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ABSTRACT: A practical methodology is proposed to estimate the three-dimensional variability of soil moisture
based on a stochastic transfer function model, which is an approximation of the Richard’s equation. Satellite,
radar and in situ observations are the major sources of information to develop a model that represents the
dynamic water content in the soil. The soil-moisture observations were collected from 17 stations located in
Puerto Rico (PR), and a sequential quadratic programming algorithm was used to estimate the parameters of
the transfer function (TF) at each station. Soil texture information, terrain elevation, vegetation index, surface
temperature, and accumulated rainfall for every grid cell were input into a self-organized artificial neural net-
work to identify similarities on terrain spatial variability and to determine the TF that best resembles the prop-
erties of a particular grid point. Soil moisture observed at 20 cm depth, soil texture, and cumulative rainfall
were also used to train a feedforward artificial neural network to estimate soil moisture at 5, 10, 50, and 100 cm
depth. A validation procedure was implemented to measure the horizontal and vertical estimation accuracy of
soil moisture. Validation results from spatial and temporal variation of volumetric water content (vwc) showed
that the proposed algorithm estimated soil moisture with a root mean squared error (RMSE) of 2.31% vwc, and
the vertical profile shows a RMSE of 2.50% vwc. The algorithm estimates soil moisture in an hourly basis at
1 km spatial resolution, and up to 1 m depth, and was successfully applied under PR climate conditions.
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INTRODUCTION

Soil moisture is a fundamental component of the
surface water and energy budget. The soil moisture
regulates the partition of latent and sensible heat
fluxes at the surface, affecting the boundary layer.
Usually, atmospheric models do not consider the state

and evolution of the soil moisture. Thus, using incor-
rect soil-moisture initial conditions may generate mis-
leading modeling results. For instance Balsamo et al.
(2004) reported that erroneous estimation of total soil
moisture affected the quality of the forecast for sev-
eral days when using a numerical weather prediction
scheme. It is also well known that soil moisture plays
an important role in detection and attribution of
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global climate changes (Huang et al., 1996). Recently,
several agencies and universities have been organized
to conduct land data assimilation system (LDAS) that
intends to enhance soil and temperature initial condi-
tions for numerical weather ⁄ climate prediction mod-
els by using real-time observed precipitation and
solar insolation data (Fan et al., 2002; Robock et al.,
2003; Margulis et al. 2002; Walker and Houser, 2004;
Belair et al., 2005; McKee et al., 2001). Soil moisture
is not only an important variable for modeling but
also has important practical applications, including
water resource management, reservoir design and
operation, drought assessment, flood forecasting, crop
production, irrigation, and forest yield estimation
(Dinar et al., 1986; Mehrotra, 1999; Viterbo and
Betts, 1999).

There are several physically based soil-moisture
models and most of them are based on the Richard’s
equation. The Richard’s equation represents the
dynamic distribution of pore water pressure in
partially saturated soils (Yeh et al., 1998; Lee and
Abriola, 1999; Kumar, 2004). The water balance
approach attempts to estimate the soil-moisture con-
tent in a simplified way, thus, greatly reducing the
computational effort (Huang et al., 1996; Van den
Dool et al., 2003; MIKE SHE, DHI Software, Inc.,
2003; Ross et al., 2004; Downer et al., 2003).

Since some variables ⁄ parameters of the Richard’s
equation are not accurately known, stochastic models
may help to represent uncertainties. Thus, a stochas-
tic representation of the Richard’s equation was
introduced by Entekhabi and Rodriguez-Iturbe (1994)
and later modified by Castelli et al. (1996) and Pan
et al. (2003). Our proposed model is an approximation
of the stochastic version of the Richard’s equation.

Entekhabi and Rodriguez-Iturbe (1994) have
shown that the rainfall is the principal driver that
controls the state and evolution of the soil moisture,
and based on this observation, Pan et al. (2003) pro-
posed a method for estimating soil moisture. They
represented the soil-moisture dynamics by a linear
stochastic partial differential equation. They also
eliminated the diffusion term to simplify the stochas-
tic equation and express the soil moisture as a func-
tion of the time-weighted average of the previous
cumulative rainfall over a given period.

Although precipitation is the primary force control-
ling the state and evolution of the soil moisture, its
estimation requires studying the soil and vegetation
properties. For instance, Pan’s method requires esti-
mation of three parameters: the window size, the
infiltration parameter, and the loss parameter. The
window size was determined by observing the linear
relationship between the soil moisture and the aver-
age of the previous cumulative rainfall. The infiltra-
tion parameter was estimated by using an empirical

relationship between the observed mean soil moisture
and the mean of the previous cumulative rainfall.
The loss parameter was determined using an empiri-
cal function of the saturated hydraulic conductivity
and the leaf area index. It is obvious that to repre-
sent the spatial and temporal variability of the soil
moisture requires including properties of the soil and
vegetation. Therefore, our model includes the follow-
ing variables: rainfall, soil texture, surface tempera-
ture, vegetation index, and topography.

Walker et al. (2002) introduced a modified Kalman
Filter to retrieve the soil moisture profile in a 6 ha
catchment performing measurements at five different
depths from the surface to 1 m depth. They deter-
mined that the soil-moisture profile cannot be
retrieved from near-surface soil-moisture measure-
ments when the near surface and deep soil layers
become decoupled, such as during extreme drying
events. We are also exploring the possibility of esti-
mating the soil-moisture profile for PR based on
near-surface soil-moisture measurements.

We are using a self-organized neural network
(SONN) to identify spatial similarities among grids
and a feedforward artificial neural network (ANN) to
estimate the soil moisture at different depths. An
ANN is selected to estimate soil-moisture profile
because the dynamic water content of soil is a nonlin-
ear process and the ANN has been proven to be
an efficient estimation approach when the variables
of a system are related in a highly nonlinearly way
(Zongqian et al., 2000; Satalino et al., 2002; Gill
et al., 2006). The ANN technique is a general non-
linear modeling approach that is based on nonlinear
optimization algorithms (Hagan et al., 1996). An
ANN determines an empirical relationship between
the inputs and outputs of a given system. Therefore,
it is important that the user has a good understand-
ing of the science behind the underlying system to
provide the appropriate inputs, and consequently to
support the identified relationship. It should be men-
tioned that the physically based models provide the
theoretically representation of the soil-moisture
dynamics. The ANN may help to develop reasonable
estimates when sufficient and appropriate informa-
tion is provided. Thus, the key issue to obtain a suc-
cessful ANN application is to select the appropriate
training variables and to identify a suitable ANN
structure. The structure of the ANN consists of deter-
mining the number of layers, the number of neurons
in the hidden layers, and selecting the best activation
function for each layer. We implemented an efficient
procedure to identify the appropriate structure of a
neural network (Ramirez-Beltran and Montes, 2002).

An interesting application of the ANN to estimate
soil moisture is presented by Satalino et al. (2002).
They studied the feasibility of retrieving soil-moisture

RAMÍREZ-BELTRAN, CASTRO, HARMSEN, AND VÁSQUEZ
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content over smooth bare-soil fields using European
Remote Sensing synthetic aperture radar (ERS-SAR)
data. The retrieval approach consists of inverting the
integral equation method by using an ANN. The over-
all root mean square error in the retrieved volumetric
soil-moisture content was ±6%. They have reported
that the major source of soil-moisture estimation is
the roughness conditions, which influences the rela-
tionship between soil-moisture coefficient and the
radar backscattering coefficient. Jiang and Cotton
(2004) implemented an ANN technique for soil-mois-
ture estimation. They used daily precipitation, vege-
tation index, cloud-mask infrared skin temperature,
and soil-moisture profile. They found a high correla-
tion between ANN estimates and the actual observa-
tions, and they claim that the ANN-based technique
is capable of estimating soil moisture from remotely
sensed impulse response (IR) data with high spatial
and temporal resolution.

This paper is organized as follows: the second sec-
tion shows Puerto Rico climate conditions and
describes the in situ and remote sensing data used to
build the soil-moisture model. The third section
describes the stochastic TF and the parameter esti-
mation procedure, illustrates the use of a SONN to
identify similarities among grids to select the appro-
priate TF, and shows the use of a feedforward ANN
to estimate soil moisture at different depths. The
fourth section presents the results of the PR soil-
moisture analysis. The fifth section describes some
potential applications of the soil moisture, and the
last section presents a summary and some conclu-
sions.

PUERTO RICO CLIMATE
CONDITIONS AND DATA

The proposed methodology was implemented for
the climatological conditions of PR. PR is part
of the Greater Antilles island chain and is located
in the northeastern Caribbean Sea. Precipitation is
primarily affected by troughs imbedded in easterly
waves during summer months and cold fronts dur-
ing winter months. Life zone studies show that PR
is characterized by having subtropical dry forest
(17%), subtropical moist forest (58.4%), subtropical
wet forest (22.6%), subtropical rain forest (0.1%),
lower mountain wet forest (1.2%), and lower moun-
tain rain forest (0.1%), (Ewel and Whitmore, 1973).
Although PR is a small island, 30 vegetation classes
and approximately 400 soil series have been
identified (Helmer, 2002). PR includes 8,700 km2 in
which the spatial and temporal variability of soil

moisture is primarily associated with complex
vegetation, soil texture, surface temperature, topog-
raphy, and precipitation.

Essentially two major data sources were used as
part of the soil-moisture study: a local soil-moisture
measurement network and rainfall rates obtained
from the Next Generation Weather Radar (NEX-
RAD).

Soil-Moisture Network

The locations of the soil-moisture stations used
in this study are shown in Figure 1. The soil-mois-
ture network included 17 stations, 12 of which were
owned and operated by the University of PR-May-
agüez (UPRM) research project and the remaining
five were owned and operated by the Natural
Resources Conservation Services (NRCS). The latter
five stations are part of the Soil Climate Analysis
Network (SCAN) that covers United States (U.S.)
and PR. The UPRM stations collected hourly obser-
vations during the period from 2005 to present and
includes soil moisture, air temperature, and rain-
fall. These stations include three ECHO-20 soil-
moisture sensors that collect information at 20 cm
depths, an ECHO temperature sensor located at
20 cm height, an ECRN-50 rain gauge, and a data
logger that collects the information from the five
sensors every hour. Detailed description of the used
sensors can be found at: http://www.decagon.com/
Ech2o. The NRCS stations also collect the following
parameters on an hourly basis: soil moisture and
soil temperature at 5, 10, 20, 50, and 100 cm depth,
air temperature, rainfall, solar radiation, wind
speed, and wind direction (http://www.
wcc.nrcs.usda.gov/scan/). Most of the PR-SCAN
stations have been installed during the period
2004-2006; however, there are some of them that
have collecting soil-moisture information since 1994.
An experimental field campaign was conducted to
collect undisturbed soil samples in the neighborhood

FIGURE 1. Location of Soil-Moisture Stations in PR.
Stars and dots represent the location of the NRCS

and project station (UPRM), respectively.
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of stations to measure volumetric water content
and calibrate the soil-moisture sensors.

NEXRAD Rainfall Data

One of the NEXRAD network components of the
National Weather Service of the U.S. is located in
PR. NEXRAD Stage III grids are stored in a binary
file format called xmrg. Rainfall data were obtained
by using the multisensor precipitation estimation
(MPE) algorithm, which was developed by the
Hydrologic Research Laboratory (Breidenbach and
Bradberry, 2001). The xmrg is a MPE product that
uses radar precipitation and rain gauge measure-
ments to derive the best estimators of rainfall for spe-
cific area and time. The xmrg product provides
hourly rainfall.

It is well known that there are some difficulties
associated with radar rainfall estimation (Hunter,
1996; Fulton et al., 1998; Westrick et al., 1999). High
and low radar reflectivity caused by mountainous
region lead to underestimation or overestimation of
rainfall (Klazura et al., 1999). Also the low spatial
resolution, the detection from the antenna, and the
elevation angle of the radar beams reduces accuracy.
The authors are currently conducting a validation of
the NEXRAD rainfall over PR.

In addition to the soil-moisture network, PR has a
rain gauge network that includes 125 sensors across
the island that provides rainfall records every
15 min. NEXRAD level III data provide rainfall esti-
mates every 6 min with 1 km spatial resolution.
Rainfall comparison was performed between a rain
gauge and the nearest grid to the corresponding rain
gauge. Preliminary validation has been conducted
over seven heavy storms. The hit rate indicates that
90% of the time the NEXRAD indicates correctly
when rainfall events are present or absent. However,
the probability of detection (POD) showed that 42%
of the time the NEXRAD detects the presence of rain-
fall events. Thus, the selected storms covered only
part of the island, and the validation process was
dominated by the absence of rain in many rain
gauges, that coincided with the absence of reflectivity
in the corresponding grids and consequently the hit
rate was large with low POD. The false alarm rate
showed that 35% of the time the NEXRAD indicated
rainfall events when in reality there was no rain. The
measurement accuracy in terms of the amount of
rainfall reveals that the RMSE was 1.64 mm for the
15 min estimates. The bias ratio of the NEXRAD was
0.75, which indicates that on average the NEXRAD
incurred an underestimation of 25%. It should be
pointed out that the NEXRAD rainfall errors will
increase the soil-moisture estimation errors in our

proposed methodology. In the near future, this error
will be studied to determine how the rainfall errors
propagate over the soil-moisture estimates.

METHODOLOGY

The Soil-Moisture Model

One of the purposes of this work is to develop a
soil-moisture estimation model for tropical areas such
as PR, which has complex topography, tropical vege-
tation, and persistent cloud cover. The formulation of
the model is based on the observation that precipita-
tion is the paramount force controlling the state and
evolution of soil moisture.

Entekhabi and Rodriguez-Iturbe (1994) have
shown that the soil-moisture vertical profile can be
derived by using the stochastic version of the well
known Richard’s equation (Lee and Abriola, 1999;
Kumar, 2004), which can be represented by a linear
stochastic partial differential equation. Pan et al.
(2003) proposed a similar linear stochastic partial dif-
ferential equation to model the soil-moisture dynam-
ics. They have shown that the intrinsic dynamics of
volumetric soil-moisture h(x, t) is driven by the rain-
fall rate p(x, t) and is given by

Z
@h

@t
¼ �ghþ Zðjr2hÞ þ cPnetðx; tÞ; ð1Þ

where Z is the thickness of the soil layer, t is the
time, g is the loss coefficient, j is the diffusion coeffi-
cient, j�2h is the diffusion term, c is the infiltration
coefficient, and Pnet (x, t) is the net rainfall rate.

It should be noted that the net rainfall rate is
equal to the differences between the rainfall rate
and the interception, i.e., for a nonforested region
Pnet (x, t) � p (x, t). Entekhabi and Rodriguez-Iturbe
(1994) have shown that diffusion is small compared to
vertical losses because of the evapotranspiration and
percolation. In addition, Pan et al. (2003) have come
to the conclusion that if the soil moisture is to be com-
puted for times scale of one day or less, the diffusion
term can be neglected. Thus, they dropped the diffu-
sion term and estimated the net rainfall rate by the
cumulative rain that occurs in a short time interval
(i.e., Pnetðx; tÞ ¼ DPðxÞ

Dt ). They also have assumed that g
and c are independent of time and DPðxÞ

Dt is constant
during the time period from t to t + Dt, where Dt is a
short time interval. Thus, Pan et al. (2003) finally
show that equation (1) is reduced to the following
stochastic ordinary differential equation.
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Z
dh

dt
¼ �ghþ c

DP
Dt

ð2Þ

Thus, equation (2) for a given location x can be
written as follows:

dhðtÞ
dt
¼ �k1hðtÞ þ k2RLðtÞ; k1>0; ð3Þ

where k1 ¼
g
Z

, k2 ¼
c
Z

and RLðtÞ ¼
DP
Dt

.

In the previous equations ht(t) and RL(t) were con-
sidered as continuous functions, but in practice, there
are usually discrete data ht and RL,t. It has been
shown that a first-order differential equation could be
written as a first-order difference equation (Box and
Jenkins, 1976; Pandit and Wu, 1983; Wei, 1990;
Hamilton, 1994; Spiegel, 1994; Brockwell and Davis,
2002). Thus, equation (3) can be approximated as
follows:

ht ¼ �/ht�1 þ hRL;t; />0; ð4Þ

where ht is the soil moisture at time t and RL,t is the
accumulated rainfall at time t during the last L times
periods, / and h are constant coefficients.

Although Equation (4) provides an approximation
of the soil-moisture dynamics, it was noted that the
stochastic TF model provides a better representation
of the soil-moisture behavior. The stochastic TF
model is a difference equation and the relationship
between the continuous and discrete TFs were also
discussed by Pandit and Wu (1983) and Box and
Jenkins (1976). The discrete stochastic TF model
equivalent to Equation (4) is given as follows:

ht ¼ t1ðBÞht�1 þ t2ðBÞrt þ et; ð5Þ

where

tj ðBÞ ¼
xjðBÞ
djðBÞ

¼ xj;0 þ xj;1Bþ xj;2B
2 þ � � � þ xj;SB

S

1� dj;1B� dj;2B2 � � � � � dj;rBr
;

j ¼ 1; 2 ð6Þ

where t1(B) and t2(B) are the IR functions, and B is the
back shift operator, Bdxt = xt)d, and d is an integer
value. The variable rt is the accumulated rainfall dur-
ing 15 min., and it will be called instantaneous rainfall
at time t, and et is a sequence of independent random
variable with mean zero and constant variance, this
random error takes into account uncertainties for
unobservable variables that are not included in the
soil-moisture model. It should be noted that rt is used
instead of RL,t as the accumulation of rainfall is

carried out by the IR function t2(B). The first IR func-
tion is a set of coefficients associated with the previous
soil-moisture dynamics, the loss coefficient, and a par-
ticular thickness of the soil layer; whereas, the second
IR function is related to cumulative and instantaneous
rainfall values, infiltration coefficient, and a given
thickness of the soil layer.

Experimental results were used to modify the sec-
ond IR function. We observed that the level of the soil
moisture is primarily controlled by the antecedent
soil-moisture values and the sudden soil-moisture
response is modeled by cumulative and instantaneous
rainfall effects, simultaneously. It is noted that if the
precipitation during consecutive days is not present
and the soil is relatively dry (i.e., close to wilting
point) a significant rainfall event will produce a rela-
tively large increase in the soil moisture. On the
other hand, if several rainfall events occurred fre-
quently during the previous few days then the soil-
moisture response is relatively small because of the
soil moisture already being near the field capacity or
possibly the saturation point. Therefore, the second
IR function can be written in the following form:

t2ðBÞ ¼
x2ðBÞ
d2ðBÞ

e�sRL;t ; ð7Þ

where the integer variable L is obtained during the
parameter estimation process, and s is the attenua-
tion parameter that modulates the soil-moisture
response associated with an instantaneous rainfall
event. Thus, if no rainfall events occur during the
previous days, the RL,t will be zero and the soil-mois-
ture response will be large because of instantaneous
rainfall. On the other hand, if frequent rainfall
events occurred during the previous days, then the
RL,t will be greater than zero and the soil-moisture
response will be attenuated by the exponential term.
Consequently, a stochastic TF model that expresses
the soil-moisture dynamics for a particular layer and
location can be written as follows:

ht ¼
x0;1 þ x0;2B

1� d0;1B� d0;2B2

� �
ht�1 þ

x1;1 þ x1;2B

1� d1;1B

� �
rte
�sRL;t

þ et; s>0; ð8Þ

where the involved variables and parameters were
defined in Equations (4, 5, and 7).

Equation (8) can be used to estimate the soil mois-
ture when a large number of soil-moisture stations are
available (i.e., the extreme soil-moisture values are
involved in the parameter estimation process). How-
ever, in practices, to accomplish this task is difficult,
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and consequently, the upper and lower values of the
TF model should be limited by the saturated and wilt-
ing points, respectively. Therefore, for a given grid
point, the following stochastic TF model is proposed:

ht ¼ qþ ðw� qÞð1� e�ftÞ; ð9Þ

where

ft ¼
x0;1 �x0;2B

1� d0;1B

� �
ft�1 þ

x1;1 �x1;2B

1� d1;1B

� �
rte
�sRL;t; ft>0

ð10Þ

q ¼ 18:74þ 0:00315ðsi cÞ � 0:146 s ð11Þ

w ¼ 33:2� 7:251� 10�2sþ 12:76 log10ðcÞ; ð12Þ

where q and w are approximations of the permanent
wilting point, and the saturation point at a given
location, respectively; c, s, and si are the percentage
of clay, sand, and silt at a particular grid. The geo-
pedestrain equations were tested for PR soil and cli-
matic conditions and successful results were found.
The equation of wilting point was proposed by Cemek
et al. (2004) and the saturation point by Strait et al.
(1979).

It should be pointed out that to derive estimates
for Equation (10) it may be used the relationship
between the observed soil moisture with the ft func-
tion as follows:

ft ¼ �ln
w� ht
w� q

� �
ð13Þ

Analysis of the IR Function

The IR function is defined by the division of two
polynomials xj(B) and dj(B) (see Equation 6), and this
division creates an infinite time series that converges
when the system is asymptotical stable (Pandit and
Wu, 1983). The rational representation of the TF is a
parsimonious model and the evaluation of the TF is
given by a long division of two polynomials, in which
only the most significant values are considered. The
asymptotic stability of the TF is measured by comput-
ing the roots of the polynomial on B (dj(B) = 0). It has
been shown that the system is asymptotically stable
if the roots of (dj(B) = 0) fall outside of the unitary
circle (Pandit and Wu, 1983).

The persistence of the soil moisture in a given area
will be called the memory of the soil moisture. Thus,
if the water last for a long period of time in the soil,
it will be referred as long soil-moisture memory; on
the contrary, it will be referred as the short soil-mois-
ture memory. The memory of the soil moisture is con-
trolled by the sum of two products: t1(B)ft)1 and
t2(B)rt. To analyze the influence of the IR function on
the memory of the soil moisture considered a single
function that can take the form of either t1(B) or
t2(B) and for simplicity will be called t(B):

tðBÞ ¼ x0 þ x1B

1� dB
ð14Þ

The contribution of the IR function to memory
of the soil moisture is essentially controlled by the
d-value. This is the result of the fact that

tðBÞ ¼ x0 þ x1B

1� dB
¼ ðx0 þ x1BÞð1þ dBþ d2B2 þ � � �Þ

¼ k1 þ k2Bþ k2B
2 þ � � � ¼

X1
i¼1

kiB
i�1

ð15Þ

It should be noted that when delta is negative, the
geometric series alternates the sign and reduces the
response in the soil moisture (i.e., reduces the mem-
ory of the soil moisture).

Assuming that the omega parameters are both
positives and delta approaches to positive one, the
soil-moisture persistence effect will last for long time
period (i.e., long memory). In addition, if omega
parameters are both negatives and delta approaches
to negative one, the soil moisture will have long
memory. On the other hand, if delta approaches to
zero, then the persistence effect will last a very short
period of time (short memory).

Parameter Estimation

A TF model was identified for each station,
assuming that the parameters of the IR function
characterize the terrain properties for a given loca-
tion. Thus, it is assumed that x¢s, d¢s, s, and L are
parameters that exhibit inherent terrain character-
istics of a specific location, and consequently, the
spatial variability is expressed by the parameters of
the IR functions. Thus, evaluating the TF model
in another location that exhibits similar terrain
characteristics (as determined by the self-organized
neural network) will estimate the response of the
soil-moisture dynamics.
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There is a well known and systematic procedure to
perform parameter estimation of the TF model when
it has only one input variable. In this case, there are
two input variables in addition to an exponential
term and consequently, conventional techniques (Box
and Jenkins, 1976; Pandit and Wu, 1983; Wei, 1990)
to perform parameter estimation cannot be applied.
The estimation of the transfer-function parameters is
not a trivial task, it requires a well-planned proce-
dure. We are proposing a general procedure to esti-
mate parameters for a multivariate TF model with
nonlinear terms. The estimation procedure includes
five main steps:

1. The first step consists of applying the periodgram
and the autocorrelation function to determine whether
or not the transformed soil moisture, ft, is a stationary
process. Typically, the soil moisture is a nonstationary
process because of significant changes of the mean that
have occurred over the time, because of rainfall long-
term impact over the soil-moisture response. The pro-
cess becomes stationary after the trend is removed.
This is accomplished by taking the first, (1)B)ft, or the
second, (1)B)2ft, difference to the process or by remov-
ing a parametric function. In this case, the trans-
formed soil-moisture variable does not require
removing trend, i.e., the roots of both denominators fell
outside of the unitary circle.

2. The second step consists of performing a random
search to determine the initial point for the stochastic
TF. The uniform probability distribution was used to
generate 1000 points over specific range, and the
mean square error (MSE) was used to identify a suit-
able initial point, i.e., the one that exhibited a small
MSE. The empirical selected range that provides sat-
isfactory results is given by two vectors,

Lo ¼ 0 0 �0:9 0 0 0:1 0 12½ �

Up ¼ 2 2 0:9 2 2 0:9 1 144½ �;

where Lo and Up represent the minimum and
maximum values, respectively, that can be assigned to
the parameters, as organized in the following vector:

parameter ¼ ½x0;1 x0;2 d0;1 x1;1 x1;2 d1;1 t L�

3. The third step consists of using the sequential
quadratic programming (SQP) algorithm to estimate
the parameters of the IR functions, while the L
parameter is maintained fixed at a given constant
value, which at the beginning is obtained by inspec-
tion (Reklaitis et al., 1983; MathWorks, 2000). The

SQP algorithm requires a representative sample size
from a given station to derive the parameters of TF.
Empirically, it was determined that 350 observations
were the minimum sample size to derive reliable esti-
mates of the TF. It should be mentioned that the
sequence of 350 observations should contain several
dry and wet episodes so that the algorithm will cap-
ture the soil-moisture response under the typical cli-
mate conditions.

4. This step consists of fixing the parameters of the
IR function and the Hooke and Jeeves (HJ) algorithm
is used to estimate the L parameter (Rekaitis et al.,
1983). The HJ algorithm is a function evaluation
technique, i.e., a direct searching integer procedure
to determine the L value that minimizes an objective
function; in this case, the objective function is the
MSE.

5. The last step consists of using the previous
parameter values as the initial point and implement-
ing simultaneously, the SQP and HJ algorithms to
determine the complete set of parameters. This task
was successfully accomplished by using the Matlab
software (MathWorks, 2000).

TF Evaluation

Once the parameters of the TF models have been
estimated, they are applied with rainfall radar data
for a larger region. A SONN is used to identify a
grid point that exhibits the similar terrain proper-
ties to a place where a soil-moisture station is
located, and the identified station is called the
similar station. The variables used to identify
the similar station were: the percentage of clay, the
percentage of sand, elevation, difference of surface
temperature (max-min), normalized difference vege-
tation index (NDVI), and the accumulated rainfall
of the corresponding month. The number of epoch
to perform training was computed as a thousand
times the number of variables and the Kohonen
learning rule (Hagan et al., 1996) was used to perform
the train. The number of epochs was empirically
derived to accomplish consistency on classification
results. It should be noted that SONN uses land infor-
mation to identify homogeneous land classes and the
soil-moisture dynamics of each class is modeled by a
TF. Thus, the SONN models land heterogeneity, but
no hydrometeorology as simultaneous solution of
energy mass balance at the land-atmosphere interface
is computed. However, the TF uses radar data to
approximate the dynamic of soil moisture near the
surface and finally ANN estimates soil moisture at
different depths.

Because of the fact that the TF model requires
a sequence of soil moisture from a given pixel to be
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initialized, a model based only on accumulated and
instantaneous rainfall was developed; therefore, no
soil-moisture initial conditions are required. Thus,
the proposed model to create the soil-moisture initial
conditions can be written as follows:

ht ¼ qþ ðw� qÞð1� e�gtÞ; ð16Þ

where

gt ¼ a0 þ a1
ffiffiffiffiffiffiffiffiffiffi
RL1;t

p
þ xþ x1B

1� dB

� �
rte
�s1RL1 ;t þ et; gt>0

ð17Þ

RL1
,t is the cumulated rainfall at time t during the

last L1 observations. a0 and a1 are the trend parame-
ters. x, x1, and d are the parameters of the IR func-
tion and s1 is the attenuation parameter. Equation
(16) was also fitted for each station to initialize the
corresponding pixels.

Once the SONN identifies the similar station,
Equation (16) is used with radar rainfall data from
the previous month to initialize the TF model. It was
found that 540 hours of rainfall data from the previ-
ous month will capture dry and wet episodes to cre-
ate a sequence of soil moisture based on rainfall. This
sequence of initial values is used to create the first
estimate of the ht)1 at time t and be able to derive
the next soil-moisture values.

Soil-Moisture Profile

An effort was also devoted in this work to estimate
the soil moisture at different depths, since accurate
estimation of soil water dynamics at the surface and
the deeper layers plays a critical role in understand-
ing the surface and atmospheric process interactions.
It should be noted that Equation (1) suggests that
once the soil moisture is known at a particular layer,
it can be estimated at different layers by varying the
rate of change of soil moisture because of the thick-
ness of the soil layer and taking into account of the
soil and surface properties. Since the ANN has suc-
cessfully been applied to model nonlinear relation-
ships of the variables involved in a given system, it
may be used to estimate the propagation of the soil-
moisture rate of change at different depths.

The vertical soil-moisture profile was estimated by
using an ANN that expresses the nonlinear relation
between soil-moisture measurements at a specific
depth (20 cm) with several measurements of soil
moisture at different depths made by the SCAN. The
training patterns of the neural networks are formed

by the input and output vectors and can be expressed
as follows:

Pt ¼ h20;t Rm s c
� �

and Tt ¼ hD;t
� �

; ð18Þ

where Pt is the input vector at time t, and Tt is the
output vector at time t, the output vector is also
known as the target. The variable h20,t is the soil
moisture measured at 20 cm depth at time t, and the
unit of time is given in hours; the variable Rm is the
accumulative rainfall in the mth month, and s, and c
are the percentage of sand and clay at the given loca-
tion, respectively; hD,t is the soil moisture at the Dth

depth at time t.
The training patterns to study the soil-moisture

variability at different depths were divided into three
datasets: the first one for training, the second for
testing, and the third for estimation. The training
patterns included approximately 2,000 rows, the test-
ing patterns 300 rows, and the estimation includes
700 rows. The structure of the ANN was based on
searching and validation techniques that we derived
in a previous work (Ramirez-Beltran and Montes,
2002). It has been shown that this procedure identi-
fies the structure of ANN to avoid over and under
training. The identified ANN structure includes four
neurons in the hidden layer and one neuron in the
output layer, a sigmoidal activation function in the
hidden layer and a linear activation function for
the output layer. The Levenberg-Marquardt algo-
rithm was used as the learning rule and the training
parameters were: 100, 0, 10)10 for the maximum
number of epochs, the MSE, and the gradient thresh-
olds, respectively. It was noted that most of the time,
the routine terminates because it reaches the gradi-
ent threshold.

RESULTS

To apply the proposed methodology, it is necessary
to study the spatial variability to classify the surface
characteristics of PR and to identify which classes
are associated with each of the soil-moisture stations.
Once the classification is done, the corresponding
‘‘similar station’’ to each grid cell can be assigned to
evaluate the associate TF model.

The SONN was used to identify the homogeneous
classes and the grids that belong to the same class.
In order to identify the possible number of homoge-
neous classes, we requested to the SONN to generate
a large number of classes (i.e., to avoid ignoring some
classes). In this case, we requested the creation of 20
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classes; however, the SONN was only able to iden-
tify 12 homogeneous classes. We noted that in order
to obtain consistent results, the number of epochs
must be at least 500 var, where var is the number
of training variables, and the number of epochs is
the number of times that the training patterns are
presented to the SONN. The training patterns were
organized in a matrix, which has six columns with
8,701 rows. The columns correspond to the following
training variables: clay, sand, difference in air
temperature (max-min), NDVI, elevation, and cumu-
lative monthly rainfall; and the number rows corre-
sponded to the number of grids cells covering Puerto
Rico. The number of epochs that we used was
1000 var and several replicates were conducted for
testing consistency. Figure 2 shows the location of
the identified 12 homogeneous classes, and Table 1
shows the average of the surface variables that
characterize each class. It can be observed (Table 1)
that the classes having the largest number of grid
cells include classes 2, 3, and 11; whereas, the clas-
ses having the smallest number of grid cells include
6, 10, and 1.

The particular properties of each station were used
to identify the class that belongs to each of them.
Table 2 shows the properties and of each station. The
SONN indicated that 16 stations were distributed
among seven classes, and therefore; there were five
classes that had no similar station. Fortunately, the
five classes were the smallest ones and all together
included only 1,635 grid cells. Table 2 shows that the
Maricao and Cadena stations belong to class 2, which
is the largest class in PR and has the second rank in
terms of elevation (397 m), a relatively large propor-
tion of clay (0.4), and relatively large NDVI (0.7). It
should be pointed out that the numbers in parenthe-
ses of this section represent average values. Maricao
and Cadena stations are similar in terms that both
exhibit similar amounts of clay, and NDVI. Both sta-
tions are located within mountainous areas, but

Maricao station is located at an elevation of 746 m
and Cadena station at 170 m. Although these stations
showed similar averages of soil moisture, Maricao
station exhibits a smaller validation error than the
Cadena station. This is because of the fact that the
Cadena station may have greater evapotranspiration
caused by the larger daily average temperature dif-
ferences (max-min), and consequently, more uncer-
tainties on soil-moisture variability, and may be more
difficult to model.

Class 9 is an interesting area that includes 754
grid cells, which ranks sixth in terms of size. Table 1
shows that this class has a large amount of sand (0.5)
and the lowest NDVI (0.28), and exhibits the smallest
elevation (34 m), and Table 2 shows that the follow-
ing stations belong to this class: Combate, Boseque
Seco, Chips, and Colegio. Table 2 shows that these
stations are characterized by having the following
similarities (on average): clay fraction (0.29), NDVI
(0.59), and the difference in surface temperature of
(8.8�C). Although the average of soil moisture was
not considered as a variable to perform classification,
they exhibit the smallest amount of soil moisture
with an average of 22% vwc). Particularly, Combate
is the station that shows the largest validation error.
This is because of the fact that Combate has the larg-
est proportion of sand (0.69), is located at a low eleva-
tion (10 m), and has a relatively small NDVI (0.57).
Relatively high soil permeability, as a result of the
high proportion of sand, and large temperature differ-
ences produces relatively large infiltration and signif-
icant losses as a result of strong evapotranspiration,
and consequently, more soil-moisture variability.
The TF model produced a significant soil-moisture
underestimation. Bosque Seco station also exhibits
similar properties to Combate station and shows the
second largest validation error.

Class 11 is one of the most frequently encountered
classes in PR and is ranked third according to size
(1,269 grid cells). This class is characterized (Table 1)
by the second greatest clay content (0.40), the second
highest NDVI (0.72), and second highest accumulated
rainfall (344 mm). There are four stations included in
this class: Caobos, Edwin, Nazario, and Ramon. On
an average, these stations exhibit similarities
(Table 2) in the following variables: cumulative rain-
fall (203 mm), difference in temperature (8.9�C), and
clay fraction (0.45). They also exhibit similar soil
moisture with an average of 34% and similar valida-
tion error (RMSE = 2.63%).

Another of the largest classes in PR is number 3
and includes 1,386 grid cells. Table 1 shows that this
class has the third highest sand content (0.31), has a
relative small elevation (88 m), and a high NDVI
(0.66). There are two stations in this class: Isabela
and Jimenez. Table 2 shows that on an average,

FIGURE 2. Homogenous Regions Identified in PR.
Colors in the map show the location of the 12 classes.
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these stations have similar soil moisture of 28% and
a relatively small validation error (RMSE = 0.84).

Class 8 is ranked fifth in size, including 779 grid
cells. This is the class that includes mountains
(Table 1) having an average elevation of 660 m, with
relatively large NDVI (0.53), small sand fraction
(0.21) and a large clay fraction (0.47). Table 2 shows
that Guillarte station is located on a national forest
on the top of a mountain 1,019 m, with an NDVI of
0.66. The orographic characteristics and the large
NDVI enhance the rainfall process, accumulating
345 mm in May 2004. Thus, the large amount of rain-

fall, with a large clay fraction and small temperature
differences cause the soil moisture to be near to field
capacity. The particular conditions of this class pro-
duce a small soil-moisture variation with fewer uncer-
tainties, and consequently, a small validation error.

It should be noted that Jamaica station is rela-
tively near to Jimenez station, however, the SONN
classified the Jamaica station in class 12 and Jimenez
station in class 3. The Jamaica and Jimenez stations
are similar in the sense that they have relatively
similar accumulation of rain and NDVI, as well as
relatively small elevation, however, they have

TABLE 1. Soil and Surface Characteristics Over PR.

Classes Clay Silt Sand Temperature Difference (�C) NDVI Elevation (m) Rainfall (mm) Number of Grids

Class 1 0.45 0.33 0.23 14.63 0.46 59.52 214.35 345
Class 2 0.45 0.33 0.22 8.20 0.70 397.13 238.65 1526
Class 3 0.35 0.34 0.31 6.52 0.66 88.47 238.78 1386
Class 4 0.43 0.30 0.27 12.54 0.71 107.70 214.46 452
Class 5 0.41 0.36 0.23 5.91 0.64 106.09 581.76 357
Class 6 0.43 0.35 0.22 7.53 0.38 87.36 210.66 227
Class 7 0.20 0.23 0.57 7.25 0.71 91.70 292.02 416
Class 8 0.47 0.32 0.21 6.44 0.53 660.89 313.39 779
Class 9 0.25 0.24 0.50 7.62 0.28 34.63 282.12 754
Class 10 0.55 0.27 0.18 11.84 0.75 201.14 322.58 290
Class 11 0.48 0.32 0.20 7.69 0.72 177.61 344.35 1265
Class 12 0.44 0.34 0.22 6.99 0.67 61.44 190.04 904
Average 0.41 0.32 0.28 7.97 0.62 203.74 275.92
Total number of grid cells 8701

TABLE 2. Soil and Surface Characteristics of Soil-Moisture Stations.

Station Name Class Soil Moisture

Variables Used to Perform Classification

Clay Sand Temperature Difference (oC) NDVI Elevation (m) Rainfall (mm)

Maricao 2 0.36 0.41 0.39 6.30 0.80 746.95 150.11
Cadena 2 0.35 0.49 0.20 10.23 0.81 170.73 80.26

Average 0.36 0.45 0.29 8.27 0.80 458.84 115.19
Isabela 3 0.28 0.47 0.43 6.48 0.73 15.24 183.64
Jimenez 3 0.28 0.23 0.55 7.32 0.79 63.72 120.90

Average 0.28 0.35 0.49 6.90 0.76 39.48 152.27
Lajas 4 0.27 0.45 0.34 10.20 0.74 23.17 193.04
EEL 4 0.36 0.44 0.23 9.27 0.74 33.54 140.21

Average 0.32 0.45 0.29 9.73 0.74 28.35 166.63
Combate 9 0.16 0.27 0.69 8.80 0.57 10.06 166.12
B. Seco 9 0.20 0.33 0.41 7.23 0.50 164.94 105.41
Chips 9 0.31 0.27 0.53 8.32 0.67 60.37 355.09
Colegio 9 0.21 0.31 0.61 8.61 0.61 28.05 188.98

Average 0.22 0.29 0.56 8.24 0.59 65.85 203.90
Caobos 11 0.36 0.40 0.30 9.78 0.81 119.82 280.42
Edwin 11 0.29 0.49 0.29 8.27 0.74 133.54 289.56
Nazario 11 0.36 0.46 0.25 8.34 0.66 85.06 288.54
Ramon 11 0.33 0.47 0.35 9.33 0.67 143.90 246.89

Average 0.34 0.45 0.30 8.93 0.72 120.58 276.35
Jamaica 12 0.24 0.47 0.25 7.85 0.69 13.72 119.89
Guilarte 8 0.41 0.51 0.19 5.73 0.66 1019.80 345.19
Yunque 2 0.43 0.19 11.30 0.76 364 229

RAMÍREZ-BELTRAN, CASTRO, HARMSEN, AND VÁSQUEZ
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different soil textures and consequently different
infiltration rates. Jimenez has 0.55 and 0.23 and
Jamaica has 0.25, and 0.47 sand and clay fractions,
respectively. Apparently, the SONN provided more
weight to texture characteristic and assigned Jamaica
station to class 12.

Sixteen stochastic TF equations were derived, one
for each station. Table 3 shows the parameters to ini-
tialize the model and Table 4 shows the parameter to
evaluate the TF and estimate soil moisture across the
island. It should be noted that El Yunque station was
used to validate the model (i.e., no TF model was
developed for this station). The TF model parameters
depend on the surface and soil properties. Thus, the
values of t1(B) and t2(B) contribute to express the
memory of the soil moisture. In addition, the IR func-
tion t2(B) also contributes to transient effect of instan-
taneous rainfall on the soil moisture, and the s

parameter attenuates the soil-moisture response
because of the cumulative rainfall during the period L.

The IR functions at Combate and Maricao stations
show that both stations have a short-term memory.
The first spike of t1(B) of Maricao station is negative
and it is associated with x0,1, and after that the IR
function shows a strong exponential decay pattern
with positive signs starting at lag 2 with 0.7 value
and ending at about lag 11 (Figure 3a). The t1(B) at
Combate station shows a large spike at lag 1 with
0.34 value and a strong exponential decay pattern
starting at lag 1 and ending at lag 15. Figure 3a
shows the IR function for both stations, Combate and
Maricao. This figure shows that water in the soil
lasts longer in Combate station because of the delta
value (d0,1 = 0.53) being larger than the value for
Maricao station (d0,1 = 0.36). It should be noted that
t1(B) for both Maricao and Combate stations are sta-

TABLE 3. Estimated Parameters for Equation (16) to Initialize the TF Model.

Station a0 a1 x x1 d s1 L1

Maricao 0.8614 0.0252 0.0014 0.0022 0.7311 0.0739 50
Guilarte 0.9393 0.0186 0.0029 0.0004 0.1000 0.6618 12
Isabela 0.5627 0.1043 0.0077 0.0051 0.1417 0.1450 100
Combate 0.1801 0.1015 0.0433 0.0046 0.5150 0.6836 30
B. Seco )0.2969 0.0419 0.0152 0.0035 0.5644 0.4316 32
Cadena 0.1893 0.0362 0.0084 0.0044 0.2651 0.9353 85
Caobos 0.0790 0.1051 0.0255 0.0218 0.1012 0.0564 66
Edwin 0.1525 0.0212 0.0041 0.0004 0.3098 0.8777 144
EEL )0.0442 0.0873 0.0123 0.0117 0.1007 0.6062 77
Jamaica 0.1524 0.1107 0.0084 )0.0020 0.5116 0.7195 144
Jimenez 0.2667 0.0605 0.0114 0.0085 0.1000 0.0460 144
Lajas )0.2363 0.1186 0.0125 0.0124 0.2481 0.7281 143
Nazario 0.5026 0.0519 0.0097 0.0082 0.1512 0.7811 102
Ramon 0.5484 0.0266 0.0085 0.0015 0.1000 0.6684 28
Chips 0.4583 0.0228 0.0057 0.0014 0.2794 0.4348 144
Colegio )0.0570 0.0812 0.0116 0.0054 0.1328 0.9212 144

TABLE 4. Estimated Parameters of the TF Model.

Station Dataset x0,1 x0,2 d0,1 x1,1 x1,2 d1,1 s L

Maricao 05-2004 )0.0506 0.6869 0.36105 )0.0015 0.0108 0.1154 0.6823 34
Guilarte 05-2004 0.3821 0.8622 )0.2467 0.0023 0.0006 0.3864 0.5395 59
Isabela 05-2005 0.8301 0.3333 )0.1693 0.0031 0.0316 0.1003 0.4546 31
Combate 05-2004 0.3298 0.1000 0.5292 0.0122 0.0757 0.3000 1.0944 12
B. Seco 05-2004 1.4392 0.0491 )0.5146 0.0247 )0.0155 0.4760 0.7512 12
Cadena 05-2005 0.3601 0.1850 0.4422 0.0058 0.0106 0.1558 0.1846 14
Caobos 06-2005 0.7327 0.7950 )0.5606 0.0330 0.0283 0.1000 0.8313 47
Edwin 03-2005 0.3350 0.7845 )0.1331 0.0067 0.0031 0.1453 0.7140 28
EEL 06-2005 0.2598 0.7850 )0.0641 0.0183 0.0286 0.1011 0.5506 70
Jamaica 05-2005 1.0834 0.7978 )0.8992 0.0094 0.0211 0.1091 0.4200 12
Jimenez 04-2005 0.8028 0.4384 )0.2504 0.0122 0.0164 0.1016 0.3903 14
Lajas 06-2005 0.5550 0.8136 )0.3852 0.0175 0.0298 0.1254 1.1774 12
Nazario 05-2005 0.7989 0.7254 )0.5327 0.0100 0.0109 0.1001 1.0652 29
Ramon 06-2005 0.9866 0.6377 )0.6395 0.0223 )0.0011 0.2756 3.0833 22
Chips 04-2005 0.9116 0.4565 )0.3716 0.0046 )0.0007 0.1026 0.4047 53
Colegio 05-2005 0.8635 0.2972 )0.1761 0.0164 0.0084 0.1177 1.3842 12
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ble as the roots of the denominator of the response
function fall outside of the unitary circle. The polyno-
mial of the Maricao station is 1 ) 0.36B = 0, and for
Combate station is 1 ) 0.53B = 0. Obviously, the
roots of these polynomials fall outside of the uni-
tary circle, and consequently, these processes are
stationary. To simplify the analysis, consider the
second IR function written in the following form.

t2ðBÞ ¼ x2ðBÞ
d2ðBÞ e

�t, i.e. the RL,t is temporarily dropped.

Figure 3b exhibits the rainfall IR function for both
Combate and Maricao stations and shows that t2(B)
at Combate station is 10 times larger than Maricao
station, indicating that instantaneous rainfall effect
is 10 time stronger at the Combate station compared
with Maricao station since the infiltration process is
much larger in Combate than at Maricao station. It
should also be pointed out that the Maricao station is
close to the field capacity because rainfall occurs
more frequently and this station contains a large

proportion of clay. On the other hand, the L parame-
ter for Maricao is 34 h and for Combate is 12 h.
These results indicate that the RL,t takes the
value of zero more frequently at Combate station
(because of L being shorter) producing a strong
soil-moisture response as a result of instantaneous
rainfall effect.

Figures 4a and 4b show the observed and
estimated soil moisture from the TF at Maricao and
Combate stations during May 2004. Approximately,
the first 360 observations of the soil-moisture station
data were used to build the model to be able and
capture the dry and wet episodes and the last 350
observations were used to perform model validation.
As some satiations have <700 observations, the
sample size for model validation was fixed at 200 to
perform a fair comparison. These figures exhibit the
performance of the TF model during the model fitting
and validation process. Results of these stations were
selected because the errors for Maricao station were

FIGURE 3. (a) The IR Function t1(B), Maricao on the Left and Combate on the
Right; and (b) The IR Function t2(B), Maricao on the Left and Combate on the Right.
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smallest, and Combate station showed the highest
errors (see Table 5). One possible source of error is
the variance range, the larger the range the greater
the uncertainty in the soil-moisture estimate. Fig-
ures 4a and 4b show that Maricao station had about
5% variation, whereas, Combate station had 35%.
This range of variation occurs as a result of surface
characteristics and soil properties. Maricao station is
located on the top of a mountain with high rainfall,
high clay content, and high NDVI, whereas, Combate
station is located in the coast, with a high sand con-
tent, low rainfall and low NDVI. These latter charac-
teristics provide the conditions for large soil-moisture
response because of water infiltration and losses of
soil moisture caused by evapotranspiration.

Table 5 shows model validation results in terms of
the following scores of accuracy: MAE and RMSE.
MAE shows the central tendency of absolute errors,
whereas, RMSE shows the average variability. The
average of MAE over the spatial variability was 1.96%
vwc, whereas, the average of RMSE was 2.31% vwc.

To develop estimates of soil moisture, it is required
to derive an initial sequential time series of soil

moisture. Equation (16) with parameters shown in
Table 3 was used to create the initial soil-moisture
sequential values based only on hourly NEXRAD rain-
fall recorded during the previous month. Thus, no his-
torical records of soil moisture for each grid cell are
required to estimate soil moisture. A similar station
was selected for each grid and the soil moisture for
the entire island was computed by evaluating the sto-
chastic TF Equation (9) and using parameters from
Table 4. It should be noted that every grid cell should
have a similar station; however, there are some grid
cells that do not, and consequently, in the future,
some stations will be installed within these classes.
Thus, provisionally we selected a similar station based
on the minimum Euclidian distance computed on the
soil texture variables and elevation. In addition, there
are several stations that belong to a single class and
we need to decide which TF model will be assigned to
a particular grid. The decision rule is based in the
Euclidian distance to identify a similar station for a
given pixel. A wet and a dry month were used to esti-
mate the soil-moisture estimates across the island
over two different scenarios. Figure 5a shows the PR
map during 700-h average soil moisture at 1 km spa-
tial resolution during a dry month (February 2005).
Figure 5b shows the average soil-moisture estimates
for PR during a wet month (May 2005). These maps
show a clear distinction between a dry and a wet
month. Figure 5a shows that for a dry month, most of
the soil moisture ranges from 20% to 30% of vwc,
whereas during a typical wet month, the soil moisture
average ranges from 25% to 50% of vwc.

The closest grid to El Yunque station was identi-
fied and the surface properties were extracted and
shown in Table 2. The surface characteristics indicate
that El Yunque belongs to Class 2. Thus, El Yunque
characteristics were compared with Cadena and

FIGURE 4. (a) Model Fitting and Validation at Maricao Station,
May 2004; and (b) Model Fitting and Validation at Combate Sta-
tion, May 2004. The continuous line shows the observed volumetric
water content, the stars show the estimated of soil moisture, and
the dotted line shows the rainfall. The first half of the series was
used to develop the model and the second part of the series was
used to perform validation.

TABLE 5. Accuracy of Soil-Moisture Estimation at 20 cm Depth.

Station Name RMSE (% vwc) MAE (% vwc)

Maricao 0.53 0.47
Guilarte Forest 0.63 0.53
Isabela 0.86 0.62
Combate 8.54 7.78
Bosque Seco 3.31 3.16
Cadena 2.25 1.80
Caobos 2.61 1.54
Edwin 2.90 2.41
Exp. Estation 1.01 0.87
Jamaica 2.27 1.57
Jimenez 0.83 0.69
Lajas 2.45 2.11
Nazario 1.87 1.57
Ramon 3.14 2.74
Chips 1.82 1.69
Colegio 1.99 1.79
Average 2.31 1.96
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Marico station properties and it was concluded that
Cadena station exhibits the smallest Euclidian dis-
tance and it is the most similar station to El Yunque.
Validation was conducted during a dry and a wet
month for a single station. Again, the selected
months were February and May 2005 for a dry and
wet month, respectively. The top panel of Figure 6a
shows the comparison between the observed and esti-
mated hourly soil moisture during February 2005.
The bottom panel of Figure 6a shows the observed
hourly rainfall data during February 2005. Similarly,
Figure 6b top panel shows comparison between
observed and estimated soil moisture during a wet
month and the bottom panel shows the hourly rain-
fall during May 2005. Although, a similar station was
used to estimate soil moisture and was initialized
with soil moisture generated based on rainfall, the
pattern of the observed and estimated soil moisture
looks very similar. The measurements of accuracy
during a dry month were as follows: MAE = 0.82%
and RMSE = 1.11%, and during the wet month, the
measurements accuracy values were as follows:
MAE = 1.20% and RMSE = 1.92% of vwc.

During the dry period, the model performed better
than during the wet period. This situation may occur
because the selected ‘‘similar station’’ reveals a small

soil-moisture response under the presence of large
amount of rainfall.

Once estimates were derived for a single layer,
this information was used to estimate the soil
moisture at different depths. The ANN was used to
accomplish this task and Figure 7 shows the
estimate of soil moisture at different depths for
Maricao and Combate stations. Figures 7a, 7b, 7c
and 7d show soil-moisture estimates at 5, 10, 50,
and 100 cm depths, respectively. It should be noted
that Combate and Maricao stations provide the
worst and the best estimates when the TF model
was applied, respectively (without the use of the
ANN). On an average, the best performance of the
ANN at the 5, 10, 50, and 100 cm depths was
exhibited at Maricao and the worst performance
was at Bosque Seco station. This result occurs

FIGURE 5. (a) Average Soil Moisture at 20 cm Depth During
a Dry Month (February 2005), and (b) Average Soil Moisture for

May 2005. Figures 5a and 5b show the average soil moisture
during a dry and a wet month of 2005, respectively.

FIGURE 6. (a) Validation for El Yunque Station During February
2005; and (b) Validation for El Yunque Station During May 2005.
Panel on the top of Figure 6a shows the observed and estimated
soil-moisture values at El Yunque station. The panel at the bottom
shows the NEXRAD hourly rainfall values. Figure 6b shows similar
results as the one exhibited by Figure 6a, however, these are for a
wet month. The measurements of validation statistics for the dry
month were obtained as MAE = 0.82%, RMSE = 1.11%, and for the
wet month were as RMSE = 1.92, MAE = 1.21.
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because of the fact that ANN has the capability of
propagating the soil-moisture pattern recorded at
20 cm depth throughout soil profile. The range of
variability of soil moisture at 5, 10, 50, and 100 cm
depth at Maricao station were about 15, 9, 9, and
5% vwc, respectively. It should be mentioned that
the soil-moisture pattern exhibited at Maricao sta-
tion is similar to the observed data throughout the
soil profile, only differing in magnitude. On the
other hand, the range of soil-moisture variation for
Combate station was: 25, 29, 17, and 0.6% vwc at
5, 10, 50, and 100 cm depth, respectively. Figure 7
shows that the soil-moisture pattern for Combate
station was replicated only at the 5 and 10 cm

depth, and different pattern occurred at the 50 and
100 cm depths. Therefore, the estimates of the ANN
retain the soil-moisture surface pattern. Although
the magnitude of the modeled values of the
moisture content for the lower layer (Figures 7c
and 7d) were not as good as the estimates for the
surface, the results are nevertheless reasonable. For
example, in the case of 100 cm depth at Combate,
the maximum difference between the modeled and
observed was only around 1.5% vwc. In the case of
50 cm depth for Combate, the errors are larger but
were a smoothing technique to be applied (e.g.,
running average) the results would be sufficiently
accurate for use as initial conditions in a hydrologic

FIGURE 7. (a) Estimation of Soil Moisture at 5 cm Depth Based on 20 cm Depth, (b) Estimation of Soil
Moisture at 10 cm Depth Based on 20 cm Depth, (c) Estimation of Soil Moisture at 50 cm Depth

Based on 20 cm Depth, and (d) Estimation of Soil Moisture at 100 cm Depth Based on 20 cm Depth.
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or atmospheric model. Table 6 shows that on an
average, the RMSE for Combate station was 1.75%
vwc.

As the number of stations that provide soil-moisture
information for different depths is limited, the Leave-
one-out cross-validation technique (Stone, 1977;
Goutte, 1997) was used to measure the performance of
the ANN. Table 6 shows the measurement accuracy
values for each depth and for each station. Thus, the
average MAE and the average RMSE as a result of
depth are 2.12 and 2.50% of vwc, respectively.

POTENTIAL APPLICATIONS

The proposed soil-moisture algorithm will provide
reliable soil-moisture estimates that may be used for
data assimilation system, and for improving per-
formances of atmospheric and hydrological models.
Comarazamy (2001) pointed out that the performance
of the regional atmospheric modeling system (RAMS)
can be improved by introducing reliable soil-moisture
estimates. RAMS requires soil moisture up to 1 m

FIGURE 7. (Continued)
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depth to be initialized (Pielke et al., 1992). The land
information system (LIS) is used with numerical
models to determine if short-term mesoscale numeri-
cal forecasts can be improved by using high-resolu-
tion soil moisture. Hence, our high resolution
soil-moisture methodology can be applied to contrib-
ute for accomplishing the LIS ⁄ LDAS research effort.

Recently, soil moisture has been retrieved from the
advanced microwave scanned radiometer (AMSR-E),
which is an instrument that measures brightness
temperature, which is used to generate land surface
soil moisture at global scale (Njoku and Li, 1999;
Njoku et al., 2003). Daily products are available from
the National Snow and Ice Data Center (NSIDC)
since June 2002 (http://nsidc.org/data/docs/daac/ae_
l2a_tbs.gd. html). However, this sensor cannot be
used to estimate soil moisture over vegetated areas.
Our proposed methodology may help on soil-moisture
estimation as it is especially useful for estimating soil
moisture over densely vegetated areas and regions
characterized by having several microclimates condi-
tions with large rainfall variability.

Although soil-moisture datasets have many appli-
cations, the observations of soil moisture are very
limited. Lately, SCAN has been established to rou-
tinely collect soil moisture and to be able to study the
hourly, daily, and inter annual variability of soil
moisture over the U.S. Unlike soil-moisture, precipi-
tation is measured routinely at weather stations, and
also, satellite and radar are utilized for measuring
rainfall over large areas at long period and at high
sampling frequency. Thus, the proposed methodology
can be used in conjunction with satellite rainfall to
estimate soil moisture at high resolution over large
areas. For instance, the Hydro-Estimator (HE) which
is a high resolution rainfall retrieval algorithm that
uses information from Geostationary Operational
Environmental Satellite (GOES) and from numerical

whether prediction models to produce rainfall rates
(Vicente et al., 1998; Scofield and Kuligowski, 2003).
The HE uses brightness temperatures data from the
infrared window channel (10.7 lm) to estimate rain-
fall rates every 15 min at 4 km spatial resolution
over U.S. and its territories, including PR. It should
be pointed out that the HE provides rain rates with
similar spatial and temporal resolution as the NEX-
RAD. Therefore, our proposed methodology will be a
straightforward application to derive soil-moisture
estimates from satellite rainfall data.

SUMMARY AND CONCLUSIONS

This paper presents a new and practical alterna-
tive to estimate soil moisture. The model is based
mainly on a stochastic representation of the Richard’s
equation and on the observation that rainfall is the
fundamental variable to estimate soil-moisture vari-
ability, and this observation has been confirmed with
sampling field measurements. The model includes soil
texture, elevation, difference of surface temperature
(max-min), and rainfall observations, and has the
capability of incorporating other variables such as
hourly temperature, and wind components. Model
validation over spatial variability shows an average
RMSE of 2.31% vwc.

The proposed stochastic TF model estimates the
spatial and temporal variability of soil moisture. The
TF model for a particular grid is selected by using a
SONN, which identifies similarities of the surface
spatial variability. Once similarities of spatial vari-
ability are found the TF model is initialized with
soil-moisture information derived from cumulative
rainfall obtained by NEXRAD. The SONN identifies

TABLE 6. Accuracy of Soil-Moisture Estimates at Different Depths.

Station Name

MAE of % Volumetric Water Content

Average by Station5 cm Depth 10 cm Depth 50 cm Depth 100 cm Depth

Bosque Seco 5.95 3.33 1.44 3.85 3.64
Combate 1.61 1.98 1.82 0.14 1.39
Guilarte 4.41 1.60 1.01 1.29 2.08
Maricao 3.26 0.77 0.97 0.51 1.38
Average by depth 3.81 1.92 1.31 1.45 2.12
Station name RMSE of % volumetric water content

Average by Station5 cm Depth 10 cm Depth 50 cm Depth 100 cm Depth

Bosque Seco 6.01 3.84 2.94 4.17 4.24
Combate 2.16 1.66 2.94 0.22 1.75
Guilarte 4.78 1.23 1.23 2.02 2.31
Maricao 3.62 0.90 1.60 0.69 1.70
Average by depth 4.14 1.91 2.18 1.78 2.50
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similarities by using the following discriminate vari-
ables: accumulative precipitation of the current
month, soil texture, surface temperature, vegetation
index, and elevation.

The first 350 observations (approximately) of a
given station were used to develop the TF model and
the remaining 350 observations were used to validate
the model. The TF models were developed by using
16 stations that are located in the western part of
PR. Data from one station not included in the model
building process was used to conduct the second vali-
dation exercise. This station is located in the eastern
part of PR over the National Rainforest (El Yunque).
The TF model was used to estimate the soil moisture
during 700 hours during dry and wet conditions at
this location and results were compared with
observed soil moisture from the station. The valida-
tion accuracy was measured by the RMSE with a
value of 1.11% vwc during a dry month and 1.92%
vwc during a wet month.

The proposed methodology not only estimates the
spatial and temporal variability of soil moisture but
also provides soil moisture at vertical depths up to
1 m depth. A feedforward ANN was used to estimate
soil moisture at four different depths (5, 10, 50, and
100 cm). The ANN uses the known soil moisture at
20 cm depth, the soil texture, and accumulative rain-
fall to estimate the soil-moisture profile. The leave-
one-out validation technique was used to measure the
accuracy of the ANN, and the RMSE over the vertical
profile were 2.5% of volumetric water content. Valida-
tion results showed that the proposed algorithm is a
potential tool to estimate hourly soil moisture at
1 km resolution with up to 1 m depth.
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