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ABSTRACT: A rain gauge network (28 rain gauges) was installed in western Puerto Rico (PR) within a 4km x 
4km GOES satellite pixel.  Located within the pixel is a well monitored sub-watershed of 3.55 km2, referred 
to here as the “testbed subwatershed” (TBSW). The rain gauge network was established to evaluate rainfall 
estimates from the GOES-based Hydro-Estimator (HE), NEXRAD radar and the Center for Collaborative 
Adaptive Sensing of the Atmosphere (CASA) radar network, which has a high spatial resolution (≈ 200 m).  
Furthermore, the rain gauge network will provide a high temporal and spatial resolution rainfall dataset to be 
input into a distributed hydrologic model in the TBSW.  

The focus of this work is to evaluate the performance of the Multisensor Precipitation Estimation 
(MPE) product at 1-hour and 1-day temporal resolution within the 4km x 4km HE pixel for 2007. The MPE 
product is popular within the hydrologic modeling community due to its resolution and mean field bias 
correction computations in its coverage.  

Results for 2007 indicate that the highest rainfall measured by the rain gauges within the HE pixel 
area were September with an average and standard deviation of 241.75 mm and 73.3 mm, respectively; and 
August with 223.7 mm and 64.66 mm, respectively. While for the same months the MPE, produced a total 
monthly rainfall accumulation and standard deviation of 247.36 mm and 64.4 mm for September, 
respectively, and 233.68 mm and 36.54 mm for August, respectively. The mean and standard deviation daily 
field bias for these months were 1.08 and 1.5 for September, respectively, and 0.93 and 1.6 for August, 
respectively. The bias changed, when considering an hourly analysis, to 1.98 average and 5.45 standard 
deviation for August and 1.49 average and 3.01 standard deviation for September. Nevertheless the month 
that produced the largest mean bias was November with 2.24, and 2.6 standard deviation for daily rainfall 
accumulations; and a mean bias of 3.92 and 8.16 standard deviation for an hourly time step. In this study 
percentages of detection and false alarms were determined at two time scales.  
 
Key-Words: - Multisensor Precipitation Estimation, NEXRAD products, rainfall variability, mean field bias.   
 

1. INTRODUCTION 
In western Puerto Rico a study is being conducted 
to develop a Doppler and polarimetric radar 
network operating with a frequency of 9.41 

gigahertz (X band). This radar network will 
provide an effective way to predict the weather 
conditions in western Puerto Rico at a high spatial 
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resolution, and will provide precipitation 
estimates for flood forecasting models.  

A major source of error in hydrologic 
models is the poor quantification of the areal 
distribution of rainfall, typically due to the low 
density of rain gauges.  A rain gauge located at a 
single point may represent an extensive area, 
typically > 107 m2, with only one value, which 
much of the time is not representative of the 
average rainfall, especially in areas of high 
topographic variability subject to convection 
storms [1].  Rain gauges themselves may produce 
errors, a major source of error being from 
turbulence and increased winds around the gauge, 
affecting precipitation quantification in events 
where the wind is an important factor (e.g., 
hurricanes). 

Investigators have used mean areal 
precipitation as calculated by, for example 
Thiessen polygons, [1,2], and interpolation 
methods, such as spline, inverse distance 
weighted, and kriging.  But all these methods are 
limited by the number of rain gauges and how 
they represent the spatial rainfall distribution.  
Currently, sophisticated methods attempt to fill 
gaps between rain gauges, by sensing the 
atmosphere with remote sensors like the space-
borne Tropical Rainfall Measuring Mission 
(TRMM), the National Oceanic and Atmospheric 
Administration’s (NOAA) Hydro Estimator (HE) 
algorithm [4], the satellite precipitation estimation 
/radar rainfall merging algorithm of the NOAA-
CREST Group at City University of New York 
[5], the U.S. National Weather Service’s (NWS) 
Next Generation Radar (NEXRAD), and the 
Multisensor Precipitation Estimation Algorithm 
(MPE).  The HE utilizes data from the GOES 
geostationary satellite to estimate rainfall, and has, 
for example, an approximate pixel size of 4km x 
4km.  NEXRAD estimates rainfall within a radial 
coordinate system with a base resolution of 2 to 4 
km.   

These quantitative precipitation 
estimation (QPE) techniques are evaluated and 
adjusted or calibrated using existing rain gauges, 
however, these adjustments depend on the rain 
gauge density and their spatial distribution. 
Studies that have compared radar and rain gauge–
derived rainfall documented large discrepancies 
between them [e.g., 6,7,8]. 

The MPE algorithm is a product of 
NEXRAD, and recently has replaced the Stage II 
and III algorithms.  MPE is based on multi-year 
climatology of the Digital Precipitation Array 
(DPA) product (hourly and 4km x 4km resolution) 
and performs a mean field bias correction over the 
entire radar coverage area, based on (near) real-
time hourly rain gauge data [9].  The MPE is 
mapped onto a polar stereographic projection 
called the Hydrologic Rainfall Analysis Project 
(HRAP) grid.  This data is often used in the 
hydrologic modeling availing the bias correction 
made by the MPE algorithm; nevertheless, in long 
term hydrologic simulations and watersheds with 
small numbers of rain gauges a bias verification 
would be evaluated, because the bias 
quantification has a high variability over the radar 
coverage area [10,11] affecting the hydrologic 
calibration and validation.       

With the objective to calibrate and 
validate the high density CASA radar network in 
western PR, a rain gauge network (28 tipping 
buckets rain gauges) was installed in a small 
highland area.  The rain gauge network is located 
within a single 4km x 4km GOES HE pixel and 
12 of the 28 rain gauges are within the testbed 
subwatershed (TBSW).  The rain gauge network 
will provide a high resolution rainfall data set to 
evaluate the CASA radars, calculate the 
NEXRAD products and Hydro Estimator 
uncertainty under their typical resolution [10], and 
understand the hydrologic response and 
predictability limits due to rainfall and 
topographic resolution using a distributed 
hydrologic model to capture the spatial variations. 
The TBSW has an area of 3.55 km2,  belongs to 
the Río Grande de Añasco watershed,  has an 
average 29% slope, the predominant soil 
hydrologic group is C, and the surface soil has an 
average 3.25 cm/hr hydraulic conductivity.  For 
long term simulations a bias evaluation was 
developed in this study for use in the hydrologic 
modeling.      
 
 
2. METHODOLOGY 
In this study, the performance of the MPE product 
within the HE pixel for 2007 was evaluated using 
the rain gauge network (26 rain gauges) located in 
western Puerto Rico near the University of Puerto 
Rico – Mayaguez Campus.  In 2006, sixteen 
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tipping bucket rain gauges (Spectrum Technology, 
Inc.1) were installed uniformly within the Hydro-
Estimator (HE) pixel [10].  In June 2007, another 
12 tipping bucket rain gauges were added to the 
network located within the TBSW.  

The maximum, average and standard 
deviation distance between the 28 rain gauges 
calculated using Euclidian Distance are 829 m, 
334 m and 171 m, respectively.  These statistical 
parameters were reduced within TBSW as 
follows: 563 m, 218 m and 100 m, respectively. 
Fig. 1, shows the rain gauge network, the TBSW 
outline and the distance between rain gauges.  

 

 
Fig. 1. Rain gauge distribution and location within 
the HE pixel, TBSW location and Euclidean 
Distance between the stations.    
 

Some rain gauges were not operating 
during some periods owing to gauge damage or 
low logger batteries, these data were eliminated 
from the analysis.  Five-minute rain gauge data 
was accumulated to 1-hour and 1-day intervals, 
with the intention to comparing data with the 
original MPE temporal resolution and daily 
accumulations.  

MPE pixels are based on a HRAP grid.  
Therefore, a geographic coordinate transformation 
from Stereographic North Pole to NAD 1983 
State Plane Puerto Rico and Virgin Islands was 
performed for each hour using the ArcGIS project 

                                                 
1 Reference to a commercial product in no way 
constitutes an endorsement of the product by the 
authors. 

raster tool.  The re-sampling technique algorithm 
used was the nearest neighbor assignment at 4km 
x 4km resolution.  Due to changes in coordinates 
and raster conversions, the original pixels oriented 
with a certain angle, now are oriented 
horizontally.  Figure 2 displays the change in the 
orientation, including the MPE pixels (left) and 
Hourly Rainfall Product (N1P) from NEXRAD 
level 3 (right).  The left image shows four square 
black boxes corresponding to the MPE raster-
projected pixels, the colored pixels are the original 
raster with HRAP coordinates at 4km x 4km 
spatial resolution, and the red box corresponds to 
the Hydro-Estimator pixel at the same resolution 
as the MPE product.  
 

 
 
Fig. 2. MPE pixels (left) at different geographic 
coordinates and the HE pixel (red box).  Hourly 
rainfall product from NEXRAD level 3 (right) as 
a shapefile and raster format.  The TBSW is also 
shown near the center of the four MPE pixels. 
 

The N1P rainfall product is calculated 
from NEXRAD as a rain rate each 5 or 6 minutes 
when the radar detects rainfall, and a 10 minutes 
N1P product is archived when no rainfall is 
detected. The N1P NEXRAD product has 
originally a polar geographic coordinate system 
(GCS) and using the NOAA Weather and Climate 
Toolkit Exporter program it is possible to 
transform the coordinates to GCS_WGS_1984.  
Different formats are available to export the data.  
The shapefiles maintain the original orientation; 
however, in a distributed hydrologic model it is 
necessary to use raster or ASCII files to represent 
the spatial rainfall variation in the model.  Due to 
raster characteristics it is not possible to maintain 
the original orientation.  Fig. 2, right image, 
shows the shapefile in black lines and a rainfall 
raster as colored pixels, both at 2km x 2km 
resolution.    

Pixel 1 Pixel 2 

Pixel 3 Pixel 4 
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The study was made with the projected 
and raster pixels, with the aforementioned in 
mind, 4 MPE pixels were obtained around the HE 
pixel, identified as Pixel 1 (top left), Pixel 2 (top 
right), Pixel 3 (bottom left) and Pixel 4 (bottom 
right), Fig. 2 (left).  Area weights were calculated 
for intersecting areas between the MPE pixels and 
the HE pixel and are 0.281, 0.344, 0.169 and 
0.206, respectively.  These area weights are used 
to calculate an average map precipitation for each 
time step. Weights for the N1P radar product were 
also estimated for 9 partial N1P pixels within the 
HE pixel (Fig. 2, left).   

 
2.1 Analysis 

Validation of the radar products have to 
be evaluated to improve the hydrologic 
simulation.  Long term continuous validation 
between sensors rainfall estimates and rain gauge 
observations should be evaluated.  The accuracy 
of rainfall estimates can be measured by 
decomposing the rainfall process into sequences 
of discrete and continuous random variables 
[11,12].  

The discrete variables can be evaluated 
with contingency tables, where the rain gauges are 
the “ground truth” values and the MPE are the 
estimated values.  In this way, the accuracy of the 
rainfall detection in terms of hit rate “H”, 
probability of detection “POD”, false-alarm rate 
“FAR” and discrete bias “DB” can be evaluated.   

Table 1 shows an example of two-way 
contingency tale.  The variable a is the number of 
times that the rain gauge identifies a rainfall event 
and the estimator also correctly identifies a 
rainfall event at the same time and space.  The 
variable d represents the number of times the rain 
gauge does not observe a rainfall event and the 
estimator correctly determines that there is no 
rainfall event.  The variable b indicates the 
number of times the rain gauge does not observe a 
rainfall event but the estimator incorrectly 
indicates that there is a rainfall event.  The 
variable c shows the number of times that the rain 
gauge detects a rainfall event but the estimator 
fails to detect the rainfall event [11]. 

Hit rate (H) is the fraction of the no 
estimating occasions when the categorical 
estimation correctly determines the occurrence of 
rainfall event or nonevent.  Probability of 
detection (POD) is the likelihood that the event 

would be estimated, given that it occurred.  The 
false-alarm rate (FAR) is the proportion of 
estimated rainfall events that fail to materialize.  
Bias is the ratio of the number of estimated 
rainfall events to the number of observed events 
[12]. 
 
Table 1. Two-way contingency table. 
 Observed Rainfall 

(Rain gauges) 
Yes No 

Estimated 
MPE Rainfall 

Yes a b 
No c d 

 
The typical scores that measure the accuracy of 
categorical estimation are:  
 

,
0n

da
H

+=  where dcbano +++=          (1) 

ca

a
POD

+
=                             (2)   

                         

ba

b
FAR

+
=                              (3) 

 

ca

ba
DB

+
+=                               (4) 

 
The mean field bias (Bias) is used to 

remove systematic error from radar estimates and 
used to correct the radar quantifications in the 
hydrologic simulation.  The mean field bias is 
defined as the ratio of the “true” mean areal rain 
gauge rainfall to the corresponding radar rainfall 
accumulations. [13,14].  The average of the rain 
gauge network is evaluated each time step with a 
arithmetic mean, because the area weights change 
in time according to malfunctions in some gauges.  
The mean MPE rainfall at each time step is 
calculated using the area weights as stated above. 

The indicators to evaluate the accuracy of 
MPE rainfall estimations over the HE pixel at 
different temporal scales are the Bias, root mean 
square error (RMSE) and normalized bias 
(NBIAS). 
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Where Nt is the number of hours, Gi is the areal 
mean rain gauge-based rain rate value at time i, 
and Ri is the corresponding areal mean radar rain 
rate value.  

To illustrate the spatial variability of the 
rainfall distribution within the pixel, we 
considered the MPE Pixels 1 and 2 and identified 
the rain gauge stations associated them.  For MPE 
Pixel 1, the associated rain gauges are: C01, C02, 
C03, C06, C07 C11, L01, L02, L05, L06 and L09, 
and for MPE Pixel 2 the associated rain gauges 
are: C04, C05, C08, C09, C10, C12, L03, L04, 
L07, L08, L10, L11.  A mean field bias was 
calculated at 1 hour time resolution.  Percentage 
of rainfall detection by rain gauges and MPE were 
calculated, and divided into three categories: 1) 
rainfall not detected by MPE, referred as “No 
Radar Detection” or c in percentage; 2) rainfall 
not detected by rain gauges, referred as “No Rain 
gauge Detection” or b; and 3) rainfall detected by 
both sensors, referred as “Coincident” or a.  The 
gauges L06 and L08 showed systematic errors in 
the records and, therefore, were ignored in the 
calculations.  In addition to the statistics computed 
in the MPE Pixels 1 and 2, calculations were 
made using the 4 MPE pixels and the 26 rain 
gauges for hourly, daily and monthly data 
accumulations.  
 
3. RESULTS AND DISCUSSION 
The annual 2007 rainfall accumulations for the 4 
MPE pixels were 1546.2, 2212.1, 1949.8 and 
2088.6 mm, with an annual standard deviation of 

289.3 mm.  Fig. 3 shows the temporal variations 
in the cumulative rainfall during the year for each 
MPE Pixel.  Large differences are founded 
between Pixel 1 and Pixel 2.   

To show how variable the rainfall 
distribution within a specific pixel can be, we took 
the MPE Pixels numbers 1 and 2 and determined 
the rain gauges associated with each pixel.  A plot 
of the monthly cumulative rainfall for MPE Pixel 
1 and rain gauges are displayed in Fig. 4.  
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Fig. 3. Rainfall accumulation over the time for the 
MPE pixels. 

 
The cumulative rainfall for the months of 

April and May are not representative of those 
months because we had missing rain gauge data 
for 11 days for April and 9 days for May, 
therefore, the computations were made with only 
the available data for these months.  For the case 
of July, Fig. 4 shows that only the C06 station 
reported an amount of rainfall (206.9 mm) that 
was similar to the MPE Pixel 1 rainfall (259.15 
mm), and for almost all months, note that the 
MPE Pixel 1 underestimated rainfall, except for 
the months of January, June and July.  

Figure 5 displays the average rainfall 
versus the standard deviation for the 1-hour, MPE 
pixel 1 for 2007.   From the regression analysis, a 
R2 of 0.6627 and a slope of 0.3766 were obtained, 
indicating high rainfall variability in the MPE 
pixel 1.  
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Rainfall Totals per month in the MPE Pixel 1
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Fig. 4. Monthly Total Rainfall calculation for the 
rain gauge stations belongs to MPE Pixel 1, for 
2007. 
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Fig 5. Hourly average and standard deviation 
rainfall for the rain gauges corresponding to MPE 
pixel 1 for the 2007. 
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Fig 6. Hourly average and standard deviation 
rainfall for the rain gauges corresponding to 4 
MPE pixels for the 2007. 

 
The rainfall detection variability 

decreases when the four pixels are averaged by 

their HE weights as mentioned above.  The linear 
regression indicates a R2 of 0.78 and a slope of 
0.60 (Fig. 6).   

Mean rain gauge data and mean weighted 
MPE rainfall were graphed at the hourly time step 
and a linear regression equation was calculated 
(Fig. 7) obtaining a slope line of 0.508 and a R2 of 
0.43.  
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Fig.7. Average rain gauge rainfall vs. MPE radar 
rainfall within HE pixel at hourly time step.    
 

The contingency tables and scores (Tables 
2 and 3, respectively) were calculated to evaluate 
the Pixel 1, Pixel 2 and total 4 MPE pixels for 
hourly time step and daily rainfall accumulations 
for the four MPE pixels within the HE pixel.  The 
number of estimated rainfall events were 
overestimated according to the discrete bias (DB) 
in the MPE pixel 1 (1.24) comparing with the 
Pixel 2 and the 4 MPE pixels, which have a values 
close to 1.  For daily data the DB is 
underestimated by a factor of 0.956.  The hit rate 
(H) indicates the occasions when the categorical 
estimation correctly determined the occurrence of 
rainfall event or nonevent and was around 0.82 
and 0.89; non-significant differences were found 
between hourly and daily accumulations.  

Moreover, the probability of detection 
(POD) is the likelihood that the event would be 
estimated by the radar, increasing with the time 
step, with 0.833 for the daily data.  Daily 
estimates eliminate the influence of light rainfalls 
that the radar cannot detect. For the hourly time 
step, the Pixel 1 POD was higher than the POD 
for Pixel 2 and the average of 4 MPE pixels. 

False alarm rates or portion of estimated 
rainfall events that fail to materialize are similar in 
Pixels 1, 2 (0.50 and 0.42 respectively) and the 
four pixels average (0.45).  For the daily time step 
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there was a considerable reduction in the FAR 
(0.128).  
 
Table 2. Contingency tables for the MPE pixels. 
 

Hourly Data MPE Pixel 1 
Observed Rainfall 

(Rain gauges) 
Yes No 

Estimated MPE 
Rainfall 

Yes 638 653 
No 400 6581 

 

Hourly Data MPE Pixel 2 
Observed Rainfall 

(Rain gauges) 
Yes No 

Estimated MPE 
Rainfall 

Yes 630 464 
No 449 6729 

 

Hourly Data                     
4 MPE Pixels 

Observed Rainfall 
(Rain gauges) 

Yes No 
Estimated MPE 

Rainfall 
Yes 915 756 
No 693 5910 

 

Daily Data                               
4 MPE Pixel 

Observed Rainfall 
(Rain gauges) 

Yes No 
Estimated MPE 

Rainfall 
Yes 225 33 
No 45 341 

 
Table 3. Discrete validation scores for the MPE 
pixels and time scales.  
  Hourly Data Daily Data 

  
MPE 

Pixel 1 
MPE 

Pixel 2 
4 MPE 
pixels 

4 MPE 
pixels 

POD 0.62 0.58 0.57 0.833 
FAR 0.51 0.42 0.45 0.128 
DB 1.24 1.01 1.04 0.956 
H 0.87 0.89 0.82 0.879 

 
Figures 8 and 9 show the distribution of 

false alarms and the probability of no detection by 
the radar during 2007.  Events in which the radar 
did not detect rainfall and the rain gauges did 
measure rainfall (c) were assigned a value of 1 in 
the graph. Events in which the radar did detected 
rainfall and the gauges did not measure rainfall (b) 
were assigned a value of 2.  Differences in time 
when false alarms and probability of no detection 
quantities occurred can be observed in the graphs, 
and detailed statistics are presented in Table 3 and 
4. 
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Fig.8. Hourly False Alarm Time Series for the 
MPE Pixel 1 for 2007. 
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Fig.9. Hourly False Alarm Time Series for the 
MPE Pixels within a HE Pixel for June to 
December 2007. 
 

A mean field bias (Bias) was calculated 
for the MPE Pixel 1, 2 and overall 4 pixels, as the 
ratio of the average of the rain gauge rainfall and 
the mean rainfall sensed for the MPE pixels using 
the area weights for each time step (hourly, daily, 
monthly and annually accumulations). Hourly 
mean field bias time series are displayed in the 
Fig. 10 (MPE Pixel 1) and Fig. 11 (mean four 
MPE pixels into the HE pixel). 

Large biases were found at the hourly 
time step and are associated with small radar 
rainfall and rain gauge detections (Fig. 10). 
Because, the minimum precipitation depth that the 
radar is capable of detecting is 0.01 inches or 
0.00394 mm; while our rain gauge network has a 
rainfall depth resolution of 0.1 mm. The 
NEXRAD in Puerto Rico is located about 100 km 
from the study area in Cayey at a site elevation of 
850 meters msl. Due to the earth curvature, the 
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beam has an elevation of 600 m above site at 
Mayagüez, affecting the cloud’s measurements in 
the lower troposphere.  

To neutralize the noise effect of little 
rainfall quantifications in the hourly bias 
computation, rainfall depths less that 0.3 mm were 
eliminated.  A considerable hourly bias reduction 
was observed in time (Fig. 12) and in the average 
and standard deviation computation across the 
year as well as monthly (Table 3 and Table 4).   

The continuous validation scores for MPE 
rainfall validation (Table 4) show a normalized 
bias of -0.151 for daily and -0.17 for hourly 
accumulations.  The root mean square error is 
greater (0.368) in daily accumulations than in 
hourly (0.012).  The mean field bias average over 
2007 in the Pixel 1 is 3.85 with a standard 
deviation average of 4.21 mm.  The 4 MPE pixels 
present less Bias (2.77) but a large standard 
deviation (8.18).  The annual average Bias is 
improved after eliminating rainfall depths less that 
0.3 mm, diminishing to 1.55 and a standard 
deviation of 2.14.  

In the months of April and May some data 
in the rain gauge network were missing, and as a 
consequence, the mean field bias was calculated 
only for the existing data.  In addition, the MPE 
Pixels present the complete accumulations for 
these months while the rain gauge column shown 
only the exiting data.  The MPE total 
accumulations are 120.9 and 187 mm for April 
and May (Table 5), but the MPE accumulations 
only for the time window that correspond to the 
rain gauge data are 22.41 and 143.61 mm for 
April and May, respectively. 

The mean field bias tended to decrease 
when the calculation was performed for the whole 
HE pixel area (16 km2).  Therefore when the MPE 
is accumulated (e.g., over several hours or days) 
the bias is reduced and the standard deviation as 
well. Table 5 provides detailed bias computations 
for 2007.  
 
 
 
 
 
 
 
 

Table 4. Continuous validation scores for the 
MPE pixels and time scales. 

  
Mean Hourly  

Daily 
Data 

  

MPE 
Pixel 

1 

MPE 
Pixel 

2 

4 
MPE 
pixels 

4 MPE 
pixels 
Rain≥ 

0.3mm 
4 MPE 
pixels 

NBIAS - - -0.17 - -0.151 
RMSE - - 0.012 - 0.368 
Bias 3.85 1.58 2.77 1.55 1.23 
STD 
Bias 

4.21 2.73 8.18 2.14 1.65 

 
 

Mean Field Bias in Pixel 1
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Fig.10. Hourly Mean Field Bias for the MPE Pixel 
1 for 2007 year. 
 
 

Mean Field Bias at HE pixel
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Fig.11. Hourly Mean Field Bias for the four MPE 
Pixels for 2007 year within a HE Pixel. 

 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
Alejandra M. Rojas-Gonzalez, Eric W. Harmsen, 
Sandra Cruz Pol

ISSN: 1790-5079 485 Issue 7, Volume 5, July 2009



Mean Field Bias at HE pixel without rain less than 0.3mm
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Fig.12. Hourly Mean Field Bias for the overall 
MPE Pixels within a HE Pixel for June to 
December 2007. 

 

The results indicate that the month with 
largest hourly bias was December (5.68), which 
also had the highest variability (STD =12.92).  
These results are decreased to 1.53 and 2.52 
respectively, when the average rainfall less than 
0.3 mm in radar and rain gauges were eliminated.  
The greatest daily Bias occurred in November 
with 2.24 and a standard deviation (STD) of 2.6.  
The months with Bias close to 1 are June, July, 
August and September of which only August and 
September maintain the value close to one in 
monthly accumulations.  
 
 

Table 5. Total rainfall in the MPE pixels and mean field daily bias calculation. 

 MPE Pixel Rainfall MPE Statistics 
Rain 

Gauge Month Daily Bias Hourly Bias 
Hourly Bias 
Rain>0.3mm 

 1 2 3 4 Mean STD Total Bias Mean STD Mean STD Mean STD 

 (mm) (mm) (mm) (mm) (mm) (mm) (mm)  (mm) (mm) (mm) (mm) (mm) (mm) 

Jan 45.3 77.3 110.4 179.2 94.9 57.3 15.51 0.16 1.43 1.81 2.47 4.77 0.60 2.02 

Feb 39.9 72.6 53.0 54.9 56.5 13.4 71.50 1.27 1.20 1.91 2.89 9.11 2.57 2.80 

Mar 59.5 106.7 56.6 74.8 78.4 23.0 94.62 1.21 1.36 1.38 1.48 1.89 2.18 1.98 

Apr 91.6 129.5 128.4 140.7 120.9 21.3           

May 142.8 203.2 182.7 223.7 187.0 34.5           

Jun 220.5 283.3 196.0 206.0 235.0 39.2 192.01 0.82 1.02 0.85 3.25 10.59 1.26 1.44 

Jul 259.2 430.3 245.7 263.5 316.6 87.4 82.22 0.26 0.97 1.51 1.04 2.68 0.39 0.88 

Aug 200.4 268.2 195.9 252.6 233.7 36.5 223.69 0.96 0.93 1.60 1.98 5.45 1.66 2.44 

Sept 164.4 312.4 277.9 227.1 247.4 64.4 241.45 0.98 1.08 1.50 1.49 3.01 1.61 1.58 

Oct 177.2 187.9 261.9 239.2 208.0 40.6 204.23 0.98 0.72 0.50 1.14 1.74 1.19 0.99 

Nov 89.2 72.2 124.4 117.4 95.1 24.4 162.49 1.71 2.24 2.60 3.92 8.16 2.92 4.55 

Dec 55.7 68.0 111.7 104.0 79.4 27.2 109.86 1.38 1.72 2.38 5.68 12.92 1.53 2.52 

Year 1545.7 2211.4 1944.4 2083.2 1952.7 249.8 1542.3 0.85 1.24 1.65 2.77 8.14 1.55 2.14 

 
 

4. CONCLUSIONS 
The Multi-sensor Precipitation Estimation 
algorithm was developed by the U.S. National 
Weather Service to improve the NEXRAD rainfall 
quantifications applying an hourly bias correction 
over the radar coverage.  In western Puerto Rico 
the rain gauge density to correct the MPE 
algorithm is poor and the bias calculated can not 
be applied to this region or to small watersheds, 
incorporating errors into hydrologic simulations.  
In this study, the MPE algorithm was evaluated at 
a small-scale within a Hydro-Estimator pixel 
associated with 4 MPE pixels.  Individual and 

overall MPE pixels were evaluated at different 
time scales.  
 At major time scales (daily) the MPE 
performed better, except for the months of 
January, July, November and December 
comparing them with the monthly mean field bias.  
The hourly Bias computation for January and July 
presented in the Table 5 could be improved by 
eliminating light rainfall less than 0.3 mm in the 
radar and rain gauge averages.  Monthly Bias 
variations exist in the average MPE pixels 
compared to the ratio of average rain gauge 
network and total annual MPE rainfall at 4 pixels 
(0.85).  
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A future study should extend the area to cover not 
only the TBSW but also the rain gauges that are in 
the Río Grande de Añasco and Guanajibo basins 
to validate the MPE algorithm and correct the 
rainfall quantification by a new bias factor in the 
hydrologic modeling.    

NEXRAD Level 3 (N1P) quantification 
will be performed and compared with the rain 
gauge network data, generating surfaces at each 
time step within the HE pixel and the TBSW.  It is 
imperative to measure the performance of the 
QPE at scales below the 2km x 2km (N1P) 
resolution and quantify how the hydrologic 
response is affected by temporal and spatial 
precipitation resolutions. 
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