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An algorithm is proposed for estimating soil moisture over vegetated areas. The

algorithm uses in situ and remote sensing information and statistical tools to

estimate soil moisture at 1 km spatial resolution and at 20 cm depth over Puerto

Rico. Soil moisture within the study region is characterized by spatial and tem-

poral variability. The temporal variability for a given area exhibits long- and short-

term variations that can be expressed by two empirical models. The average

monthly soil moisture exhibits the long-term variability and is modelled by an

artificial neural network (ANN), whereas the short-term variability is determined

by hourly variation and is represented by a nonlinear stochastic transfer function

model. Monthly vegetation index, land surface temperature, accumulated rainfall

and soil texture are the major drivers of the ANN to estimate the monthly soil

moisture. Radar, satellite and in situ observations are the major sources of infor-

mation of the soil moisture empirical models. A self-organized ANN was also used

to identify spatial variability to be able to determine a similar transfer function that

best resembles the properties of a particular grid point and estimate the hourly soil

moisture across the island. Validation techniques reveal an average absolute error

of 3.34% of volumetric water content and this result shows that the proposed

algorithm is a potential tool for estimating soil moisture over vegetated areas.

1. Introduction

Accurate initial soil moisture content distribution is an important requirement for

mesoscale atmospheric simulation models (Fast and McCorkle 1991, Clark and

Arritt 1995, Gallus and Segal 2000, Golaz et al. 2001). Soil moisture affects land
surface–atmosphere interactions by influencing the partition of incoming radiation

into sensible and latent heat fluxes, and the separation of precipitation into infiltration

and surface runoff (Pan et al. 2003). The regional atmospheric modelling system

(RAMS) has being used to simulate the climate dynamics in the Caribbean basin and
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it has been found that RAMS is highly sensitive to soil moisture initial conditions

(Comarazamy 2001). Therefore, incorrect soil moisture initial conditions can generate

misleading modelling results. For instance, Balsamo et al. (2004) reported that erro-

neous estimation of total soil moisture affects the quality of the forecast for several days

when using a numerical weather prediction tool.
Due to the importance of estimating the soil moisture, intensive research efforts have

been devoted to the subject during the last three decades. Jackson (1982) applied passive

microwave remote sensing to estimate soil moisture for fields covered with moderate

vegetation. Jackson derived a theoretical and empirical model to estimate soil moisture.

Parameters of the model were estimated by using a regression approach based on

observations collected over experimental plots. Njoku and Entekhabi (1996) used a

spaceborne microwave remote sensing system to estimate soil moisture at a spatial

resolution of 10 to 20 km. Their preliminary results show that applications under
different soil moisture conditions need to be investigated. Wetzel and Woodward

(1987) studied the statistical relationships between soil moisture and infrared surface

temperature observations taken from the visible Infrared Spin Scan Radiometer

(VISSR) at a Geostationary Operational Environmental Satellite (GOES). They used

regression techniques to relate soil moisture to surface temperature, wind speed, vege-

tation coverage, and low-level temperature advection. Pan et al. (2003) proposed a

diagnostic soil moisture equation derived from the linear stochastic partial differential

equation and rainfall observations. They used data from NEXRAD and assumed that
the soil moisture is a scalar field; this assumption was introduced by means of a water

balance equation in which the rainfall is the fundamental variable to represent the soil

moisture. Huang et al. (1996) used the water balance principle to model the soil

moisture. They used the surface air temperature and total precipitation to derive a

soil moisture model. In May 2002 NASA’s Aqua satellite was launched with a passive

microwave radiometer known as the Advanced Microwave Scanning Radiometer

(AMSR-E). This scanning instrument senses microwave radiation at six frequencies,

ranging from 6.9 to 89.0 GHz. It has been shown that the C and X bands at 6.9 and 10.7
GHz are strongly related to the dielectric constant of the surface soil and this relation is

used to estimate the soil moisture with global coverage and coarse resolution (Njoku

and Li 1999, Njoku et al. 2003). Daily products are available at the National Snow and

Ice Data Center (NSIDC) dating from February 4004. Wang and Schmugge (1980)

proposed an empirical model to measure the dielectric constant as a function of soil

moisture content. They observed that the dielectric constant increases slowly with

moisture content up to a transition point and beyond the transition region the dielectric

constant increases rapidly with moisture content.
It has been shown that precipitation is highly correlated with soil moisture (Jiang

and Cotton 2004), and land surface temperature also has a significant correlation with

the soil moisture (Sun and Pinker 2004). Jiang and Cotton (2004) implemented an

artificial neural network (ANN) algorithm to estimate soil moisture. They used daily

precipitation, vegetation index, cloud-mask infrared skin temperature and soil moist-

ure profile. They claim that an ANN algorithm is capable of estimating soil moisture

from remotely sensed infrared data with high spatial and temporal resolutions. They

reported that the application of ANN exhibits some difficulties during the training
process due to the need for high quality training data.

It should be noted that the AMSR-E signal cannot be used to estimate soil moisture

over densely vegetated areas, since the satellite signal is contaminated with vegetation

effect. Thus, in this work we are proposing a methodology to estimate soil moisture

2656 N. D. Ramı́rez-Beltran et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
m
i
r
e
z
-
B
e
l
t
r
a
n
,
 
N
a
z
a
r
i
o
 
D
.
]
 
A
t
:
 
1
7
:
3
6
 
4
 
J
u
n
e
 
2
0
1
0



over vegetated areas and an application is developed for the Puerto Rico (PR)

environmental conditions.

2. Data

In situ and remote sensing information used to develop the proposed methodology are

organized into three different sources of information: field sampling, remote sensing

and soil texture, and topographic information.

2.1 Field sampling data

Observations of soil moisture were obtained from 15 soil stations located in Puerto

Rico and figure 1 shows the location of these stations. Twelve stations are owned and

operated by our research project and three are owned and operated by the Natural

Resources Conservation Services (NRCS). Our stations include three ECHO-20 soil

moisture sensors that collect information at 20 cm depth, an ECHO temperature
sensor located at 20 cm height, an ECRN-50 rain gauge, and a data logger that

collects the information from the five sensors every hour. Detailed descriptions of

the sensors used can be found at: http://www.decagon.com/Ech2o/sensors1. The

NRCS stations include soil moisture sensors at 20.32 cm depth (and other depths);

rainfall, soil and air temperature, wind and other parameters are also measured. Each

station collects soil moisture, rainfall and air temperature data on an hourly basis.

Undisturbed soil sample cores were obtained from each station with the purpose of

determining soil texture and calibrating the soil moisture sensors for PR climatologi-
cal conditions.

2.2 Remote sensing data

Land surface temperature and vegetation index values were obtained from the

Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. MODIS

instruments are installed onboard the Terra and Aqua satellites. MODIS information

is provided by the Goddard Distributed Active Archive Center (DAAC). Land
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Figure 1. Soil moisture network stations. Red triangles indicate the location of stations.
Guilarte, Isabela and Maricao are owned and operated by Natural Resources Conservation
Services (NRCS) and the remaining stations are owned and operated by our project.
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surface temperature data were provided at 1 km spatial resolution. The amplitude of

temperature was obtained by computing the difference between the monthly average

diurnal temperatures and the monthly average nocturnal temperatures. Eight-day

temperature files were organized to obtain the monthly average surface temperature

and the daily surface temperatures were used to estimate the hourly temperature. The
monthly normalized difference vegetation index (NDVI) was also extracted from

MODIS at 1 km spatial resolution. Rainfall data were obtained from the Next

Generation Radar (NEXRAD), which is managed by the National Weather Service

(NWS). The NWS recently implemented the multisensor precipitation estimation

(MPE) algorithm that integrates gauge- and radar-derived precipitation estimates

(Breidenbach and Bradberry 2001). MPE generates an hourly rainfall product in the

XRMG format, which is a binary rainfall file. NEXRAD rainfall data is given at a 1

km spatial resolution. Several convective events were extracted in the XRMG format
and were compared with a dense rain gauge network (PR has 125 rain gauge networks

and collects rainfall observation every 15 min). An arbitrarily selected event is given in

figure 2, which shows an example of comparing the observed and estimated rainfall

values during 17 April 2003. The top panel of figure 2 presents the individual

comparison between observed (rain gauges) and estimated (radar pixel) rainfall

values. The bottom panel presents the accumulated rainfall between the observed

and estimated rainfall values. This particular event provides a mean absolute error of

0.99 mm and an average bias ratio of 1.01. The NEXRAD validation project for the
case of PR is undergone and for the purpose of this research we assumed that the

NEXRAD provides reliable estimates of rain rates.

2.3 Soil texture and topography data

Soil samples were obtained from each station to determine soil texture. A soil texture

map at 20 cm depth and at 1 km spatial resolution was developed based on the

irregular distribution of soil texture provided by the United States Department of

Agriculture (USDA) of the Natural Resources Conservation Service (NRCS). The

soil textures at 20 cm depth from 118 samples were used to develop the PR soil texture

maps, assuming that organic matter is negligible.

Digital elevation for PR was provided at 30 m spatial resolution by the United
States Geological Survey (USGS). This map was upscaled to 1 km spatial resolution

to obtain all the variables in the same spatial distribution. The upscaling was per-

formed by aggregating the smaller pixels into a larger pixel and the average elevation

from the smaller pixels was assigned to the elevation of the larger pixel.

3. Soil moisture modelling

One of the purposes of this work is to develop a soil moisture estimation model for

tropical areas such as PR, which has complex topography and vegetation. The soil

moisture exhibits long- and short-term variability and it will be modelled by long- and
short-term memory models, respectively. Figure 3 shows the scheme of the soil

moisture model in which the long- and short-term memory models are inte-

grated. This figure also shows the major sources of information to derive the soil

moisture estimates. The f function represents an artificial neural network model

and the g function is a nonlinear stochastic transfer function model. The artifi-

cial neural network model estimates the monthly soil moisture variation and the

transfer function model estimates the hourly soil moisture variation.
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3.1 Long term memory model

The formulation of the model is based on careful analysis of the soil moisture process.

Historical records show that there are strong correlations between monthly soil moist-

ure cumulative rainfall, soil texture, vegetation index and surface temperature. Thus, an

ANN was used to estimate the long-term soil moisture response. The selected ANN was
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Figure 2. (a) Individual comparison between observed and estimated rainfall, (b) comparison
between rain gauge and radar using accumulated rainfall data.
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the general multi-layered perceptron with the Levenberg–Marquardt Backpropagation
algorithm because the dynamic water content of soil behaves as a nonlinear process and

the ANN has been proven to be an efficient approach when the variables of a system are

nonlinearly related (Hagan et al. 1996). An ANN determines an empirical relationship

between the inputs and outputs of a given system. Thus, it is important that the user has

a good understanding of the science behind the underlying system to provide the

appropriate inputs, and consequently to support the identified relationship. The key

to obtaining a successful ANN application is to select the appropriate training variables

and to identify a suitable ANN structure. The structure of the ANN consists of
determining the number of layers, the number of neurons in the hidden layers, and

selecting the best activation function for each layer. In this case we used an input vector

with a two-layer ANN because this size happens to be a computational efficient

structure (Hagan et al. 1996). The selected structure includes five input variables and

one output variable. Three activation functions were explored (linear, sigmoidal and

hyperbolic tangent functions), and a sigmoidal function for the hidden layer and a

hyperbolic tangent function for the output layer performed best. The number of

hidden layers ranged from one to five. The Levenberg–Marquardt Backpropagation
algorithm was selected because this algorithm automatically computes the optimal

learning rate (Hagan and Menhaj 1994). For each run, discrete searching techniques

were used to determine the optimal number of hidden layers. We published a

detailed procedure to identify the appropriate structure of a neural network

(Ramirez-Beltran and Montes 2002) and this procedure was adopted in this

research.

The training patterns of the neural networks are formed by the input and output

vectors of monthly data, which can be written as follows:

pm;j ¼ ½Cj; Sj; aj; �m;j; Dm;j � (1)

qm;j ¼ ½hm;j� (2)

Monthly rainfall
NEXRAD

Long-term Memory Model

Monthly Soil moisturef (•)

g (•) Hourly Soil moisture

Short-term Memory Model

Monthly surface
temperature

MODIS

Monthly vegetation
index MODIS

Soli texture
NRCS

Previous week’s cumulative
rainfall NEXRAD

Hourly rainfall
NEXRAD

Dailly air temperature
MODIS

Figure 3. Soil moisture algorithm.
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where p is the input vector, and q is the output vector, which is also known as the

target vector; the variable h is the monthly average of soil moisture measured at 20 cm

depth; S and C are the percentage of sand and clay at a given location, respectively; the

variable a is the monthly accumulated rainfall, � is the monthly vegetation index; D is

the range of monthly surface temperatures, (maximum – minimum surface tempera-
tures). The subscripts m and j have been omitted from these definitions and represent

the mth month and the jth location, respectively.

An ensemble procedure was implemented to develop a stable and robust estima-

tion. Five members of the ensemble were generated with the best initial points that

were obtained by a random search that minimizes the difference between the output of

the neural network and the observed soil moisture. Thus, the monthly soil moisture

was obtained by computing the median of the optimal soil moisture estimates, i.e. the

estimated value is the optimal value of the central tendency. The final estimates from
the long-term memory model will be soil moisture on a monthly basis, at 1 km spatial

resolution, and this information will be used to create the initial conditions at every

grid for the hourly soil moisture model.

3.2 Short-term memory model

One of the major purposes of this work is to develop a soil moisture hourly estimation

model for tropical areas such as PR, which has complex vegetation and topography.
The formulation of the model is mainly based on careful study of soil moisture

observations and how the soil moisture behaviour is related to other environmental

variables. This model considers hourly precipitation and temperature as the funda-

mental input variables, since it has been shown that these variables exhibit high

correlation with soil moisture (Jiang and Cotton 2004). The hydrologic cycle suggests

that the soil moisture dynamics can be expressed by a first order partial differential

equation with constant coefficients. The variation of soil moisture is intrinsically

related to the moisture state as follows (Thornthwaite 1948, Mather 1978, Huang
et al. 1996):

@hðtÞ
@t
¼ k1RðtÞ þ k2TðtÞ þ k3hðtÞ (3)

where
@hðtÞ
@t

is the soil moisture variation with respect to time t; R(t), T(t) and h(t) are

functions of rainfall, air temperature and soil moisture at time t, respectively. The

functions R(t), T(t) and h(t) are continuous in time; however, in practice they are
measured at discrete point times and they are expressed by Rt, Tt and ht, respectively.

In addition to k1, k2, and k3 are the constants for model calibration. Pandit and Wu

(1983) showed that a first order differential equation can be written as a first order

difference equation, and this result can be easily generalized by the first order partial

differential equation. Thus, the discrete form of equation (3) can be written as a

partial difference equation with constant coefficients as follows (Box and Jenkins

1976, Pandit and Wu 1983, Wei 1990, Hamilton 1994, Brockwell and Davis 2002):

ht ¼ �ht�1 þ$Rt þ jTt (4)

where �, $ and j are constants that are estimated from data and the remaining

variables are defined in equation (3). The performance of the last equation and the

analyses of the collected data suggest that the stochastic and discrete transfer function

can be used as the best representation of the soil moisture behaviour. The relationship
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between the continuous and discrete transfer functions was also discussed by Pandit

and Wu (1983) and Box and Jenkins (1976). The stochastic and discrete generalized

transfer function for n inputs x1, x2, . . ., xn and a single output yt, can be written as

follows:

yt ¼
o1ðBÞ
�1ðBÞ

Bd1ðx1;tÞ þ
o2ðBÞ
�2ðBÞ

Bd2ðx2;tÞ þ � � � þ
onðBÞ
�nðBÞ

Bdnðxn;tÞ þ et (5)

where ojðBÞ ¼ oj;0 � oj;1B� oj;2B2 � � � � � oj;sB
s, and �jðBÞ ¼ �j;0 � �j;1B� �j;2

B2 � � � � � �j;rB
r. B is the back shift operator, and the power on B means the time

delay on variable xt, for instance Bdj ðxtÞ ¼ xt�dj
, and dj is the time delay between the

jth input and the output variable; the s and r are the order of the series and they are
estimated for a specific process based on data and model identification techniques. The

ratio of two polynomials oj (B) and �j (B) creates an infinite time series that is known as

the impulse response function between the input and the output variables of the system;

et is a white noise process at time t with a mean zero and constant variance. It should be

noted that the infinite series of the impulse response function converges when the

system is asymptotically stable (Pandit and Wu 1983). The rational representation of

the transfer function is a parsimonious model and the evaluation of the transfer

function is given by long division of two polynomials, in which only the most significant
coefficients are considered. The asymptotic stability of the transfer function is measured

by computing the roots of the polynomial (�j (B) ¼ 0). The system is asymptotically

stable if the roots of (�j (B)¼ 0) fall outside of the unitary circle (Pandit and Wu 1983).

From experience gained in the collection of soil moisture data and experimentation,

rainfall and temperature processes are the major drivers of a short-term soil moisture

response. During wet episodes the soil moisture level is mainly controlled by the

current and historical rainfall events (see figure 4 from hour 201 to the end). During

dry episodes the soil moisture behaviour is controlled mainly by the temperature; this
effect can be noted in figure 4 during the period from hour 50 to hour 200, while

instantaneous changes are controlled by the rainfall process. In a sequence of con-

secutive rain episodes, the soil moisture can arrive to a maximum level, called the

saturation point, from which it quickly descends to the field capacity level; this

behaviour can be observed in figure 4 from hour 250 to the last hour.

Rainfall and soil moisture patterns exhibited in figure 4 also suggest that rainfall

effects on the soil moisture response can be represented by an impulse response

function in which the soil moisture response is modulated by an exponential term
associated with the accumulated rainfall, rL. Thus, if no rainfall events occur during

the previous days, the rL will be zero and the instantaneous soil moisture response will

be large. On the other hand, if several rainfall events occur in a short time interval then

the rL will be greater than zero and consequently the soil moisture response will be

attenuated by the exponential term. Therefore, the proposed nonlinear stochastic

transfer function to model the hourly soil moisture is:

ht ¼
o0;1�o0;2B

1� �0;1B

� �
ht�1þ

o1;1�o1;2B

1� �1;1B

� �
Rt expð�trLÞþ

o2;1�o2;2B

1� �2;1B

� �
Ttþ et (6)

where Rt is the instantaneous rainfall at time t, rL is the accumulated rainfall during

the last L number of hours, the integer variable L is obtained during the parameter

estimation process, the os and �s are the parameters of the impulse response func-

tions. The coefficient t is the attenuation parameter that modulates the impulse
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response function associated with the instantaneous rainfall response. Tt is the air

temperature at time t; ht and ht–1 are the soil moisture at the time t and t-1, respec-
tively; et is a white noise process with zero mean and constant variance. It should be

noted that the model was built using data from stations; however, the extrapolation of

soil moisture was developed by using Rt from radar estimates, Tt from satellite

estimates and ht–1 was obtained from an ANN.

The estimation of hourly soil moisture is required to perform the following addi-

tional tasks: (1) estimation of parameters of the transfer function models; (2) estima-

tion of soil moisture trend; (3) estimation of the trend and seasonal components of the

air temperature; (4) identification of similarities in spatial variability, and (5) estima-
tion of the hourly soil moisture across the island.

3.2.1 Parameter estimation. A transfer function model was identified for each

station, assuming that the coefficients of the impulse response function characterize

the climatological properties for a given location. Thus, it is assumed that os, �s, t and

rL coefficients that exhibited the inherent climatological characteristics of a specific

location, and consequently the spatial variability are indirectly expressed by the

coefficients of the impulse response function. Thus, evaluating the transfer function
with data from another location that exhibits similar climatological characteristics of

a known station will estimate the dynamics of the soil moisture response. It should be

noted that the self-organized neural network was used to identify the spatial simila-

rities, and this task is described in §3.2.2.
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Figure 4. Temporal variation of soil moisture, rainfall, and air temperature. The units on the
vertical axis are the percentage of volumetric water content for soil moisture, mm h-1 for
rainfall, and �C for temperature. 15�C was added to temperature values, to avoid line crossing
and to allow all four quantities to be plotted on the same graph.
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The estimation of the transfer-function parameters is not a trivial task and requires

a well planned procedure as shown in Ramirez-Beltran et al. (2008). The estimation

procedure can be summarized as follows:

(a) The first step consists of applying the autocorrelation function to determine
whether or not the soil moisture is a stationary process. Typically, the soil

moisture is a nonstationary process due to significant changes in the mean

that have occurred over time, due to rainfall long-term impacts over the soil

moisture response. The process becomes stationary after the trend is

removed. Usually, this is accomplished by taking the first, (1 – B)ht, or the

second, (1 – B)2ht, difference of the process or by removing a parametric

function. In this case an ANN was used to take into account the nonlinea-

rities between the soil moisture and environmental variables. The ANN is
applied to identify and remove the soil moisture trend. It has been postulated

that the soil moisture trend can be expressed as a function of the following

variables: the elevation, the sequence of observations (time dependency), the

accumulated rainfall from the previous month, and the soil texture. The

training patterns can be written as follows:

pi ¼
ei

1; 200
;

oi

1; 000
;Ci;Si; ai

� �
(7)

qi ¼ ½ci� (8)

where p is the input vector; e is the elevation; o is the number of the soil

moisture observation, and takes the following values: o ¼ 1, 2, 3, . . ., n and
n represents the total number of hours of available observations; a is the

accumulated rainfall in the previous month; C and S are the percentage of

clay and sand; q is the output vector, and c is the trend of soil moisture after

the mean is removed. The subscript i was removed to simplify notation and

represents the location of the ith grid at a given point in time. The elevation and

the observation number were divided by a constant to facilitate the conver-

gence of the Levenberg–Marquardt Backpropagation algorithm, which was

used to train the ANN (Hagan et al. 1996). The trend was subtracted from the
original observations, and the transformed series is known as the stochastic

soil moisture component.

(b) The second step consists of performing a random search to determine the

initial point for a nonlinear optimization routine. A set of random numbers

with a uniform probability distribution was used to generate 100 points over a

specific range and the mean square error (MSE) was used to identify a suitable

initial point, i.e. the one that exhibits the smallest MSE from the selected

sample was chosen, where an error is the difference between the observed
and the estimated soil moisture for a particular point in time. The random

search was restricted to a given range to speed up the convergence process. The

selected empirical ranges that provide satisfactory results are given by two

vectors:

min ¼ ½ � 2;�2;�0:9;�2;�2;�0:9;�2;�2;�0:9; 0; 12� (9)

max ¼ ½2; 2; 0:2; 2; 2; 0:9; 2; 2; 0:9; 1; 96� (10)
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where min and max represent the minimum and maximum values, respectively,

that can be assigned to the parameters that are organized as in the following

vector:

pa ¼ ½o0;1; o0;2; �0;1; o1;1; o1;2; �1;1; o2;1; o2;1; �2;1; t; L� (11)

(c) The third step consists of using the sequential quadratic programming (SQP)

algorithm to estimate the parameters of the impulse response functions, while

the L parameter is maintained fixed at a given constant value, and at the

beginning it was selected by inspection (Reklaitis et al. 1983, MathWorks
2000).

(d) The fourth step consists of fixing the parameters of the impulse response

function and the Hooke and Jeeves (HJ) algorithm was used to estimate the

L parameter (Reklaitis et al. 1983). The HJ algorithm is a function evaluation

technique, i.e. a direct searching integer procedure was used to determine the L

value that minimizes the MSE.

(e) The last step consists of using the previous parameter values as the initial point

and simultaneously implementing the SQP and HJ algorithms to determine the
complete set of parameters. This task was successfully accomplished by using

the Matlab software (MathWorks 2000). It should be noted that the order of

the polynomial �0(B) is one (i.e. �0(B) ¼ 1 - �0,1(B)), the decay function of the

soil moisture response can be controlled by the � coefficient, the subscripts are

eliminated to simplify the description. If � is close to zero the rainfall and

temperature effect on soil moisture will disappear very fast; on the other hand

if the � coefficient is close to one the rainfall and temperature effects on soil

moisture will last during several units of times. If � is larger than one, the
process becomes unstable and the estimates of soil moisture increase without

control (Brockwell and Davis 2002). Therefore, the values of � must be limited

to the following range: -1 , � , 1.

Table 1 shows the parameter estimation results for the fitted Transfer Function (TF)
models. The TF model parameters depend on the soil type, vegetation, topography and

the atmospheric conditions of a given area. Thus, the value of the � parameter of

equation (6) controls the length of the soil moisture response, theo0,t coefficients control

the instantaneous soil moisture response due to the previous soil moisture value, the o1,i

coefficients control the soil moisture response due to instantaneous rainfall, and the o2,t

coefficients control the soil moisture response due to the current air temperature.

3.2.2 Spatial variability. A self-organized neural network (SONN) (Hagan et al.

1996) was used to capture the spatial variability and to identify grid points that show

similar properties to a place where a transfer function model is known, and the

identified station is called the similar station. The variables used to identify similarities

of climatological characteristics were: diurnal and nocturnal monthly mean tempera-

ture, elevation, vegetation index, and accumulated rainfall of the corresponding
month. Once a grid was assigned to a similar station the hourly air temperature and

the hourly soil moisture were computed for every grid, and therefore estimations

across the island were obtained.

Twenty climatological regions were requested to the SONN; however, only 11 regions

were identified. This indicates that 11 transfer function models are required to perform

the extrapolation across the island and each transfer function must be located in a

different region. Figure 5 shows the histogram that exhibits the SONN results, and a

Soil moisture estimation over vegetated areas 2665

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
m
i
r
e
z
-
B
e
l
t
r
a
n
,
 
N
a
z
a
r
i
o
 
D
.
]
 
A
t
:
 
1
7
:
3
6
 
4
 
J
u
n
e
 
2
0
1
0



T
a

b
le

1
.

S
o

il
m

o
is

tu
re

p
a

ra
m

et
er

es
ti

m
a

ti
o

n
re

su
lt

s
fo

r
1

5
st

a
ti

o
n

s.

o
0

,1
o

0
,2

� 0
,1

o
1

,1
o

1
,2

� 1
,1

o
2

,1
o

2
,2

� 2
,1

t
L

C
a

d
en

a
-0

.0
3

0
4

0
.0

4
2

4
0

.3
2

0
7

0
.7

3
8

2
0

.7
5

2
7

-0
.3

1
6

4
1

.0
7

1
1

0
.3

3
1

2
-0

.4
1

9
2

0
.1

3
2

9
4

0
C

a
o

b
o

s
-0

.0
6

5
3

0
.0

4
2

1
-0

.6
0

4
5

1
.1

7
8

1
1

.2
1

7
0

-0
.4

8
2

2
1

.1
7

1
4

0
.1

3
6

3
-0

.3
1

3
9

0
.1

3
8

8
6

8
C

h
ip

s
-0

.2
2

9
9

0
.2

0
1

5
0

.2
0

3
4

0
.5

7
5

2
0

.5
3

0
9

-0
.5

0
2

9
0

.7
5

6
1

-0
.0

8
9

5
0

.3
2

6
5

0
.0

3
7

0
7

1
C

o
le

g
io

-0
.0

3
5

5
0

.0
3

3
3

-0
.1

9
6

0
0

.2
4

5
6

0
.3

1
1

7
-0

.2
3

2
4

0
.9

5
4

9
0

.6
7

5
3

-0
.6

4
3

8
0

.0
1

7
7

1
2

E
E

L
0

.0
3

9
8

-0
.0

3
2

5
0

.4
4

9
6

1
.3

3
8

2
-0

.9
0

1
9

0
.3

3
1

6
1

.4
3

1
0

-0
.0

8
5

5
-0

.3
5

3
8

0
.0

0
9

5
1

2
G

u
il

a
rt

e
-0

.0
0

2
3

-0
.0

0
4

1
-0

.2
1

6
8

1
.0

8
2

4
0

.6
8

2
6

-0
.6

2
4

1
0

.9
6

8
4

0
.4

3
8

6
-0

.4
1

8
3

2
.6

9
4

6
1

5
Is

a
b

el
a

1
.0

7
3

8
1

.2
2

0
7

0
.6

4
2

8
0

.4
8

3
9

0
.7

2
2

3
0

.2
6

3
9

0
.5

1
7

9
-0

.2
9

2
0

0
.7

6
7

6
0

.0
4

9
6

7
6

Ja
m

a
ic

a
-0

.0
2

4
4

0
.0

0
6

6
-0

.0
0

0
7

0
.1

7
6

0
0

.3
0

6
6

-0
.4

2
2

8
1

.1
5

3
7

0
.5

9
8

8
-0

.7
5

8
9

0
.1

0
8

3
3

9
Ji

m
en

ez
-0

.1
5

3
8

0
.1

4
7

6
-0

.2
5

7
4

0
.2

1
6

0
0

.2
5

1
7

-0
.0

8
0

6
0

.8
5

3
7

0
.1

2
2

1
0

.0
1

1
5

0
.0

0
0

0
1

2
L

a
ja

s
0

.0
0

6
1

0
.0

0
0

5
0

.8
7

2
9

1
.2

4
4

0
1

.3
6

0
0

0
.0

7
4

1
0

.5
6

4
6

0
.2

3
5

2
0

.1
9

1
1

0
.1

0
3

8
7

0
M

a
ri

ca
o

-0
.0

0
0

7
-0

.0
0

0
7

-0
.7

2
4

5
0

.0
0

6
8

0
.0

5
9

6
0

.0
3

4
2

1
.2

2
7

1
-0

.0
0

1
8

-0
.2

3
2

3
0

.0
0

0
0

1
2

N
a

za
ri

o
-0

.0
4

9
1

0
.0

4
7

9
-0

.1
9

0
6

0
.1

3
7

6
0

.1
1

3
0

-0
.2

2
9

6
1

.0
5

6
4

0
.2

1
1

8
-0

.2
7

6
6

0
.0

1
9

0
8

5
R

a
m

o
n

-0
.0

6
0

0
0

.0
5

6
6

0
.4

0
3

3
0

.4
2

8
5

0
.5

2
4

6
-0

.4
2

5
5

0
.7

8
1

0
-0

.6
7

9
2

0
.8

9
9

4
0

.0
3

4
9

1
1

3
U

P
R

-0
.1

9
3

0
0

.1
4

6
8

0
.0

0
0

0
0

.0
0

0
0

0
.4

8
3

4
-0

.2
1

7
2

1
.0

1
7

7
0

.4
9

6
7

-0
.5

2
1

6
0

.0
3

0
0

6
5

Y
u

n
q

u
e

-0
.0

2
5

1
0

.0
7

0
8

-0
.6

6
9

9
0

.3
8

8
7

0
.4

9
1

1
-0

.4
5

9
4

1
.2

0
3

0
0

.2
0

9
6

-0
.4

2
7

4
0

.0
6

9
3

4
6

2666 N. D. Ramı́rez-Beltran et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
m
i
r
e
z
-
B
e
l
t
r
a
n
,
 
N
a
z
a
r
i
o
 
D
.
]
 
A
t
:
 
1
7
:
3
6
 
4
 
J
u
n
e
 
2
0
1
0



region with no frequency indicates that this particular region does not exist. For instance

class number 4 has no frequency and this implies there is no region assigned to this

particular class. Data for the year 2006 were used to identify similarities and figure 6

shows the PR map that describes the 11 similar climatic regions.

3.2.3 Trend and seasonal components of hourly air temperature. The hourly air

temperature is required to be applied as an input of the TF model. The hourly air

temperature has three major components: the trend, the seasonality, and the stochas-

tic components. The trend and seasonality are deterministic components and they will

be estimated as follows: the trend of hourly air temperature is estimated by using an

1 2

67.0° W

1
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1
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° N

66.5° W 66.0° W

3 4 5 6 7 8 9 10

Figure 6. Areas with similar climatological properties. Eleven climatological regions were
found by the self-organized neural network (SONN) and each colour shows the location of a
region with similar climatic conditions. A black triangle indicates the location of a station.
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Figure 5. Histogram of climatological similarities. Regions with frequency zero do not exist,
i.e. there are only 11 regions.
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ANN, the periodicity component by using a regression equation, and the stochastic

component was not estimated since for our calculus it is a negligible component.

The training patterns used to estimate the trend of air temperature are the

following:

~pi ¼
ei

1200
;

oi

1000

h i
(12)

~qi ¼ ½li� (13)

where ~p is the input vector; e and o were defined in equation (7); ~q is the output vector,

and l is the trend of the air temperature. Again the subscript i was omitted to simplify

notation and represents the i th location.

The seasonal component was estimated by using a regression equation. A regres-

sion method has also successfully been used to estimate air temperature based on

MODIS surface temperature (Mostovoy et al. 2005). In this paper we developed

regression equations using air temperature from stations, MODIS surface tempera-

ture, and station elevation. An empirical model was developed and has the following
sinusoidal form (Calderon-Arteaga 2007):

Ot;j ¼
X4

i¼1
ai;jAj sin

2pt

ri;j

þ fj

 !
þ bi;jAj cos

2pt

ri;j

+fj

 !" #
þ cj rij ¼ 6; 8; 12; and 24

(14)

where

Aj ¼ 0:5ðTmax;j � Tmin;jÞ (15)

Tmax;j ¼ 1:0068 Td;j � 0:0082ej (16)

and

Tmin;j ¼ 1:0121 Tn;j � 0:0801ej (17)

where O is the estimated periodic component of the air temperature, the subscript t

refers to time and j refers to the location; a, b, and c are the regression coefficients; A is

the semi range of the daily air temperature for each station; f is also a regression

coefficient and represents the phase angle, which is inherent to each station; and rij is

the size of the ith period at the j th station, which was identified by using a period-
ogram. Tmax, j and Tmin, j are maximum and minimum air temperature for the jth

station, respectively. Td,j and Tn,j are the MODIS daily and nightly surface tempera-

ture for the jth pixel, respectively; ej is the elevation of the jth station. A total of 15

multiple linear regression equations were developed (one for each station). The phase

angle f was determined in such a way that the mean squared error of the regression

model was minimized. Parameter estimation for the regression equations are given in

Calderon-Arteaga (2007). To extrapolate the hourly air temperature to other places

where no equation is available it is necessary to use the SONN to identify and apply
the corresponding equation. The models were evaluated across the island using the

MODIS daily land surface temperature and the digital elevations of PR.

3.2.4 Estimation of hourly soil moisture. The performed calculations are orga-

nized to obtain the hourly soil moisture, which is the final product, i.e. the ANN is

2668 N. D. Ramı́rez-Beltran et al.
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used to compute the trends, and the transfer function models are used to estimate the

stochastic component of the soil moisture. Thus, the trend and the stochastic compo-

nents are added to create the hourly soil moisture for every grid. It should be

mentioned that spatial similarities were used to extrapolate the air temperature and

the soil moisture across the island. The final product from the empirical models is soil
moisture on an hourly basis at 1 km of horizontal resolution and results are presented

in the next section.

4. Validation and results

The described methodology was implemented for PR climatic conditions. Model

validation and results are described in this section. The model validation was per-

formed for both the long- and short-term memory models, using different strategies to

test whether or not the proposed scheme has the capability of estimating the spatial

and temporal variability of soil moisture and to measure the accuracy of the estima-
tion scheme.

4.1 Validation and results of long-term memory model

The long-term memory model was used to express the monthly soil moisture and was
developed with 2005 data and validated with 2006 observations. Since the available

number of stations is small, the validation strategy is the leave-4-out method and

consists of removing four stations from the dataset at a time and training the ANN

with the remaining stations. The estimates of the monthly soil moisture for the four

removed stations are compared with the observed values. For instance, figure 7 shows

the comparison between the observed and the estimated monthly soil moisture during

March 2006. The validation exercise was repeated five times with different initial

weights to derive the central tendency of the estimation. The mean absolute error
(MAE) and the mean squared error (MSE) are the preferred measurements of
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Figure 7. Comparison between the observed (Obs) and estimated (Est) soil moisture for
March 2006.
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estimation accuracy. The validation process was implemented for each month during

2006. Table 2 shows the MAE and the MSE during the validation period and the

corresponding averages are 2.72% and 12.32, respectively.

The hourly rainfall data from NEXRAD were used to obtain the monthly accu-

mulated rainfall, the NDVI was extracted from satellite data and both were used
to estimate the monthly average of soil moisture across PR. Figure 8 shows an

example of the soil moisture average for August 2006. This figure shows that on the

average the largest values of the soil moisture are mostly located in the north and

western parts of the island and the largest values are around 40% of the volumetric

Table 2. Monthly averages of soil moisture accuracy. Data are given as percentages of volu-
metric water content. The validation exercise was repeated five times with different initial

weights to derive the central tendency of the estimation.

MAE MSE MAE MSE

January 2.34 11.95 July 4.15 28.43
2.90 10.67 3.88 24.18
2.00 5.12 4.59 31.77
1.67 3.55 4.62 32.48
1.80 4.51 2.66 8.57

Average 2.14 7.16 Average 3.98 25.08

February 3.53 19.96 August 3.03 13.27
3.09 26.21 3.45 14.91
1.89 7.74 2.60 10.45
2.34 8.55 3.49 12.65
3.33 18.40 3.08 12.10

Average 2.83 16.17 Average 3.13 12.68

March 1.38 2.39 September 3.65 16.03
2.42 10.60 3.00 13.53
2.77 8.93 2.57 7.73
3. 19 14.75 3.49 20.33
2.74 10.09 2.57 7.56

Average 2.50 9.35 Average 3.05 13.04

April 2.67 8.26 October 2.34 11.95
1.09 1.60 3.53 19.96
1.55 2.56 4.62 32.48
2.18 7.33 1.70 4.17
2.50 13.42 3.33 18.40

Average 2.00 6.63 Average 3.10 17.39

May 2.41 8.44 November 3.45 14.91
1.27 1.94 3.16 18.33
2.40 8.33 2.58 10.35
1.39 2.33 2.63 9.14
2.31 9.87 2.93 11.51

Average 1.96 6.28 Average 2.95 12.85

June 3.12 12.11 December 2.10 7.70
2.47 10.54 2.99 16.56
1.70 4.17 2.55 14.56
3.12 11.95 1.24 2.15
3.45 17.12 2.18 9.54

Average 2.77 11.18 Average 2.21 10.10

MAE, mean absolute error; MSE, mean squared error.
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water content. It should be mentioned that these results can be used to initialize the

short-term memory model of soil moisture for any day and at a grid during August

2006.

4.2 Validation and results of the short-term memory model

The short-term memory model is validated by applying two different strategies. Using

data from the same station and using information from a similar station.

(a) The first strategy consists of dividing the available data for a given station into

two parts. The first part of the time series is used to build the model and the second

part is used to estimate the soil moisture using the identified TF model and to compare

the observed with the estimated values. An example of model validation is given in

figure 9, which shows the observed and estimated soil moisture from the transfer

function at Ramon station from 1 August to 30 September 2006. This figure exhibits
the performance of the transfer function model during the model fitting and valida-

tion processes. The blue line shows the observed values of the soil moisture, the green

line shows the estimated values during the fitting process, the red line shows the

estimated values during the validation period, and the asterisk shows the time at

which a rainfall event has occurred.

Rainfall and air temperature data observed on an hourly basis were used to evaluate

the TF model. Model validation results at 20 cm depth are presented in table 3. The first

column shows the name of the soil moisture stations. The second column shows the
MAE as a percentage of volumetric water content during the model fitting process. The

third column shows the MSE during the model fitting process. The fourth and the fifth

columns show the MAE and MSE during the validation process, respectively.

(b) The second validation strategy consists of leaving a set of variables out and

estimating the soil moisture across PR. The soil moisture of a removed station is

estimated by using the TF model of a similar station and data from a place where the

TF model is unknown. For example suppose we want to estimate the soil moisture at
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(%)

35 40 45 50 55
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Figure 8. Average estimates of soil moisture for August 2006.
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Table 3. Hourly soil moisture validation using data from the same station. Data are given as
percentages of volumetric water content.

Model fitting Model validation

Station MAE MSE MAE MSE

Cadena 0.11 0.08 1.21 2.17
Caobos 0.09 0.05 2.08 7.12
Chips 0.21 0.19 1.70 3.96
Colegio 0.15 0.14 2.31 7.60
EEL 0.12 0.09 3.43 13.05
Guilarte 0.04 0.00 0.28 0.16
Isabela 0.16 0.11 1.08 2.09
Jamaica 0.07 0.02 1.29 3.19
Jimenez 0.17 0.16 2.32 7.46
Lajas 0.11 0.06 1.82 4.82
Maricao 0.05 0.01 0.78 1.21
Nazario 0.09 0.02 0.78 0.97
Ramon 0.15 0.15 1.13 2.00
UPR 0.23 0.36 3.08 13.44
Yunque 0.13 0.06 1.93 5.29
Average 0.13 0.10 1.68 4.97

MAE, mean absolute error; MSE, mean squared error.
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Figure 9. Fitting and validation process of the transfer function (TF) in Ramon station.
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the pixel where Jamaica station is located. The SONN was used to identify a similar

station (Chips) since it exhibits similar climatic characteristics to Jamaica station.

Thus the TF from Chips was evaluated with data from Jamaica station and the results

are shown in figure 10. Estimates were compared with the actual soil moisture

observations recorded at Jamaica station. Table 4 shows the accuracy of the soil
moisture estimation based on a similar station. The errors are the difference between

the estimates and the observed soil moisture values from the removed station. The last

column of table 4 shows the similar station used. The average of the MAE and the

MSE for the removed stations were 3.34%, and 16.96(%)2 of volumetric water con-

tent, respectively.
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Figure 10. Validation of the transfer function (TF) model of the Chips station with data from
Jamaica station (September 2006). This figure shows the second validation technique, which
consists of using the TF model from the similar station (Chips) and data from the other station
(Jamaica) located in the same region.

Table 4. Soil moisture validation using a similar station. Data are given as percentages of
volumetric water content.

Station MAE MSE Region Similar station

Cadena 4.51 22.29 2 Chips
Colegio 1.15 1.95
Jimenez 2.59 12.45
Ramon 3.45 14.17
Jamaica 1.49 3.47
Guilarte 2.91 10.32 6 Caobos
Yunque 2.36 7.44
EEL 5.54 35.61 20 Nazario
Maricao 6.10 44.95

Average 3.34 16.96

MAE, mean absolute error; MSE, mean squared error.

Soil moisture estimation over vegetated areas 2673

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
R
a
m
i
r
e
z
-
B
e
l
t
r
a
n
,
 
N
a
z
a
r
i
o
 
D
.
]
 
A
t
:
 
1
7
:
3
6
 
4
 
J
u
n
e
 
2
0
1
0



The complete methodology was implemented to estimate the hourly soil moisture

across PR. A month and a day during 2006 were arbitrarily selected to perform an

estimation exercise. For instance, figure 11 shows the soil moisture estimation at 10:00

am, for 5 August 2006. This figure reveals the spatial variation of the soil moisture for

the selected point in time. It should be mentioned that there are a few regions where no

transfer functions are available. Therefore, in those regions where similar TF models
were not available, the estimation of the soil moisture was derived using a kriging

algorithm (Wackernagel 2003).

Twenty four hours of spatial and temporal variation of soil moisture are given in figures

12 and 13. Figure 12 shows the soil moisture variation from 0:00 am to 11:00 am and figure

13 from 12:00 to 23:00 hours. On this particular day, these figures show that the soil

moisture increases during the night-time due to rainfall events that occurred on this

particular day and decreases during the daytime due to the temperature effect.

5. Conclusions

A new methodology for estimating soil moisture over densely vegetated areas is

proposed. The estimation algorithm includes a short-term memory model and a

long-term memory model. The long-term memory model is a neural network

algorithm that estimates the monthly variation of soil moisture based on rainfall

from radar, vegetation index, surface temperature from satellite, soil texture and

topography. The short-term memory model is a nonlinear stochastic transfer
function model that estimates the hourly soil moisture variations based on short-

term rainfall from radar and surface temperature from satellite data. A transfer

function model was developed at each soil moisture station and a self-organized

neural network was used to identify ‘a similar station’. Finally, the transfer func-

tion model from a similar station is used to extrapolate over grids where no transfer

function models are available. There are few places where no transfer function can

67.0° W 66.5° W 66.0° W

5 10 15 20 25 30 35 40 45 50 55

1
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Figure 11. Soil moisture estimates at 10:00 am on 5 August 2006.
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be applied to estimate soil moisture, and those places are estimated by using a

kriging algorithm.

Validation techniques were implemented to measure the estimation accuracy of the

developed models. The long-term memory model shows that the mean absolute error

and the mean square error during the validation period were 2.72% and 12.32%,
respectively. The validation of the short-term memory model was performed using

two strategies. The first strategy consisted of dividing the time series of a given station

into two parts. The first part of the time series was used to build a stochastic transfer

function model and the second part to estimate the soil moisture. The second valida-

tion strategy consists of leaving a set of stations out and selecting similar transfer

function models to estimate the soil moisture for the removed stations. The estimated

soil moisture values were compared with the observed values. The mean absolute

error and the mean square error when using data from the same station to perform the
estimation were 1.64% and 4.96%, respectively. The mean absolute error and the

mean square error when using a similar station to perform the estimation were 3.34%

and 16.96%, respectively. Validation results show that the proposed methodology

provides a reasonably small error over vegetated areas, which are located across the

island. Thus, this methodology can potentially be implemented over tropical areas,

characterized by densely vegetated areas with complex topography. The proposed

methodology may be a valuable tool for government agencies and private companies

located in PR concerned with weather and climate monitoring, runoff and flood
control.

Artificial neural networks were used in this research mainly with two purposes. A

self-organized ANN was used to identify spatial variability and a feedforward ANN

was used for nonlinear modelling. The spatial variability was used to select stations

that exhibit similar climatic characteristics, and then to properly apply the transfer

function model for estimating the short-term soil moisture variability across the

island. The self-organized ANN uses the Kohonen learning rule to perform a robust

classification of the spatial variability whereas the feedforward ANN uses the
Levenberg–Marquardt Backpropagation algorithm to estimate the long-term soil

moisture variation.

The proposed algorithm can be used to generate the soil moisture initial conditions

to run a regional atmosphere model. For instance, the RAMS requires accurate soil

moisture initial conditions to perform atmospheric dynamic simulations. There is also

a possibility of introducing the soil moisture in the numerical model to compare soil

moisture observation with estimates at different points in time and consequently

improve the performance of the atmospheric dynamic simulation.
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