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Abstract - Validation of the Hydro-Estimator (HE) and the Next Generation Radar (NEXRAD) during heavy storms over 

Puerto Rico (PR) is reported.  The HE is a high resolution rainfall retrieval algorithm based on satellite and numerical 

weather prediction model data.  The accuracy of the HE and the NEXRAD rainfall estimates can be measured by 

decomposing the rainfall process into sequences of discrete (rain / no rain) and continuous (rainfall rate) random variables.  

Validation results are based on five heavy storms that seriously impacted human life and the economy of PR during the 

period 2003 to 2005.  The average discrete validation results indicate acceptable hit rate values for both the HE and 

NEXRAD (0.76 vs. 0.87) and reasonable discrete bias ratios (1.04 vs. 0.73) but a very low of probability of detection of 

rain for both the HE and NEXRAD (0.36 vs. 0.52).  The HE shows an overestimation on average whereas the NEXRAD 

exhibits underestimation in the continuous validation results (continuous bias ratio of 1.14 vs 0.70 for NEXRAD), which 

contributes to moderate overall errors for the HE and NEXRAD in terms of root mean squared error (2.14 mm vs. 1.66 

mm) and mean absolute error (0.96 mm vs. 0.77 mm). 

The HE algorithm was designed to operate over US continental areas and satisfactory results have been reported.  

However, over tropical regions it was determined that warm clouds can generate substantial rainfall amounts that are not 

detected by the HE algorithm.  It is known that precipitation processes in clouds with warm tops are very sensitive to the 

microphysical structure of their tops. Specifically, precipitation processes are more efficient when water droplets or/and 

ice particles grow to larger sizes.  It has been shown that the uses of the reflected portion of the near-infrared during the 

daytime indicates the presence large cloud-top particles and suggest rain in warm-top clouds.  It has been used the 

effective radius of clouds particles to detect raining clouds.  However, the available algorithms to estimate the effective 

radius are designed to operate over ice clouds.  We are in the process of developing an algorithm to extract the 

microphysical structure for rainy warm top clouds, and the first step of this algorithm is to estimate the emittance of near 

infrared window, which is described in this paper. 
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1. Introduction 
 

Estimation of rainfall amounts is critical for protecting 

human lives and infrastructure, particularly in the case of 

heavy rainfall that triggers flash floods or landslides.  In 

Puerto Rico (PR) during 2003 to 2005, five severe storms 

seriously impacted human lives and the economy.  PR has 

extremely diverse terrain, and during the rainy season 

severe rainstorms can develop due to complex orographic 

attributes.  Easterly winds come from the eastern Atlantic 

almost all year and play an important role in bringing 

humidity into the island and stimulating orographic rainfall 

over the mountains of PR.  Cold fronts dominate the 

weather pattern during wintertime. Tropical waves occur 

during the rainy season and frequently generate large 

amounts of rainfall in the Caribbean basin.  These tropical 

waves are typically the precursor of tropical storms and 

hurricanes from June to November.   

 

For these types of events, estimates of rainfall 

from instruments on geostationary platforms such as the 

Geostationary Operational Environmental Satellite 

(GOES) are preferred over microwave-based estimates of 

rainfall from Low-Earth-Orbiting (LEO) platforms 

because of the rapid refresh (every 15 minutes) over the 

Continental United States (CONUS) and nearby regions 

and very short data latency times of GOES data relative to 

low-Earth orbit data.  Numerous algorithms have been 

developed to estimate precipitation from GOES-based 

satellite data.  The current generation of algorithms 

produced at the National Oceanic and Atmospheric 

Administration (NOAA) National Environmental Satellite, 

Data and Information Service (NESDIS) are the Hydro-

Estimator (HE, [1]), GOES Multi-Spectral Rainfall 

Algorithm (GMSRA, [2]), and the Self-Calibrating 

Multivariate Precipitation Retrieval (SCaMPR, [3]).  The 

HE relies on GOES data from the infrared (IR) window 

channel (10.7 µm) with a fixed relationship to rainfall 

rates; similarly, Palmeira et al. [4] presented a self-

consistent algorithm for rainfall estimation based on 

GOES data plus lightning data in Brazil.  The GMSRA 

uses additional data from three other GOES channels and 

updates its calibration in real time based on matches with 

radar rain rates.  SCaMPR calibrates GOES IR parameters 

against passive microwave rain rates, which is an approach 

similar to Kidd et al. [5] and the Precipitation Estimation 

from Remotely Sensed Information using Artificial Neural 

Network (PERSIANN, [6]) algorithm.  PERSIANN uses a 

combination of geostationary IR and Tropical Rainfall 

Measuring Mission (TRMM) microwave information to 

estimate rainfall rate in an hourly basis at spatial resolution 

of 0.25
o
.  Another algorithm called the CPC Morphing 

Algorithm (CMORPH, [7]) also combines IR data and 

microwave rain rates, but uses the IR data as the basis for 

interpolating the microwave rain rates in time between 

low-Earth orbit satellite overpasses. 

The HE, which will be the focus of this paper, also 

uses information from numerical weather prediction 

models to estimate rain rate [1].  Rainfall rates are adjusted 

upward or downward for moist or dry environments as 

indicated by National Centers for Environmental 

Prediction (NCEP) North American Model (NAM) or 

Global Forecast System (GFS) total column precipitable 

water and mean-layer relative humidity for the lowest third 

of the model vertical domain.  Another adjustment 

enhances rainfall rates in regions where the convective 

equilibrium level temperature is relatively high; i.e., 

regions where very cold cloud tops are not 

thermodynamically possible but where strong updrafts and 

heavy rainfall can still occur.  Finally, low-level winds and 

digital topography are combined to produce enhancements 

of rainfall rates in upslope regions and reductions in 

downslope regions, using a technique described in Vicente 

et al. [8]. 

 

The HE has been the operational satellite rainfall 

algorithm of the National Environmental Satellite, Data, 

and Information Service (NESDIS) since 2002 and 

produces rainfall estimates at the full spatial and temporal 

resolution of GOES over the CONUS and surrounding 

regions, including PR; real-time estimates are also 

produced on an experimental basis for the rest of the 

globe.  However, validation of the Hydro-Estimator has 

generally focused on the CONUS (e.g., [1] and [9]) and 

has not been performed over Puerto Rico, and given the 

differences in topography and climate of Puerto Rico 

relative to the CONUS, previous validation efforts may not 

necessarily be relevant to users in PR.  Furthermore, 

validation of the HE over PR may illuminate opportunities 

to enhance the algorithm for application over PR. 

 

Validation of the rainfall retrieval algorithm 

consists of comparing the rainfall estimates with 

corresponding observations (rain gauges in this study).  

The accuracy of rainfall estimates can be measured by 

decomposing the rainfall process into sequences of 

discrete and continuous random variables; i.e., the 

presence or absence of rainfall events (discrete variable) 

and the amount of rainfall (continuous variable).  The 

occurrence of rainfall events in a given area and at a 

particular time follows a Bernoulli process and 

consequently the estimation accuracy of rainfall events can 

be conducted by analyzing a contingency table.  The 

typical scores that measure the accuracy of categorical 

forecasts are: hit rate (H), probability of detection (POD), 

false-alarm rate (FAR), and discrete bias (DB).  The 

continuous validation strategy focuses on the amount of 

rainfall that occurred at specific area in a particular time 

and the continuous measurements of accuracy are mean 

absolute error (MAE), root mean squared error (RMSE), 

and continuous bias (CB).  
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The second section of this paper describes the data 

collection process and sources of information.  The third 

section describes the conventional statistical techniques 

used to perform validation.  The fourth section presents 

validation results during heavy storms over PR, and 

includes a comparison for rain gauges versus HE and rain 

gauges versus NEXRAD.  The fifth section presents the 

NEXRAD bias due to distance from the radar.  The sixth 

outlines some strategies for algorithm improvements.  The 

seventh section presents some conclusions.  

 

2. Data collection 
 

Puerto Rico has a rain gauge network that collects rainfall 

measurements every 5, 10, 15, 30 or 45 minutes and 

includes 125 rain gauges with data available since January 

2000.  Since the majority of gauges collect rainfall every 

15 minutes a computer program was designed to match 

these data with HE and NEXRAD data at 15-minute 

resolution for validation.  The data set used for validation 

includes five heavy storms that have been impacted PR:  

Three can be characterized as a cold front and two as 

tropical storms. 

 

NEXRAD data over Puerto Rico come from a 

WSR-88D unit located in Cayey (18.12°N, 66.08°W, 

886.63 m elevation).  The radar frequency is 2.7 GHz and 

the maximum horizontal range is 462.5 km, and the radar 

scans the entire island every 6 minutes.  The NOAA 

National Severe Storms Laboratory (NSSL) conducted a 

significant effort to make possible an affordable 

nationwide operational capture, distribution, and archive of 

Level II NEXRAD data [10].  Unfortunately, for Puerto 

Rico the Level II data are available only until 2002 [11].  

The NWS did resume archiving level II data for PR during 

the summer of 2007.  On the other hand, Level III data for 

PR are available continuously since 2000 [12], so the 

Level III data were selected to perform validation since the 

most recent and catastrophic floods over PR occurred after 

2002.  The scanning angle for reflectivity data was 

selected as 0.5 degrees for this research in order to avoid 

beam overshoot over western PR.  Fig. 1 shows the 

location of the radar and the spatial distribution of the rain 

gauges.   

 

As mentioned in the Introduction, the HE uses 

satellite IR window (10.7-µm) data and numerical whether 

prediction data to estimate rainfall over the CONUS and 

PR every 15 minutes at 4 km spatial resolution, and they 

are available for the entire period of interest.  In order to 

ensure consistency among these data sets during the 

comparison, both the NEXRAD and HE rain rates were 

aggregated in time over the corresponding 15-minute 

accumulation period of the gauges. 

 

 
 
FIG. 1.  Location of rain gauges (red stars) and NEXRAD 
(black dot) in PR. 

 

 

3. Validation techniques 
 

Validation of the rainfall retrieval algorithm consists of 

comparing the rainfall estimates with observations over the 

same time and space.  The accuracy of rainfall estimates 

can be measured by decomposing the rainfall process into 

sequences of discrete and continuous random variables; 

i.e., the presence or absence of rainfall events and the 

amounts of rainfall.  The occurrence of rainfall events in a 

given area and at a particular time follows a Bernoulli 

process and consequently the estimation accuracy of 

rainfall events can be conducted by analyzing contingency 

tables and the bivariate probability distribution of rainfall 

events [13].  Table 1 shows the classical two-way 

contingency table.   

 

It is assumed that the values provided by the rain 

gauges are the “ground truth” while the HE and the 

NEXRAD provide estimated rainfall values.  The variable 

a in the contingency table is the number of times that the 

rain gauge identifies a rainfall event and the estimator also 

correctly identifies a rainfall event at the same time and 

location.  The variable d represents the number of times 

the rain gauge does not observe a rainfall event and the 

estimator correctly determines that there is no rainfall 

event.  The variable b indicates the number of times the 

rain gauge does not observe a rainfall event but the 

estimator incorrectly indicates that there is a rainfall event.  

The variable c shows the number of times that the rain 

gauge detects a rainfall event but the estimator incorrectly 

does not detect the rainfall event.   

 

TABLE 1.  Sample contingency table. 
 

 

 

Observed rainfall 

(Rain gauge) 
Yes No 

Estimated rainfall 
(HE or NEXRAD) 

Yes a b 

No c d 
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The typical scores that measure the accuracy of 

categorical estimation are:  

 

on

da
H ,    where   dcbano   

(1) 
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where H is the hit rate, POD is the probability of detection, 

FAR is the false-alarm rate, and DB is the discrete bias.  

Hit rate is the fraction of the on  estimating occasions when 

the categorical estimation correctly determines the 

occurrence of rainfall event or nonevent.  Probability of 

detection is the likelihood that the event would be 

estimated, given that it occurred.  The false-alarm rate is 

the proportion of estimated rainfall events that fail to 

materialize.  Bias is the ratio of the number of estimated 

rainfall events to the number of observed events [13]. 

 

The continuous validation strategy consists of 

comparing the amount of rainfall that occurred with the 

estimated amount of rainfall at specific area in a particular 

time and the continuous accuracy scores used here are:  
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where y and ŷ are the observed and estimated amount of 

rainfall.  The i and j subscripts represent time and space, 

respectively.  The constant n is the total number of time 

intervals for a given storm, and m is the number of rain 

gauges that are collecting rain during a storm.  The error e 

is the deviation between the observed and estimated 

amount of rainfall at a particular time and space and is 

computed only when at least one of y or ŷ is greater than 

zero.  MAE is the mean absolute error, RMSE the root 

mean squared error, and CB is the continuous bias.   

 

4. Validation results 
 

4.1 Discrete validation 
 

A contingency table was computed for each rain gauge 

during a given storm and the scores of those tables were 

summarized to create contingency tables for each storm for 

the HE and NEXRAD.  The contingency tables were used 

to compute the validation scores, which measure the 

accuracy of the estimation and are given in Tables 2a) and 

2b).  The HE significantly underestimates the number of 

raining pixels in the three April-May events (DB of 0.49 to 

0.52) but strongly overestimates the November-December 

events (DB of 1.54 and 2.15). The physical reasons behind 

this apparent strong seasonal variation in DB are not 

known at this time.  Meanwhile, the NEXRAD had a 

consistent dry bias (0.62-0.68) for the last four events but 

virtually no bias (1.02) for the first; again, it is not clear at 

this time what led to such a significant difference.  The hit 

rates of the HE range from 0.62 to 0.91 with an average of 

0.76 and NEXRAD has a range from 0.82 to 0.95 with 

average of 0.87.  Although, both HE and NEXRAD exhibit 

relatively high hit rate, the HE has a lower percentage of 

correct rain / no rain estimates than does the NEXRAD.  

The probability of detection of the HE ranges from 0.14 to 

0.57 with an average value of 0.36, whereas, the 

NEXRAD shows a range from 0.4 to 0.74 with an average 

of 0.52.  Thus, the HE correctly detected a smaller 

percentage of the observed rainfall events (36%) than did 

NEXRAD (52%) for these events.  The false alarm rate for 

the HE varies between 0.39 to 0.73 with an average value 

of 0.61, meanwhile the NEXRAD varies from 0.25 to 0.35 

with an average of 0.29.  Thus, the false alarm rate was 

actually higher for the HE (61%) than for NEXRAD 

(29%).  Overall, the discrete validation shows that the 

NEXRAD outperforms the HE in terms of correct rain / no 

rain estimates. 

 

4.2 Continuous validation 
 

The accumulated rainfall across the island was computed 

to compare the observed and the estimated rainfall:  

 

              (9) 

  
where Yi is the total rainfall recorded by all 125 rain 

gauges across the island or the closest HE or radar pixels 

at the thi  time.   
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TABLE 2a. Discrete validation scores for the Hydro-
Estimator. 
 

 17 

Apr.  
2003 

19-21 

May 

2003 

11-18 

Nov. 

2003 

5 

Dec. 

2003 

20 

Apr. 

2005 
Avg. 

DB 0.49 0.52 1.54 2.15 0.52 1.04 
HR 0.70 0.91 0.68 0.62 0.86 0.76 
POD 0.30 0.14 0.55 0.57 0.23 0.36 
FAR 0.39 0.72 0.64 0.73 0.56 0.61 
 

TABLE 2b. Discrete validation scores for the NEXRAD. 
 

 17 

Apr. 

2003 

19-21 

May 

2003 

11-18 

Nov. 

2003 

5 

Dec. 

2003 

20 

Apr. 

2005 
Avg. 

DB 1.02 0.68 0.66 0.62 0.67 0.73 
HR 0.82 0.95 0.84 0.85 0.91 0.87 
POD 0.74 0.51 0.47 0.40 0.49 0.52 
FAR 0.27 0.25 0.29 0.35 0.27 0.29 
 

Tables 3a) and 3b) show the continuous validation 

scores for HE and NEXRAD, respectively.  The 

continuous bias of the HE is even more seasonally variable 

than the DB, with values ranging from 0.16-0.26 for the 

April-May storms and 1.68-2.42 for the November-

December events.  The lower CB relative to the DB for the 

April-May storms suggests that the HE is underestimating 

the conditional rainfall rates in addition to the spatial 

extent of the rainfall, while the opposite is happening for 

the November-December events.  The NEXRAD has 

nearly no continuous bias for two storms and a strong dry 

bias for three (0.41-0.68), albeit with no apparent seasonal 

pattern like the HE.  As a result, both the mean absolute 

error and root mean squared error of the HE are also 

higher than that of NEXRAD.   

 

TABLE 3a.  Continuous validation scores for the Hydro-
Estimator. 
 
 17 

Apr.  
2003 

19-21 

May 

2003 

11-18 

Nov. 

2003 

5 

Dec. 

2003 

20 

Apr. 

2005 

Avg. 

CB 0.26 0.23 1.68 2.42 0.16 0.95 
MAE (mm) 1.33 0.74 1.10 0.86 0.79 0.96 
RMSE (mm) 2.73 2.10 2.24 1.93 1.71 2.14 

 

TABLE 3b.  Continuous validation scores for NEXRAD. 
 

 17 

Apr.  
2003 

19-21 

May, 

2003 

11-18 

Nov. 

2003 

5 

Dec. 

2003 

20 

Apr. 

2005 

Avg. 

CB 1.02 0.68 0.41 0.42 1.01 0.71 
MAE (mm) 1.02 0.66 0.85 0.53 0.80 0.77 
RMSE (mm) 1.91 1.79 1.78 1.15 1.68 1.66 

5. NEXRAD bias 
 
Radar measurements over the western part of PR are 

frequently inaccurate.  This is because reflectivity 

measurements are conducted at about 2000m above the 

surface as a result of the elevated location of the radar and 

a relatively high scan angle which was selected to 

minimize beam block by nearby mountains.  In order to 

estimate the NEXRAD bias, the following validation 

exercise was conducted.  PR was divided in three zones.  

The first zone includes the rain gauges that are located in a 

radius of equal or less that 35km, the second region 

includes stations that are in the radii that is larger than 

35km but equal and smaller than 90km, and the third 

region consists of stations at a range larger than 90km 

from the location of the NEXRAD.  Figure 2 shows the 

study zones, which were designed to provide an 

appropriate sample size to derive reliable statistics.   

 

 
FIG. 2.  Location of rain gauges (stars) and NEXRAD 
(black dot on Region I) in PR.  Black dots in Region III are 
small and high resolution radar that will be used to derive 
the bias correction factor for NEXRAD.  The radii of the 
circles are 35km and 90km. 

 

An unnamed tropical storm, which becomes 

stationary over the PR area during November 11-18, 2003, 

was studied to determine the NEXRAD bias over the 

designed zones.  The continuous red lines in Figures 3a, 3b 

and 3c show the cumulative rainfall recorded every 15 

minutes by all gauges of PR rain-gauge network.  The 

horizontal axis shows the Julian day and the vertical axis 

shows the 15-minutes accumulated rainfall in mm.  The 

blue line represents the 15-minutes accumulative rainfall 

recorded by the radar pixel that is the closest to each rain 

gauge.  The difference between the red and blue lines 

represents the estimation error of the accumulative rainfall.  

Figures 3a and 3b show reasonable rainfall estimation by 

the radar.  However, Figure 3c shows that the NEXRAD 

exhibits a significant underestimation in Region III.  The 

corresponding scatter plots in Figures 4a, 4b, and 4c show 

the actual rainfall amount recorded by the individual 

gauges versus the estimates from the radar pixels.  These 

figures also confirm that although Region III generally 

experiences lighter rainfall events than in the other two 

regions, the NEXRAD bias is largest in this region. 
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FIG. 3a.  Cumulative rainfall during November 11-18, 
2003, over Region I. 

 
FIG. 3b.  Cumulative rainfall during November 11-18, 2003 
for Region II.   

 
FIG. 3c.  Cumulative rainfall during November 11-18, 2003 
for Region III.   

 
FIG. 4a.  Scatter diagram for rain gauges and NEXRAD 
pixels during November 11-18, 2003 for Region I.   
 

 
FIG. 4b.  Scatter diagram for rain gauges and NEXRAD 
pixels during November 11-18, 2003 for Region II.   
 

 
FIG. 4c.  Scatter diagram for rain gauges and NEXRAD 
pixels during November 11-18, 2003 for Region III.   
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Table 4 shows that the probability of detection 

increases with distance from the NEXRAD.  Figures 3a, 

3b and 3c show that the NEXRAD exhibits 

underestimation in the three regions; however, the 

underestimation is larger in Region III.  Table 4 shows that 

the bias ratio become smaller, which indicates that the 

estimation error becomes worse for larger distances 

between the station and radar.  Although, the dry bias 

actually is stronger in Zone II than in Zone III 

 

TABLE 4a.  Discrete comparison of NEXRAD performance 
for each region.  

 

 Region I 

(0-35 km 

from 

NEXRAD)   

Region II 

(35-90 km 

from 

NEXRAD)   

Region III 

(>90km 

from 

NEXRAD)    
DB  0.74  0.64  0.46  
H 0.83  0.83  0.80  

POD  0.50  0.46  0.37  
FAR  0.32  0.27  0.29  

 

TABLE 4b.  Comparison of NEXRAD performance 

 

 Region I 

(0-35 km 

from 

NEXRAD)   

Region II 

(35-90 km 

from 

NEXRAD)  

Region III 

(>90km from 

NEXRAD) 

MAE 0.92mm 1.07mm 1.06mm 
RMSE 1.76mm 2.07mm 2.18mm 

CB 0.45 0.35 0.37 
 

 

 

6. Algorithm Improvements 
 

6.1 Rainfall detection 
 

As stated previously, the HE uses GOES brightness 

temperatures (Tb) from channel 4 (10.7 µm) to 

discriminate raining from non-raining events [1].  During 

the validation exercise we noted that there are some warm-

top convective events that are not detected by the HE.  The 

HE generally produces little or no rainfall for brightness 

temperatures exceeding 235K; however, there are 

numerous events in PR where rainfall was in fact observed 

at these temperatures. For instance, Fig. 5 shows the 

observed accumulated rainfall for all gauges located in PR 

(red line) and the accumulated rainfall by the 

corresponding HE pixels (blue line) on November 14, 

2006.  The horizontal axes shows the time every 15 

minutes and the vertical axis exhibits the accumulated 

rainfall in mm.  Fig. 6 shows the distribution of brightness 

temperatures over the GOES pixels corresponding to 

gauge locations during this storm and there are few pixels 

below 235 K; a comparison with Fig. 5 indicates that the 

poor detection by the HE was at least in part because it 

was not calibrated to produce rainfall from relatively warm 

clouds.  In order to improve the detection skill of the HE, 

we plan to examine the differences in brightness 

temperature between 10.7 µm and the water vapor band 

(6.5 µm in GOES).  Positive values of the WV-infrared 

window temperature difference have been shown to 

correspond with convective cloud tops that are above the 

tropopause (i.e. overshooting tops), ([14 and [15]).  

Convective clouds with positive differences indicate the 

possibility of warm-top convection.   

 

 
FIG. 5.  Comparison between observed and estimated 
accumulated rainfall (Nov. 14, 2006). 
 

 
FIG. 6.  GOES-12 brightness temperature from channel 4 
(Nov. 14, 2006). 
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It is known that precipitation processes in clouds 

with warm tops are very sensitive to the microphysical 

structure of their tops. Specifically, precipitation processes 

are more efficient when water droplets or/and ice particles 

grow to larger sizes.  It has been shown that the uses of the 

reflected portion of the near-IR during the daytime 

indicates the presence large cloud-top particles and suggest 

rain in warm-top clouds.  It has been used the effective 

radius of clouds particles derived from the AVHRR 3.75-

µm window channel to detect warm raining clouds ([16], 

and [17]).  This concept was also applied to rainfall 

estimation from GOES data in the GMSRA [2]. 

 

Preliminary work was conducted to explore 

improving the HE warm rainy-cloud detection using the 

GOES band 2 (3.9 µm) reflectance during the daytime.  

This will be used as a proxy for cloud-top particle size to 

identify any correlation with the presence or absence of 

rain from warm-topped clouds over PR.  In this work we 

present the estimation of daytime reflectance of band 2. 

 

It is assumed that during the daytimes the total 

radiance measured by GOES band 2 (3.9 µm) is composed 

by the sum of emitted radiances and the reflected 

radiances. 

    (10) 

 

where T3.9,d  is the total radiance during the day, E3.9,d is the 

emitted radiance, and R3.9,d is the reflected radiance of 

band 2 during the day.  However during the night since the 

sun is not present the total radiance is equal to the emitted 

radiances, as shown as follows: 

 

    (11) 

 

An empirical equation can be developed to estimate the 

emittance measured by band 2.  The emittance during the 

night it is assumed to be a function of the radiance 

measured by bands 3 (6.9 µm) and band 4 (10.7 µm ).  The 

general relationship may be expressed as follows: 

 

    (12) 

 

where E3.9 is the emittance of band 2, T6.9 is the total 

radiance of band 3, and T10.7 is the total radiance of band 4.  

A linear relationship was assumed first and the 

performance of the model will indicate whether or not a 

linear model is appropriate.  Thus, the postulated model is 

as follows: 

 

,  (13) 

 

where Ê3.9,n is the estimated emittance of band 2 during the 

night, T6.9,n is the total radiance of band 3, and T10.7,n is the 

total radiance of band 4 during the night, and the â’s are 

the parameters of the linear equation.   

 

The parameters were estimated using a severe 

rainfall event that occurred on October 27-29, 2007.  The 

data set was divided in two parts: the first part (October 

27-28) was used to estimate the parameters and the second 

part (October 28-29) for validation.  Data from October 28 

was divided in two separate time series the first part for 

model fitting and the second for validation.  The parameter 

estimation results are summarized in Table 5. 

 

TABLE 5.  Parameter estimation 

 

Parameter Estimate 
 -0.69348 

 0.083468 

 0.024352 
 

The second part of the data was used to perform 

validation.  The mean absolute error (MAE) and the 

coefficient of multiple determination (R
2
) were computed 

to measure the accuracy of equation (13) and were found 

to be MAE=0.0389mW/(m
2
–sr-cm

-1
) and R

2
=0.92.  A 

quadratic model was also fitted to measure if a significant 

improvement can be obtained.  However, the quadratic 

model provides R
2
=0.93, and consequently, these results 

show that the selected linear model sufficiently represents 

the estimated reflectance.  Figures 7 and 8 show a 

comparison between the observed and estimated emittance 

during the nighttime.   

 

 
 

Figure 7 Observed emittance of band 2 for a nighttime 

image. 
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Figure 8.  Estimated emittance of band 2 for the same 

image as in Figure 7. 

 

Assuming that equation (13) also holds during the 

daytime, the emittance of band 2 can be estimated as 

follow: 

  (14) 

 

where the subscript d refers to variables observed during 

the daytimes and the regression coefficients are obtained 

from equation (13).  Figure 9 shows the estimated 

emittance which will be subtracted from the observed 

radiance during daytime of band 2 and compared to 

corresponding rain / no rain areas to determine its 

usefulness in discriminating raining areas in relatively 

warm clouds.  Figure 10 shows the observed reflectivity 

(converted to rainfall rates) for the same rainfall event. 

 

 
 

Figure 9  Estimated emittance of band 2 during the day 

 

 

 
 

Figure 10.  Estimated rainfall from NEXRAD. 
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6.2 Improving rain rate estimates 

 

The rainfall retrieval procedure of the HE is also mainly 

based on the relationship between the brightness 

temperature (10.7 µm) and observed rain rate.  Estimation 

of the amount of rainfall may be improved by classifying 

the brightness temperature patterns (BTP) with the 

corresponding rain formation processes.  The following 

channels will be used to classify the BTP with the 

corresponding rain process.  Channel 1 (0.65 µm) will be 

used to classify the events according to the cloud optical 

thickness.  The reflected portion of channel 2 (3.9 µm) 

during the daytime will be used as an indirect 

measurement of the cloud drop size distribution, 

thermodynamic phase, and particle shape [18].  Channel 4 

(10.7 µm) will be used to classify the rainfall events 

according to temperature.  Brightness temperature 

differences will also be used to develop the classification 

algorithm:  The difference between the 10.7-µm and 3.9-

µm brightness temperatures will be useful to determine 

whether a cloud top is composed of liquid water or ice. As 

stated previously, the IR-WV difference (6.5–10.7 µm) is 

usually negative; however, convective clouds with positive 

differences have likely already begun to precipitate, 

especially in tropical atmospheres that support warm top 

convection.  The 13.3–10.7 µm differencing technique is 

used to characterize and delineate cumulus clouds.   

 

There are a large number of successful 

applications of classification algorithms reported in the 

literature.  It has been shown that fuzzy neural networks 

(FNNs) provide a new approach for classification of 

multispectral data and to extract and optimize 

classification rules, they applied these algorithms to 

classify pixels in multispectral images and to extract fuzzy 

classification rules [19].  A classification neural network 

algorithm was successfully used to perform image texture 

classification [20].  Xiao and Zhang [21] and Xiao et al 

[22] used neural networks, rough sets, and support vector 

machine to classified remote sensing images.  Rodriguez et 

al [23] successfully applied the general types Feed-

forward, Self-Organizing Maps (SOM), and Auto-

associative Networks. They also implemented 

Backpropagation algorithm and the Kohonen learning rule 

to perform star classification. 

 

In this research will focus on convective clouds, 

and consequently, the factors to be considered for the 

classification of BTP and rain types are: area, depth, 

duration, and updraft velocity.  Thus, a variable selection 

algorithm will be used to identify the variables that best 

explain rainfall variability.  The selected variables will be 

used to develop training patterns for a self-organized 

artificial neural network, which will be used to identify a 

set of homogenous groups that reveal similarities within 

the member of a class, but different among the classes.  

The Kohonen learning rule will be used to determine the 

optimal weights of the artificial neural network ([23]. [25], 

[26], [27] and [28]).   

 

7 Summary and conclusions 
 

The HE is a high resolution satellite rainfall retrieval 

algorithm run operationally by NOAA/NESDIS that 

provides estimates of rainfall every 15 minutes at 4-km 

resolution over the CONUS and nearby areas including 

PR.  (Global estimates are also produced in real time on an 

experimental basis.)  The rain rates are primarily derived 

from GOES 10.7-µm brightness temperatures and then 

adjusted using parameters derived from a numerical 

weather prediction model.  The HE estimates should be 

especially useful over regions of complex topography such 

as western PR because of the difficulties associated with 

radar in those regions such as beam block.  However, for 

the very small sample of heavy rainfall events examined in 

this paper, NEXRAD clearly outperforms the HE, perhaps 

in part because of most of the rainfall events were located 

in the central and eastern parts of the island where the 

radar data will be most reliable.  Specifically, the HE 

underestimates both the number of rainfall events and the 

amounts of rainfall, whereas NEXRAD is nearly unbiased 

in these respects.  The HE algorithm does exhibit a 

satisfactory hit rate, but a very low probability of detection 

and a large false alarm rate that is surprisingly higher than 

that of NEXRAD despite the dry bias of the HE.  A 

research effort is undergone to improve the performance of 

the HE for PR; specifically, the algorithm proposed by 

Ramirez-Beltran et al. [24] will be implemented to 

improve the HE rainfall detection and the equation that 

relates brightness temperatures with rain rates. 
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