Allen Nobles N & Associates, Inc.

Airborne LiDAR and 3D Scanners (HDS)

Allen Nobles N & Associates, Inc.

About Us

Surveying & Engineering Firm located in Florida
Company-wide Staff – Average 70+ Employees
10 Professional Surveyors

What is LiDAR or Laser Scanning?

LiDAR: (airborne scanning) Light Detection And Ranging

Ground Based Scanners 3D Scanning Laser Scanning HDS – High Definition Surveying

Two Basic Sensors

Topographic (Airborne)

Ground Based

Convention Center

What is Scanning?

It is an active sensing system:

It is the science of using a laser to measure distances to specific points. It uses its own energy source, not reflected natural or naturally emitted radiation

- It can be operated both day or night
- Direct acquisition of terrain information
- Photogrammetry is inferential

Operational Theory

A pulse of light is emitted and the precise time is recorded.

The reflection of that pulse is detected and the precise time is recorded.

Using the constant speed of light, the delay can be converted into a "slant range" distance.

Knowing the position and orientation of the sensor, the XYZ coordinate of the reflective surface can be calculated.

Scan Mirror

Intensity Image

Intensity Image

Ground Based

Scanner

Return Intensity Capture

- Can provide useful image information
- Often not a consistent imaging technology
- Images can be difficult to interpret
- Pixel Resolution a Function of the post-spacing
- Laser wavelength is a factor
- Holes in the data may be identified quickly
- Some General Interpretations are Possible

What Scanning Is Not:

NOT Light/Laser Assisted RADAR RADAR uses electro-magnetic (EM) energy in the <u>radio</u> <u>frequency range</u>; LIDAR does not. It uses light in the near infrared spectrum.

NOT all-weather The target MUST be visible. Some haze is manageable, but fog is not.

NOT able to 'see through' trees LiDAR sees around trees, not through them. Fully closed canopies (rain forests) cannot be penetrated.

NOT a substitute for photography For MOST users, LiDAR <u>intensity images</u> are NOT viable replacements for conventional or digital imagery.

LiDAR Characteristics

 Capable of collecting millions of elevation points per hour – much faster than traditional methods

Produces datasets with much greater density than traditional mapping

Some systems capable of capturing multiple returns per pulse and/or intensity images

Supported by rigorous QA/QC

Topographic Mapping with LIDAR

Why Now?

- Several recent, enabling technological advances have made LIDAR possible:
- Airborne GPS
- Inertial Measurement Units (IMU)
- Availability of affordable lasers and other specialized materials and sensors
- Advances in computer technology (speed, performance, size, and of course, price)

The Airborne Platform

Laser Scanner

Inertial Measuring Unit

Global Positioning Receiver

The Scanner

Scanner Pulse Returns

Return Per Pulse Detection

- Single First Surface
 - Limited vegetation penetration
 - Good for some Urban Applications
- First & Last
 - Good vegetation penetration & ground detection
 - Some Applications fit this scenario well

• Discrete Multiple

- Allows advanced analysis of vegetation structure
- Widest range of applications for about same cost

FIRST PULSE Return

First-pulse Measures the range to the first object encountered - in this illustration, the tree foliage.

LAST / PULSE Return

Last-pulse

- Measures the range to the last object - in this case, the ground.
- By acquiring first- and lastpulse data simultaneously, it is possible to measure both tree-heights and the topography of the ground beneath in a single pass.

Mass Point Cloud

Mass Point Cloud

Enlarged Cloud

Intensity Return

Bare Earth Points

Data Processing Solve for aircraft position (GPS) •Solve for aircraft attitude (IMU) Solve for the Laser Positions (Ground)

POSITION

GPS

Master Base Station Master Remote Differential Solution

Camera Events

ORIENTATION

Orientation Information

- Accurate placement of reflective point requires information on aircraft attitude
- Need the rotation around 3 axes of the aircraft - roll, pitch and yaw
- Two techniques in practice:
 - multiple GPS receivers (less accurate)
 - inertial measurement units (very accurate)
Inertial Measurement Unit

- Combination of gyros and accelerometers
- Typically integrated with GPS system
- Accuracies of 18 25 arc-seconds (0.005deg for pitch and roll, 0.01-deg for yaw)

IMU Animation

Integration of GPS and IMU Data

Computer Processing System

Real-time Processing, Time Alignment and Data Acquisition, and Data Storage from IMU

Data Classification

Filtration Process to extract above ground features

Classification is necessary to determine an accurate bare earth DEM

Done correctly it is a powerful Quality Control tool

Commercially Off The Shelf Software

Mass Point Profile

Mass Point Profile

Classified Features Profile

Comparing Technology

LiDAR vs. Stereo Compilation

1"=100' Scale Mapping

Compiled Mass Points more widely spaced: 60' vs. 7'

Compiled DTMs use breaklines; LiDAR usually* does not

Compiler can place points; LiDAR is semi-random

Compiler must see the ground; LiDAR is self-illuminating

Technology is beginning to close this gap

SR436 & Curry Ford Rd

TIN Comparison

Photogrammetry

Lidar

S.R.-436

"≡30

Contour Comparison

Photogrammetry

Lidar

Contour Comparison

Lidar Surface Data, Derived Products and Accuracy Assessment Results Leon County LiDAR Mapping

THE

LIDAR Checkpoints

Accuracy Assessment Results

Table1: All Checkpoints

Data Source	# Pts	Std Dev	Mean	Min	Max	SSE	RMSE
Base01	58	0.35	-0.02	-1.30	0.94	7.098	0.349
Asphalt	218	0.52	-0.05	-2.39	2.09	59.081	0.520
Ground	865	1.24	-0.08	-5.68	12.08	1329.98	1.240

Table2: Points greater than 3 Std Deviations from the mean removed

Data Source	# Pts	Std Dev	Mean	Min	Max	SSE	RMSE
Base01	57	0.33	0.01	-0.63	0.94	5.408	0.308
Asphalt	211	0.42	-0.02	-1.35	1.22	39.928	0.383
Ground	842	0.76	0.05	-3.57	3.46	405.37	0.694
						7	

Positional Accuracy Exceeding Standards

(2001 panel control)

Vertical Accuracy Objective			1
Control Points in Report			81
Elevation Calculation Method			Interpolated
Control Points with LiDAR Covera		58	
Control Locations in Spec (+/- 1.	0)		57
Percent of Control Locations in S	Spec (+/- 1.0	C)	98.28
Average Control Error Reported			-0.02
Maximum (highest) Control Error		0.94	
Median Control Error Reported			0.01
Minimum (lowest) Control Error F		-1.3	
Standard deviation (sigma) of Z for	or sample		0.35
RMSE of Z for sample			0.35
FGDC/NSSDA Vertical Accuracy	/		0.68
FEMA Vertical Accuracy			0.83

Positional Accuracy Exceeding Standards

(2001 / 2002 control)

Vertical Accuracy Objective			1
Control Points in Report			134
Elevation Calculation Method			Interpolated
Control Points with LiDAR Covera		102	
Control Locations in Spec (+/- 1.		97	
Percent of Control Locations in S	C)	95.1	
Average Control Error Reported			-0.1
Maximum (highest) Control Error		0.94	
Median Control Error Reported			-0.05
Minimum (lowest) Control Error F	-2.82		
Standard deviation (sigma) of Z for		0.49	
RMSE of Z for sample			0.5
FGDC/NSSDA Vertical Accuracy	0.98		
FEMA Vertical Accuracy			1.12

Mid-Bay Bridge LiDAR Project 2007

Mid-Bay Bridge LiDAR Project

Contour lines and DTM surface of areas lying between conventionally collected intersections were obtained utilizing airborne (Helicopter) LiDAR data collection techniques.

Results yielded a Standard Deviation of 0.49 feet in the data collected with 90% of checked locations lying within 0.81 feet of a 1 foot contour.

Mid-Bay Bridge LiDAR Project

The subsequently readjusted DTM surface (collected with LiDAR techniques) lying between the conventionally collected intersections was compared with an additional set of conventionally collected cross sections yielded the following results:

For contour lines to be mapped from LiDAR collected data, sufficient data was collected in order to insure that 90% of ground point elevations taken from 1foot contours are within 0.66 feet of said contour interval. The Standard Deviation of the LiDAR collected elevation data versus the conventionally collected (ground truth) data = 0.42 feet.
HDS Scanning

What is a High-Definition Scanner?

Collects millions of points per hour – much faster than traditional methods

Produces datasets with much greater density than traditional mapping

A total station on steroids

What is a High-Definition Scanner?

Hardman Farm

Scanners are Here to Stay

If you want to see what is happening in any trade, read the ads and the articles.

Surveying magazines always have three things; ads (for scanners), a GPS article and a scanner article.

Looking at Scanners

In five years most civil survey firms will own a scanner.

It is the same as GPS was in the 90's but on a much faster track.

Product Perspective

Other Units

Two Basic Sensors

Phase Based

Time of Flight

Phase Based or Time of Flight Scanners

Send out lumps of photons, receive lumps of photons:

Phase Based or Time of Flight Scanners

Phase Based

Better Accuracy Very Fast Short Range No Photos No Traversing

Time of Flight

Long Range Visible Light Takes Photos Tilt Compensation

Slower than Phased Based (1 hour vs. 15 minutes)

Sample Project Work Flow

Kart Track Scan

Scanner Data Results Raw Scans 2D Drawing from Scans 3D Data Files 3D Solid Models Video Files or Movies Interactive Files (Tru-View)

Field Data Collection

Picture of Project from Scanner

Field Data Collection

Registered Point Cloud

Scan with Photo

Raw Scan

Common Problems:

- Steam, rain, dust and fog effect the data.
- Grass and vegetation.
- Shadows (objects blocking the scanner).
- Surface types and colors.
- Edges.
- Unit Elevations.
- Fences show mirror images.
- Lack of scripting. Scripting is a must.
- Direct sunlight stops scan (low sun angle).
- Glare from asphalt in photos.

Photo exposures.

Grass and vegetation.

Dealing with parked cars.

Scanner too far from curbing so edge of pavement not defined.

Fences show mirror images.

Tallahassee Train Station

- 6 ×

ModelSpece: ModelSpece (ScanWorld 1) : ScanSontrol, ModelSpece (ScanWorld 1) View 1 File Edit Section Sew Viewport SealeObject EditObject Tool: Leb

e <u>E</u> dit	View Inseit For	nat <u>H</u> elp			
læl			1		
Boint	Number		Kootura	Cada	-
DD1	508774 2020	2037470 2075	66 2479	DDI.	
DD2	508772 7609	2037470 9142	66 0773	GVD	
PP3	508739.0778	2037572.7996	67.0181	PP	
PP4	508620.2698	2037521.4589	68.2529	PPI.	
PP5	508595 0565	2037393 6548	67 1955	PPI.	
PP6	508565.0103	2037356,8484	67.3674	GVP	
PP7	508491,1664	2037479.4794	65.3495	GVP	
PP8	508484.1399	2037462.7517	67,1455	PPL	
PPQ	508369.5585	2037539,9961	65,4316	GVP	
PP10	508451.6335	2037332.1111	67.7093	PPT	
PP11	508334.0766	2037402 0707	67.7241	PPI.	
PP12	508306-6126	2037268.3377	68.5181	PPI.	
PP13	508188.5445	2037216.8787	70.5928	PPI.	
PP14	508240.6848	2037357.0808	68,1992	GYP	
PP15	508149,9134	2037325,9434	69.5146	GVP	
PP16	508085,1846	2037285.5655	70.7654	PPL	
PP17	508051,4824	2037157.2782	72.4383	PPL	
PP18	508052.5571	2037134.3413	77.1347	PP	
PP19	508037.6419	2037268.5076	70.3185	GYP	
PP20	508410.0343	2037312.1659	67.5119	SSP	
PP21	508445.8378	2037462.4916	66,1929	SSP	
PP22	508343.0628	2037403.3874	67.4468	SSP	
PP23	508323.2545	2037266.0628	68.0779	SSP	
GYA1	508188.8616	2037195.9696	70.7146	GYA	
GYAZ	508058.7160	2037160.6170	75.4854	GYA	
GYA3	508243.6492	2037365.2676	68.0488	GYA	
GYA4	508333.1219	2037419.4883	67.9129	GYA	
GYAS	508333.2749	2037422.1994	69.8378	GYA	
GYA6	508486.4813	2037486.8818	65.7419	GYA	
GYA7	508566.6300	2037353.7124	67.4546	GYA	
GYAS	508733.8945	2037584.4086	66.8156	GYA	
GYA9	508734.0361	2037586.9943	66.4434	GYA	
GYA10	508733.8365	2037587.3177	66.3574	GYA	
SGCP1	508415.2498	2037439.1954	66.8126	STGP	

41935 0					
<u>File</u> <u>E</u> dit	View Insert For	nat <u>H</u> elp			
	3 <u>6 </u> A	<u> 3 66 68 59 9</u>	J		
Point	Number	N E Z	Feature Co	ode	Notes
MS1	508782.3501	2037447.2346	66.2788	HS	WOOD POST
MS2	508782.1313	2037438.8994	66.0957	ns	WOOD POST
MS3	508715.7852	2037420.7227	66.9401	ns	WOOD POST
MS4	508721.0285	2037414.2407	67.1187	ns	WOOD POST
MSS	508672.7323	2037405.3728	66.6009	ns	WOOD POST
MS6	508676.9263	2037397.9564	66.7329	ns	WOOD POST
MS7	508633.6693	2037381.7952	66.6795	ns	WOOD POST
MS8	508639.5511	2037384.0934	66.5642	ns	WOOD POST
MS9	508319.2655	2037399.4155	67.5340	ns	WOOD POST
MS10	508318.4262	2037395.5564	67.3285	ns	WOOD POST
SSS1	508435.3042	2037471.7189	67.2999	SSS	W11A-2
SSS2	508470.6040	2037454.3884	67.3608	SSS	YIELD
SSS3	508491.4645	2037461.2659	68.2821	SSS	W11-1
SSS4	508507.6882	2037468.3273	68.3163	SSS	R3-17
SSS5	508608.6294	2037511.5210	68.2796	SSS	BUS STOP
SSS6	508829.6656	2037492.4198	67.4411	SSS	
SSS7	508740.2090	2037453.0712	66.2449	SSS	R1-1
SSS8	508551.9251	2037354.9482	67.0800	SSS	W3-1A
SSS9	508483.3550	2037325.6630	70.0404	SSS	W2-1
SSS10	508414.7651	2037295.4866	67.7817	SSS	R1-1
SSS11	508398.6175	2037255.3750	68.7682	SSS	R2-1
SSS12	508335.8609	2037244.2874	67.8156	SSS	
SSS13	508272.5012	2037256.8711	69.2564	SSS	R3-17
SSS14	508227.4558	2037349.1318	68,6007	SSS	R3-17
SSS15	508258.9287	2037360.2874	68.8614	SSS	1CENT TAX
SSS16	508344.6582	2037418.3672	67.3809	SSS	W11A-1

For Help, press F1

NUM

For Help, press F1

Collateral Data (secondary or accompanying data):

Any data or information collected outside of the "scope of services" or not needed to produce the survey deliverables.

External Camera Kit

Highway 98 Photo

Tru-View Project

What Jobs are Best Suited for High Definition Scanning?

Office Survey

Holding Pond Survey

Started with existing as-built surveys.

FDOT Roadway Project
Working the Scanner

Ruediger School Drainage Survey

Stone Building @ FSU

Working the Scanner

Projects

Dupont Bridge – 2 field days

Gail Street Scan – One Day of Field Work

Tallahassee Airport

1 Field Day

25 Acres – 4 Field Days

Tallahassee Airport – 3 Field Days

Airport Scan

Gaines Street - 3 Field Days

Gaines Street Scan

Thank You

Questions?