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Abstract - Validation of the Hydro-Estimator (HE) and the Next Generation Radar (NEXRAD) during heavy storms over 
Puerto Rico (PR) is reported.  The HE is a high resolution rainfall retrieval algorithm based on satellite and numerical 
whether prediction model data.  The accuracy of the HE and the NEXRAD rainfall estimates can be measured by 
decomposing the rainfall process in sequences of discrete (rain / no rain) and continuous (rainfall rate) random variables.  
Validation results are based on five heavy storms that seriously impacted human life and the economy of PR during the 
period 2003 to 2005.  The average discrete validation results indicate acceptable hit rate values for both the HE and 
NEXRAD (0.76 vs. 0.87) and reasonable discrete bias ratios (1.04 vs. 0.73) but a very low of probability of detection of 
rain for both the HE and NEXRAD (0.36 vs. 0.52).  The HE shows an average overestimation whereas the NEXRAD 
exhibits underestimation in the continuous validation results (continuous bias ratio of 1.14 vs 0.70 for NEXRAD), which 
contributes to moderate overall errors for the HE and NEXRAD in terms of root mean squared error (2.14 mm vs. 1.66 
mm) and mean absolute error (0.96 mm vs. 0.77 mm). 

The HE algorithm was designed to operate over US continental areas and satisfactory results have been reported.  
However, over tropical regions it was determined that warm clouds can generate substantial rainfall amounts that are not 
detected by the HE algorithm.  Infrared band differencing techniques are using to explore the possibility of improving the 
detection of warm-cloud rain events over PR.  We are also classifying clouds based on Geostationary Operational 
Environmental Satellite (GOES) Imager data in a manner that will lead to improved relationships between infrared 
brightness temperatures and rainfall rates.   
 
Key-words -  validation, NEXRAD, Hydro-Estimator, retrieval algorithm, rain rate, GOES, brightness temperature. 
 

1. Introduction 
Estimation of rainfall amounts is critical for protecting 
human lives and infrastructure, particularly in the case of 
heavy rainfall that triggers flash floods or landslides.  In 
Puerto Rico (PR) during 2003 to 2005, five severe storms 
seriously impacted human lives and the economy.  PR has 
extremely diverse terrain, and during the rainy season 
severe rainstorms can develop due to complex orographic 
attributes.  Easterly winds come from the eastern Atlantic 
almost all year and play an important role in bringing 
humidity into the island and stimulating orographic rainfall 
over the mountains of PR.  Cold fronts dominate the 
weather pattern during wintertime. Tropical waves occur 
during the rainy season and frequently generate large 
amounts of rainfall in the Caribbean basin.  These tropical 
waves are typically the precursor of tropical storms and 
hurricanes from June to November.   

For these types of events, estimates of rainfall 
from instruments on geostationary platforms such as the 
Geostationary Operational Environmental Satellite 
(GOES) are preferred over microwave-based estimates of 
rainfall from Low-Earth-Orbiting (LEO) platforms 
because of the rapid refresh every 15 minutes over the 
Continental United States (CONUS) and nearby regions 
and very short data latency times of GOES data relative to 
low-Earth orbit data.  Numerous algorithms have been 
developed to estimate precipitation from GOES-based 
satellite data.  The current generation of algorithms 
produced at the National Oceanic and Atmospheric 
Administration (NOAA) National Environmental Satellite, 

Data and Information Service (NESDIS) are the Hydro-
Estimator (HE, [1]), GOES Multi-Spectral Rainfall 
Algorithm (GMSRA, [2]), and the Self-Calibrating 
Multivariate Precipitation Retrieval (SCaMPR, [3]).  The 
HE relies on GOES data from the infrared (IR) window 
channel (10.7 µm) with a fixed relationship to rainfall 
rates; similarly, Palmeira et al. [4] presented a self-
consistent algorithm for rainfall estimation based on 
GOES data plus lightning data in Brazil.  The GMSRA 
uses additional data from three other GOES channels and 
updates its calibration in real time based on matches with 
radar rain rates.  SCaMPR calibrates GOES IR parameters 
against passive microwave rain rates, which is an approach 
similar to Kidd et al. [5] and the Precipitation Estimation 
from Remotely Sensed Information using Artificial Neural 
Network (PERSIANN, [6]) algorithm.  PERSIANN uses 
the combined geostationary infrared and the Tropical 
Rainfall Measuring Mission (TRMM) microwave 
information to estimate rainfall rate in an hourly basis at 
spatial resolution of 0.25o.  Another algorithm called the 
CPC Morphing Algorithm (CMORPH, [7]) also combines 
IR data and microwave rain rates, but uses the IR data as 
the basis for interpolating the microwave rain rates in time 
between low-Earth orbit satellite overpasses. 

The HE, which will be the focus of this paper, also 
uses information from numerical whether prediction 
models to estimate rain rate [1].  Rainfall rates are adjusted 
upward or downward for moist or dry environments as 
indicated by National Centers for Environmental 
Prediction (NCEP) North American Model (NAM) or 
Global Forecast System (GFS) total column precipitable 
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water and mean-layer relative humidity for the lowest third 
of the model vertical domain.  Another adjustment 
enhances rainfall rates in regions where the convective 
equilibrium level temperature is relatively high; i.e., 
regions where very cold cloud tops are not 
thermodynamically possible but where strong updrafts and 
heavy rainfall can still occur.  Finally, low-level winds and 
digital topography are combined to produce enhancements 
of rainfall rates in upslope regions and reductions in 
downslope regions, using a technique described in Vicente 
et al. [8]. 

The HE has been the operational satellite rainfall 
algorithm of the National Environmental Satellite, Data, 
and Information Service (NESDIS) since 2002 and 
produces rainfall estimates at the full spatial and temporal 
resolution of GOES over the CONUS and surrounding 
regions, including PR; real-time estimates are also 
produced on an experimental basis for the rest of the 
globe.  However, validation of the Hydro-Estimator has 
generally focused on the CONUS (e.g., [1] and [9]) and 
has not been performed over Puerto Rico, and given the 
differences in topography and climate of Puerto Rico 
relative to the CONUS, previous validation efforts may not 
necessarily be relevant to users in PR.  Furthermore, 
validation of the HE over PR may illuminate opportunities 
to enhance the algorithm for application over PR. 

Validation of the rainfall retrieval algorithm 
consists of comparing the rainfall estimates with 
corresponding observations (rain gauges in this study).  
The accuracy of rainfall estimates can be measured by 
decomposing the rainfall process as sequences of discrete 
and continuous random variables; i.e., the presence or 
absence of rainfall events (discrete variable) and the 
amount of rainfall (continuous variable).  The occurrence 
of rainfall events in a given area and at a particular time 
follows a Bernoulli process and consequently the 
estimation accuracy of rainfall events can be conducted by 
analyzing a contingency table.  The typical scores that 
measure the accuracy of categorical forecasts are: hit rate 
(H), probability of detection (POD), false-alarm rate 
(FAR), and discrete bias (DB).  The continuous validation 
strategy consists of comparing the amount of rainfall that 
occurred at specific area in a particular time and the 
continuous measurements of accuracy are: mean absolute 
error (MAE), root mean squared error (RMSE), and 
continuous bias (CB).  

The second section of this paper describes the data 
collection process and source of information.  The third 
section describes the conventional statistical techniques to 
perform validation.  The fourth section presents validation 
results during heavy storms over PR, and includes a 
comparison for rain gauges versus HE and rain gauges 
versus NEXRAD.  The fifth section presents some 
strategies for algorithm improvements.  The sixth section 
presents some conclusions.  

2. Data collection 
Puerto Rico has a rain gauge network that collects rainfall 
measurements every 5, 10, 15, 30 or 45 minutes and 
includes 125 rain gauges with data available since January 
2000.  Since the majority of gauges collect rainfall every 
15 minutes a computer program was designed to derive 
HE and NEXRAD 15 minutes resolution.  The rain gauge 
data are used to perform validation of the HE and the 
NEXRAD.  The data set used for validation includes five 
heavy storms that have been impacted PR:  Three can be 
characterized as a cold front and two as tropical storms. 

NEXRAD data over Puerto Rico come from a 
WSR-88D unit located in Cayey (18.12°N, 66.08°W, 
886.63 m elevation).  The radar frequency is 2.7 GHz and 
the maximum horizontal range is 462.5 km, and the radar 
scans the entire island every 6 minutes.  The NOAA 
National Severe Storms Laboratory (NSSL) conducted a 
significant effort to make possible an affordable 
nationwide operational capture, distribution, and archiving 
of Level II NEXRAD data [10].  Unfortunately, for Puerto 
Rico the Level II data are available only until 2003 with a 
significant amount of missing data in that last year [11].  
The NWS did resume archiving level II data for PR during 
the summer of 2007.  On the other hand, Level III data for 
PR are available continuously since 2000 [12], so the 
Level III data were selected to perform validation since the 
most recent and catastrophic floods over PR occurred after 
2002.  The scanning angle for reflectivity data was 
selected as 0.5 degrees for this research in order to avoid 
beam overshoot over western PR.  Fig. 1 shows the 
location of the radar and the spatial distribution of the rain 
gauges.   

 

 
FIG. 1.  Location of rain gauges (stars) and NEXRAD 
(black dot on Region I) in PR.  Black dots in Region III are 
small and high resolution radar that will be used to derive 
the bias correction factor for NEXRAD.  The radii of the 
circles are 35 km and 90 km. 
 

As mentioned in the Introduction, the HE uses 
satellite IR window (10.7 µm) data and numerical whether 
prediction data to estimate rainfall over the CONUS and 
PR every 15 minutes at 4 km spatial resolution, and they 
are available for the entire period of interest.  In order to 
ensure consistency among these data sets during the 
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comparison, both the NEXRAD and HE rain rates were 
aggregated in time over the corresponding 15-minute 
accumulation period of the gauges.

3. Validation techniques
Validation of the rainfall retrieval algorithm consists of
comparing the rainfall estimates with observations over the 
same time and space.  The accuracy of rainfall estimates 
can be measured by decomposing the rainfall process into 
sequences of discrete and continuous random variables, 
i.e., the presence or absence of rainfall events and the 
amounts of rainfall.  The occurrence of rainfall events in a 
given area and at a particular time follows a Bernoulli 
process and consequently the estimation accuracy of 
rainfall events can be conducted by analyzing contingency
tables, bivariate probability distribution of rainfall events 
[13].  Table 1 shows the classical two-way contingency 
table.  

It is assumed that the values provided by the rain 
gauges are the “ground truth” while the HE and the 
NEXRAD provide estimated rainfall values.  The variable 
a in the contingency table is the number of times that the 
rain gauge identifies a rainfall event and the estimator also 
correctly identifies a rainfall event at the same time and 
space.  The variable d represents the number of times the 
rain gauge does not observe a rainfall event and the 
estimator correctly determines that there is no rainfall 
event.  The variable b indicates the number of times the 
rain gauge does not observe a rainfall event but the 
estimator incorrectly indicates that there is a rainfall event.  
The variable c shows the number of times that the rain 
gauge detects a rainfall event but the estimator incorrectly 
does not detect the rainfall event.  

TABLE 1.  Sample contingency table.

Observed rainfall 
(Rain gauge)
Yes No

Estimated rainfall
(HE or NEXRAD)

Yes a b
No c d

The typical scores that measure the accuracy of 
categorical estimation are:

on
da

H
da , where dcbano dcba (1)

ca
a

POD
c

                   (2)

ba
b

FAR
b

                      (3)

ca
ba

DB
c
ba

                       (4)

where H is the hit rate, POD is the probability of detection, 
FAR is the false-alarm rate, and DB is the discrete bias.  
Hit rate is the fraction of the on estimating occasions when 

the categorical estimation correctly determines the 
occurrence of rainfall event or nonevent.  Probability of 
detection is the likelihood that the event would be 
estimated, given that it occurred.  The false-alarm rate is 
the proportion of estimated rainfall events that fail to 
materialize.  Bias is the ratio of the number of estimated 
rainfall events to the number of observed events [13].

The continuous validation strategy consists of 
comparing the amount of rainfall that occurred with the 
estimated amount of rainfall at specific area in a particular 
time and the continuous accuracy scores used here are: 
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                (8)

where y and ŷ are the observed and estimated amount of 
rainfall.  The i and j subscripts represent time and space, 
respectively.  The constant n is the total number of time 
intervals for a given storm, and m is the number of rain 
gauges that are collecting rain during a storm.  The error e
is the deviation between the observed and estimated 
amount of rainfall at a particular time and space and is
computed only when at least one of y or ŷ is greater than 
zero.  MAE is the mean absolute error, RMSE the root 
mean squared error, and CB is the continuous bias.  

4. Validation results

4.1 Discrete validation
A contingency table was computed for each rain gauge 
during a given storm and the scores of those tables were 
summarized to create contingency tables for each storm for 
the HE and NEXRAD which are shown in Tables 2a) and 
2b) while the associated scores are given in Tables 3a) and 
3b).  The HE significantly underestimates the number of 
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raining pixels in the three April-May events (DB of 0.49 to 
0.52) but strongly overestimates the November-December 
events (DB of 1.54 and 2.15). The physical reasons behind 
this apparent strong seasonal variation in DB are not 
known at this time.  Meanwhile, the NEXRAD had a 
consistent dry bias (0.62-0.68) for the last four events but 
virtually no bias (1.02) for the first; again, it is not clear at 
this time what led to such a significant difference.  The hit 
rates of the HE range from 0.62 to 0.91 with an average of 
0.76 and NEXRAD has a range from 0.82 to 0.95 with 
average of 0.87.  Although, both HE and NEXRAD exhibit 
relatively high hit rate, the HE has a lower percentage of 
correct rain / no rain estimates than does the NEXRAD.  
The probability of detection of the HE ranges from 0.14 to 
0.57 with an average value of 0.36, whereas, the 
NEXRAD shows a range from 0.4 to 0.74 with an average 
of 0.52.  Thus, the HE correctly detected a smaller 
percentage of the observed rainfall events (36%) than did 
NEXRAD (52%) for these events.  The false alarm rate for 
the HE varies between 0.39 to 0.73 with an average value 
of 0.61, meanwhile the NEXRAD varies from 0.25 to 0.35 
with an average of 0.29.  Thus, the false alarm rate was 
actually higher for the HE (61%) than for NEXRAD 
(29%).  Thus, the discrete validation shows that the 
NEXRAD outperforms the HE in terms of correct rain / no 
rain estimates. 
 
TABLE 2. Contingency tables for (a) the Hydro-Estimator 
and (b) NEXRAD. 
 

a)  
17 April 2003 Rain Gauge 

Yes No 
Hydro-Estimator Yes 1105 699 

No 2603 6708 
 

19-21 May, 2003 Rain Gauge 
Yes No 

Hydro-Estimator Yes 331 875 
No 2000 30022 

 
11-18 November, 2003 Rain Gauge 

Yes No 
Hydro-Estimator Yes 10430 18719 

No 8465 47913 
 

5 December 2003 Rain Gauge 
Yes No 

Hydro-Estimator Yes 4882 13224 
No 3538 23167 

 
20 April 2005 Rain Gauge 

Yes No 
Hydro-Estimator Yes 310 395 

No 1039 8522 
 
 
 
 
 

b)  
17 April 2003 Rain Gauge 

Yes No 
NEXRAD Yes 2713 951 

No 1023 6311 
 

19-21 May, 2003 Rain Gauge 
Yes No 

NEXRAD Yes 1177 1149 
No 399 30386 

 
11-18 November 2003 Rain Gauge 

Yes No 
NEXRAD Yes 8922 9967 

No 3620 62901 
 

5 December 2003 Rain Gauge 
Yes No 

NEXRAD Yes 3392 5026 
No 1814 34462 

 
20 April 2005 Rain Gauge 

Yes No 
NEXRAD Yes 655 670 

No 240 8583 
 

 
TABLE 3. Discrete validation scores for the Hydro-
Estimator and NEXRAD. 
 
a) 17 

Apr.  
2003 

19-21 
May 
2003 

11-18 
Nov. 
2003 

5 Dec. 
2003 

20 
Apr. 
2005 

Avg. 

DB 0.49 0.52 1.54 2.15 0.52 1.04 
HR 0.70 0.91 0.68 0.62 0.86 0.76 
POD 0.30 0.14 0.55 0.57 0.23 0.36 
FAR 0.39 0.72 0.64 0.73 0.56 0.61 
 
b) 17 

Apr. 
2003 

19-21 
May 
2003 

11-18 
Nov. 
2003 

5 Dec. 
2003 

20 
Apr. 
2005 

Avg. 

DB 1.02 0.68 0.66 0.62 0.67 0.73 
HR 0.82 0.95 0.84 0.85 0.91 0.87 
POD 0.74 0.51 0.47 0.40 0.49 0.52 
FAR 0.27 0.25 0.29 0.35 0.27 0.29 

 

4.2 Continuous validation 
 
The accumulated rainfall across the island was computed 
to compare the observed and the estimated rainfall:  

  
              (9) 

 

where Yi is the total rainfall recorded by all 125 rain 
gauges across the island or the closest HE or radar pixels 
at the thi  time.   

 
Tables 4a) and 4b) show the continuous validation 

scores for HE and NEXRAD, respectively.  The 
continuous bias of the HE is even more variable than the 

12th WSEAS International  Conference on SYSTEMS, Heraklion, Greece, July 22-24, 2008  

ISBN: 978-960-6766-83-1 803 ISSN: 1790-2769



  
DB, with values ranging from 0.16-0.26 for the April-May 
storms and 1.68-2.42 for the November-December events.  
The lower CB relative to the DB for the April-May storms 
suggests that the HE is underestimating the conditional 
rainfall rates in addition to the spatial extent of the rainfall, 
while the opposite is happening for the November-
December events.  The NEXRAD has nearly no 
continuous bias for two storms and a strong dry bias for 
three (0.41-0.68), albeit with no apparent seasonal pattern 
like the HE.  As a result, both the mean absolute error and 
root mean squared error of the HE are also higher than that 
of NEXRAD.   
 
Table 4.  Continuous validation scores for the Hydro-
Estimator and NEXRAD. 
a) 17 

Apr.  
2003 

19-21 
May 
2003 

11-18 
Nov. 
2003 

5 
Dec. 
2003 

20 
Apr. 
2005 

Avg. 

CB 0.26 0.23 1.68 2.42 0.16 0.95 
MAE (mm) 1.33 0.74 1.10 0.86 0.79 0.96 
RMSE (mm) 2.73 2.10 2.24 1.93 1.71 2.14 

 
b) 17 

Apr.  
2003 

19-21 
May, 
2003 

11-18 
Nov. 
2003 

5 
Dec. 
2003 

20 
Apr. 
2005 

Avg. 

CB 1.02 0.68 0.41 0.42 1.01 0.71 
MAE (mm) 1.02 0.66 0.85 0.53 0.80 0.77 
RMSE (mm) 1.91 1.79 1.78 1.15 1.68 1.66 

 

5. Algorithm improvements 
 

5.1 Rainfall detection 
As stated previously, the HE uses GOES brightness 
temperatures (Tb) from channel 4 (10.7 µm) to 
discriminate raining from non-raining events [1].  During 
the validation exercise we noted that there are some warm-
top convective events that are not detected by the HE.  The 
HE generally produces little or no rainfall for brightness 
temperatures exceeding 235K; however, there are 
numerous events in PR where the HE largely failed to 
detect significant rainfall. For instance, Fig. 2 shows the 
observed accumulated rainfall for all gauges located in PR 
(red line) and the accumulated rainfall by the 
corresponding HE pixels (blue line) on November 14, 
2006.  The horizontal axes shows the time every 15 
minutes and the vertical axis exhibits the accumulated 
rainfall in mm.  Fig. 3 shows the distribution of brightness 
temperatures over the GOES pixels corresponding to 
gauge locations during this storm and there are few pixels 
below 235 K; a comparison with Fig. 2 indicates that the 
poor detection by the HE was at least in part because it 
was not calibrated to produce rainfall from relatively warm 
clouds.  In order to improve the detection skill of the HE, 
we plan to examine the differences in brightness 
temperature between 10.7 µm and the water vapor band 
(6.5 µm in GOES-12).  Positive values of the WV-infrared 
window temperature difference have been shown to 

correspond with convective cloud tops that are above the 
tropopause (i.e. overshooting tops), ([14 and [15]).  
Convective clouds with positive differences indicate the 
possibility of warm-top convection.  We will also explore 
the use of the reflected portion of the 3.9-µm GOES band 
2 during the daytime to indicate the presence large cloud-
top particles that suggest rain in warm-top clouds [2]. 

 
 

 
FIG. 2.  Comparison between observed and estimated 
accumulated rainfall (Nov. 14, 2006). 
 

 
FIG. 3.  GOES-12 brightness temperature from 
channel 4 (Nov. 14, 2006). 
 

5.2 Improving rain rate estimates 

The rainfall retrieval procedure of the HE is also mainly 
based on the relationship between the brightness 
temperature (10.7 µm) and observed rain rate.  Estimation 
of the amount of rainfall may be improved by classifying 
the brightness temperature patterns (BTP) with the 
corresponding rain formation processes.  The following 
channels will be used to classify the BTP with the 
corresponding rain process.  Channel 1 (0.65 µm) will be 
used to classify the events according to the cloud optical 
thickness.  The reflected portion of channel 2 (3.9 µm) 
during the daytime will be used as an indirect 
measurement of the cloud drop size distribution, 
thermodynamic phase, and particle shape [16].  Channel 4 
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(10.7 µm) will be used to classify the rainfall events 
according to temperature.  The infrared band differencing 
will also be used to develop the classification algorithm.  
The difference between the 10.7-µm brightness 
temperature and 3.9-µm will be useful to determine 
whether a cloud top is composed of liquid water or ice. As 
stated previously, the IR-WV difference (6.5–10.7 µm) is 
usually negative; however, convective clouds with positive 
differences have likely already begun to precipitate, 
especially in tropical atmospheres that support warm top 
convection.  The 13.3–10.7 µm differencing technique is 
used to characterize and delineate cumulus clouds.  This 
research will focus on convective clouds, and 
consequently, the factors to be consider for the 
classification of BTP and rain types are: area, depth, 
duration, and updraft velocity. 

A variable selection algorithm will be used to 
identify the variables that best explain the rainfall 
variability, and the selected variables will be used to 
develop the training patterns for a self-organized artificial 
neural network [17].  A self-organized artificial neural 
network will be used to identify a set of homogenous 
groups that reveal similarities within the member of a 
class, but different among the classes.  The Kohonen 
learning rule will be used to determining the optimal 
weights of the artificial neural network ([18], [19], and 
[20]).  A successful application was reported [21] to 
identify the spatial variability of soil to select the 
appropriate model to estimate soil moisture.  

 

6 Summary and conclusions 
The HE is a high resolution satellite rainfall retrieval 
algorithm run operationally by NOAA/NESDIS that 
provides estimates of rainfall every 15 minutes at 4-km 
resolution over the CONUS and nearby areas including 
PR.  (Global estimates are also produced in real time on an 
experimental basis.)  The rain rates are primarily derived 
from GOES 10.7-µm brightness temperatures and then 
adjusted using parameters derived from a numerical 
weather prediction model.  The HE estimates should be 
especially useful over regions of complex topography such 
as western PR because of the difficulties associated with 
radar in those regions such as beam block.  However, for 
the very small sample of heavy rainfall events examined in 
this paper, NEXRAD clearly outperforms the HE, perhaps 
in part because of most of the rainfall events were located 
in the central and eastern parts of the island where the 
radar data will be most reliable.  Specifically, the HE 
underestimates both the number of rainfall events and the 
amounts of rainfall, whereas NEXRAD is nearly unbiased 
in these respects.  The HE algorithm does exhibit a 
satisfactory hit rate, but a very low probability of detection 
and a large false alarm rate that is surprisingly higher than 
that of NEXRAD despite the dry bias of the HE.  A 
research effort is undergone to improve the performance of 

the HE for PR; specifically, the algorithm proposed by 
Ramirez-Beltran et al. [17] will be implemented to 
improve the HE rainfall detection and the equation that 
relates brightness temperatures with rain rates. 
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