.
It includes all the usual things like if-else, for loops etc.
Most data analyses involve many steps:

• getting the data

11

• cleaning it

• processing it

• analyzing it

• presenting the results with graphs and tables

Having all of these steps together in one function is a very good idea. It allows for quick
changes, it allows us to easily make the analysis available to everyone, it allows ourselves to
remember what we did some years ago!

R Functions

Here is an example of a function that takes a data frame and standardizes each numeric
column:

standardize=function(x) {
n=ncol(x)
for(i in 1:n) {

if(is.numeric(x[, i]))
x[i,]=(x[i,]-mean(x[,i]))/sd(x[, i])

}
x

}

Typically such a function would be saved as an ASCII file with the extension .R in a subdi-
rectory of your project and loaded into R when needed.

Rmarkdown

The best way to use R is to create a Rmarkdown document. Such a document combines
text, R routines, graphs, tables, etc. into one document. It uses a format that can then be
turned into a html, a pdf, a Word, a Powerpoint etc. with the click of a button. For more
on Rmarkdown see
An Introduction to Rmarkdown
This workshop was written entirely in Rmarkdown!
Now a function used in the project is just part of the Rmarkdown file.

Case Study: UPR Admissions

Consider the upr data set. This is the application data for all the students who applied and
were accepted to UPR-Mayaguez between 2003 and 2013.

12

https://www.yan-holtz.com/PDF/Intro_RMarkDown.pdf

dim(upr)

[1] 23666 16

tells us that there were 23666 applications and that for each student there are 16 pieces of
information.

colnames(upr)

[1] "ID.Code" "Year" "Gender" "Program.Code"
[5] "Highschool.GPA" "Aptitud.Verbal" "Aptitud.Matem" "Aprov.Ingles"
[9] "Aprov.Matem" "Aprov.Espanol" "IGS" "Freshmen.GPA"
[13] "Graduated" "Year.Grad." "Grad..GPA" "Class.Facultad"

shows us the variables

head(upr, 3)

ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
1 00C2B4EF77 2005 M 502 3.97 647
2 00D66CF1BF 2003 M 502 3.80 597
3 00AB6118EB 2004 M 1203 4.00 567
Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
1 621 626 672 551 342 3.67
2 726 618 718 575 343 2.75
3 691 424 616 609 342 3.62
Graduated Year.Grad. Grad..GPA Class.Facultad
1 Si 2012 3.33 INGE
2 No NA NA INGE
3 No NA NA CIENCIAS

shows us the first three cases.
Let’s say we want to find the number of males and females. We can use the table command
for that:

table(upr$Gender)

##
F M
11487 12179

Let’s answer a few questions regarding the upr admissions data:

1. How did the number of applications change over the years?

13

table(upr$Year)

##
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
2253 2158 2300 2235 2464 2438 2417 2031 1772 1748 1850

2. Did the High school GPAs change over the years?

yr = unique(upr$Year)
mean.gpa.year = 0*yr
for(i in seq_along(yr)) {

tmp.gpa = upr$Highschool.GPA[upr$Year==yr[i]]
mean.gpa.year[i] = round(mean(tmp.gpa), 2)

}
plot(yr, mean.gpa.year,

pch=20,
xlab="Year",
ylab="Mean GPA")

2004 2006 2008 2010 2012

3.
64

3.
66

3.
68

3.
70

Year

M
ea

n
G

PA

There are often many ways in R to do the same thing. Here is another, much nicer but also
a bit more complicated solution:

mean.gpa.year = round(tapply(upr$Highschool.GPA,
upr$Year,
mean), 2)

df = data.frame(GPA = mean.gpa.year,

14

Year = 2003:2013)
ggplot(data=df, aes(Year, GPA)) +

geom_point() +
scale_x_continuous(breaks = 2003:2013) +
scale_y_continuous(breaks = 3.6+0:15/100) +
labs(x="Year",

y="Mean GPA",
title="Change of GPA by Year\n with non-parametric fit") +

geom_smooth(se=FALSE)

3.63

3.64

3.65

3.66

3.67

3.68

3.69

3.70

3.71

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Year

M
ea

n
G

PA

Change of GPA by Year
 with non−parametric fit

Here I make use of a number of nice features:

• the apply family of commands allows us the apply calculations to part of the data based
on some criterion.

• ggplot2 is a R library that creates very nice looking graphs

• I also add a non-parametric regression curve to the data to show the trend over time

3. How many female students applied between 2009 and 2012 to study Arts and who had
a high school GPA over 3.5?

table(upr$Class.Facultad)

##
ADEM ARTES CIAG CIENCIAS INGE
2492 4124 2326 7014 7710

15

df = upr[upr$Gender=="F",]
nrow(df)

[1] 11487

df = df[df$Year>=2009 & df$Year<=2012,]
nrow(df)

[1] 3760

df = df[df$Highschool.GPA>3.5,]
nrow(df)

[1] 2948

df = df[df$Class.Facultad=="ARTES",]
nrow(df)

[1] 508

Note in logic conditions we can use

• == equal to"
• < less than
• <= less or equal to
• > greater than
• >= greater or equal to

• & AND
• | OR

• ! NOT

Random Variates - Simulations

Simulations (aka numerical experiments on a computer) are quickly becoming a standard
tool in most fields of science. R is very good at this!
Not surprisingly many standard probability distributions are part of base R. For each the
format is

• dname = density

• pname = cumulative distribution function

16

• rname = random generation

• qname = quantile function

Note we will use the term density for both discrete and continuous random variables.
Example Poisson distribution
We have X ∼ Pois(λ) if

P (X = x) = λx

x! e
−λ, x = 0, 1, ...

#density
dpois(c(0, 8, 12, 20), lambda=10)

[1] 0.00004539993 0.11259903215 0.09478033009 0.00186608131

#cumulative distribution function
ppois(c(0, 8, 12, 20), 10)

[1] 0.00004539993 0.33281967875 0.79155647639 0.99841173934

#random generation
rpois(15, 10)

[1] 11 8 8 8 6 5 8 9 10 9 8 9 9 10 8

#quantiles
qpois(1:4/5, 10)

[1] 7 9 11 13

Example: what is the probability that an observation drawn from a normal distribution
with mean 20 and standard deviation 5 is between 13 and 23?

• exact calculation:

diff(pnorm(c(13, 23), 20, 5))

[1] 0.6449902

• simulation:

17

x = rnorm(1e4, 20, 5)
length(x[x>=13 &x <=23])/1e4

[1] 0.6483

Character Strings

Often data is not numeric but consists of things like names, codes etc. These are called
character strings.
Here is the famous Gettysburg address of Abraham Lincoln:

text="Four score and seven years ago our fathers brought forth upon this continent, a new nation, conceived in Liberty, and dedicated to the proposition that all men are created equal. Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to dedicate a portion of that field, as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this. But, in a larger sense, we can not dedicate—we can not consecrate—we can not hallow—this ground. The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember what we say here, but it can never forget what they did here. It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us—that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion—that we here highly resolve that these dead shall not have died in vain—that this nation, under God, shall have a new birth of freedom—and that government of the people, by the people, for the people, shall not perish from the earth."

Let’s say we want to know how many words the address had. Right now it is a single long
string of characters. In order to break it up into words we can use

words=strsplit(text, split=" ")[[1]]
words[1:10]

[1] "Four" "score" "and" "seven" "years" "ago" "our"
[8] "fathers" "brought" "forth"

length(words)

[1] 264

so it was actually a very short speech! Notice the space between the quotes, this tells R to
split the text whenever it finds an empty space.

• how many letters does the address have?

Again we can use the strsplit command, but now we need to split after each letter:

letters=strsplit(text, "")[[1]]
letters[1:100]

[1] "F" "o" "u" "r" " " "s" "c" "o" "r" "e" " " "a" "n" "d" " " "s" "e" "v"
[19] "e" "n" " " "y" "e" "a" "r" "s" " " "a" "g" "o" " " "o" "u" "r" " " "f"
[37] "a" "t" "h" "e" "r" "s" " " "b" "r" "o" "u" "g" "h" "t" " " "f" "o" "r"
[55] "t" "h" " " "u" "p" "o" "n" " " "t" "h" "i" "s" " " "c" "o" "n" "t" "i"
[73] "n" "e" "n" "t" "," " " "a" " " "n" "e" "w" " " "n" "a" "t" "i" "o" "n"
[91] "," " " "c" "o" "n" "c" "e" "i" "v" "e"

So far so good, but now we also have the empty spaces. Let’s remove them:

18

letters=letters[letters!=" "]
letters[1:100]

[1] "F" "o" "u" "r" "s" "c" "o" "r" "e" "a" "n" "d" "s" "e" "v" "e" "n" "y"
[19] "e" "a" "r" "s" "a" "g" "o" "o" "u" "r" "f" "a" "t" "h" "e" "r" "s" "b"
[37] "r" "o" "u" "g" "h" "t" "f" "o" "r" "t" "h" "u" "p" "o" "n" "t" "h" "i"
[55] "s" "c" "o" "n" "t" "i" "n" "e" "n" "t" "," "a" "n" "e" "w" "n" "a" "t"
[73] "i" "o" "n" "," "c" "o" "n" "c" "e" "i" "v" "e" "d" "i" "n" "L" "i" "b"
[91] "e" "r" "t" "y" "," "a" "n" "d" "d" "e"

We still have the punctuation marks, so let’s remove those as well:

letters=letters[letters!="."]
letters=letters[letters!=","]
letters=letters[letters!="!"]
letters=letters[letters!="?"]
length(letters)

[1] 1159

Now we could put all of these back together

paste0(letters, collapse="")

[1] "FourscoreandsevenyearsagoourfathersbroughtforthuponthiscontinentanewnationconceivedinLibertyanddedicatedtothepropositionthatallmenarecreatedequalNowweareengagedinagreatcivilwartestingwhetherthatnationoranynationsoconceivedandsodedicatedcanlongendureWearemetonagreatbattle-fieldofthatwarWehavecometodedicateaportionofthatfieldasafinalrestingplaceforthosewhoheregavetheirlivesthatthatnationmightliveItisaltogetherfittingandproperthatweshoulddothisButinalargersensewecannotdedicate—wecannotconsecrate—wecannothallow—thisgroundThebravemenlivinganddeadwhostruggledherehaveconsecrateditfaraboveourpoorpowertoaddordetractTheworldwilllittlenotenorlongrememberwhatwesayherebutitcanneverforgetwhattheydidhereItisforusthelivingrathertobededicatedheretotheunfinishedworkwhichtheywhofoughtherehavethusfarsonoblyadvancedItisratherforustobeherededicatedtothegreattaskremainingbeforeus—thatfromthesehonoreddeadwetakeincreaseddevotiontothatcauseforwhichtheygavethelastfullmeasureofdevotion—thatweherehighlyresolvethatthesedeadshallnothavediedinvain—thatthisnationunderGodshallhaveanewbirthoffreedom—andthatgovernmentofthepeoplebythepeopleforthepeopleshallnotperishfromtheearth"

R has many commands to analyze textual data!

Basic Summaries and Graphs

We have talked about the upr admissions data before. Here are some simple things to do
when looking at this kind of data:

Tables

Gender <- table(upr$Gender)
names(Gender) <- c("Female", "Male")
Percentage <- round(Gender/sum(Gender)*100, 1)
cbind(Gender, Percentage) # Put them together as columns

Gender Percentage
Female 11487 48.5
Male 12179 51.5

19

Contingency Tables

table(upr$Year, upr$Gender)

##
F M
2003 1102 1151
2004 1040 1118
2005 1162 1138
2006 1137 1098
2007 1208 1256
2008 1219 1219
2009 1180 1237
2010 958 1073
2011 853 919
2012 769 979
2013 859 991

Bar Charts

barplot(table(upr$Gender, upr$Year), beside = TRUE)

2003 2005 2007 2009 2011 2013

0
20

0
40

0
60

0
80

0
12

00

20

Numerical Summaries

mean(upr$Freshmen.GPA)

[1] NA

this gives an error because for some students the Freshmen GPA is missing (students that
dropped out almost immediately, before getting any grades). There is an easy way to deal
with such missing values:

round(mean(upr$Freshmen.GPA, na.rm=TRUE), 3)

[1] 2.733

round(median(upr$Freshmen.GPA, na.rm=TRUE), 3)

[1] 2.83

round(sd(upr$Freshmen.GPA, na.rm=TRUE), 3) # Standard Deviation

[1] 0.779

round(quantile(upr$Freshmen.GPA,
probs = c(0.1, 0.25, 0.75, 0.9),
na.rm=TRUE), 3) # Quantiles and Quartiles

10% 25% 75% 90%
1.71 2.32 3.28 3.65

Notice also that I have rounded all the answers. Proper rounding is an important thing to
do!

Histogram and Boxplot

par(mfrow=c(1, 2))
hist(upr$Freshmen.GPA,

breaks=50,
main="",
xlab="GPA after Freshmen Year")

boxplot(upr$Freshmen.GPA)

21

GPA after Freshmen Year

F
re

qu
en

cy

0 1 2 3 4

0
50

0
10

00
15

00

0
1

2
3

4
boxplot(upr$Freshmen.GPA~upr$Gender)

F M

0
1

2
3

4

upr$Gender

up
r$

F
re

sh
m

en
.G

PA

Two Quantitative Variables - Scatterplot

round(cor(upr$Year, upr$Freshmen.GPA,
use="complete.obs"), 3)

22

[1] 0.097

plot(upr$Year + rnorm(length(upr$Year), 0, 0.05),
upr$Freshmen.GPA,
xlab="Year",
pch=".",
ylab="GPA after Freshmen Year")

2004 2006 2008 2010 2012

0
1

2
3

4

Year

G
PA

 a
fte

r
F

re
sh

m
en

 Y
ea

r

ggplot2

R can also make much nicer looking graphs using the ggplot2 library, however these are not
trivial to make. Here is the same graph, now with ggplot2:

ggplot(data=upr, aes(Year, Freshmen.GPA)) +
geom_jitter(alpha=0.2, width=0.2,height=0, color="lightblue") +
labs(x="Year", y="GPA after Freshmen Year") +
scale_x_continuous(breaks=2003:2013)

23

0

1

2

3

4

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
Year

G
PA

 a
fte

r
F

re
sh

m
en

 Y
ea

r

Inference for a Population Mean

The basic R command for inference for a population mean is t.test:
Example: Simon Newcomb’s Measurements of the Speed of Light
Simon Newcomb made a series of measurements of the speed of light between July and
September 1880. He measured the time in seconds that a light signal took to pass from his
laboratory on the Potomac River to a mirror at the base of the Washington Monument and
back, a total distance of 7400m. His first measurement was 0.000024828 seconds, or 24,828
nanoseconds (109 nanoseconds = 1 second).
We want to find a 95% confidence interval the speed of light.

t.test(newcomb$Measurement)

##
One Sample t-test
##
data: newcomb$Measurement
t = 18770, df = 65, p-value < 0.00000000000000022
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
24823.57 24828.85
sample estimates:
mean of x
24826.21

The assumptions for this method are:

24

https://en.wikipedia.org/wiki/Simon_Newcomb

• data comes from a normal distribution

• or data set is large enough

Let’s check:

par(mfrow=c(1, 2))
boxplot(newcomb$Measurement)
qqnorm(newcomb$Measurement)
qqline(newcomb$Measurement)

24
76

0
24

80
0

24
84

0

−2 −1 0 1 2

24
76

0
24

80
0

24
84

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

It seems there is at least one serious outlier on the lower end. This should not happen if the
data came from a normal distribution.
We could proceed in one of two ways:

• eliminate outlier:

sort(newcomb$Measurement)[1:5]

[1] 24756 24798 24816 24816 24819

x <- newcomb$Measurement[newcomb$Measurement>24800]
t.test(x)$conf.int

[1] 24826.48 24829.02
attr(,"conf.level")
[1] 0.95

25

• do analysis based on median:

median(newcomb$Measurement)

[1] 24827

but now we need to find a confidence interval for the median. That can be done with the
non-parametric Wilcoxon Rank Sum method:

wilcox.test(newcomb$Measurement, conf.int = TRUE)

##
Wilcoxon signed rank test with continuity correction
##
data: newcomb$Measurement
V = 2211, p-value = 0.000000000001633
alternative hypothesis: true location is not equal to 0
95 percent confidence interval:
24826.0 24828.5
sample estimates:
(pseudo)median
24827.5

Example: Resting Period of Monarch Butterflies
Some Monarch butterflies fly early in the day, others somewhat later. After the flight they
have to rest for a short period. It has been theorized that the resting period (RIP) of but-
terflies flying early in the morning is shorter because this is a thermoregulatory mechanism,
and it is cooler in the mornings. The mean RIP of all Monarch butterflies is 133 sec. Test
the theory at the 10% level.
Research by Anson Lui, Resting period of early and late flying Monarch butterflies Danaeus
plexippus, 1997

1. Parameter: mean µ

2. Method: 1-sample t

3. Assumptions: normal data or large sample

4. α = 0.1

5. H0 : µ = 133 (RIP is the same for early morning flying butterflies as all others)

26

6. H0 : µ < 133 (RIP is the shorter for early morning flying butterflies)

7.

t.test(butterflies$RIP.sec.,
mu=133,
alternative = "less")$p.value

[1] 0.05583963

8. p = 0.0558 < α = 0.1, so we reject the null hypothesis

9. It appears the resting time is somewhat shorter, but the conclusion is not a strong one.

Checking the assumption:

par(mfrow=c(1, 2))
boxplot(butterflies$RIP.sec.)
qqnorm(butterflies$RIP.sec.)
qqline(butterflies$RIP.sec.)

60
80

12
0

16
0

−2 −1 0 1 2

60
80

12
0

16
0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

looks good.

Inference for a Population Proportion

The R routine for inference for a proportion (or a probability or a percentage) is binom.test.
This implements a method by Clopper and Pearson (1934). This method is exact and has
no assumptions.

27

Note The formula discussed in many introductory statistic courses for the confidence interval
is

p̂±
√
p̂(1− p̂)

n

where p̂ is the proportion of success. This leads to confidence intervals that are now known
to be quite wrong, and so this method should not be used anymore. The same is true for the
corresponding hypothesis test. This method (actually a slight improvement due to Wilson
(1927)) is implemented in R by prop.test.
Example: Jon Kerrichs Coin
The South African Jon Kerrich spent some time in a German prisoner of war camp during
world war I. He used his time to flip a coin 10000 times, resulting in 5067 heads.
Test at the 5% level of significance whether 5067 heads in 10000 flips are compatible with a
fair coin.

1. Parameter: proportion π

2. Method: exact binomial

3. Assumptions: None

4. α = 0.05

5. H0 : π = 0.5 (50% of flips result in “Heads”, coin is fair)

6. Ha : π 6= 0.5 (coin is not fair)

7.

binom.test(x = 5067, n = 10000)$p.value

[1] 0.1835155

8. p = 0.1835 > α = 0.05, so we fail to reject the null hypothesis.

9. it appears Jon Kerrich’s coin was indeed fair.

Example: Sample Size for Polling

28

Say some polling institute wants to conduct a poll for the next election for president. They
will then find a 95% confidence interval and they want this interval to have an error of 3
percentage points (aka ±0.03). What sample size do they need?
In American politics the two parties are always very close, so in a poll with n people about
n/2 will vote for one or the other party. Let’s do a little trial and error:

n <- 100
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.1016789

Now that is to large, so

n <- 200
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.07134157

n <- 400
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.05009211

n <- 800
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.03521797

n <- 1200
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.02867679

n <- 1100
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.02996843

n <- 1050
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.03068294

There is something quite remarkable about this result!

29

Correlation

**Example:* UPR Admissions data
What are the correlations between the various variables?

head(upr, 2)

ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
1 00C2B4EF77 2005 M 502 3.97 647
2 00D66CF1BF 2003 M 502 3.80 597
Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
1 621 626 672 551 342 3.67
2 726 618 718 575 343 2.75
Graduated Year.Grad. Grad..GPA Class.Facultad
1 Si 2012 3.33 INGE
2 No NA NA INGE

Let’s take out the those variables that are either not numerical or not useful for predicting
success, either because we don’t have their value at the time of the admissions process
(Freshmen.GPA) or for legal reasons (Gender)

x <- upr[, -c(1:4, 11:16)]
head(x, 2)

Highschool.GPA Aptitud.Verbal Aptitud.Matem Aprov.Ingles Aprov.Matem
1 3.97 647 621 626 672
2 3.80 597 726 618 718
Aprov.Espanol
1 551
2 575

round(cor(x, use = "complete.obs") ,3)

Highschool.GPA Aptitud.Verbal Aptitud.Matem Aprov.Ingles
Highschool.GPA 1.000 0.176 0.156 0.049
Aptitud.Verbal 0.176 1.000 0.461 0.513
Aptitud.Matem 0.156 0.461 1.000 0.456
Aprov.Ingles 0.049 0.513 0.456 1.000
Aprov.Matem 0.216 0.474 0.819 0.481
Aprov.Espanol 0.247 0.602 0.389 0.428
Aprov.Matem Aprov.Espanol
Highschool.GPA 0.216 0.247
Aptitud.Verbal 0.474 0.602
Aptitud.Matem 0.819 0.389
Aprov.Ingles 0.481 0.428

30

Aprov.Matem 1.000 0.404
Aprov.Espanol 0.404 1.000

notice the surprisingly low correlations between Highschool.GPA and any of the diagnostic
exams.
Example: The 1970’s Military Draft
In 1970, Congress instituted a random selection process for the military draft. All 366
possible birth dates were placed in plastic capsules in a rotating drum and were selected one
by one. The first date drawn from the drum received draft number one and eligible men born
on that date were drafted first. In a truly random lottery there should be no relationship
between the date and the draft number.
Question: was the draft was really “random”?
Here we have two quantitative variables, so we start with the scatterplot:

plot(draft$Draft.Number, draft$Day.of.Year,
pch=20,
xlab="Day of Year",
ylab="Draft Number")

0 100 200 300

0
10

0
20

0
30

0

Day of Year

D
ra

ft
N

um
be

r

and this does not look like there is a problem with independence.
However:

1) Parameter: Pearson’s correlation coefficient ρ

2) Method: Test for Pearson’s correlation coefficient ρ

31

3) Assumptions: relationship is linear and that there are no outliers.

4) α = 0.05

5) H0 : ρ = 0 (no relationship between Day of Year and Draft Number)

6) Ha : ρ 6= 0 (some relationship between Day of Year and Draft Number)

7)

cor.test(draft$Draft.Number, draft$Day.of.Year)$p.value

[1] 0.00001263829

8) p = 0.0000 < α = 0.05, so we reject the null hypothesis,
9) There is a statistically significant relationship between Day of Year and Draft Number.

Categorical Data Analysis - Tests for Independence

Example: Drownings in Los Angeles
Data is from O’Carroll PW, Alkon E, Weiss B. Drowning mortality in Los Angeles County,
1976 to 1984, JAMA, 1988 Jul 15;260(3):380-3.
Drowning is the fourth leading cause of unintentional injury death in Los Angeles County.
They examined data collected by the Los Angeles County Coroner’s Office on drownings that
occurred in the county from 1976 through 1984. There were 1587 drownings (1130 males
and 457 females) during this nine-year period

drownings

Male Female
Private Swimming Pool 488 219
Bathtub 115 132
Ocean 231 40
Freshwater bodies 155 19
Hottubs 16 15
Reservoirs 32 2
Other Pools 46 14
Pails, basins, toilets 7 4
Other 40 12

Here we have two categorical variables (Method of Drowning and Gender), both categorical.
We want to know whether the variables are independent. The most popular method of
analysis for this type of problem is Pearson’s chi square test of independence. It is
done with the command chisq.test and it has the assumption of no expected counts less than
5.

32

1. Parameters of interest: measure of association

2. Method of analysis: chi-square test of independence

3. Assumptions of Method: all expected counts greater than 5

4. Type I error probability α=0.05

5. H0: Classifications are independent = there is no difference in the method of drowning
between men and women.

6. Ha: Classifications are dependent = there is some difference in the method of drowning
between men and women.

7.

chisq.test(drownings)

Warning in chisq.test(drownings): Chi-squared approximation may be incorrect

##
Pearson’s Chi-squared test
##
data: drownings
X-squared = 144.48, df = 8, p-value < 0.00000000000000022

8. p = 0.000 < α=0.05, we reject the null hypothesis, there is a statistically significant
difference between men and women and where they drown.

Let’s see whether there is a problem with the assumptions:

round(chisq.test(drownings)$expected, 1)

Warning in chisq.test(drownings): Chi-squared approximation may be incorrect

Male Female
Private Swimming Pool 503.4 203.6
Bathtub 175.9 71.1
Ocean 193.0 78.0
Freshwater bodies 123.9 50.1
Hottubs 22.1 8.9
Reservoirs 24.2 9.8

33

Other Pools 42.7 17.3
Pails, basins, toilets 7.8 3.2
Other 37.0 15.0

and we see that the expected counts of Pails, basins, toilets and Female is 3.2. In real life
this would be considered ok, but it would also be easy to fix:

newmale <- c(drownings[1:7, 1], 7+40)
newfemale <- c(drownings[1:7, 2], 4+12)
newdrown <- cbind(newmale, newfemale)
newdrown

newmale newfemale
Private Swimming Pool 488 219
Bathtub 115 132
Ocean 231 40
Freshwater bodies 155 19
Hottubs 16 15
Reservoirs 32 2
Other Pools 46 14
47 16

out <- chisq.test(newdrown)
round(out$expected, 1)

newmale newfemale
Private Swimming Pool 503.4 203.6
Bathtub 175.9 71.1
Ocean 193.0 78.0
Freshwater bodies 123.9 50.1
Hottubs 22.1 8.9
Reservoirs 24.2 9.8
Other Pools 42.7 17.3
44.9 18.1

round(out$p.value, 4)

[1] 0

Comparing the Means of Several Populations - ANOVA

Example: Mothers Cocaine Use and Babies Health
Chasnoff and others obtained several measures and responses for newborn babies whose
mothers were classified by degree of cocain use.

34

The study was conducted in the Perinatal Center for Chemical Dependence at Northwestern
University Medical School. The measurement given here is the length of the newborn.
Source: Cocaine abuse during pregnancy: correlation between prenatal care and perinatal
outcome
Authors: SN MacGregor, LG Keith, JA Bachicha, and IJ Chasnoff
Obstetrics and Gynecology 1989;74:882-885

boxplot(mothers$Length~mothers$Status)

Drug Free First Trimester Throughout

40
45

50
55

mothers$Status

m
ot

he
rs

$L
en

gt
h

out <- matrix(0, 3, 3)
colnames(out) <- c("Size", "Mean", "SD")
rownames(out) <- unique(mothers$Status)
out[, 1] <- tapply(mothers$Length,

mothers$Status, length)
out[, 2] <- round(tapply(mothers$Length,

mothers$Status, mean), 2)
out[, 3] <- round(tapply(mothers$Length,

mothers$Status, sd), 2)
out

Size Mean SD
Drug Free 39 51.1 2.9
First Trimester 19 49.3 2.5
Throughout 36 48.0 3.6

The standard method for this problem is called ANOVA (Analysis of Variance) and is run
with the aov command.

35

1. Parameters of interest: group means

2. Method of analysis: ANOVA

3. Assumptions of Method: residuals have a normal distribution, groups have equal
variance

4. Type I error probability α=0.05

5. Null hypothesis H0: µ1 = µ2 = µ3 (groups have the same means)

6. Alternative hypothesis Ha: µi 6= µj (at least two groups have different means)

7.

fit <- aov(mothers$Length~mothers$Status)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
mothers$Status 2 181.4 90.69 9.319 0.000208
Residuals 91 885.6 9.73

8. 0.0002 < 0.05, there is some evidence that the group means are not the same, the babies
whose mothers used cocain tend to be a little shorter (less healthy?)

In step 3 we have the assumptions

a. residuals have a normal distribution

qqnorm(fit$res)
qqline(fit$res)

36

−2 −1 0 1 2

−
5

0
5

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

looks fine

b. groups have equal variance

the boxplot shows that the withing group variances re quite similar.
Often if the null of no difference is rejected, one wants to go a step further and do a pairwise
comparison:

• is Drug Free different from First Trimester?

• is First Trimester different from Throughout?

There are a number of methods known for this problem, a popular one is by Tukey:

tuk <- TukeyHSD(fit)
plot(tuk)

37

−5 −4 −3 −2 −1 0 1

T
hr

ou
gh

ou
t−

F
irs

t T
rim

es
te

r
F

irs
t T

rim
es

te
r−

D
ru

g
F

re
e

95% family−wise confidence level

Differences in mean levels of mothers$Status

this draws confidence intervals for the difference in means of all pairs. If an interval does
not contain 0, the corresponding pair is statistically significantly different.
Here that is the case only for Drug Free - Throughout, so the other two pairs are not
statistically significantly different. Remember, however that failing to reject H0 is NOT the
same as accepting H0. The fact that those pairs are not statistically significantly different is
almost certainly due to a lack of sample size.

Regression

Example: Predicting the Usage of Electricity
In Westchester County, north of New York City, Consolidated Edison bills residential cus-
tomers for electricity on a monthly basis. The company wants to predict residential usage,
in order to plan purchases of fuel and budget revenue flow. The data includes information
on usage (in kilowatt-hours per day) and average monthly temperature for 55 consecutive
months for an all-electric home. Data on consumption of electricity and the temperature in
Westchester County, NY.

head(elusage)

Month Year Usage Temperature
1 8 1989 24.828 73
2 9 1989 24.688 67
3 10 1989 19.310 57
4 11 1989 59.706 43
5 12 1989 99.667 26
6 1 1990 49.333 41

38

plot(elusage$Temperature, elusage$Usage,
pch=20,
xlab="Temperature",
ylab="Usage")

30 40 50 60 70 80

20
40

60
80

10
0

Temperature

U
sa

ge

We want to find a function Usage = f(Temperature).

1. Linear Model

fit <- lm(Usage~Temperature, data=elusage)
summary(fit)

##
Call:
lm(formula = Usage ~ Temperature, data = elusage)
##
Residuals:
Min 1Q Median 3Q Max
-22.305 -8.163 0.559 7.723 28.611
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 116.71619 5.56494 20.97 <0.0000000000000002
Temperature -1.36461 0.09941 -13.73 <0.0000000000000002
##
Residual standard error: 11.35 on 53 degrees of freedom

39

Multiple R-squared: 0.7805, Adjusted R-squared: 0.7763
F-statistic: 188.4 on 1 and 53 DF, p-value: < 0.00000000000000022

How do we know that this is a good model? The main diagnostic is the Residual vs Fits
plot:

draw.fit <- function(fit) {
plot(fitted.values(fit), resid(fit),

pch=20,
xlab="Fitted Values",
ylab="Residuals")

abline(h=0, col="blue")
fit.loess <- loess(resid(fit)~fitted.values(fit))
x.range <- seq(min(fitted.values(fit)),

max(fitted.values(fit)),
length=100)

y <- predict(fit.loess, newdata=x.range)
lines(x.range, y, lwd=2, col="blue")

}
draw.fit(fit)

20 40 60 80

−
20

−
10

0
10

20
30

Fitted Values

R
es

id
ua

ls

the idea is that if the model is good, the residuals and the fitted values should be indepen-
dent, and so this graph should not show any pattern. Adding the non-parametric fit and a
horizontal line shows that this is not the case here.

• polynomial model

Let’s add a quadratic term to the model

40

Temperature2 <- elusage$Temperature^2
quad.fit <- lm(Usage~Temperature + Temperature2,

data=elusage)
draw.fit(quad.fit)

20 40 60 80 100

−
10

0
10

20

Fitted Values

R
es

id
ua

ls

and that is much better.

• Transformations

here we use some transformation (functions) of the data:

log.usage <- log(elusage$Usage)
log.temp <- log(elusage$Temperature)
log.fit <- lm(log.usage~log.temp)
draw.fit(log.fit)

41

3.0 3.5 4.0 4.5

−
0.

6
−

0.
2

0.
2

0.
4

Fitted Values

R
es

id
ua

ls

and that is also not to bad.
How do we choose among these models? A standard measure of the quality of the fit is the
Coefficient of Determination. It is defined as

R2 = cor(Observed Values, Predicted Values)2100%

Here we find

#Linear Model
round(100*unlist(summary(fit)$r.squared), 1)

[1] 78

#Quadratic Model
round(100*unlist(summary(quad.fit)$r.squared), 1)

[1] 84.7

#Log Transform Model
round(100*unlist(summary(log.fit)$r.squared), 1)

[1] 81.1

but we need to be careful here: the linear model is a special case of the quadratic model,
and so it’s R2 can never be smaller. There are other ways to choose between such nested

42

models, for example the F test, but here this is not an issue because the linear model is bad
anyway.
Now the R2 of the quadratic model is 84.7% and that of the log transform model is 81.1%,
so the quadratic one is better.
Finally let’s have a look what those models look like:

x <- seq(min(elusage$Temperature),
max(elusage$Temperature), length=100)

y.quad <- predict(quad.fit,
newdata=data.frame(Temperature=x,

Temperature2 = x^2))
y.log <- exp(predict(log.fit,

newdata=data.frame(log.temp=log(x))))
plot(elusage$Temperature, elusage$Usage,

pch=20,
xlab="Temperature",
ylab="Usage")

lines(x, y.quad, lwd=2, col="blue")
lines(x, y.log, lwd=2, col="red")
legend(50, 100, c("Quadratic Model", "Log Model"),

lty=c(1, 1), lwd=2,
col=c("blue", "red"))

30 40 50 60 70 80

20
40

60
80

10
0

Temperature

U
sa

ge

Quadratic Model
Log Model

43

	Why R?
	Setting things up
	Installation of base R
	RStudio
	Packages / Libraries
	Updating
	Further Reading
	R Studio Projects

	Data in R
	Data Entry
	Data Types
	Data Formats

	Basic Commands for Vectors and Data Frames
	Subsetting
	Vector Arithmetic

	Programming in R
	R Functions
	Rmarkdown
	Case Study: UPR Admissions

	Random Variates - Simulations
	Character Strings
	Basic Summaries and Graphs
	Tables
	Contingency Tables
	Bar Charts
	Numerical Summaries
	Histogram and Boxplot
	Two Quantitative Variables - Scatterplot
	ggplot2

	Inference for a Population Mean
	Inference for a Population Proportion
	Correlation
	Categorical Data Analysis - Tests for Independence
	Comparing the Means of Several Populations - ANOVA
	Regression

