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Abstract: - Rain gauge networks are used to calibrate and validate quantitative precipitation estimation (QPE) methods 
based on remote sensing, which may be used as data sources for hydrologic models.  The typical approach is to adjust 
(calibrate) or compare (validate) the rainfall in the QPE pixel with the rain gauge located within the pixel.  The QPE 
result represents a mean rainfall over the pixel area, whereas the rainfall from the gauge represents a point, although it 
is normally assumed to represent some area.  In some cases the QPE pixel area may be millions of square meter in 
size.  We hypothesize that many rain gauge networks in environments similar to this study (i.e., tropical coastal), 
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which provide only one rain gauge per remote sensing pixel, may lead to error when used to calibrate/validate QPE 
methods, and that consequently these errors may be propagated throughout the hydrologic models.  The objective of 
this paper is to describe a ground-truth rain gauge network located in western Puerto Rico which will be available to 
test our hypothesis.  In this paper we discuss results from the rain gauge network, but do not present any QPE 
validation results.  In addition to being valuable for validating satellite and radar QPE data, the rain gauge network is 
being used to test and calibrate atmospheric simulation models and to gain a better understanding of the sea breeze 
effect and its influence on rainfall.      
 

In this study, 62 storms were evaluated between August 2006 and August 2007.  The area covered by the rain 
gauge network was limited to a single GOES-12 pixel (4 km x 4 km).  Five-minute and total storm rainfall amounts 
were spatially variable at the sub-pixel scale.  Average storm rainfall from more than a quarter (27%) of the 3,627 rain 
gauge-pairs evaluated were significantly different at the 5% of significance level, indicating significant rainfall 
variation at the sub-pixel scale.  The majority of storms during the study period were locally formed by sea breezes 
and heating, although the 27% of gauges whose average rainfall amounts were significantly different could not be 
correlated with any single type of storm.    
 

Key-Words: - satellite pixel, rainfall variability, QPE, rain gauge, radar, validation, hydrologic modeling 
 

1   Introduction 
Is it is commonly assumed that a single rain 

gauge located within a QPE pixel represents the average 
rainfall for the pixel area (e.g., [1] and [2]).  The 
National Oceanic and Atmospheric Administration’s 

(NOAA) Hydro Estimator (HE) algorithm [3], which 
utilizes data from the GOES geostationary satellite to 
estimate rainfall, for example, has an approximate pixel 
size of 4 km x 4 km  (16,000,000 m2), compared to a 
cross-sectional area of roughly 0.032 m2 for the standard 
National Weather Service tipping bucket gauge.  The 
National Weather Service’s (NWS) Next Generation 
Radar (NEXRAD) estimates rainfall within a radial 
coordinate system (base resolution 2 to 4 km), in which 
the pixel size increases with distance from the radar 
antenna [4].  NEXRAD accuracy also decreases with 
distance from the antenna owing to the curvature of the 
earth and in some cases the presence of obstructions 
(e.g., mountains); additional details can be found in [5].  
The differences in temporal and spatial scales make the 
comparison of QPE methods with ground-based rain 
gauges difficult [6].  Other potential sources of error 
include rain gauge inaccuracy, assumptions made in the 
development of the QPE algorithm that may be violated 
under local (e.g., tropical) rainfall conditions, and 
navigation errors in the satellite pixel coordinates.  For 
example, the navigation errors of the GOES-12 pixels at 
nadir are on the order of 4-6 km [7].   

Hydrologic models used to estimate storm 
hydrographs and flood levels and extent may be 
sensitive to rainfall distribution at the QPE sub-pixel 
scale.  Bevan and Hornberger [8] have stated that “… an 

accurate portrayal of spatial variation in rainfall is a 
prerequisite for accurate simulation of stream flows”.  

Spatial rainfall variability greatly affects runoff 
processes in watersheds [8].  Goodrich [10] has stated 

that rainfall runoff accuracy will increase with an 
increasing number of rain gauges in the watershed, 
which will improve the representation of the spatial 
characteristics of rainfall.  Rainfall estimates at a point 
differ from catchment averages because rainfall varies 
spatially and its spatial distribution over the catchment 
determines the amount of rainfall that is integrated in 
time and space [11].  Moreiraa et al. [9]  evaluated 
rainfall spatial variability effects on catchment runoff.   
The study area was a 2.1 km2 catchment in northeastern 
Brazil.  The catchment response of the relatively small 
catchment area was quite sensitive to the occurrence of 
rainfall with high spatial variability.  Bell and Moore 
[12] evaluated the sensitivity of simulated runoff using 
rainfall data from gauges and radar.  The rain gauge 
system consisted of 49 gauges over the 135 km2 Brue 
catchment in southwestern England.  They evaluated 
convective and stratiform rainfall events.  Runoff 
variability was strongest during convective storm events 
and weakest during stratiform events.  Surprisingly, the 
authors obtained the best performance using lower-
resolution rainfall data and a lower-resolution 
hydrologic model.  This result was attributed to the fact 
that the original model was calibrated with lower 
resolution data. Hydrologic models need to be 
recalibrated when rainfall of a different resolution is 
used. 

Numerous small-scale rainfall variation studies 
have been conducted (e.g., [13], [14], [9],).  For 
instance, Bidin and Chappell [13] evaluated rainfall 
variation for differing wind fields with 46 rain gauges 
within a 4 km2 rainforest in Northeastern Borneo.  They 
observed a very high degree of spatial variability.  
Seasonal totals were correlated with gauge separation 
distance, aspect and topographic relief.  Changes in 
rainfall patterns over the 4 km2 catchment were related 
to complex local topographic effects in the regional 

12th WSEAS International  Conference on SYSTEMS, Heraklion, Greece, July 22-24, 2008  

ISBN: 978-960-6766-83-1 790 ISSN: 1790-2769



 

wind field.  Goodrich et al. [14] studied small scale 
rainfall variability within a 4.4 ha area in the semiarid 
USDA Walnut Gulch Experimental (WGE) Watershed 
in Arizona, USA.  The average observed rainfall 
gradient was 1.2 mm/100 m.  They concluded that the 
assumption of rainfall uniformity in convective 
environments similar to the WGE Watershed is invalid.  
Krajewski et al. [15]) compared rain gauges in Guam at 
three time scales (5, 15, and 60 min) and three spatial 
scales (1, 600, and 1100 m).  The largest variations 
occurred for the smallest time scale and the largest 
spatial scale.  The smallest variations occurred for the 
largest time scale and the smallest spatial scale. 

We hypothesize that many rain gauge networks 
in environments similar to this study (i.e., tropical 
coastal), which provide only one rain gauge per remote 
sensing pixel, may be inadequate to calibrate/validate 
QPE methods, and that consequently QPE data may be 
inadequate to use with hydrologic models.  The 
objective of this paper is to present results from a rain 
gauge network that will be used to validate several QPE 
methods (e.g., GOES Hydro-Estimator [3], SCaMPR 
[16], NEXRAD and the University of Puerto Rico 
Collaborative Adaptive Sensing of the Atmosphere radar 
network).  Implications of the results on 
calibration/validation of QPE methods are discussed.     
 
 

2   Methodology 
During July 2006, sixteen tipping bucket rain gauges 
(Spectrum Technology, Inc.1) were installed within the 
area covered by one Hydro-Estimator (HE) pixel.  The 
HE has been the operational satellite precipitation 
algorithm of the National Environmental Satellite, Data, 
and Information Service (NESDIS) since the fall of 2002 
[17]. Each rain gauge was equipped with a data logger 
capable of storing rainfall depth every 5-minutes over a 
24 day period.  The study area was located near to the 
University of Puerto Rico’s Mayagüez Campus (UPRM) 

in western Puerto Rico (Fig. 1).  The pixel area was 4 
km x 4 km (16 km2) corresponding to a single GOES 
pixel.  This area was divided into sixteen evenly spaced 
squares of 1 km2 each.   To locate the rain gauges the 
following steps were used:  

1. The center points of the Hydro-Estimator (HE) 
pixels were obtained from NOAA’s National 

Environmental Satellite, Data and Information 
Service (NESDIS).  

2. An appropriate HE pixel was selected, which 
included a relatively large range of topographic 

                                                           
1 Reference to a commercial product in no way 
constitutes an endorsement of the product by the 
authors. 

relief east of the Mayagüez Bay in western 
Puerto Rico. 

3. Using ArcGIS, sixteen points were located 
(evenly spaced) within the HE pixel. 

4. With the assistance of a ground positioning 
system (GPS), properties (mainly residential) 
were located which were as close as possible to 
the center point locations identified in step no. 3.  
In each case it was necessary to obtain 
permission from the property owner before 
installing the rain gauges. 

5. The actual coordinates of the installed rain 
gauges were recorded and entered into ArcGIS 
(Fig. 2). 

 
Figure 1. Study area in western Puerto 

Rico corresponding to a Hydro-Estimator 

pixel (4 km x 4 km).  Colors represent 

variations in topography. 

 
Figure 2. Twenty-eight tipping bucket rain 

gauges used in the study.  The 12 rain gauges 

installed in June of 2007 were distributed within a 

subwatershed of the Añasco River. 

 
Some of the rain gauges could not be located 

close to the center points of the squares because of a 
lack of access.  The problem-areas were generally 
located within undeveloped valleys which could not be 
accessed.  Consequently the final locations of rain 
gauges were not evenly spaced; however, this resulted in 

Mayagüez 
Bay 

Study  
Area 
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producing a random (possibly beneficial) aspect to the 
locations of rain gauges within each sub-area. 

The data logger clocks were synchronized and 
programmed to record cumulative rainfall depth every 5 
minutes. All rain gauges were placed in areas free from 
obstructions.  It was necessary to locate a few of the 
gauges on roof tops (approximately 5 meters above the 
ground) owing to inappropriate conditions on the 
ground.  An effort was made to level each of the rain 
gauges to assure proper functioning.   

In June of 2007, another 12 tipping bucket rain 
gauges were added to the network.  These rain gauges 
were distributed within a subwatershed of the Añasco 
River for future hydrologic evaluation.  Figure 2 shows 
the location of the 12 rain gauges within the 
subwatershed and the location of a stream gauge (Solinst 
Levelogger) installed at the outlet of the subwatershed. 

Storm data were collected for 62 storms 
between August 2006 and August 2007.  The storm data 
collected included: start and end times, storm duration, 
number of operational rain gauges (n), average total 
storm rainfall, standard deviation, and maximum and 
minimum rain gauge amounts.  Student’s t-tests were 
performed on all pairs of rain gauges for each of the 62 
storms (total 3,627 pairs) to determine if significant 
spatial differences exist in the mean rainfall amounts.   

The reason for conducting the significant 
difference tests was based on the following rationale.  
QPE methods based on remote sensing usually compare 
(or adjust) the remotely sensed rainfall estimate based on 
a single rain gauge located within the remotely sensed 
pixel.  The rain gauge, in virtually all cases, will be 
randomly located within the pixel (as opposed to, for 
example, being located at the pixel center).  This is 
because the entity that manages the satellite or radar is 
typically different than the entity that installed the rain 
gauges.  If there is a large amount of sub-pixel rainfall 
variation then the QPE will be compared with a rain 
gauge that does not represent other locations within the 
pixel.  On the other hand, if there is no significant 
difference between randomly located pairs of rain 
gauges, then this would suggest that the sub-pixel 
variability is low and the QPE can be compared (or 
adjusted) to rain gauges located at any location within 
the pixel.  All statistical analyses were performed using 
software developed by the authors using MatLab 
Version 7.3 (MathWorks, Inc.).  The t-test function used 
in this study (ttest2) did not assume equal variances 
(Behrens-Fisher problem). 

Storms were classified according to whether 
they were locally formed by sea breezes and heating, or 
generated by large weather systems of either easterly or 
westerly origin.  For this it was necessary to gather 
supplementary information on the synoptic weather 
conditions, and the local pattern and timing of 

convection near Mayagüez, Puerto Rico.  Supplementary 
information included large scale maps of upper winds 
and precipitable water, visible or IR satellite and radar 
images, and radiosonde profiles at San Juan.  The types 
of weather systems observed were: 
• Localized = isolated over western Puerto Rico 

with trade wind convergence 
• Tropical westerly trough = southwesterly moist 

flow and SW-NE cloud bands 
• Tropical easterly wave = deep easterly flow 

with widespread cloudiness 
• Upper westerly trough = westerly flow in mid-

levels coming down from north 
• Cold front = frontal cloud band penetrating from 

Florida 
 

3   Results  
As an example of the measured rainfall data, 

Fig. 3 shows the depth of rainfall measured every 5 
minutes by sixteen rain gauges on 6 August 2006. Figure 
4a shows the spatial distribution of total rainfall for the 
same storm. It is clear that the rainfall can vary 
significantly within the satellite pixel area.  The average 
and standard deviation for the rainfall were 30.8 mm and 
13.6 mm, respectively, while the maximum and 
minimum recorded rainfall were 55.6 mm and 9.2 mm, 
respectively.  In addition to 6 August 2006 (4a), Fig. 4 
shows the rainfall variation for storms occurring on 16 
August (4b), 18 August (4c) and 22 October (4d), 2006.  
For these storms, the maximum rainfall gradients were 
20.4, 56.9, 55, and 65 mm/km, respectively.  Spatial 
variation in rainfall distribution as shown in Fig. 4 is 
commonly observed during the “wet” season (August 

through November) in western Puerto Rico.    
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Figure 3. Rainfall measured from rain gauges 

on August 6th, 2006. 

 
Table 1 lists the statistics associated with 62 

storms which occurred between August 2006 and 
August 2007.  The table includes storm start and end 
times, storm durations, number of operational rain 
gauges (n), average total storm rainfall, standard 
deviation, maximum and minimum rain gauge amounts, 
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and storm classification.  The overall average for each of 
the parameters is presented at the bottom of Table 1.  On 
average, the rain storms started at 15:02 and ended at 
17:22, with an average duration of 2.33 hours.  The 
average, maximum, and minimum rainfall depths were 
15.94 mm, 30.14 mm and 4.53 mm, respectively. 

 

 

 
Figure 4. Spatial distribution of rainfall for 

storms on 6 August  (a), 16 August  (b), 18 August  

(c) and 22 October (d), 2006. 

The distribution of the storm classifications 
were as follows: localized = 23 cases, upper westerly 
trough = 16 cases, tropical westerly trough = 6 cases, 
tropical easterly wave = 11 cases, and cold front = 6 
cases.  These results indicate the importance of the 
localized sea-breeze induced storm to the local 
hydrology.  The average rainfalls produced from each 
type of storm were 15.5 mm, 14.4 mm, 27.03 mm, 17.2 
mm, and 9 mm for localized, upper westerly trough, 
tropical westerly trough, tropical easterly wave, and cold 
front storms, respectively.   

In mid-June 2007, 12 additional rain gauges 
were added within a small subwatershed located within 
the 4 km x 4 km pixel as shown in Fig. 2.  Fig. 5 shows 
the variation in 5 minute rainfall at four different times 
(14:27, 14:37, 15:32 and 16:22) on 27 June 2007.  Large 
variations can be observed between the individual 5 
minute intervals.   

Results of a Student’s t-test analysis of 3,627 
rain gauge-pairs from the 62 storms are presented in 
Table 2.  The results have been sorted from highest to 
lowest Percent of t-test Showing Significant Differences.  
The average rainfall for 932 rain gauge-pairs (27%) 
were significantly different at or below the 5% of 
significance level.  This result indicates that in more 
than one out of every four cases considered, significant 

a. 

b. 

c. 

d. 
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sub-pixel variation existed.  Furthermore, in these cases, 
use of one of the rain gauges to either calibrate or 
validate a remotely sensed QPE method, would have 
introduced a source of error.  No observable correlation 
existed between Percent of t-test Showing Significant 
Differences and Type of Storm, Date, season, or Total 
Average Storm Rainfall.  Figure 6 shows the variation in 
percent of t-tests showing significant differences in 
average rainfall between rain gauge pairs with number 
of storms.  

 

4   Discussion  
Typically QPE methods are compared with 

existing rain gauge networks.  For example, Cruz 
Gonzalez (2006) compared the HE algorithm with an 
existing U.S. Geological Survey rain gauge network in 
Puerto Rico (125 rain gauges).  If we were to 
superimpose the QPE pixels over the area of the island, 
for example the HE method having a pixel resolution of 
4 km x 4 km, the individual rain gauge would fall at 
some random location within an HE pixel.  As Figs. 4 
and 5 illustrate, a large difference could be obtained 
depending upon where the rain gauges were located 
within the pixels.  Statistically speaking, one out of 
every four rain gauges would not be representative of 
the rainfall occurring at other locations within the pixel.  
This problem is reduced when averaging estimates over 
time, but is most acute for short-term estimates within a 
single storm (Fig. 5); the type of data needed for real-
time hydrologic flood forecasting. 
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Figure 5. Spatial distribution of 5-minute 

rainfall values at 14:27, 14:37, 15:32 and 16:22 hours, 

for a storm occurring on 27 June, 2007. 

 
Figure 6. Percent of t-tests showing significant 

differences in average rainfall between rain gauge 

pairs vs. number of storms.  
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5   Summary and Conclusion 
The purpose of this study was to evaluate the 

spatial rainfall variability within a QPE pixel (4 km x 4 
km HE pixel) in a tropical watershed located in western 
PR.  Graphical data were presented for four storms 
(average total storm rainfall), several 5-minute intervals 
within a single storm on 27 June 2007, and tabular data 
were presented for 62 storms.  Rainfall was observed to 
be variable within the 4 km x 4 km study area.  Average 
storm rainfall from more than one quarter (27%) of the 
3,627 rain gauge-pairs evaluated for the 62 storms were 
significantly different at the 5% of significance level, 
indicating significant rainfall variation at the sub-pixel 
scale.  A conclusion of this study is that for existing rain 
gauge networks (e.g., USGS) used in environments 
similar to this study (i.e., coastal tropical), significant 
sub-pixel variation can be expected in one out of every 
four pixels on average.  In these cases, use of one of the 
rain gauges to either calibrate or validate a remotely 
sensed QPE method will introduce a source of error into 
the QPE and will be propagated through any hydrologic 
model used.  The practical consequences of this error 
propagation are that the hydrologic parameters derived 
as part of the hydrologic model calibration will be 
incorrect. 
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Table 1. Rainfall statistics from 62 storms between August 2006 and August 2007.

n stands for sample size or the number of operational rain gauges.
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Table 2.  Results of Student’s t-test for all combination of rain gauge-pairs for 62 sorms.
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