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According to The United Nations Office of Disaster Risk Reduction, about 
7000 people lose their lives and nearly 100 million people are adversely 
affected by floods each year worldwide. Flooding occurs in almost every 
part of the world and is the result of extreme rainfall. As an example, 
30,000 people were killed from flooding in Venezuela in 1999. More than 
12,000 people were killed in China during floods that occurred in 1980, 
1996 and 1998; deaths from flooding exceeded 2600 people in Haiti dur-
ing 2004; 2379 died in Bangladesh in 1988; 2311 died in Somalia in 1997; 
and 2001 died in India in 1994. Severe flooding caused economic losses 
totaling $122.5 billion in China, Korea, United States, Germany and Italy 
between 1991 and 2003.The most expensive flood on record occurred in 
China in 1998 costing $30 billion.

Flooding occurs when the runoff produced from heavy rainfall result in 
stream flows that exceed the flow capacity of the stream. Water overflows 
the stream banks covering areas of land that are normally dry. In 1940, 
Robert Horton described the process of rainfall infiltration and runoff from 
land surfaces. His conceptual model consisted of infiltration, which drops 
exponentially during a rainfall event until it reaches the long-term infiltra-
tion capacity of the soil. Given a constant rainfall rate, a point in time is 
reached, after the start of rainfall, when the infiltration capacity of the soil 
drops below the rain rate, and this is when surface runoff begins. Various 
factors affect the infiltration capacity of the soil including soil characteris-
tics (texture, aggregation, bulk density, permeability, macropores, surface 
sealing, etc.), vegetation, antecedent moisture content, and other factors 
(e.g., land slope, air entrapment, surface roughness and temperature). 
Vegetation has a large influence on maintaining soil infiltration capacity. 
This is due in part to vegetation’s ability to absorb rainfall energy that 
would otherwise pulverize surface aggregates, rapidly leading to surface 
sealing. The percent of impermeable area on the watershed also plays an 
important role in the amount of runoff and the peak flow rate that occurs 
near the watershed outlet.

PREFACE 1 BY ERIC W. HARMSEN
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A flash flood is defined as a flood that is associated with a weather event 
lasting 6 h or less. Flash floods are common in the Tropics, where rain-
falls are associated with afternoon convective cloud development, often 
producing high intensity rainstorms that only last an hour or two. Other 
types of storms common to the Tropics are hurricanes, tropical waves and 
cold fronts originating in the upper latitudes. Rain cloud development can 
become amplified with the combination of sea breeze, convective, oro-
graphic and trade wind effects. In the coastal areas of tropical islands, it is 
not unusual to observe high intensity rainstorms. For example, at Camuy 
– Puerto Rico on November 24, 2015, a rainfall occurred that produced a 
storm total of 11.8 inches. For that location, the rainstorm corresponded 
with the 100-year return period (24-hour duration). Predicting extreme 
events like this one in time to issue a warning poses a particular challenge. 
The return period stated above was obtained from National Oceanic and 
Atmospheric Administration (NOAA) Atlas 14 – Precipitation – Frequency 
Atlas of the United States. Unfortunately during this century, documents 
such as this one will become less reliable as the frequency of extreme 
weather events increases due to global warming.

Flash flood warnings may call for an evacuation of an area, or pro-
vide guidance that a certain part of a city should be avoided, or that cer-
tain roads may be impassable. Flooding has been correlated with historic 
rainfall amounts. When a certain rainfall amount occurs, a warning can 
be issued, however, it may be too late to prevent loss of life and prop-
erty. Flood forecasting attempts to predict flood levels at some time in 
the future (e.g., 1 to 2 h).The U.S. National Weather Service (NWS) in 
San Juan, Puerto Rico, uses the Sacramento Soil Moisture Accounting 
model along with a quantitative precipitation forecast (QPF) to evaluate 
flood potential and to guide decisions related to issuing flood warnings. 
The duration and intensity of the rain have an important influence on the 
peak stream or river flow. Unfortunately, the QPF does not provide reli-
able information related to duration and intensity of rainfall. Therefore, 
the NWS may evaluate several scenarios, for example, all the rain is 
assumed to fall in one hour, rainfall is equally distributed in a 3 h period, 
or rainfall randomly spread within a 3 h period. Using this approach it 
is possible to determine the rainfall distribution that produces the worst 
flooding.

xx Preface 1 by Eric W. Harmsen
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To obtain high-resolution, site specific, event-specific flood infor-
mation, a physically based numerical hydrologic model can be used. 
However, this type of model introduces other challenges and uncertain-
ties. This book volume focuses on two detailed studies, which employed 
physically based hydrologic models. Despite the theoretical potential to 
obtain great accuracy with these models, much uncertainty may remain.

The Part I by Dr. Alejandra Rojas Gonzalez discusses flood prediction 
limitations in small watersheds with mountainous terrain and high rainfall 
variability. The hypothesis of the study is that it is possible to perform a 
small-scale, affordable model calibration, and then scale-up the param-
eters to a larger basin-scale model. Her study specifically addresses the 
following scientific questions: How is flow prediction affected by the spa-
tial variability of point rainfall at scales below that of the typical resolution 
of radar-based products? How does parameter and hydrological model 
resolution affect the model’s predictive capabilities and the errors of the 
hydrologic model? Would the assumptions developed for the small scale 
enhance the hydrologic predictability at larger scales?

Physically based hydrologic models can be given high-frequency input 
data and be run in near real-time. Unfortunately, there are occasions when 
real-time information does not provide enough time for the community to 
respond to a potentially dangerous situation. In this case a rainfall forecast 
must be made and continuously updated so that a flood prediction of one 
or two hours can be obtained. The study by Luz E. Torres Molina in Part 
II in this book volume describes the development of a stochastic model to 
forecast short-term rainfall for a tropical basin. The high-resolution rain-
fall data (≈ 100-m) was derived using the TropiNet radar system at the 
University of Puerto Rico, Mayaguez Campus, representing possibly the 
only study of its kind in a tropical environment. The predicted short-term 
rainfall data was input into a hydrologic model land flood inundation lev-
els were estimated at selected locations within the basin. Results of the 
rainfall and hydrologic forecasts are compared with observed data. The 
study also provides a prototype for a flood forecast alarm system.

It should be noted that the hydrologic model used in both studies 
described in the volume (Vflo) is limited to atmospheric, near-surface soil 
moisture, overland and stream flow processes, ignoring subsurface pro-
cesses. Subsurface processes include aquifer recharge, groundwater flow 

Preface 1 by Eric W. Harmsen xxi
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and storage, and groundwater discharge to streams, lakes and the ocean. 
Groundwater discharge to streams is known as stream base flow. Since 
most hydrologic models do not include the subsurface component, stream 
base flow must be estimated and may contribute to stream flow uncertainty. 
A fully integrated surface/subsurface hydrologic model explicitly calcu-
lates the stream base flow from the ground water discharge component. 
Although, not included in this volume, a preliminary study using a fully 
integrated surface/subsurface hydrologic model has been conducted for 
the same basin considered in the two chapters in this book. Interested read-
ers are encouraged to review the MS thesis of my former student Marcel 
Giovanni Prieto, Development of a Regional Integrated Hydrologic Model 
for a Tropical Watershed (M. G. Prieto, M.S. Thesis, 2007, Department of 
Civil Engineering and Surveying, University of Puerto Rico, Mayagüez 
Campus).

The purpose of this compendium is to contribute to a growing body 
of information about flood modeling in the Tropics. Some additional 
resources on the topic include: 

• Hydrologic Modeling of Land Processes in Puerto Rico Using 
Remotely Sensed Data by J. F. Cruise and R. L. Miller

• The Hydrology of the Humid Tropicsby E. Wohl et al.; Physically 
Based Distributed Hydrologic Modeling of Tropical Catchments: 
Hypothesis Testing on Model Formation and Runoff Generation by 
N. E. Abebe and F. L. Ogden

• Rainfall-Runoff Modeling in a Flashy Tropical Watershed Using 
the Distributed HL-RDHM model by A. Fares et al. 

• Development of a Regional Integrated Hydrologic Model for a 
Tropical Watershed by Marcel Giovanni Prieto-Castellanos 

• Application of a Hydrological Model in a Data-Poor Tropical West 
African Catchment: A Case Study of the Densu Basin of Ghana by 
E. O. Bekoe 

• Flooding Impacts and Modeling Challenges of Tropical Storms in 
Eastern Yemen by K. Root and T. H. Papakos

• Flood Prediction by Coupling KINEROS2 and HEC-RAS Models 
for Tropical Regions of Northern Vietnam by H. Q. Nguyen, et al. 
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 Other important books on the topic, not limited to tropical con-
ditions include: Hydrology and Flood Plain Analysis by P. B. 
Bedient, W. C. Huber and B. E. Vieux 

• Distributed Hydrologic Modeling Using GIS by B. E. Vieux 
and Weather Radar Information and Distributed Hydrological 
Modeling by Y. Tachikawa and B. E. Viuex.

I wish to extend my appreciation to the chapter authors who were 
advised by me during their PhD projects. Dr. Alejandra Rojas Gonzalez 
is currently an Assistant Professor in the Agricultural Engineering 
Department at the University of Costa Rica, and Dr. Luz Torres Molina 
is an Assistant Professor in the Department of Civil Engineering at the 
University of Turabo in Puerto Rico. I would also like to acknowledge the 
NOAA-CREST project (grant # NA11SEC4810004), which provided par-
tial financial support for some of the research reported in the chapters and 
my participation on this book project. I especially would like to thank my 
colleague, Dr. Megh Raj Goyal, who assisted with the creation and editing 
of this book. Thanks also to the publishing staff at Apple Academic Press.

This book is dedicated to my dear, late brother Rick Harmsen, whose 
wise example guides me every day. The Bahá’í sacred Writings state: “The 
progress of man’s spirit in the divine world, after the severance of its con-
nection with the body of dust, is through the bounty and grace of the Lord 
alone, or through the intercession and the sincere prayers of other human 
souls, or through the charities and important good works which are per-
formed in its name.” It is with this hope that I dedicate this work to my 
brother Rick.

The chapter authors and I are hopeful that this book volume will assist 
future researcher and practitioners in the field of flood modeling during the 
coming years, as they undoubtedly will face the challenge of increasing 
extreme weather events caused by a warming climate.

—Eric W. Harmsen, PhD

Preface 1 by Eric W. Harmsen xxiii
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According to https: //en.wikipedia.org/wiki/Flood, a flood is “an overflow 
of water that submerges land which is usually dry. The European Union 
(EU) Floods Directive defines a flood as a covering by water of land not 
normally covered by water. In the sense of ‘flowing water’, the word may 
also be applied to the inflow of the tide. Flooding may occur as an over-
flow of water from water bodies, such as a river or lake, in which the water 
overtops or breaks levees, resulting in some of that water escaping its 
usual boundaries, or it may occur due to an accumulation of rainwater on 
saturated ground in an areal flood. While the size of a lake or other body 
of water will vary with seasonal changes in precipitation and snow melt, 
these changes in size are unlikely to be considered significant unless they 
flood property or drown domestic animals. Floods can also occur in riv-
ers when the flow rate exceeds the capacity of the river channel, particu-
larly at bends or meanders in the waterway. Floods often cause damage 
to homes and businesses if they are in the natural flood plains of rivers. 
While riverine flood damage can be eliminated by moving away from riv-
ers and other bodies of water, people have traditionally lived and worked 
by rivers because the land is usually flat and fertile and because rivers 
provide easy travel and access to commerce and industry. Some floods 
develop slowly, while others such as flash floods, can develop in just a 
few minutes and without visible signs of rain. Additionally, floods can be 
local, impacting a neighborhood or community, or very large, affecting 
entire river basins.”

In general, we do not like floods because of their negative impacts 
on our daily life. “Ferdinand Quinones and Karl G. Johnson, 1987. The 
Floods of May 17–18, 1985 and October 6–7, 1985 in Puerto Rico. US 
Geological Survey Open-file Report 87–123.U.S. Geological Survey 
Books and Open-File Reports Federal Center” indicates that “During 
1985, severe floods occurred twice throughout Puerto Rico resulting in 
significant losses in life and property. The first event occurred during 
May 15–19, when a low-pressure system resulted in precipitation totals 

PREFACE 2 BY MEGH R. GOYAL
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xxvi Preface 2 by Megh R. Goyal

exceeding 14 inches throughout most of south-central and eastern Puerto 
Rico. A second event was produced by a tropical depression that affected 
south-central Puerto Rico during October 6–7. Landslides and collapses 
of several key bridges during the October floods resulted in the death of 
as many as 170 people. Property losses from both floods were estimated at 
about 162 million dollars. A nearly stationary tropical depression affected 
Puerto Rico during October 6–7, 1985, resulting in 24-hour precipitation 
totals of as much as 23 inches and severe floods along the south-central 
coastal areas. The floods of October 6–7, 1985, affected mostly rural areas 
in southern Puerto Rico, but caused significant loss of life and widespread 
property damages. Landslides near Ponce, the collapse of a bridge at Rio 
Coamo, and the destruction of homes near Ponce resulted in about 170 
fatalities and more than 125 million dollars in damages. Flooding was 
also severe at Barceloneta on the north coast. Recurrence intervals equal 
to or greater than 100 years were estimated for peak discharges at several 
index stations”. 

I am an eyewitness of the second flood on October 6–7 of 1985 in 
Ponce. The flood level was almost 2.5 feet inside our home, and we were 
rescued to a higher elevated area. We lost almost all our property worth 
$20,000, and my family was shocked. I like to share with the readers the 
thoughts from “Gleanings from the Writings of Baha’u’llah, Bahá’í Pub, 
2005”: “For every one of you his paramount duty is to choose for himself 
that on which no other may infringe and none usurp from him. Such a thing 
– and to this the Almighty is my witness – is the love of God, could ye but 
perceive it. Build ye for yourselves such houses as the rain and floods can 
never destroy, which shall protect you from the changes and chances of 
this life. This is the instruction of Him Whom the world hath wronged and 
forsaken.” Was my home not properly built?

The mission of this book volume is to serve as a reference manual for 
graduate and undergraduate students of agricultural, biological and civil 
engineering; as well as those in horticulture, soil science, crop science 
and agronomy. I hope that it will be a valuable reference for professionals 
who work with flood management; and for professional training institutes, 
technical agricultural centers, irrigation centers, Agricultural Extension 
Service, and other agencies.
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Preface 2 by Megh R. Goyal xxvii

At the 49th annual meeting of the Indian Society of Agricultural staff 
Engineers at Punjab Agricultural University during February 22–25 of 
2015, a group of ABEs convinced me that there is a dire need to pub-
lish book volumes on focus areas of agricultural and biological engineer-
ing (ABE).This is how the idea was born for a new book series titled 
“Innovations in Agricultural & Biological Engineering.”

My longtime colleague, Dr. Eric W. Harmsen, joins me as a Lead Editor 
of this volume. Dr. Harmsen holds exceptional professional qualities with 
his expertise in agricultural hydrology during the last 35 years, in addition 
his role as research scientist at the University of Puerto Rico – Mayaguez 
Campus. His generous offer and contributions by his students, Alejandra 
Rojas-Gonzalez and Luz E. Torres-Molina, to the contents and quality of 
this book have been invaluable. 

Abdu’l-Baha in the book The Chosen Highway, Lady Blomfield, 
George Ronald Pub Ltd (2007)” righty describes our cooperation in His 
holy words as “those who work singly are as drops, but, when united, 
they will become a vast river carrying the cleansing water of life into the 
barren desert places of the world. Before the power of its rushing flood, 
neither misery, nor sorrow, nor any grief will be able to stand. Be united!”

We would like to thank editorial staff, Sandy Jones Sickels, Vice 
President, and Ashish Kumar, Publisher and President at Apple Academic 
Press, Inc., for making every effort to publish the book when the diminish-
ing water resources are a major issue worldwide. Special thanks are due to 
the AAP Production Staff for typesetting. 

We request that readers offer us your constructive suggestions that may 
help to improve the next edition. The reader can order a copy of this book 
for the library, the institute or for a gift from “http://appleacademicpress.
com.”

Our Almighty God, owner of natural resources, must be very happy 
on publication of this book. As an educator, there is a piece of advice to 
one and all in the world: “Permit that our almighty God, our Creator and 
excellent Teacher, help us to solve and manage problems in flood manage-
ment with His Grace.”

—Megh R. Goyal, PhD, PE
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PLEASE READ CAREFULLY

The goal of this book volume on Flood Assessment: Modeling and 
Parameterization is to present challenges, issues and new technologies. 
The editors, the contributing authors, the publisher and the printer have 
made every effort to make this book as accurate as possible. However, 
there still may be grammatical errors or mistakes in the content or typogra-
phy. Therefore, the contents in this book should be considered as a general 
guide and not a complete solution to address any specific situation.

The editors, the contributing authors, the publisher and the printer shall 
have neither liability nor responsibility to any person, any organization 
or entity with respect to any loss or damage caused, or alleged to have 
caused, directly or indirectly, by information or advice contained in this 
book. Therefore, the purchaser/reader must assume full responsibility for 
the use of the book or the information therein.

The mention of commercial brands and trade names are only for techni-
cal purposes. It does not mean that a particular product is endorsed over to 
another product or equipment not mentioned. Author, cooperating authors, 
educational institutions, and the publisher Apple Academic Press Inc. do 
not have any preference for a particular product.

All weblinks that are mentioned in this book were active on December 
31, 2016. The editors, the contributing authors, the publisher and the print-
ing company shall have neither liability nor responsibility, if any of the 
weblink is inactive at the time of reading of this book.

WARNING/DISCLAIMER
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Eric W. Harmsen, PhD
Professor, Department of Agricultural and 
Biosystems Engineering, University of Puerto Rico –  
Mayaguez – Campus Mayaguez, Puerto Rico

Dr. Eric W. Harmsen obtained his BS and MS 
degrees in Agricultural Engineering from Michigan 

State University, PhD degree from University of Wisconsin-Madison, 
and performed a Post-doctoral study at North Carolina State University. 
Currently, he is a Professor in the Department of Agricultural and 
Biosystems Engineering, University of Puerto Rico, Mayaguez Campus. 
He teaches courses in agricultural hydrology, agroclimatology, and irri-
gation. His professional interests include measurement and modeling all 
components of the hydrologic cycle; remote sensing of water and energy 
budgets in the tropics; and hydrology, irrigation, and agroclimatology. Dr. 
Harmsen maintains a website, which provides daily operational water and 
energy balance components as well as soil and water parameters related to 
drought and crop health in Puerto Rico (http://www.pragwater.com).

Dr. Harmsen’s publications cover a wide range of topics, including 
numerical simulation and field measurement of rainfall, evapotranspira-
tion, surface runoff, aquifer recharge, soil moisture, weather-related vari-
ables, and groundwater and vadose zone processes. He co-edited the book 
Evapotranspiration: Principles and Applications for Water Management, 
has published 5 book chapters, 28 peer-reviewed journal articles, and 41 
conference proceedings. Readers may contact him at: eric.harmsen@upr.
edu, harmsen1000@gmail.com.
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Megh R Goyal, PhD, PE
Retired Professor in Agricultural and Biomedical 
Engineering, University of Puerto Rico,  
Mayaguez Campus Senior Acquisitions Editor, 
Biomedical Engineering and Agricultural Science, 
Apple Academic Press, Inc.

Megh R. Goyal, PhD, PE, is a Retired Professor in Agricultural and 
Biomedical Engineering from the General Engineering Department in the 
College of Engineering at University of Puerto Rico–Mayaguez Campus; 
and Senior Acquisitions Editor and Senior Technical Editor-in-Chief in 
Agriculture and Biomedical Engineering for Apple Academic Press Inc. 

He has worked as a Soil Conservation Inspector and as a Research 
Assistant at Haryana Agricultural University and Ohio State University. 
He was the first agricultural engineer to receive the professional license 
in Agricultural Engineering in 1986 from the College of Engineers and 
Surveyors of Puerto Rico. On September 16, 2005, he was proclaimed 
as “Father of Irrigation Engineering in Puerto Rico for the twentieth cen-
tury” by the ASABE, Puerto Rico Section, for his pioneering work on 
micro irrigation, evapotranspiration, agroclimatology, and soil and water 
engineering. During his professional career of 45 years, he has received 
many prestigious awards. A prolific author and editor, he has written more 
than 200 journal articles and textbooks and has edited over 50 books. 
He received his BSc degree in engineering from Punjab Agricultural 
University, Ludhiana, India; his MSc and PhD degrees from Ohio State 
University, Columbus; and his Master of Divinity degree from Puerto 
Rico Evangelical Seminary, Hato Rey, Puerto Rico, USA. Readers may 
contact him at: goyalmegh@gmail.com.
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ABOUT THE AUTHORS

Luz E. Torres Molina, PhD
Assistant Professor, Dept. of Civil Engineering, 
School of Engineering, Universidad del Turabo, 
Gurabo, Puerto Rico

Dr. Torres-Molina has a BS degree in Civil 
Engineering from the Universidad Industrial de 
Santander (Colombia). Between 2002 and 2004 she 

obtained an MS degree in Environmental and Water Resources (University 
of Puerto Rico),working with flood waters in compound channels. In 2005, 
she began working as a consulting engineer in water resources: water 
distribution lines, water resources design and technical analysis, several 
designs for flood control, river regulation, erosion and sediment control 
analysis, water/sewer system analysis, ground water, drainage, and scour 
analysis, with CA Engineering and CMA Architects & Engineers. In 2014 
she completed her PhD studies in the Dept. of Civil and Environmental 
Engineeringat the University of Puerto Rico-Mayaguez Campus. Since 
2015 she has been working as anassistant professor in the Department of 
Civil Engineering at the Universidad del Turabo in Puerto Rico.

Alejandra M. Rojas González, PhD
Associate Professor, Department of Biosystems 
Engineering, University of Costa Rica, Rodrigo 
Facio Campus, San José, Costa Rica

Dr. Alejandra M. Rojas obtained her BS degree in 
Agricultural Engineering from the University of 
Costa Rica, and her Master and PhD degrees in Civil 

Engineering from the University of Puerto Rico-Mayaguez. Currently, she 
is Associate Professor in the Department of Biosystems Engineering at the 
University of Costa Rica, Rodrigo Facio Campus. She teaches courses in 
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applied hydrology, geographical information systems, and remote sensing 
applications. Her professional interests include measurement and model-
ing of all components of hydrological cycle, remote sensing of water, inte-
grated water resources management, hydraulics modeling, and flood risk 
reduction.

Dr. Rojas has conducted research in flood risk reduction in areas with 
high rainfall intensities, and shehas been developing research with Costa 
Rican institutions to improve the management of water resources and 
water quality in systems impacted by droughts.

About the Authors xxxiv
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Management of Drip/Trickle or Micro Irrigation
Megh R. Goyal, PhD, PE, Senior Editor-in-Chief

Evapotranspiration: Principles and Applications for Water 
Management
Megh R. Goyal, PhD, PE, and Eric W. Harmsen, Editors

Book Series: Research Advances in Sustainable Micro Irrigation
Senior Editor-in-Chief: Megh R. Goyal, PhD, PE
 Volume 1:   Sustainable Micro Irrigation: Principles and Practices
 Volume 2:    Sustainable Practices in Surface and Subsurface Micro 

Irrigation
 Volume 3:    Sustainable Micro Irrigation Management for Trees and 

Vines
 Volume 4:    Management, Performance, and Applications of Micro 

Irrigation Systems
 Volume 5:    Applications of Furrow and Micro Irrigation in Arid and 

Semi-Arid Regions
 Volume 6:   Best Management Practices for Drip Irrigated Crops
 Volume 7:    Closed Circuit Micro Irrigation Design: Theory and 

Applications
 Volume 8:    Wastewater Management for Irrigation: Principles and 

Practices
 Volume 9:   Water and Fertigation Management in Micro Irrigation
 Volume 10: Innovation in Micro Irrigation Technology

Book Series: Innovations and Challenges in Micro Irrigation
Senior Editor-in-Chief: Megh R. Goyal, PhD, PE

OTHER BOOKS ON AGRICULTURAL 
AND BIOLOGICAL ENGINEERING BY 
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Other Books on Agricultural and Biological Engineering xxxvi

Volume 1:  Principles and Management of Clogging in Micro Irrigation
Volume 2:  Sustainable Micro Irrigation Design Systems for Agricultural 

Crops: Methods and Practices
Volume 3:  Performance Evaluation of Micro Irrigation Management: 

Principles and Practices
Volume 4:  Potential Use of Solar Energy and Emerging Technologies in 

Micro Irrigation
Volume 5:  Micro Irrigation Management: Technological Advances and 

Their Applications
Volume 6:  Micro Irrigation Engineering for Horticultural Crops: Policy 

Options, Scheduling, and Design
Volume 7: Micro Irrigation Scheduling and Practices
Volume 8:  Engineering Interventions in Sustainable Trickle Irrigation: 

Water Requirements, Uniformity, Fertigation, and Crop 
Performance

Book Series: Innovations in Agricultural and Biological Engineering
Senior Editor-in-Chief: Megh R. Goyal, PhD, PE
• Dairy Engineering: Advanced Technologies and their Applications
•  Developing Technologies in Food Science: Status, Applications, and 

Challenges
• Emerging Technologies in Agricultural Engineering
• Engineering Interventions in Agricultural Processing
•  Engineering Practices for Agricultural Production and Water 

Conservation: An Interdisciplinary Approach
• Flood Assessment: Modeling and Parameterization
• Food Engineering: Modeling, Emerging Issues and Applications.
•  Food Process Engineering: Emerging Trends in Research and Their 

Applications
• Food Technology: Applied Research and Production Techniques
• Modeling Methods and Practices in Soil and Water Engineering
•  Processing Technologies for Milk and Milk Products: Methods, 

Applications, and Energy Usage
• Soil and Water Engineering: Principles and Applications of Modeling
•  Soil Salinity Management in Agriculture: Technological Advances 

and Applications
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Other Books on Agricultural and Biological Engineering xxxvii

• Technological Interventions in Management of Irrigated Agriculture
• Technological Interventions in the Processing of Fruits and Vegetables
• State-of-the-Art Technologies in Food Science
• Sustainable Biological Systems for Agriculture
•  Novel Dairy Processing Technologies: Techniques, Management, and 

Energy Conservation
•  Technological Interventions in Dairy Science: Innovative Approaches 

in Processing, Preservation, and Analysis of Milk Products
• Engineering Interventions in Foods and Plants
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Apple Academic Press, Inc., (AAP) is publishing book volumes in the 
specialty areas as part of Innovations in Agricultural and Biological 
Engineering book series, over a span of 8 to 10 years. These specialty areas 
have been defined by American Society of Agricultural and Biological 
Engineers (http://asabe.org).

The mission of this series is to provide knowledge and techniques for 
Agricultural and Biological Engineers (ABEs). The series aims to offer 
high-quality reference and academic content in Agricultural and Biological 
Engineering (ABE) that is accessible to academicians, researchers, sci-
entists, university faculty, and university-level students and profession-
als around the world. The following material has been edited/modified 
and reproduced below “Goyal, Megh R., 2006. Agricultural and biomedi-
cal engineering: Scope and opportunities. Paper Edu_47 at the Fourth 
LACCEI International Latin American and Caribbean Conference for 
Engineering and Technology (LACCEI’ 2006): Breaking Frontiers and 
Barriers in Engineering: Education and Research by LACCEI University 
of Puerto Rico – Mayaguez Campus, Mayaguez, Puerto Rico, June 21–23.”

WHAT IS AGRICULTURAL AND BIOLOGICAL ENGINEERING 
(ABE)?

“Agricultural Engineering (AE) involves application of engineering to 
production, processing, preservation and handling of food, fiber, and shel-
ter. It also includes transfer of technology for the development and welfare 
of rural communities,” according to http://isae.in.” ABE is the discipline 
of engineering that applies engineering principles and the fundamental 
concepts of biology to agricultural and biological systems and tools, for 
the safe, efficient and environmentally sensitive production, processing, 
and management of agricultural, biological, food, and natural resources 
systems,” according to http://asabe.org. “AE is the branch of engineering 

EDITORIAL
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involved with the design of farm machinery, with soil management, land 
development, and mechanization and automation of livestock farming, 
and with the efficient planting, harvesting, storage, and processing of 
farm commodities,” definition by: http://dictionary.reference.com/browse/
agricultural+engineering.

“AE incorporates many science disciplines and technology practices 
to the efficient production and processing of food, feed, fiber and fuels. It 
involves disciplines like mechanical engineering (agricultural machinery 
and automated machine systems), soil science (crop nutrient and fertiliza-
tion, etc.), environmental sciences (drainage and irrigation), plant biology 
(seeding and plant growth management), animal science (farm animals 
and housing) etc.,” by: http://www.ABE.ncsu.edu/academic/agricultural-
engineering.php.

“According to https: //en.wikipedia.org/wiki/Biological_engineering: 
“BE (Biological engineering) is a science-based discipline that applies 
concepts and methods of biology to solve real-world problems related to 
the life sciences or the application thereof. In this context, while tradi-
tional engineering applies physical and mathematical sciences to analyze, 
design and manufacture inanimate tools, structures and processes, bio-
logical engineering uses biology to study and advance applications of liv-
ing systems.”

SPECIALTY AREAS OF ABE

Agricultural and Biological Engineers (ABEs) ensure that the world has 
the necessities of life including safe and plentiful food, clean air and water, 
renewable fuel and energy, safe working conditions, and a healthy envi-
ronment by employing knowledge and expertise of sciences, both pure 
and applied, and engineering principles. Biological engineering applies 
engineering practices to problems and opportunities presented by living 
things and the natural environment in agriculture. BA engineers under-
stand the interrelationships between technology and living systems, have 
available a wide variety of employment options. “ABE embraces a vari-
ety of following specialty areas,” http://asabe.org. As new technology and 
information emerge, specialty areas are created, and many overlap with 
one or more other areas.

xxxix Editorial

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



1. Aquacultural Engineering: ABEs help design farm systems for 
raising fish and shellfish, as well as ornamental and bait fish. They 
specialize in water quality, biotechnology, machinery, natural 
resources, feeding and ventilation systems, and sanitation. They 

Editorial xl
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seek ways to reduce pollution from aquacultural discharges, to 
reduce excess water use, and to improve farm systems. They also 
work with aquatic animal harvesting, sorting, and processing.

2. Biological Engineering applies engineering practices to prob-
lems and opportunities presented by living things and the natural 
environment.

3. Energy: ABEs identify and develop viable energy sources – bio-
mass, methane, and vegetable oil, to name a few – and to make 
these and other systems cleaner and more efficient. These special-
ists also develop energy conservation strategies to reduce costs and 
protect the environment, and they design traditional and alternative 
energy systems to meet the needs of agricultural operations.

4. Farm Machinery and Power Engineering: ABEs in this specialty 
focus on designing advanced equipment, making it more efficient 
and less demanding of our natural resources. They develop equip-
ment for food processing, highly precise crop spraying, agricultural 
commodity and waste transport, and turf and landscape mainte-
nance, as well as equipment for such specialized tasks as removing 
seaweed from beaches. This is in addition to the tractors, tillage 
equipment, irrigation equipment, and harvest equipment that have 
done so much to reduce the drudgery of farming.

5. Food and Process Engineering: Food and process engineers 
combine design expertise with manufacturing methods to develop 
economical and responsible processing solutions for industry. Also 
food and process engineers look for ways to reduce waste by devis-
ing alternatives for treatment, disposal and utilization.

6. Forest Engineering: ABEs apply engineering to solve natural 
resource and environment problems in forest production systems 
and related manufacturing industries. Engineering skills and exper-
tise are needed to address problems related to equipment design 
and manufacturing, forest access systems design and construction; 
machine-soil interaction and erosion control; forest operations 
analysis and improvement; decision modeling; and wood product 
design and manufacturing.

7. Information and Electrical Technologies Engineering is one of 
the most versatile areas of the ABE specialty areas, because it is 

xli Editorial
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applied to virtually all the others, from machinery design to soil 
testing to food quality and safety control. Geographic information 
systems, global positioning systems, machine instrumentation and 
controls, electromagnetics, bioinformatics, biorobotics, machine 
vision, sensors, spectroscopy: These are some of the exciting 
information and electrical technologies being used today and being 
developed for the future.

8. Natural Resources: ABEs with environmental expertise work to 
better understand the complex mechanics of these resources, so 
that they can be used efficiently and without degradation. ABEs 
determine crop water requirements and design irrigation systems. 
They are experts in agricultural hydrology principles, such as con-
trolling drainage, and they implement ways to control soil erosion 
and study the environmental effects of sediment on stream quality. 
Natural resources engineers design, build, operate and maintain 
water control structures for reservoirs, floodways and channels. 
They also work on water treatment systems, wetlands protection, 
and other water issues.

9. Nursery and Greenhouse Engineering: In many ways, nursery 
and greenhouse operations are microcosms of large-scale produc-
tion agriculture, with many similar needs – irrigation, mechaniza-
tion, disease and pest control, and nutrient application. However, 
other engineering needs also present themselves in nursery and 
greenhouse operations: equipment for transplantation; control sys-
tems for temperature, humidity, and ventilation; and plant biology 
issues, such as hydroponics, tissue culture, and seedling propaga-
tion methods. And sometimes the challenges are extraterrestrial: 
ABEs at NASA are designing greenhouse systems to support a 
manned expedition to Mars!

10. Safety and Health: ABEs analyze health and injury data, the use 
and possible misuse of machines, and equipment compliance with 
standards and regulation. They constantly look for ways in which 
the safety of equipment, materials and agricultural practices can 
be improved and for ways in which safety and health issues can be 
communicated to the public.

Editorial xlii
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11. Structures and Environment: ABEs with expertise in structures 
and environment design animal housing, storage structures, and 
greenhouses, with ventilation systems, temperature and humidity 
controls, and structural strength appropriate for their climate and 
purpose. They also devise better practices and systems for storing, 
recovering, reusing, and transporting waste products.

CAREER IN AGRICULTURAL AND BIOLOGICAL ENGINEERING

One will find that university ABE programs have many names, such as 
biological systems engineering, bioresource engineering, environmen-
tal engineering, forest engineering, or food and process engineering. 
Whatever the title, the typical curriculum begins with courses in writing, 
social sciences, and economics, along with mathematics (calculus and 
statistics), chemistry, physics, and biology. Student gains a fundamental 
knowledge of the life sciences and how biological systems interact with 
their environment. One also takes engineering courses, such as thermo-
dynamics, mechanics, instrumentation and controls, electronics and elec-
trical circuits, and engineering design. Then student adds courses related 
to particular interests, perhaps including mechanization, soil and water 
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PART I

FLOOD PREDICTION LIMITATIONS 
IN SMALL WATERSHEDS
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CHAPTER 1

FLOOD PREDICTION LIMITATIONS 
IN SMALL WATERSHEDS: 
INTRODUCTION1,2

ALEJANDRA M. ROJAS-GONZÁLEZ

1 This chapter is an edited version from Alejandra María Rojas González, 2012. Flood prediction 
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished 
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico – Mayagüez 
Campus.
2 Numbers in brackets refer to the references at the end of this book.

CONTENTS

1.1 Introduction ...................................................................................... 3
1.2 Justification ...................................................................................... 7
1.3 Research Questions .......................................................................... 7
1.4 Objectives ...................................................................................... 10
1.5 Summary .........................................................................................11

1.1 INTRODUCTION

Due to the complex terrain and the tropical climate influence, Puerto Rico 
is characterized by small watersheds, high rainfall intensity and spatial 
variability. The rainfall anomalies are produced by tropical waves, low 
pressure depressions, tropical storms, and hurricanes capable of producing 
flash flood in susceptible areas. As part of the model configuration, rainfall A
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4 Flood Assessment: Modeling and Parameterization

must be distributed over the model domain. Different theoretical methods 
are available to spatially distribute rainfall over a watershed. However, 
there is not typically enough rain gauge density to calculate the associated 
bias, and to obtain spatial variability of point rainfall at scales below the 
typical resolution of the radar-based products (2 × 2 km2), archived with 
the Next Generation Radar (NEXRAD) level 3.

New emerging radar technologies are being developed by the Student 
Test Bed of the Center for Collaborative Adaptive Sensing of the 
Atmosphere [22] in Puerto Rico and will be available for flash flood pre-
dictions. This new radar technology promises to revolutionize the way 
rainfall is detected, monitored and predicted, creating a dense sensor 
network of low-powered radars that overcome curvature blockage and 
significantly enhance resolution. This network will monitor the lower 
atmosphere where the principal atmospheric phenomena occur. The first 
step in the technology development has been the PR-1 radar located at the 
roof top of the Stefani building at University of Puerto Rico, Mayagüez 
Campus. The PR-1 radar is marine radar adapted to sense reflectivity with 
an average pixel size of 150 m and the maximum coverage range of 25 km.

An important step for the hydrologic community and Puerto Rico in 
general will be the use of these advanced technologies as input to real-
time flash flood prediction systems. Real-time flash flood estimates can 
allow decision makers to implement emergency plans only when it is nec-
essary, since unnecessary preparations and evacuations are very costly. 
The technique also allows decision makers to better focus the emergency 
measures due to variable rainfall patterns. Since in the tropical region the 
locations, where flood waters concentrate, tend to vary in time and space. 
Rain gauge density is generally not sufficient to capture spatial variability 
at the NEXRAD radar subpixel scale and the new radar technology will 
help to fill gaps between rain gauges. Some methods for removing the sys-
tematic bias between radar and rain gauges are applied today. However, it 
is not known how much the intrinsic error due to spatial variability at the 
radar subpixel scale limits the reliability of the data for use in hydrologic 
models. Some scientific questions arise where complex terrain and clima-
tological conditions increase the spatially dependent bias.

How does rainfall spatial distribution affect the hydrologic response 
in small sub watersheds? How can adjustments be made to radar rainfall 
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Flood Prediction Limitations in Small Watersheds 5

estimates when there are not sufficient numbers of rain gauges within the 
network? Under these conditions, how can we produce reliable hydrologic 
estimates in small areas where high spatial variability exists? These ques-
tions are essential when using fully physics-based distributed hydrologic 
models, because the goal of their use is to produce accurate flood predic-
tions at any location upstream of the watershed outlet.

Few studies have been conducted in Puerto Rico to forecast real-time 
rainfall and runoff. In 1996, the US Geological Survey (USGS) developed 
a real time rainfall runoff simulation for Carraízo reservoir basin allow-
ing the estimation of water volumes at the reservoir from the rainfall and 
discharge data that is being obtained from the network stations inside the 
basin [94].

The National Weather Service (NWS) establishes Flash Flood 
Guidance estimates in real time based on the Sacramento soil moisture 
accounting model. Flash Flood Guidance is performed by region or River 
Forecast Center, and Puerto Rico belongs to the South-east River Forecast 
Center. The analysis allows for the development of the curves that relate 
threshold runoff to flash flooding of a given duration as a function of soil 
moisture deficit [36, 81, 97, 101]. Vieux and Vieux [135] tested a physics-
based distributed model in the Loíza basin of Puerto Rico. A long-term and 
event-based simulation was conducted to calibrate the streamflow volume. 
The soil moisture values calculated in the long-term model were fed back 
into the event-based simulation to enhance the calibration for several indi-
vidual storm events. A sensitivity analysis to initial soil moisture showed 
some persistence in antecedent soil conditions, with about one year of 
warm up the model to obtain stable results.

To establish a flood alarm system in Puerto Rico, first it is impera-
tive to know how the watershed behaves under different environmental 
conditions, parameter spatial variability, input aggregation and associ-
ated biases and how these differences are propagated to the solution. This 
knowledge enhances the forecast skills using distributed models such as: 
Wechsler [137]; Vieux et al. [127], Viglione et al. [134], Müller et al. [70], 
and Bloschl et al. [17].

Hydrologic parameters play an important role in the hydrologic predic-
tion where high slope exist, and where soil as well as land use characteris-
tics change over short distances. Hydrologic models average the hydrologic 
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6 Flood Assessment: Modeling and Parameterization

parameters and topographic characteristics in lumped, semidistributed and 
distributed models to simplify or reduce computational time. In addition, 
calibrations are usually limited to the watershed outlet, hence, not produc-
ing accurate flood prediction within the subwatershed’s internal outlets.

Loss of accuracy occurs in flood prediction with topographic and 
parameters aggregation, however, how much loss of accuracy can we 
expect? Limited number of studies have evaluated the effects of grid size 
on basin response and the prediction of discharge in tropical environments 
and complex topography [18, 95, 118, 137, 139]. Therefore, the research 
in this chapter will investigate these aspects as they are related to model 
calibration and flood prediction.

The hydrologic model used in this research is VfloTM (for convenience 
in this dissertation VfloTM will be referred to as Vflo), a fully distributed 
hydrologic model [118, 124–126]. Vflo uses the finite element numerical 
method to resolve overland and channel flow. The Green Ampt equation 
is used to represent rainfall infiltration though the soil [80]. The digital 
revolution in geospatial data has helped to promote the development of 
physically based models capable of producing excellent results in flood 
prediction at internal basin points.

To understand the system predictability, authors conducted various 
experiments within a small subwatershed laboratory (test-bed) covering 
a 4 × 4 km2 Geostationary Operational Environmental Satellite (GOES) 
pixel. This “real world” laboratory has a rain gauge network with a resolu-
tion well below that of the NWS radar products; a stage elevation station 
at the outlet; high topography resolution information (Digital Elevation 
Model raster map, DEM 10 × 10 m2), remotely sensed data (e.g., LandSat 
Thematic M) and several field measurements to represent the channel 
geometry. The test-bed subwatershed is located in Western Puerto Rico and 
belongs to the Río Grande de Añasco watershed. To establish a flood alarm 
system in the region of the study area, it is necessary to know the perfor-
mance and the prediction limits associated with the small subwatersheds.

1.2 JUSTIFICATION

A study which considers different input (rainfall) resolutions, parameter 
aggregation effects and hydrologic model resolutions, at scales lower 
than the current radar products, has not been conducted in Puerto Rico 
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Flood Prediction Limitations in Small Watersheds 7

or anywhere. With the new emergent radar technologies, it is necessary to 
recommend to the hydrology community which grid size is necessary to 
capture the spatial variability of rainfall and hydrologic model that gener-
ate reliable flood prediction. The prediction limits related to this input grid 
size and, at the same time have a cell size that minimizes the computa-
tional time for real-time applications.

The grid size and the watershed response are interrelated. Therefore, it 
is imperative to know the combination of grid sizes needed to produce reli-
able results within the study area and to know the probabilistic distribution 
function (PDF) of flow peaks, time to peak and runoff volume associated 
with each resolution. The optimal grid size is defined as the largest grid 
size which will produce reliable results, beyond which flood prediction 
accuracy degrades.

The time required to run the model in real-time operation mode is criti-
cal. Therefore, the grid size should decrease the computational time, while 
maintaining sufficiently accurate results. An up-scaling evaluation of rain-
fall and hydrologic parameters consist in the creation of a high-resolution 
hydrologic model, and then increasing the grid size to produce incremen-
tally coarser resolution maps of each parameter and input, resulting in 
different output responses. These hydrologic responses will be compared 
in terms of their probability distribution functions (PDFs) to observed 
values. A decision can be made in terms of which aggregation technique 
should be used to aggregate the data and which parameters will be used in 
the evaluation at small scales.

1.3 RESEARCH QUESTIONS

Real time hydrologic predictions require estimation of stream stage, peak 
flow, time to peak, and storm volume with high reliability. To obtain reli-
able estimates it is necessary to know and understand the predictability 
and prediction limitations of the system.

The general objective of this research was to evaluate the hydrologic 
predictability of flood predictions in complex terrain located at Mayagüez 
Bay drainage basins due to rainfall inputs and hydrologic model reso-
lutions. To identified representative parameters at each scale that will 
enhance the flood prediction when the modeler uses different grid size 
resolution inputs within the distributed hydrologic models.
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8 Flood Assessment: Modeling and Parameterization

Three basic research questions (RQ) addressed in this research are 
summarized below and were based on a workshop on “Predictability and 
Limits to Prediction in Hydrologic Systems by the National Research 
Council [28]” and suggestions made by several investigators in this field 
[36, 37, 128–133].

RQ1.   How flow prediction is affected by the spatial variability of point 
rainfall at  scales below  that of  the  typical resolution of radar-
based products?

The error propagation due a rainfall spatial resolution in the distributed 
models has been a goal in the hydrologic community in recent years. 
Different studies that have been conducted have been done at scales 
courser or same than resolution of the radar rainfall products using distrib-
uted models [26, 38, 39, 120] or using lumped model [12].

The accuracy of current precipitation estimates over a basin must be 
known; and moreover, the accuracy of these estimates must be improved 
before the uncertainty in hydrologic forecasts can be quantified and ulti-
mately reduced. According to Droegemeier and Smith [27], hydrologic 
forecast uncertainty cannot be reasonably assessed until the uncertainty in 
the rainfall observations has been determined a priori. Entekahbi et al. [28] 
identified the uncertainty in model inputs as one of the major limitations to 
improved hydrologic predictability.

One important contribution will be to find the current rainfall product 
uncertainty over small watersheds. Also, evaluate how uncertainties due to 
quantitative precipitation estimates at different resolutions (below 2 km) 
from point rainfall are propagated though the hydrologic solution. By this 
means we can determine which rainfall resolution is required to encom-
pass the rainfall variability and produce the least uncertainty and highest 
accuracy for flood predictions at scales below radar products and small 
subwatersheds.

The Collaborative Adaptive Sensing of the Atmosphere (CASA) proj-
ect has instrumented a 4 × 4 km2 area with a network of 28 rain gauges, 
producing high spatial rainfall resolution with the objective to test and val-
idate CASA radars. Inside the pixel a small subwatershed was delineated 
and instrumented with a pressure transducer to measure stage at a deter-
mined cross section. The small area was named Test Bed Subwatershed 
(TBSW) and serves as a field laboratory to test how the uncertainty due 
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Flood Prediction Limitations in Small Watersheds 9

to rainfall resolution input propagates though the distributed hydrological 
model to the streamflow prediction.

RQ2.   How does parameter and hydrological model  resolution affect 
the model’s predictive capabilities and the errors of  the hydro-
logic system?

To develop a real time hydrologic model, a coarse grid size resolution is 
desirable in order to minimize computational time. However, this choice 
could have an important impact on the hydrologic simulation, because the 
calibration is grid-cell size dependent. The effects observed in the grid 
size aggregation are flattening of the slope and shortening of the drainage 
length, changes in flow direction, channel and overland cells and smooth-
ness of the soil parameters and roughness. Both effects can be compen-
sated for or reduced depending on the topographic characteristics of the 
basin and the methods used to calculate them [20, 77, 102, 118].

Mountainous areas with large slopes are more sensitive to digital ele-
vation model resolution. The resolution of the terrain model needed to 
capture the basin properties is the same for slope as it is for other param-
eters such as hydraulic roughness derived from land use obtained from 
satellite remote sensing and soil properties. Understanding the influence 
of resolution and parameter aggregation on the hydrologic model would 
enhance the model prediction. This will be accomplished using the highest 
resolution data available and then producing coarser resolution maps of 
each parameter though up-scaling (various methods could be tested here), 
and evaluate how the coarser resolution degrades the solution obtained at 
the finest resolution. Authors hypothesize that the finer hydrologic model 
resolution ensemble will have the best flow prediction behavior. However, 
this model is not operational for future flash flood forecasting. The goal 
is to find a practical grid size resolution for real time applications and 
address reliable results at small watersheds.

RQ3.   Would  the assumptions developed  for  the  small  scale  enhance 
the hydrologic predictability at larger scales?

The hypothesis formulated is that if we can enhance the flood forecast-
ing in small subwatersheds than we can enhance the flood forecasting at 
larger scales, where all major mountainous basins are composite of simi-
lar subwatersheds that have similar slope conditions, land use coverage 
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10 Flood Assessment: Modeling and Parameterization

and soil properties. Lessons learned in this study about the small water-
shed’s behavior could be applied to watersheds of major sizes where the 
cost of using high-resolution data could result in better flood forecast-
ing. However, if it is necessary to apply coarse resolution data to large 
scale, real time applications, the predictability limits could be known a 
priori. Recommendations related to which terrain and rainfall grid sizes 
and parameter estimations to use in the distributed hydrologic model will 
be available, and will be tested in watersheds of major size. Only a few 
rain gauges and NEXRAD rainfall estimates are provided to major areas.

1.4 OBJECTIVES

The specific objectives of this study in Part I of this book, required for the 
achievement of the major research goal and the research questions are:

a. Configure a hydrologic distributed model for the Mayagüez 
Bay Drainage Basin (MBDB) and extract a small subwatershed 
(TBSW) having similar slope characteristics to the MBDB subwa-
tersheds, for the purpose of performing detailed studies.

b. Analyze the MBDB hydrologic model sensitivity in the flow 
response due to propagation of parameter and rainfall perturbations 
using spider plots and relative sensitivity analyzes.

c. Quantification of MBDB hydrologic model flow response due to 
two rainfall interpolation methods and radar sources.

d. Evaluate the rainfall detection accuracy of the current radar prod-
uct (multisensor precipitation estimator, MPE) at scales below 
2 km using a high-density rainfall network.

e. Evaluate ensemble behavior for rainfall resolutions exposed to 
uncertainties in parameter quantifications and hydrologic model 
resolutions.

f. Evaluate ensemble behavior of hydrologic model resolutions due 
to propagation of parameter uncertainties and rainfall resolutions.

1.5 SUMMARY

The research study on “Flood Prediction Limitations in Small Watersheds” 
is presented in detail in Chapters 1–9 of this book. The general objective of 
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Flood Prediction Limitations in Small Watersheds 11

this study was to evaluate the hydrologic predictability of flood predictions 
in complex terrain located at Mayagüez Bay drainage basins in Puerto 
Rico due to rainfall inputs and hydrologic model resolutions. To identify 
representative parameters at each scale that will enhance the flood predic-
tion when the modeler uses different grid size resolution inputs within the 
distributed hydrologic models.

Three basic research questions (RQ) addressed in this research were 
based on a workshop on “Predictability and Limits to Prediction in 
Hydrologic Systems by the National Research Council [28]” and sugges-
tions made by several investigators in this field [36, 37, 128–133]. These 
questions were: RQ1. How flow prediction is affected by the spatial vari-
ability of point rainfall at scales below that of the typical resolution of 
radar-based products? RQ2. How does parameter and hydrological model 
resolution affect the model’s predictive capabilities and the errors of the 
hydrologic system? RQ3. Would the assumptions developed for the small 
scale enhance the hydrologic predictability at larger scales?
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CHAPTER 2

FLOOD PREDICTION LIMITATIONS 
IN SMALL WATERSHEDS: A REVIEW1, 2

ALEJANDRA M. ROJAS-GONZÁLEZ

CONTENTS

2.1 Quantitative Precipitation Estimates .............................................. 13
2.2 Physically-Based Distributed Hydrologic Models ......................... 17
2.3 Calibration Process ........................................................................ 20
2.4 Flood Prediction ............................................................................. 24

2.1 QUANTITATIVE PRECIPITATION ESTIMATES

A major source of error in hydrologic models is the poor quantification of 
the areal distribution of rainfall, typically due to the low density of rain 
gauges. A rain gauge located at a single point may not represent an exten-
sive area, with only one value. The spatial distribution of rainfall can have 
a major influence on the corresponding runoff hydrograph, errors may 
occur in the resulting hydrograph when the spatial pattern of the rainfall 
is not preserved. These errors will be magnified for intense, short duration 

1 This chapter is an edited version from Alejandra María Rojas González, 2012. Flood prediction 
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished 
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico –  Mayagüez 
Campus.
2 Numbers in brackets refer to the references at the end of this book.
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14 Flood Assessment: Modeling and Parameterization

and localized events especially in areas of high topographic variability 
subject to convective storms [143].

Rain gauges themselves may produce errors, a major source of error 
being from turbulence and increased winds around the gauge, affecting 
precipitation quantification in events where the wind is an important factor 
(e.g., hurricanes). Nevertheless, the rainfall measured in a gauge station 
is generally assumed to be the most reliable measurement of rainfall, but 
when measurements are extrapolated to the entire basin for hydrologic 
models, the rainfall has a great uncertainty and can affect the water-
shed response. Bevan and Hornberger [13] have stated, “… an accurate 
portrayal of spatial variation in rainfall is a prerequisite for accurate 
simulation of stream flows”.

Investigators have used mean areal precipitation as calculated by 
Thiessen polygons [115, 143], and interpolation methods (Spline, Inverse 
Distance Weights, and Krigging and polynomial surface). But all of these 
methods are limited by the number of rain gauges.

Ball and Luk [7] studied the accuracy and reliability of hydroinfor-
matic tools (e.g., GIS) for modeling the spatial and temporal distribution 
of rainfall over a catchment. They found that using spline surfaces with 
a geographic information system produced robust and accurate estimates 
of rainfall and enable real-time estimation of spatially distributed patterns.

Currently, sophisticated methods attempt to fill gaps between rain 
gauges, by sensing the atmosphere with remote sensors like the space-
borne Tropical Rainfall Measuring Mission (TRMM), the U.S. National 
Weather Service’s (NWS) Next Generation Radar (NEXRAD), the 
National Oceanic and Atmospheric Administration’s (NOAA) Hydro-
Estimator (HE) algorithm [91], the satellite precipitation estimation/radar 
rainfall merging algorithm of the NOAA-CREST Group at City University 
of New York [62] and the MPE [57, 60, 92]. The HE uses data from the 
GOES geostationary satellite to estimate rainfall, and has, for example, an 
approximate pixel size of 4 × 4 km2.

These quantitative precipitation estimation (QPE) techniques are evalu-
ated and adjusted or calibrated using existing rain gauges, however, these 
adjustments depend on the rain gauge density and their spatial distribu-
tion [47]. Studies that have compared radar and rain gauge–derived rainfall 
documented large discrepancies among various investigators [6, 64, 144].
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Flood Prediction Limitations in Small Watersheds 15

In order to address the need to obtain more rainfall estimates for 
basin analysis, in 1997 National Weather Service (NWS) put into opera-
tion the WSR-88D Next Generation Radar (NEXRAD) in the United 
States of America (USA). NEXRAD radar enhances coverage with 
a 1 degree × 1 km base resolution. Since 1999, NEXRAD has been used 
by the NWS to estimate rainfall in Puerto Rico. The NEXRAD facility 
is located near the City of Cayey at 860 m above mean sea level and at 
approximately 120 km from Mayagüez. The radar measures reflectivity 
in decibel (dBZ) and uses empirically derived Z-R relationships to trans-
form reflectivity to rain rate. The Marshall and Palmer [63] equation is the 
default Z-R relationship employed by the WSR-88D and is described by 
the following empirical power law:

 Z = aRb (1)

where Z is the reflectivity in decibels (dBZ) and R is the rain rate in mm/h; 
a and b are nonlinear regression coefficients and their respective values 
depend on the type of precipitation.

The coefficients depend on location, season, rain type, drop size dis-
tribution, and are event dependent. Battan [8] presents more than 50 Z-R 
relationships. Currently there are at least five different relationships 
depending on climatological zones approved by the NWS. For example 
for a convective rainfall, a and b values are 300 and 1.4, respectively. 
Similarly, under tropical conditions, values of 250 and 1.2, respectively, 
have been used and for a warm stratiform rainfall values of 200 and 1.6 
are used.

The default Z-R relationship used in Puerto Rico is the convective type 
and is not representative of tropical rain events due to the drop size dis-
tribution (smaller rain drops than convective with fewer and larger rain 
drops). It is necessary to define a maximum precipitation rate threshold 
for decibels above 51, because Eq. (1) with the tropical coefficients can 
produce nonsensical rain rates. High dBZ are due to possible hail forma-
tions or very heavy precipitation or extreme winds, which also may be pro-
duced by thunder and lightning, and wet ground returns. The radar default 
setting is 4.09 inches/h and if rainfall rates are greater, a deep warm layer 
exists. Therefore, warm rain processes govern, which is typical of tropical 
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16 Flood Assessment: Modeling and Parameterization

events [61]. Operationally the Z-R relationship should be changed to the 
tropical equation and the maximum precipitation rate threshold changed 
to 6.00 inches/h.

Vieux and Bedient [121, 122, 129] found an improved Z-R relationship 
comparing slopes of the best-fit regression lines of each Z-R relationship 
to daily rain gauge accumulation. With the current Z-R relationship used 
in Puerto Rico, NOAA has reported low estimates of accumulated rainfall 
by the radar as compared to gauge accumulations.

The MPE algorithm is a product of NEXRAD, and recently has been 
used to improve quantitative precipitation estimates [58, 62]. MPE is based 
on the Digital Precipitation Array (DPA) product (hourly and 4 × 4 km2 
resolution) and performs a mean field bias correction over the entire radar 
coverage area, based on (near) real-time hourly rain gauge data [92, 93]. 
The MPE is mapped onto a polar stereographic projection called the 
Hydrologic Rainfall Analysis Project (HAP) grid. This data is often used 
in hydrologic modeling, availing the bias correction made by the MPE 
algorithm. Nevertheless, in long-term hydrologic simulations and water-
sheds with small numbers of rain gauges, a bias verification would be 
evaluated, because the bias quantification has a high variability over the 
radar coverage area and time [47, 78, 79] affecting the hydrologic calibra-
tion and validation.

Gourley and Vieux [38] developed a method for evaluating the accu-
racy of Quantitative Precipitation Estimates (QPE) for isolated events. 
A hydrologic approach to QPE evaluation may also become complicated 
because model parameters can be judiciously adjusted or calibrated to 
account for errors in model inputs. Systematic biases, which are originally 
present in the model inputs, can be mitigated or corrected in order to yield 
accurate streamflow forecasts.

Probabilistic calibration methods exist, such as the generalized like-
lihood uncertainty estimation (GLUE) used by Beven and Binley [14], 
to compute the probability that a given parameter set adequately simu-
lates the observed system behavior. Furthermore, it was suggested by 
Freer et al. [33] that the GLUE technique should be expanded to include 
the uncertainties associated with different rainfall inputs. Extension of the 
GLUE provides a consistent methodology to independently evaluate the 
hydrologic response to each input.
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Flood Prediction Limitations in Small Watersheds 17

Georgakakos [37] expressed the need of future research in the context 
of short-term hydrologic forecasting with QPF driven distributed hydro-
logic models which include:

a.  Development of high-resolution reliable QPF, especially in moun-
tainous areas.

b.  Sensitivity analysis of distributed models with operational data to 
assess the relative importance of parameter uncertainty and QPF 
hydrologic models that include characterization of the errors in 
distributed QPFs.

2.2 PHYSICALLY-BASED DISTRIBUTED HYDROLOGIC MODELS

The term physics-based model means that conservation of mass in combi-
nation with momentum and/or energy is employed to compute hydrologic 
fluxes. Vieux and Moreda [125] indicated that the goal of distributed mod-
eling of streamflow is to better represent the spatial-temporal characteris-
tics of a watershed governing the transformation of rainfall into runoff that 
relies on conservation equations for the routing of runoff though a distrib-
uted representation of a watershed.

The term “physics-based or physically based distributed (PBD) models” 
includes such models as Vflo [122]; Vieux et al. [119, 122]; CASC2D [55, 
56, 74]; Systeme Hydrologique European (SHE) [1, 2] and the Distributed 
Hydrology Soil Vegetation Model (DHSVM) [141]. PBD models are well 
suited to simulating specific events at locations where streamflow records 
may not exist.

Conceptual rainfall-runoff (CRR) models simulate runoff generation by 
a variety of conceptual parameters and route the runoff using unit hydro-
graphs to an outlet. CRR models are inherently nonphysics based and lump 
parameters at the basin or subbasin level. CRR models include Precipitation-
Runoff Modeling System (PRMS) by Leavesley et al. [59], the Sacramento 
Soil Moisture Accounting Model (SAC-SMA) [21], and the HEC–HMS 
model (Hydrologic Engineering Center) [53, 54]. CRR models differ from 
event-based models, simulating continuous cycles of rainfall and runoff. 
The CRR models breakdown the hydrologic cycle into a series of reservoirs 
that represent physical phenomena such as infiltration, runoff, etc. [125].
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18 Flood Assessment: Modeling and Parameterization

Physics-based models use conservation of mass, momentum, and 
energy equations to represent hydrologic processes, whereas conceptual 
models use empirical relationships together with buckets to represent 
component processes. Moore and Grayson [68] described an array of 
physics-based models that capitalize on digital models of elevation, GIS 
and remotely sensed (GIS/RS) geospatial data.

The model used in this research is a fully distributed, physics-based 
hydrologic model named Vflo [124, 127] that derives its parameters from 
soil properties, land use/cover, topography, and can obtain input from 
radar or multisensor precipitation estimates. Vflo incorporates routing of 
unsteady flow though channel and overland elements comprising a drain-
age network.

The following Vflo description and mathematical formulation was 
obtained (in some cases verbatim) from Vieux and Vieux [125], who 
stated that the model uses the kinematic wave analogy (KWA). The KWA 
has better applicability where the principal gradient is the land surface 
slope. Thus in almost all watersheds except for very flat areas, the KWA 
may be used. The simplified momentum equation and the continuity equa-
tion comprise the KWA. One-dimensional continuity for overland flow 
resulting from rainfall excess is expressed by:

 δ
δ

δh
t

uh
x

R I+
∂

= −
( )  (2)

where, R is rainfall rate; I is infiltration rate; h is flow depth; u is overland 
flow velocity; t is the time and x is the distance.

In the KWA, the bed slope is equated with the friction gradient. In open 
channel hydraulics, this amounts to the uniform flow assumption. Using 
this fact together with an appropriate relation between velocity, u (m/s), 
and flow depth, h (m), such as the Manning equation, we obtain the veloc-
ity for very wide-open channel and metric system:

 u S
n
h= 0

1
2

2
3 (3)
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Flood Prediction Limitations in Small Watersheds 19

where, So (m/m) is the bed slope or principal land surface slope, and n is 
the hydraulic roughness called Manning’s coefficient.

Velocity and flow depth depend on the land surface slope and the fric-
tion induced by the hydraulic roughness. For channel flow, Eq. (2) is writ-
ten with the cross-sectional area A instead of the flow depth h:

 δ
δ

δ
δ

 (4)

where, Q (m3/s) is the discharge or flow rate in the channel, and q is the 
rate of lateral inflow per unit length in the channel. Combining Eqs. (3) 
and (4), we get:

 δ
δ β

δ
δ

γ α
h
t

s
n
h
x

R I+ = −
1
2

5
3

 (5)

where, the three scalars α, γ and β are the multipliers for the values con-
tained in the spatially variable parameter maps according to the Ordered 
Physics-based Parameter Adjustment (OPPA) calibration method. 
Differential application of the roughness scalars (βn) to channel and over-
land are used (βc for channel and βo for overland).

Overland flow is modeled with Eqs. (2) and (3), and channel flow with 
Eq. (4), and appropriate form of the Manning uniform flow relation in 
Eq. (4) using the finite element method.

Digital maps of soils, land use, topography and rainfall rates are used to 
compute and route rainfall excess though a network formulation based on 
the Finite Element Method (FEM) computational scheme described 
by Vieux [116] and Vieux et al. [117]. Special treatment is required to 
achieve a FEM solution to the KWA over a surface with spatially varying 
roughness, slope, or other parameters. Vieux et al. [117] presented such 
a solution using nodal values of parameters in a finite element solution. 
This method effectively treats changes in parameter values by interpolat-
ing nodal values across finite elements.

Vieux [122] and Vieux et al. [119] described the development of a 
rainfall-runoff model based on a drainage network comprised of finite 
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20 Flood Assessment: Modeling and Parameterization

elements. The advantage of this approach is that the kinematic wave 
analogy can be applied to a spatially variable surface without numerical 
difficulty introduced by the shocks caused by noncontinuous parameter 
variation that would otherwise propagate though the system. The finite 
element methodology results in execution times that are fast enough to 
allow real-time computation before the next radar update.

Accounting for unsteady flow in mild slopes, Vflo allows a looped rat-
ing curve for channel elements. Essentially, the acceleration (deceleration) 
induced by the rising (falling) limb of the hydrograph is accounted for 
though the Jones Formula [52]. In mild slope hydraulic conditions, looped 
rating curves may cause important effects when maximum flow rate is 
observed. Vflo incorporates both distributed runoff generation, and routing 
of unsteady flow though channel and overland elements [125].

Vieux and Bedient [121, 124] used spatial resolution of radar rainfall 
as input to a distributed model which affected prediction error. Also, Vieux 
and Imgarten [132] studied the scale-dependent propagation of hydro-
logic uncertainty using high-resolution X-band radar rainfall estimates 
for watershed areas less than about 20 km2. Results of experiments using 
historical radar events and including the tropical storm Allison indicated 
that accurate rainfall-runoff predictions in real time are possible and use-
ful for site-specific forecast in Houston, TX. They found that the achiev-
able model accuracy with radar bias correction was approximately a mean 
absolute percentage error of 11.8% in peak discharge, 11.1% in runoff 
depth and average difference in arrival times of 12 min at the Main Street 
gauge with a drainage area of 260 km2.

The complex interaction of input with drainage network presents chal-
lenges to the design of storm-water drainage infrastructure, the manage-
ment of flooding, flood mitigation, and real-time forecasting of multiscale 
urban drainage systems with multiscale inputs [131].

2.3 CALIBRATION PROCESS

2.3.1 SENSITIVITY ANALYSIS

The classification of the sensitivity analysis methods refers to the way that 
the parameters are treated. Local techniques concentrate on estimating the 
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Flood Prediction Limitations in Small Watersheds 21

local impact of a parameter on the model output. This approach means that 
the analysis focuses on the impact of changes in a certain parameter value 
(mean, default or optimum value). Opposed to this, global techniques ana-
lyze the whole parameter space at once. Global sampling methods scan 
in a random or systematic way the entire range of possible parameter val-
ues and possible parameter sets. The sampled parameter sets can give the 
user a good idea of the importance of each parameter. These in turn can 
be used to quantify the global parameter sensitivity or the uncertainty of 
parameters and outputs.

2.3.2 CALIBRATION OF DISTRIBUTED MODELS

Vieux and Moreda [126] developed an OPPA procedure for a distributed 
model. The OPPA calibration process involves estimating the spatially 
distributed parameters from physical properties, assign channel hydraulic 
properties based on measured cross-sections, study the sensitivity of each 
parameter, and find the optimum parameter set that minimizes the respec-
tive objective function. Runoff depth should be adjusted first, followed 
by timing and peak flow and readjust hydraulic conductivity if necessary 
to account for changes in infiltration opportunity time. The Vflo model 
does not simulate base flow directly, only direct runoff. It can be taken 
in account by assigning a fixed value to channel cells for one simulated 
event. For long-term analysis, it is necessary to quantify the base flow 
using known methodologies [43, 94] and subtract it from the observed 
hydrograph to compare with direct runoff simulated by the Vflo model.

The agreement between the observed and simulated runoff depth, time 
to peak and peak flow may be expressed in terms of a bias or spread. The 
bias indicates systematic over or under prediction. The departure, whether 
expressed as an average difference, percentage error, coefficient of deter-
mination, or as a root-mean-square error, serves as a measure of the pre-
diction accuracy.

McMichael et al. [66] calibrated a distributed physically based hydro-
logic model (MIKE-SHE) in California and estimated uncertainty. They 
used the GLUE methodology for model calibration, testing and predic-
tive uncertainty for estimating monthly streamflow. The catchment in 
Central California was 34 km2 in area and the model grid size was fixed at 
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22 Flood Assessment: Modeling and Parameterization

270 × 270 m2. The Monte Carlo simulation was used to randomly generate 
one thousand parameters sets for a 20-year calibration period encompass-
ing variable climatic and wildfire conditions. Many studies have demon-
strated the difficulties that arise in identifying, calibrating and validating 
physically based hydrologic models. Such difficulties stem from uncer-
tainties in model structure, boundary conditions, and catchment param-
eterization, as well as errors in inputs and observed variables.

The GLUE methodology [14, 15] explicitly recognizes the coexis-
tence of alternative parameter set and models and it provides a suitable 
framework for model calibration and uncertainty estimation under nonu-
niqueness. The nonuniqueness recognizes the existence of several set of 
parameters and structures that would produce good agreement with the 
observed data, and satisfy the calibration. With the limited measurements 
available and the application of a distributed hydrological model it may not 
be possible to identify an optimal model. Implementing GLUE requires 
making Monte Carlo simulations using a large number of parameter sets, 
assessing the relative performance of each set by comparing model esti-
mates with observed data, and retaining only those parameter sets that pro-
vide behavioral (acceptable) predictions. The relative performance of each 
parameter set is evaluated on the basis of a likelihood measure calculated 
by comparing model predictions with observed data. A parameter set is 
classified as behavioral if the corresponding likelihood value is equal to or 
greater than a specified threshold value. Parameters sets that do not meet 
this criterion are rejected as nonbehavioral.

The final step in the GLUE procedure is to establish predictive uncer-
tainty bounds for comparison with observed values. First, the set of behav-
ioral likelihood values is rescaled to archive a cumulative sum of unity by 
dividing each value by the sum of the likelihood values. Next, behavioral 
model predictions for each time step are ranked in ascending order and 
each prediction is assigned to a user-specified bin. The rescaled likelihood 
values associated with the ranked predictions in each bin are summed to 
calculate the height of the corresponding bar in the density plot. A cumu-
lative density plot is constructed by graphing the cumulative sum of the 
likelihood values versus the ranked model predictions. Typically, the 5th 
and 95th percentiles calculated at each time step are used to calculate the 
predictive uncertainty bounds over the period of observations. The GLUE 
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Flood Prediction Limitations in Small Watersheds 23

based prediction limits the capture of uncertainly in model output associ-
ated with uncertainly in model parameterization.

GLUE provides a useful modeling approach for advancing beyond 
globally optimized, unique, parameter sets. Working within a framework of 
Monte Carlo-generated parameters sets allows modelers to explicitly rec-
ognize and quantify the effects of uncertainties on model prediction [66].

Sahho et al. [84] performed a calibration and validation of MIKE SHE 
in a flashy mountainous Hawaii stream. The model was calibrated with 
a single hydraulic conductivity value and produced consistent results 
with correlation coefficients greater than 0.7. In the sensitive analysis the 
Manning’s roughness coefficient and the hydraulic conductivities (vertical 
and horizontal) of the saturated zone had the most pronounced effects in 
determining the shape of the flood’s peaks.

Griensven et al. [41] made a global sensitivity analysis tool for the 
parameters of multivariable catchment models. An analysis of Monte Carlo 
simulations was conducted with statistical methods such as Kolmogorov–
Smirnov (K-S) test [100] or with the computation of regression and correla-
tion based sensitivity measures to define whether a parameter is sensitive 
[98]. An advantage of the method is the logical combination of calibration, 
identifiable analysis, and sensitivity and uncertainty analysis within a single 
modeling framework [113]. The method can be applied to problems with 
absolutely no probabilistic content as well as to those with inherent probabi-
listic structure. It has been widely used in catchment modeling, for assessing 
parameter uncertainty and input uncertainty, e.g., for rainfall variability.

The Monte Carlo method provides approximate solutions to a variety of 
mathematical problems by performing statistical sampling experiments on 
a computer [31]. This method performs sampling from a possible range of 
the input parameter values followed by model evaluations for the sampled 
values. An essential component of every Monte Carlo experiment is the 
generation of random samples. Techniques, such as the Latin – hypercube 
methodology, are also available for minimizing the number of required 
runs to reproduce the selected probability distributions of the input datas-
ets [46]. These generating methods produce samples drawn from a speci-
fied distribution (typically a uniform distribution). The random numbers 
from this distribution are then used to transform model parameters accord-
ing to some predetermined transformation equation.
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24 Flood Assessment: Modeling and Parameterization

2.4 FLOOD PREDICTION

In an attempt to determine flood occurrence, Birikundavyi et al. [16] used 
two approaches commonly used for the probabilistic analysis of extreme 
flood magnitudes that are based on the annual maximum series (AMS) 
and the partial duration series (PDS). In the AMS approach the highest 
flood peak in the year is used, while in the PDS approach all those events 
that exceed a specified value are used. In the study, the Poisson distri-
bution and generalized Pareto distribution (GPD) were used to describe 
the occurrence of flood and the flood magnitudes. Two neighboring flood 
peaks were independent if (1) they are separated by at least seven days and 
(2) the flow between them drops below 50% of the smaller peak.

In the Brays Bayou watershed (334 km2) in south-west Houston Texas, 
Bedient et al. [10] developed a flood warning system using radar-based rain-
fall (NEXRAD) and delivery systems on the internet. During 1950–1960 
the Army Corps of Engineers constructed a concrete and rip-rap lined chan-
nel to contain a greater than 100-years storm event with bankfull capacity, 
currently the same channel only can contain the 10 year design level due to 
increased urbanization. In this system HEC-1 is used to predict the flow at 
different interest points with known rainfall distribution and the results are 
modeled in HEC-2 to determine the maximum height of water in the chan-
nel. These two models are often used together for flood prediction and are 
the basis for calculating the Flood Alert System monograph used to trans-
late rainfall rates into peak flow and levels. After, generating the system 
monograph, calibration was conducted with hypothetical storms.

The HCOEM ALERT (Harris County Office of Emergency Management 
Automated Local Evaluation in Real-Time) exists within the Brays Bayou 
watershed with a high density of rainfall and flow gauges available real 
time via the internet [10, 11, 50]. Data received from these gauges can be 
used to predict possible flooding conditions and were used to calibrate the 
watershed HEC-1 model.

NEXRAD used with GIS can calculate the rainfall rates within the 
subwatersheds and to estimate rainfall rates from approaching storms and 
visualize the development of the storm. These are powerful tools for storm 
prediction and flood alert. Bedient et al. [10, 129] reported an excellent 
accuracy using HEC-1 and NEXRAD in several storms. However, the 
NEXRAD data was only used to track the storm.
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Flood Prediction Limitations in Small Watersheds 25

Currently, the next generation flood alert system (FAS2) started its 
operation in 2004 with more than 30 storm events [30]. FAS2 uses avail-
able radar (NEXRAD) data coupled with real-time hydrologic model-
ing, and provides visual and quantitative identification of severe storms 
producing heavy rainfall, as well as a linkage between the rainfall and 
likelihood of flooding. The accuracy of the current FAS2 is adequate for 
regional events over a large basin (129 mi2), but is lacking for events where 
the regional/local scale interactions, local scale precipitation, infiltration 
losses, or local hydraulics are important.

In the CASA Annual Report year 3, Volume II [22], three projects were 
cited that are in development which are employing state-of-the-art tech-
niques. In the S22 project, it uses rainfall data derived from radar images 
to run real-time, physically based distributed models for flood prediction 
and generation of flooding maps. This project explores the drainage den-
sity in an urban area, because it has been demonstrated in FAS that a small 
urban watershed could not predict flow with sufficient accuracy with the 
current Vflo model, when the area was classified as overland flow.

Project S23 is concerned with testing different QPE resolutions derived 
from radar and the impact in flow at different basin scales with the same 
grid size resolution. Project S24 is developing a Vflo model that incor-
porates a secondary drainage system and evaluating the methodology in 
Harris Gully (FAS’s urbanized watershed). A distributed pipe network 
linked to topography is a unique combination of new urban hydrologic 
models. All these projects are guided to enhance the accuracy in flood 
prediction especially at small watershed scales.

Making predictions in real-time with a hydraulic model is difficult 
because of inaccuracies in model parameters, rainfall input inaccuracy, or 
unknown upstream flow rates. Real-time systems for mapping expected 
areas of inundation require input of flow rates from other sources to gener-
ate inundated areas using sophisticated 2-D hydrodynamic models [140]. 
Even the inflow between river gauging stations requires some model esti-
mation of watershed response in the intervening areas. Upstream gaug-
ing points and rainfall-runoff models are viable sources of real-time flow 
information. Both lumped and physics-based distributed rainfall-runoff 
models may be used for this purpose [11].

Georgakakos [36] studied the theoretical basis of developing operational 
flash flood guidance systems using analytical methods. The Sacramento 
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26 Flood Assessment: Modeling and Parameterization

soil moisture accounting model is used operationally in the United States to 
produce flash flood guidance estimates of a given duration from threshold 
runoff estimates. The study attempted to: (a) shed light on the properties of 
this model’s short-term surface runoff predictions under substantial rainfall 
forcing; (b) facilitate flash flood computations in real time.

Various characteristics of the flash flood guidance to threshold runoff 
relationship are discussed and considerations for real-time application are 
offered. Uncertainty analysis of the threshold runoff to flash flood guid-
ance transformation is also performed.

Vieux et al. [127] in collaboration with Taiwan government agen-
cies and the United States Government began a program initiative for the 
research and development of a flood alert and water resources management 
system to unify monitoring and prediction of floods within a single system 
in Taiwan. Enhancing the accuracy and efficiency of information dissemi-
nated from the central government to the public, and to regional and local 
water management and emergency response agencies is the major goal of 
this project. A limited sensitivity analysis was conducted. Knowing which 
parameters generate a greater response in stage or discharge; helps to iden-
tify where efforts should be expended to improve parameter specification.

Vieux et al. [123, 124] developed a proposal for Arizona State to use 
a sophisticated hydrologic modeling approach coupled with QPe-SUMS. 
This model can help to: (1) manage reservoir operations, (2) minimize 
losses though spills, and (3) predict flood levels in selected basins. The 
authors emphasize the need to perform a flood hazard analysis a priori to 
the modeling.

The U.S. Army Corps of Engineers [104, 105] define the maximum 
potential warning time, as the response time after initiation of the flood-
producing rainfall and is related to the arrival time of the peak stage or dis-
charge, and is the interval during which mitigating responses can reduce 
property damage, loss of life, or business interruption.A
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CHAPTER 3

FLOOD PREDICTION LIMITATIONS IN 
SMALL WATERSHEDS: HYDROLOGIC 
MODEL CONFIGURATION AND 
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28 Flood Assessment: Modeling and Parameterization

3.1 INTRODUCTION

In this research study, the configuration for the MBDB model was devel-
oped using available data for soils, land use, digital elevation models and 
field measurements. This model will be used for uncertainty analysis, 
rainfall tests and posterior flood alarm predictions (not addressed in this 
research). Therefore, the TBSW model set up was conducted by extracting 
data from the MBDB model. A slope analysis was developed according to 
an aggregation method to be used in the up-scaling experiment, without 
loss of slope information for mountainous subwatersheds. Additionally, an 
evaluation between different evapotranspiration methods was developed 
to quantify the uncertainty associated with this term.

The hydrologic model used in this study is Vflo [127], which is capable 
of ingesting distributed radar rainfall data. Vflo is a finite element model 
and the equations are used to solve overland and channel flow.

The configuration of the proposed physically based distributed model 
used in this study was based on products described for the Mayagüez Bay 
Watershed and TBSW as well, such as soils, land use and digital eleva-
tion model maps. Generally, to create both high-resolution models, it is 
necessary to derive the topographic characteristics from a digital elevation 
model with high-resolution. For this purposes we used the digital eleva-
tion model quadrangles derived from the base map data of the “Center 
for Municipal Tax Revenues of Puerto Rico” by its acronym in Spanish 
[25: xyz mass points, ridgelines, road cuts, and hydrographic features]. 
The CRIM data were collected by AEROMETRIC, Inc. Ground control 
eastings, northings and elevations were surveyed by RLDA Surveying and 
Mapping of San Juan, Puerto Rico. The elevation maps were developed 
by photo-triangulation with a root mean square error of ground-control 
residuals of 0.6 m for vertical control elevation coordinates and root mean 
square error of airborne-GPS exposure-station residuals of 0.184 m for 
vertical control elevation coordinates.

Most of the input data for the Vflo model was prepared using ArcGIS 
9.3 and Arc Hydro Tools. The basin and river characteristics were extracted 
from the 7.5-minutes series topographic maps from USGS, 30 m × 30 m2 
digital elevation model (DEM) quadrangles and from the digital elevation 
model at 10 m spatial resolution from CRIM.
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Flood Prediction Limitations in Small Watersheds 29

The Green Ampt infiltration model is used by the distributed hydro-
logical model to calculate the initial abstractions due to infiltration and 
runoff produced by rainfall. The parameters are derived from soil char-
acteristics assigned to the SSURGO soil classification maps, digitally 
available (Figure 3.3). Values of soil suction at wetting front (ψ), satu-
rated hydraulic conductivity (Ks), effective porosity, soil depth and initial 
degree of soil saturation (θ) were obtained from the literature [94, 132, 
133], field measurements [USDA, 106–109] and computations using the 
percent of sand and clay, soil bulk density and percent of organic matter 
in combination with the Soil Water Characteristics Hydraulic Properties 
Calculator [85].

Vflo also requires soil depth (cm), initial abstraction (cm) and percent-
age of impervious area. Required channel data include base flow, rough-
ness (Manning’s n), channel and side slopes, and the infiltration parameters 
mentioned above. Overland flow properties include flow direction, over-
land slope and infiltration parameters.

3.2 STUDY AREA

3.2.1 MAYAGÜEZ BAY DRAINAGE BASIN STUDY AREA

The study area is located in the region of western Puerto Rico and has 
819.1 km2. The area includes three principal courses: Río Grande de 
Añasco, Río Guanajibo and Río Yagüez. Numerous hydrologic and 
hydraulic studies by the US Geological Survey (USGS) and the University 
of Puerto Rico have been conducted in this area [75, 82, 94, 135].

The area encompasses the municipalities of Mayagüez, Añasco, 
Las Marías, San Sebastián, Lares, Maricao, Yauco, Adjuntas, Sabana 
Grande, Cabo Rojo, San Germán and Hormigueros. Of these municipali-
ties, Mayagüez has the highest population (89,080 habitants), followed 
by Cabo Rojo (50,917 habitants). The lowest population density is for 
Maricao with 6,276 habitants, according to the U.S. Census Bureau [103]. 
Changes in elevation vary from zero meters mean sea level in the coastal 
areas to 960 m in the mountainous areas, producing abrupt slope changes 
in short distances (Figure 3.1).
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30 Flood Assessment: Modeling and Parameterization

3.2.2 THE RÍO GRANDE DE AÑASCO BASIN

The Río Grande de Añasco basin (Figure 3.1) has an area of 370.36 km2, 
including the reservoir lakes, tributary areas and river, which has a length 
of 64 km. Lakes Yahuecas, Prieto, Guayo and Toro were constructed 
by the Puerto Rico Water Resources Authority (PRWRA), presently the 
Puerto Rico Electric Power Authority, during the decade of the 50’s. These 

FIGURE 3.1 Digital Elevation Model (DEM); Río Guanajibo, Yagüez, and Grande de 
Añasco watersheds, rain gauges and flow gauging stations.
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Flood Prediction Limitations in Small Watersheds 31

were constructed to supply water to the Luchetti Lake for energy produc-
tion and irrigation. According to Figueroa et al. [35], the area above Lago 
Guayo, Lago Yahuecas, and Lago Prieto dams contributes flow to the Río 
Grande de Añasco only during high floods. For the purpose of the present 
study it was assumed that the contribution of water from the Lago Guayo, 
Lago Yahuecas, and Lago Prieto sub watersheds to the Añasco watershed 
downstream of the lakes is not significant for regional water budget esti-
mation [75]. Therefore, those sub watersheds were not included as part of 
the Añasco watershed in this study. The total lake drainage area is about 
116.55 km2 and was used as a boundary condition in the model.

The coastal plain associated with Río Grande de Añasco basin is char-
acterized by an alluvial fan having an area of 41.5 km2 and 0.08% aver-
age slope. The alluvial fan has a length of 15.6 km reaching a width of 
8.8 kilometers at the coast shore [82].

According to FEMA [32], the estimated 100 years return period flood 
flows was 5,130 m3/s (cms) and 3,797 cms for 50 years return period at 
the river’s mouth. At USGS gauge No. 50144000 Río Grande de Añasco 
near San Sebastian, these were reported to be 4,078 cms for 100 years and 
3,278 cms for 50 years return period. The major flood measured in that sta-
tion was for Hurricane Georges in September 22, 1998, reporting a stage 
of 10.52 m (34.5 ft.) and peak flow of 4,587 cms, followed by Hurricane 
Eloise in September 16, 1975 with a stage of 10.33 m (33.9 ft.) and peak 
flow of 3,964 cms.

The station has different flood categories; the flood stage is 3.35 m 
(11 feet): a stage greater than 4.27 m (14 ft.) is a moderate flood and stages 
greater than 5.59 m (19 ft.) are categorized as major floods. The station 
shows that the river had been flooded in 30 one times since 1963 according 
to the records [73].

The Federal Emergency Management Agency (FEMA) performed 
a Flood Insurance Study (FIS) for the Commonwealth of Puerto Rico [32] 
in which regulatory peak flow values for the study basins were established. 
The Río Grande de Añasco FIS presents the magnitude and frequency of 
floods in accordance with the application of the U.S. Geological Service 
(USGS) regression equations for estimating peak flow on stream in Puerto 
Rico [111]. This report presented regression equations developed from 
gages sites having 10 to 43 years of records that can be used to estimate 
peak flows at ungagged sites or gaged sites with short periods of records. 
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32 Flood Assessment: Modeling and Parameterization

The equations used the mean annual rainfall (MAR), the contributing 
drainage area (CDA) and the depth to rock (DR), as variables that govern 
the peak streamflow. The MAR was obtained from the Puerto Rico 1971–
2000 Mean Annual Precipitation map developed by NOAA [72], with the 
variations of rainfall across Puerto Rico calculated.

3.2.3 THE RÍO GUANAJIBO BASIN

The Río Guanajibo basin (see Figure 3.1) has an area of 328.9 km2 and 38 km 
river length. The topography of the area is diverse, including mountains, foot-
hills, and valleys. The predominant rocks in this area are serpentine and vol-
canic-related. The main tributaries are Río Rosario, Río Dagüey, Río Cain, 
Río Cupeyes, Río Cruces, Río Loco, and Río Viejo, and to the south exists 
relatively small tributaries. Major floods have been monitored in this basin 
since 1974, with the largest flood registered occurring in September 16, 1975 
(Hurricane Eloise) with a reported peak flow of 3,625 cms and 8.7 m (28.54 ft.) 
stage elevation at the USGS 50138000 Río Guanajibo near Hormigueros sta-
tion. In this location FEMA calculated a flow of 5,343 cms and 5,745 cms at 
the river’s mouth for the 100 year return period. The 50 years return period 
flows were 3,637 at USGS station (50138000) and 3,896 cms at mouth [32].

The station has different flood categories; flood stage greater than 7.93 m 
(26 ft.) is categorized as a major flood, 6.7 m (22 ft.) is a moderate flood 
stage, 6.1 m (20 ft.) is the flood stage and at 4.88 m (16 ft.) is the stage at 
which action is required. The area had been flooded 20-four times since 1974 
according to the records [73]. The percent annual chance recurrence intervals 
were developed using rainfall-frequency relationships presented in Technical 
Paper 42 (U.S. Department of Commerce, 1961) and an unit hydrograph was 
carried out using the HEC-1 computer program [USACE, 104].

The Río Rosario is a tributary of the Río Guanajibo and the subwa-
tershed in this study is defined by the outlet point defined at the USGS 
50136400 Río Rosario near Hormigueros station.

3.2.4 THE RÍO YAGÜEZ BASIN

The Río Yagüez basin (see Figure 3.1) has an area of 35.48 km2, a river 
length of 20 km with average slope from 0.004% to 0.025% for the 
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Flood Prediction Limitations in Small Watersheds 33

channelized river section at city of Mayagüez. Río Yagüez originates in 
the western slopes of the Cordillera Central and flows westerly into the 
Mayagüez Bay. The drainage basin is narrow, having a length-width ratio 
of approximately 10 to 1. In 1968, a flood protection project for the City of 
Mayagüez was initiated and the lower reach of the river was channelized to 
protect the city from floods. The channel has a capacity of 326 cms, but the 
maximum capacity of the channel at the PR Highway 2 Bridge is approxi-
mately 425 cms. To determine the discharges for the different percent 
annual chance floods in the basin reported in the FIS [32], a regional flood-
frequency analysis [112] was used based on log-Pearson Type III analyzes 
of individual station records and regionalization using multiple regression 
techniques. The 100, 50 and 10-year return period flows at the mouth were 
estimated to be 770 cms, 595 cms and 292 cms, respectively [32].

Currently there are only four flow gauge stations with precipitation 
data and 2 river stage measurements (see Table 3.1 for the source and 
data type details). Nine flow gauge stations operated by the United States 
Geological Survey (USGS) exist within the study area (Figure 3.1):

• Three NOAA rain gauge stations;
• Two Soil Climate Analysis Network (SCAN) sites from the United 

States Department of Agriculture (USDA) Natural Resources 
Conservation Service (NRCS); and

• Four owner stations published at the underground web page 
(http://www.wunderground.com/US/PR/) [138].

The climate in the area is tropical, with moderate temperatures year round, 
and the mean high annual temperatures are 26.4 C in the mountains (Maricao 
2SSW station) and 31.4 C in Mayagüez City station (Table 3.2). Table 3.2 
presents a summary of the mean monthly average air temperatures and rain-
fall for five locations within the study area. Puerto Rico has a bimodal rainfall 
distribution in the wet season from April to November, with drier conditions 
in June and July; and a dry season from December to March.

The mean annual precipitation varies greatly across the study area 
due to the abrupt changes in elevation by the mountains causing wide 
variation in local wind speed and direction, which results in a sea breeze 
effect in the western area. Table 3.2 presents annual rainfall accumula-
tions from 2463.8 mm for Maricao Fish and 1743.96 mm for Mayagüez 
City stations.
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Flood Prediction Limitations in Small Watersheds 37

3.2.5 SOILS CLASSIFICATION

A soil map describing the textural or soil class distribution is necessary to 
assign the values of the Green-Ampt infiltration parameters. The soil map 
was obtained from the Soil Survey Geographic (SSURGO) database for 
the Arecibo, Mayagüez, Lajas Valley and Ponce areas [USDA, 106–110] 
provided by the NRCS. Figures 3.2 and 3.3 depict the soil and textural 
classes occurring within the study area. The soil textures in the study area 
are: clay with 558.68 km2 area, loam with 176.84 km2, clay loam with 
53.88 km2, sand with 14.28 km2, rock with 10.32 km2 and gravel with 
4.72 km2. The SSURGO database provides additional information for 
each soil type, for example, bulk density, percent of sand and clay and 
soil depth. The soils series with a major presence in the area are Consumo 
(184.4 km2), Humatas (132.9 km2) and Mucara (78.9 km2). The three soil 
types are classified clays for texture class, but have different infiltration 

FIGURE 3.2 Soil map distribution for the study area. Source: SSURGO database, 
[USDA, 106–109].
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38 Flood Assessment: Modeling and Parameterization

capacities. Therefore, they are classified in the Hydrologic Soil Group as 
B for Consumo, C for Humatas and D for Mucara.

3.2.6 LAND USE CLASSIFICATION

To conceptualize the hydrologic model, it is necessary to obtain land use 
or land cover classes to assign roughness values and crop coefficients 
according to the classes. A digital map of the forest type and land cover 
was developed for Puerto Rico using LandSat enhanced Thematic images 
at 30 m resolution [51], applying a supervised classification approach. 
In total, 20-five classes were obtained from supervised classification 
(Figure 3.4). Prieto [75] reclassified the detailed classification into six 
major categories, grouping similar categories such as different forest 
types, shrub land, woodland or shade coffee.

The final land use classification is shown in Figure 3.5 and exhibits the 
predominant land use classification of forest, shub, wood land and shade 

FIGURE 3.3 Soil texture for the study area, SSURGO map [USDA, 106–109].
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Flood Prediction Limitations in Small Watersheds 39

FIGURE 3.4 Map of Puerto Rico natural vegetation and land cover. (Reprinted from 
Helmer, E. H., Ramos, O., López, T. M., Quiñónez, M., & Díaz, W. (2002). Mapping 
the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity 
hotspot. Caribbean Journal of Science, 38(3/4), 165–183. With permission from the 
University of Puerto Rico at Mayagüez.)

coffee with an area of 529.16 km2, followed by pastures with an area 
of 172.84 km2 and Urban and barren land with 60.02 km2. Preliminary, 
hydrologic model for the Mayagüez Bay basin area was configured using 
the Land use classification in Figure 3.5 provided by Prieto [75] and some 
analysis were developed using this data.

The second source of land use classification was provided by Puerto 
Rico Water Resources and Environmental Research Institute [PRWRERI, 
76], who developed the project titled Land Use Classification of the 
Mayagüez Bay Watershed, (Río Grande de Añasco, Río Yagüez, and Río 
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40 Flood Assessment: Modeling and Parameterization

Guanajibo Watersheds), supported by the Puerto Rico Environmental 
Quality Board (Figure 3.6). The sensor used for this classification was 
LANDSAT-7-TM satellite image from 2004 with 30 m resolution for a 
general land use classification with field visits verification as needed. 
Thirty-five classes were found in this product, where the most important 
area is covered by Forest low density (274.68 km2), fallow by Shrub and 
brush rangeland (253.05 km2), Forest high density (183.20 km2) and Urban 
or built-up land (103.71 km2).

3.2.7 TEST BED SUB WATERSHED

The test-bed subwatershed (TBSW) study area is located within the Río 
Grande de Añasco Basin, more specifically in the Río Cañas subwatershed 

FIGURE 3.5 Land use classification at 30 m resolution from LandSat ETM, 2000. 
Source: Prieto, M. G., (2006). Development of a Regional Integrated Hydrologic Model 
for a Tropical Watershed.Master of Science Thesis, University of Puerto Rico at Mayagüez, 
PR.
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(Figure 3.6). In this study, the TBSW with an area of 3.55 km2 is char-
acterized and used for analysis purposes as a “field laboratory” to test 
the scale influence in the hydrologic prediction. The terrain elevation 
within the TBSW varies from 25.4 m (above mean sea level, amsl) to 
305.7 m amsl, [25] (Figure 3.7). The area is characterized with large 
terrain elevation changes over small distances, with slopes varying from 
0.265% to 91.96% (39.03% average slope). Therefore, the study area is 
classified as a mountainous sub watershed which is very typical of the 
Puerto Rican upland sub watersheds. Prior to this investigation, no rain 
or flow gauges were present within the area. Figure 3.7 shows the TBSW 
location within the Mayagüez Bay model, the color contoured terrain 
map and the rain gauge network installed and used in the study area for 
this research.

FIGURE 3.6 Land use classification of the Mayagüez Bay watershed, Source: 
PRWRERI, (2004). Land Use Classification of the Mayagüez Bay Watershed, Río Grande 
de Añasco, Río Yagüez, and Río Guanajibo Watersheds. Puerto Rico Water Resources 
and Environmental Research Institute (PRWRERI). Developed for the Puerto Rico 
Environmental Quality Board.
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42 Flood Assessment: Modeling and Parameterization

3.3 FLOW DIRECTION AND STREAM DEFINITION

For MBDB, the model comprises the Río Grande de Añasco, Río Guanajibo 
and Río Yaguez watersheds. Overland slope, flow direction, and stream 
locations were determined from the USGS 30 × 30 m2 digital elevation 
model (DEM) quadrangles and resized to 200 m spatial resolution. During 
this step, the streams were “burned” into the model grid using a multistep 
process in ArcGIS, in which the flow direction is forced to follow the riv-
ers. This step is necessary because the flow direction calculation tends not 
to be accurate in low slope areas (e.g., floodplains of the rivers). The final 
resized digital elevation model has correct flow direction based on the 
hydrological maps of the topographic quadrangles.

The flow direction and subsequent products were calculated with Arc 
Hydro Tools and ArcGIS 9.3. A flow direction map is necessary to calcu-
late the flow accumulation map and create the stream network map. The 
flow accumulation is an accounting of cells contributing flow to a selected 
observation point, increasing the contributory area for observation points 

FIGURE 3.7 TBSW location within the 4 × 4 km2 NEXRAD pixel and rain gauge 
network.
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located further downstream. A cell located at the watershed outlet has the 
total cell number that drain to this point. The stream definition required 
90 cells of flow accumulation to begin a channel. The river grid generated 
was used to define the channel cells in Vflo (Figure 3.8).

The TBSW model was developed using the same procedure described 
above but using the 10 m DEM [25]. The flow direction and stream defini-
tion were used to define the overland and channel cells respectively; based 
on the sub watershed delineation and river definition shown in Figure 3.7.

3.4 CHANNEL GEOMETRY

Channel geometry in the hydrologic model is necessary for the channel 
cells or cross section cells in the model and includes the sides slopes, cross 
sectional data or base width for trapezoidal assumption and channel slope. 
The geometry would affect the flow response, increasing the stages for 
narrow rivers and decreasing stages for wide rivers, principally due to the 

FIGURE 3.8 Flow accumulation and stream definition for Río Grande de Añasco, Río 
Guanajibo and Yagüez basin model.
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44 Flood Assessment: Modeling and Parameterization

storage. MBDB is not characterized by large width variations over short 
distances; typically widths are within the range of 3–5 m for upland riv-
ers and creeks and up to 32 m for low lands according to measurement 
samples in aerial photos taken December, 2006 (Google Earth) over the 
study area.

The channel slide slopes were assumed to be 1:1 for the streams where no 
cross section information was available. The stream geometry was defined 
with data collected in 2002 by the PRWRERI [76, 135]. At Río Grande de 
Añasco, 25 cross sections were measured along the river; 10 cross sections 
were surveyed in Río Guanajibo, located downstream of PR-114 and in Río 
Yagüez only four cross sections were measured upstream of the channel-
ized section. To define the flood plain within the cross sections, an extend-
ing process was made using the digital terrain model (10 m resolution) and 
creating interpolation lines to extract the entire cross section and new cross 
sections. Additional cross sections were extracted from DEM (10 m resolu-
tion) to characterize the flood plain where no field cross sections were sur-
veyed and a simple trapezoidal river section was used measuring the river 
width from 2006 aerial photos of Google Earth, 2006 and the side slope set 
to 1:1. Figure 3.9 shows the locations of cross sections extracted from the 
DEM for the Río Guanajibo and Río Grande de Añasco. The channel slope 
was determined using the stream definition raster layer (Figure 3.8) and 
the slope map calculated with the DEM at 10 m resolution for the stream 
reaches where no survey data was available.

The stream map generated with the DEM at 10 m resolution was used 
to define the channel cells in Vflo for the TBSW model; channel side slopes 
were assumed to be 1:1; and bed channel width was set to 5 m. In most 
of the river sections (measured from Google Earth), the channel width is 
about 5 to 10 m, supposing bed width is about 4 to 8 m. Streamflow and 
flow volume are not sensitive to bed width; however, the stream stage is 
sensitive to bed width according to some tests realized.

3.5 STAGE AND RATING CURVE FOR THE TBSW CREEK

A pressure transducer was installed at the TBSW outlet to collect flow 
stage measurements every 5 min from October 20, 2007 to May 2009. The 
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instrument was located at 18.232667° latitude; −67.119533° longitude and 
elevation of 25 m amsl (see Figure 3.11). Daily minimum barometric pres-
sures were used to correct the factory calibrated stage measurements using 
the Miradero KPRMAYAG1 weather station (18.2º north latitude, 67.13º 
west longitude and elevation of 22.86 meter above mean sea level), avail-
able at www.weatherunderground.com. The average adjusted stage value 
was calculated in 0.847 m with 0.0225 m standard deviation. This value 
was using the minimum pressure measured at Miradero KPRMAYAG1.

Stream cross-sections and bed slopes were measured in the field 
(Figure 3.10) and the rating curve was generated using HEC-RAS 4.0 
hydraulic model [Hydrologic Engineering Center, 53] with 3 cross sec-
tions and slopes observed. The downstream boundary condition was 
assigned as critical depth and flows were assigned with subcritical flow 
condition. The full bank stream-rating curve was fitted to the following 
third order polynomial equation (Eq. 1) with a regression coefficient of 1, 

FIGURE 3.9 Cross sections surveyed and interpolated for Mayagüez Bay model.
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where flow is in cubic meters per second and stage in meters. The Eq. (1) 
was used to convert stage elevations to flow discharge for the events.

 Flow = –0.631 stage3 + 5.633 stage2 + 0.003 stage – 0.0631 (1)

To setup the distributed model at TBSW, information was assigned 
to selected model cells corresponding to the principal stream channel. 
The bed channel slopes for the TBSW model were assigned by segments 
using the average longitudinal slope between cross sections digitized from 
the DEM (10 m) and corroborated with field measurements. Figure 3.11 
shows pictures of the outlet section and the pressure transducer location. 
The TBSW creek was divided in three creeks (Figure 3.12). The Lower 
Creek has a longitudinal average slope of 1.25% and Upper Creek has 

FIGURE 3.10 Cross section measured at the instrumentation place and rating curve to 
full bank condition.

FIGURE 3.11 Principal channel bed at TBSW (right) and location of the pressure 
transducer (left).
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FIGURE 3.12 TBSW hydrologic model configuration (Vflo) and identification of the 
river reaches.

2.22%. Upper Creek 2 is shown in Figure 3.12 and was divided into two 
segments, the upstream segment shows a slope of 11.27% and the down-
stream segment is 3.27%. Figure 3.12 shows the Vflo model with the chan-
nel and overland cells at 10 m resolution and the locations of the creeks 
named above.

3.6 SLOPE ANALYSIS

Land surface slope is another important source of uncertainty in hydro-
logic modeling. High (low) slopes affect the time to peak producing early 
(retarded) peaks, less (more) infiltration, increasing (decreasing) discharge 
volume and increasing (decreasing) peaks. The average and standard devi-
ation of the slope for Río Grande de Añasco basin were 34.6% and 21.7% 
respectively; for Río Guanajibo basin 28.2% and 22.4%, respectively; for 
Río Yagüez 29.8% and 18.0%, respectively; and for TBSW were 31.0% 
and 14.9%, respectively, calculated with the DEM at 10 m resolution.

Figure 3.13 and Table 3.3 show the subwatershed map and the average 
land surface slope values and standard deviation for each watershed and 

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



48 Flood Assessment: Modeling and Parameterization

subwatersheds for MBDB area. In total, 24 subwatersheds were identified 
for the most important tributary rivers and coastal areas, the majority of 
those exhibiting high slopes and similar conditions to the TBSW, indicat-
ing that the TBSW could be a representative sample of the MBDB, in 
terms of the slope parameter.

Maintaining the land surface slope values when resampling tech-
niques are used would improve the flow prediction at larger terrain scales. 
A method to calculate slope at different grid size resolutions was inves-
tigated without decreasing of slope. Different methods can be applied to 
calculate the resampled slope while the up scaling is being done. The slope 
up-scaling was performed using two methods and three resample tech-
niques for the TBSW model using ArcGIS 9.3. The TBSW presents an 
average slope of 31.03% with a standard deviation of 14.93%.

To verify the results and obtain a box plot of the change and degra-
dation in slope using Method 1, a slope analysis was developed for the 
MBDB model (Figure 3.13). The results show the same degradation of 
the mean slope (dashed lines: Figure 3.16) using Method 1 and the nearest 

FIGURE 3.13 Sub Watersheds map belonging to MBDB.
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TABLE 3.3 Mean Land Surface Slope and Standard Deviation for the Subwatersheds

Watershed 
Name

Sub Watershed Name Area 
(km2)

Mean 
Slope 
(%)

Standard 
Deviation 
(%)

Río Grande 
de Añasco

Unnamed Coastal Watersheds West 
of Cano La Puente mouth

28.78 28.70 21.70

Río Humata 12.65 35.75 17.79
Cano La Puente 28.37 20.11 25.65
Río Grande de Añasco at mouth 101.91 32.30 20.85
Río Arenas 15.41 28.72 14.57
Río Casey 29.64 37.11 18.87
Río Blanco 31.45 44.09 20.17
Coastal Watersheds of Río Grande 
de Añasco mouth

18.13 7.39 10.69

Río Mayaguecillo 18.11 37.81 17.75
Río Cañas 38.00 26.72 16.10
Test Bed Sub-Watershed 3.56 31.03 14.93
Río Guaba 83.20 46.06 19.38
Río Prieto below Dam 43.31 41.51 18.43
Total area and average slope 448.95 34.60 21.67

Río Yagüez Quebrada del Oro 6.74 19.76 16.56
Río Yagüez 35.24 31.67 17.69
Total area and average slope 41.98 29.76 18.05

Río 
Guanajibo

Río Rosario 62.15 38.02 20.59
Coastal Watersheds North and 
South of Río Guanajibo mouth

21.03 11.92 15.83

Río Hondo 12.52 25.49 17.06
Río Guanajibo at mouth 81.35 17.81 17.07
Río Duey 35.70 37.25 19.06
Río Cain 21.13 39.02 17.99
Río Grande 25.41 47.21 23.64
Río Cruces 19.55 38.39 22.83
Río Cupeyes 11.03 39.55 19.14
Río Viejo 60.65 15.71 18.37
Total area and average slope 350.52 28.17 22.38
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50 Flood Assessment: Modeling and Parameterization

FIGURE 3.15 Slope calculated for TBSW using different resample techniques.

FIGURE 3.14 Land Surface slope map for the TBSW, slope values in percent.
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FIGURE 3.16 Slope box plots (quartiles 25 and 75) for the MBDB study area calculated 
with Method 1 and nearest neighbor resample technique, mean slope (dashed lines), 
quartiles 5 and 95 (solid lines) and outliers (dots).

neighbor resampling technique at DEM resolutions of 30, 50, 100, 150, 
200, 300, 500 and 1000 m.

Figure 3.16 presents slope degradation in terms of the interquartile 
25–95 (solid boxes), interquartile 5–95 (solid lines) and outliers (dots). 
Figures 3.17 and 3.18 present spatial graphical representation of the slope 
degradation using the two methods described above. The same interval 
classes were chosen to represent the slope. Method 2 in Figure 3.18 pres-
ents much more area in red color than Method 1 in Figure 3.17, because 
it presents more areas without degradation and slope values greater than 
16%. Therefore, Method 2 is the recommended for up-scaling both the 
slope of TBSW and Mayagüez Basin model.

3.7 GREEN-AMPT INFILTRATION MODEL: PARAMETERS 
ASSIGNMENT

The abstractions in the distributed hydrologic model are calculated with 
the Green-Ampt infiltration model. The principal parameters are: saturated 
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52 Flood Assessment: Modeling and Parameterization

hydraulic conductivity; effective porosity, soil depth, and wetting front. 
Parameter values were assigned using the SSURGO maps and database 
from the USDA [106–109], which contains the soil classes for Puerto 
Rico. Initially, the soil map was classified into six basic textures and the 
hydraulic conductivity, wetting front and effective porosity values were 
assigned from literature as shown in Table 3.4 [9, 34, 65, 128]. Using 
the Book Reference values of infiltration parameters from Table 3.4, aver-
age parameter values were calculated for the tributary area at the stream-
flow gauge stations, located in the watersheds. Average parameter values 
in several flow meter stations are indicated in Table 4.

At Río Grande de Añasco near San Sebastian for example, the aver-
age hydraulic conductivity is 0.05 cm/h, the wetting front is 28.29 cm, 
the effective porosity is 0.364, and the soil depth assigned uniformly to the 
basin area was 20 cm. A preliminary study was developed with the infiltra-
tion values shown in in Table 3.4.

FIGURE 3.17 Visual comparisons between resample methods at 200 m resolution for the 
MBDB model by Method 1.
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FIGURE 3.18 Visual comparisons between resample methods at 200 m resolution for the 
MBDB model by Method 2.

The volume calculated was over predicted in almost all cases. Therefore 
an exhaustive analysis was conducted to enhance the infiltration param-
eter values since the literature shows low hydraulic conductivity values 
using the texture class approach. In Puerto Rico, the soils present high 
organic matter content and some clays are well drained, and are con-
sidered as hydrologic group B, for example Alonso, Consumo, Delicias 
and Maricao soils [SSURGO]. New values for hydraulic conductivity, 
total porosity and effective porosity were obtained using the percentage 
of sand, silt and clay and average bulk density from the SSURGO data-
base and Rosseta Lite program [86–90] from HYDRUS-1D [96]. Rosetta 
implements pedotransfer functions to predict van Genuchten [114] water 
retention parameters and saturated hydraulic conductivity (Ks) by using 
textural class, textural distribution, bulk density and one or two water 
retention points as input. Rosetta follows a hierarchical approach to esti-
mate water retention and Ks values using limited or more extended sets 
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of input data [87–89]. The calibration data for Rosetta has a set of 2134 
samples for water retention and 1,306 samples for Ks [88] distributed in 
USA and some from Europe. The authors suggested that the usage of 
Rosetta for other climate zones, and hence other pedogenic processes, 
could lead to inaccurate predictions.

3.7.1 ASSUMPTIONS FOR UNCLASSIFIED SOIL CLASSES

Some soils did not have bulk density and percentage of sand, silt and clay. 
In these cases assumptions were made for alluvial land, leveled clayed 
classification, limestone, gravel, pits and quarries, serpentine rock, volca-
nic rock and limestone rock as described in this section.

TABLE 3.4 Summary of the Infiltration Values for the Green Ampt Model

Basin Soil texture Effective 
porosity

Wetting 
front (cm)

Hydraulic 
conductivity 
(cm/h)

Book reference Sand 0.42 4.95 11.78
Loam 0.43 8.89 0.34
Clay Loam 0.31 20.88 0.10
Clay 0.39 31.63 0.03
Gravel 0.24 1.5 2.27
Rock 0.17 1 0.036

Average Values over the Watersheds

Añasco near San Sebastian — 0.364 28.29 0.05
Guanajibo near Hormigueros — 0.33 22.5 0.1
Río Rosario — 0.328 25.2 0.03
TBSW — 0382 31.21 0.03
Río Casey — 0.376 30.41 0.03
New Average Infiltration Values

Añasco near San Sebastian — 0.412 28.61 0.75
Guanajibo near Hormigueros — 0.363 22.85 6.35
Río Rosario —
TBSW — 0.43 31.57 0.69
Río Casey — 0.418 30.41 0.64
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3.7.1.1 Alluvial Land

Alluvial land has a variable profile, is a fine-grained fertile soil deposited 
by water flowing over flood plains or in river beds. Clay or silt or gravel 
are carried by rushing streams and deposited where the stream slows 
down. The Soil Conservation Service classified this soil in the hydrologic 
group D and reports that the alluvial land has 0–1 inches of ponding depth 
range, very long ponding duration and floods frequently during the year 
[USDA, 106–109]. Therefore, it is assigned a classification of Clay with 
an effective porosity of 0.475, 31.63 cm suction head and 0.06 cm/h satu-
rated hydraulic conductivity.

3.7.1.2 Leveled Clayed

Leveled Clayed presents a hydrologic group C. The hydraulic conductiv-
ity value assigned to this classification was the average value between 
clay texture and hydrologic group C and it was 1.225 cm/h with a range 
between 0.801 and 2.789 cm/h. The same procedure as was used for 
alluvial land was used for leveled clay where the effective porosity was 
assigned the average value of 0.427 and a value of 31.63 cm for suction 
head, as recommended for clay.

3.7.1.3 Limestone

Limestone is a sedimentary rock composed largely of the mineral calcite 
(calcium carbonate: CaCO3). The hydraulic conductivity was 570 cm/h, 
taken from Freeze and Cherry (1979), the range for this value varies from 
0.11 to 1,142 cm/h. The effective porosity is 0.14. The wetting front suction 
head was set to 1 centimeter, the minimum for sand reported by Vieux [126].

3.7.1.4 Gravel, Pits and Quarries

Gavel, pits and quarries have a hydrologic group A, assigned in SSURGO 
database [USDA, 106–109] meaning that they possess very good infiltra-
tion. The values assumed for their classification was medium gravel with 
a moderate degree of sorting and without silt content. For this material, 
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the saturated hydraulic conductivity was assigned a value of 297 cm/h 
and an effective porosity of 0.24. The wetting front suction head was the 
minimum for sand reported by Vieux [127] of 1 cm.

3.7.1.5 Serpentine Rock

According to Freeze and Cherry [34], the saturated hydraulic conductivity 
(Ks) for fractured metamorphic and igneous rocks is between 0.00114 and 
11.4 cm/h, the average is 5.71 cm/h. The effective porosity assigned was 
0.26 for metamorphic rock.

3.7.1.6 Volcanic Rock

Volcanic rocks are usually fine-grained or aphanitic to glassy in texture 
and are named according to both their chemical composition and texture. 
Basalt is a very common volcanic rock with low silica content. For Basalt 
rock we assumed a total 0.17 (reported range of 0.03 to 0.35); effective 
porosity 0.1 and saturated hydraulic conductivity 570 cm/h for fractured 
basalt (10 to 105 m/year).

The values assigned to Soil not Surveyed classification were average 
hydraulic conductivity for clay texture in the whole study area: 1 cm/h; 
and the effective porosity and wetting front suction values correspond to 
clay as reported by Vieux [127]. For the TBSW model, all the parameters 
were assigned to a grid model resolution of 10 m from the MBDB model. 
Average infiltration parameters for the TBSW are tabulated in Table 3.5 
with detailed soil names and parameter values used. Bouwer [19] sug-
gested multiplying the hydraulic conductivity by 0.5 for the saturated 
hydraulic conductivity in Green-Ampt model. Therefore the average satu-
rated hydraulic conductivity for the TBSW is 0.69 cm/h.

3.8 SOIL DEPTH

The soil depth is a very important parameter to calculate the infiltration 
losses. The USDA [106–109] reports the soil depth for each soil when 
some restrictive layer or lithic rocks exist at a shallow depth. In other cases 
a maximum soil depth is assigned a value of 152 cm (60 inches), corre-
sponding to the depth surveyed. Lithic is a continuous hard rock and less 
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permeable, in some cases it is encountered at a depth of 10 cm from the soil 
surface. For some soils a paralithic rock is present under the layered soil. 
The paralithic rock is a weathered layer and broken rock in contact with 
fissures less than 10 cm apart, which allow roots and water to penetrate the 
underlying rock. Major hydraulic conductivity is allowed, and works like 
fractured rock. Soils under this condition are allowed to increase the soil 
depth to 600 cm indicating no depth restriction, and other soils without 
any restrictive layer or lithic rock were set to 300 cm, almost double that 
of the survey. In this way the soil depth assigned to the soil map will be 

TABLE 3.5 Soil Classification (SSURGO), Hydrologic Group and Infiltration 
Parameters at TBSW

Soil Name Texture Hydrologic 
Group

Area 
(%)

Wetting 
front 
(cm)

Ks 
(cm/h)

Depth 
(cm)

Effective 
porosity

Consumo Clay B 59.85 31.63 1.273 300 0.415
Dagüey Clay C 15.11 31.63 1.266 300 0.451
Humatas Clay C 25.03 31.63 1.736 300 0.454
Serpentinite Rock 

Serpentine
D 0.01 3.00 5.7 300 0.26

Toa Silty Clay 
Loam

B 0.01 27.30 0.294 300 0.377

Average — — — 31.62 1.38 — 0.43

TABLE 3.6 Resized Grid Area for the Land Use Map [75]

Re-class name Manning 
roughness (n)

Impervious 
(%)

Area with 
30 m (km2)

Area with 
200 m (km2)

∆ Area 
(km2)

Agriculture 0.166 5 54.93 55.92 0.99

Agriculture/hay 0.190 4 0.13 0.12 –0.01

Forest, shrub, 
woodland and 
shade coffee

0.191 2 529.16 529.12 –0.04

Other emergent 
wetlands

0.050 1 1.26 1.24 –0.02

Pasture 0.225 5 172.84 173.2 0.36

Quarries, sand 
and rock

0.020 95 0.75 0.56 –0.19

Urban and barren 0.080 81 60.02 58.68 –1.33
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the maximum possible and reductions would be considered for calibration 
proposes. Values assigned for the TBSW area are shown in Table 3.5.

3.9 ASSIGNING OVERLAND ROUGHNESS, IMPERVIOUS AND 
CROP COEFFICIENT

Overland roughness is an input parameter in hydrologic models and this 
parameter affects principally the peak flow in a hydrograph. Two sources 
were analyzed to determine the land use in the area. One source was obtained 
from land use/land cover map for Puerto Rico [51], which was reclassified 
by Prieto [75] into six land use classes. Appropriate Manning’s and imper-
vious values were assigned to each class at 30 m resolution (Table 3.6). 
A resize from 30 m to 200 m will change the area distribution of some land 
use and would affect the flow response (e.g., flow volume). The land class 
most affected by resizing is the urban area showing a decrease in area of 
1.33 km2, followed by an increase in Agriculture by a 0.99 km2, areas of 
special interest in terms of flooding (Table 3.6).

The sum of the land use map areas between 30 m and 200 m are 
different due to pixel sizes; 200 m is rougher and covers more area, while 
the 30 m pixel can adjust much better to the basin form.

The second land use source was from remote sensing classification and 
field verification from PRWRERI [76] shown in Figure 3.6 with 35 classes. 
The land use classification was reclassified into 13 classes and is shown in 
Figure 3.21. The roughness values were specified for each class according 
to literature and expertise and shown in Table 3.6. A value of 0.118 is the 
average roughness value for the MBDB model and 0.12 for the TBSW.

Another parameter that is contingent upon the land use classification 
is the crop coefficient. Its coverage was determined using the land use 
classes derived in Figure 3.19 at 30 m resolution. Values of Kc (mid-season 
crop stage) were assigned from Allen et al. [4] and are shown in Table 3.7. 
Allen et al. [4] did not present Kc values for forest land use. Therefore, an 
apple tree with active ground cover class value was assumed (for possible 
representation of forest), with a maximum of 1.2 Kc. The TBSW exhibits a 
predominant forest land use (see Figure 3.20, 30 m resolution) of low den-
sity with 39.36% of the area; brush rangeland with 38.17% of the area and 
14.51% urban land use, respectively (Table 3.8). The Figure 3.21 shows 
some images taken for the forest representation and urban area.
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TABLE 3.7 Land Use Classification with the Manning Roughness Values and Crop 
Coefficient (Kc) for MBDB

Classes Re-classification Manning 
roughness (n)

Kc Area (m2)

Coffee Agricultural Land 0.080 1.100 15.76
Coffee, orange 0.080 1.000 0.01
Coffee, orange, plantain/
banana

0.080 1.000 0.01

Coffee, plantain/banana 0.080 1.100 12.73
Coffee, plantain/banana, 
oranges

0.080 1.025 0.33

Dairy Farm or dairy cow 
feeding

0.050 0.400 0.03

General agriculture 0.080 1.000 1.17
Nurseries and 
ornamental horticulture

0.080 1.000 0.39

Orange 0.080 0.850 0.66
Orange, coffee 0.080 0.950 0.64
Orange, plantain/banana 0.080 0.900 0.29
Orange, plantain/banana, 
coffee

0.080 1.000 0.02

Plantain/banana 0.080 1.200 7.21
Plantain/banana, coffee 0.080 1.150 0.06
Plantain/banana, coffee, 
oranges

0.080 1.200 0.49

Plantain/banana, orange 0.080 1.025 0.11
Shade coffee plantation 0.080 1.100 0.06
 SUB-TOTAL 0.078 0.992 39.99

Barren land Barren Land 0.015 0.300 10.18
Forest high density Forest high density 0.150 1.200 156.19
Forest low density Forest low density 0.150 1.100 234.31
Forested Wetland Forested Wetland 0.070 1.200 2.83
Native pastures Native pastures 0.045 0.850 6.73
Non-Forested Wetland Non-Forested Wetland 0.050 1.100 2.16
Pasture Pasture 0.035 0.950 1.50
Shrub and brush 
rangeland

Range Land 0.130 1.000 248.92
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60 Flood Assessment: Modeling and Parameterization

Classes Re-classification Manning 
roughness (n)

Kc Area (m2)

Bare exposed rock Rocks 0.015 0.100 0.04
Gravel pit 0.015 0.100 2.07
Transition area Transition area 0.050 0.300 0.79
Transportation, 
communication

Urban or Built-Up 0.015 0.300 11.78

Urban or built-up land 0.015 0.300 97.40
Waste disposal areas 0.015 0.300 0.44
Pond Water 0.030 1.050 0.24
Streams and canals 0.030 1.050 2.97
 TOTAL 0.188 0.966 818.53

Source: PRWRERI [76] for classes and Allen et al. [4] for Kc.

TABLE 3.7 Continued

FIGURE 3.19 Land Use general reclassification from Land SatET 2004, Source: 
PRWRERI, (2004). Land Use Classification of the Mayagüez Bay Watershed (Río Grande 
de Añasco, Río Yagüez, and Río Guanajibo Watersheds. Puerto Rico Water Resources 
and Environmental Research Institute (PRWRERI). Developed for the Puerto Rico 
Environmental Quality Board.
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Flood Prediction Limitations in Small Watersheds 61

FIGURE 3.20 Land use classification for the TBSW extracted from Figure 3.19.

FIGURE 3.21 The land use of the TBSW.
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62 Flood Assessment: Modeling and Parameterization

3.10 EVAPOTRANSPIRATION

The hydrologic model requires potential or reference evapotranspiration as 
input to dry the soil in a long-term simulation. This section identifies the 
uncertainties associated with the evapotranspiration quantification, because 
this parameter is time and scale dependent and is related to the meteoro-
logical stations located within the area of interest. Reference evapotranspi-
ration can be calculated by the Penman-Monteith method (Eq. 7) and the 
Hargreaves Samani method (Eq. 8) using data from the NRCS Soil Climate 
Analysis Network (SCAN) weather stations located in western and south-
ern Puerto Rico. Two stations are located within the MBDB and relatively 
close to the TBSW (i.e., the USDA Tropical Agricultural Research Station 
(TARS) at Mayagüez and Maricao Forest, PR). Penman-Monteith [4] and 
Hargreaves-Samani [45] methods were compared at the stations mentioned 
with a daily time step from October, 2007 to October 2009. The FAO56 
Penman Monteith evaporation equation is presented below [4]:

 ETo

0.408 ∆⋅ Rn G−( )⋅ γ
900

T 273+






⋅ u2⋅ es ea−( )⋅+

∆ γ 1 0.34 u2⋅+( )⋅+
=  (2)

TABLE 3.8 Land Use Classification, Manning Roughness (n) Values and Kc for 
Evapotranspiration Quantification in the TBSW

Land use classification Manning 
roughness (n)

Kc Area (km2) Area %

Barren land 0.0150 0.300 0.0378 1.06
Forest high density 0.1500 1.200 0.2083 5.86
Forest low density 0.1500 1.100 1.3994 39.36
Gravel pit 0.0150 0.100 0.0018 0.05
Native pastures 0.0450 0.850 0.0009 0.03
Shrub and brush rangeland 0.1300 1.000 1.3570 38.17
Streams and canals 0.0300 1.050 0.0045 0.13
Transition area 0.0500 0.300 0.0216 0.61
Transportation, communication 0.0150 0.300 0.0083 0.23
Urban or built-up land 0.0150 0.300 0.5157 14.51
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Flood Prediction Limitations in Small Watersheds 63

where, ETo is reference evapotranspiration (mm/day), ∆ is slope of the 
vapor pressure curve (kPa/°C), Rn is net radiation (MJ/m2day), G is soil 
heat flux density (MJ/m2day), γ is psychometric constant (kPa/°C), T is 
mean daily air temperature at 2 m height (°C), u2 is wind speed at 2 m 
height (m/s), es is the saturated vapor pressure and ea is the actual vapor 
pressure (kPa).

Equation (7) applies specifically to a hypothetical reference crop with 
an assumed crop height of 0.12 m, a fixed surface resistance of 70 sec/m 
and an albedo of 0.23. The Hargreaves-Samani equation for reference or 
potential evapotranspiration [45] is given below:

 PET = 0.0135 × Rs × (Tave + 17.8) (3)

where, Rs is solar radiation in units of mm/day and Tave is average air tem-
perature (°C). Rs is readily converted from units of MJ/m2day to equivalent 
depth of water in mm/day by dividing by the latent heat of vaporization 
(2.45 MJ/m2day).

The Pearson correlation coefficient (R2) between Eqs. (7) and (8) 
was 0.9375 and the bias was 0.956 for this period, indicating that the 
Hargreaves Samani constant (0.0135) presented in Eq. (8) could be cor-
rected by a factor of 0.956 for the current study area using a more sim-
plistic formula than FAO-Penman-Monteith equation (Eq. 7). Goyal et al. 
[40] developed monthly linear regression equations for air temperature 
(mean temperature (Tave), maximum temperature (Tmax) and minimum 
temperature (Tmin) for Puerto Rico, which depend on the surface eleva-
tion (m). PET can be calculated using these linear regressions [44] and 
Hargreaves-Samani equation [45] extended for places where no solar 
radiation data is measured.

 PET = 0.0023 × Rs × (Tave + 17.8)(Tmax – Tmin)
0.5 (4)

where, PET is potential or reference evapotranspiration (mm/day) and Ra 
is the extraterrestrial radiation (mm/day).

Solar radiation is highly spatially variable in Puerto Rico [48, 49]. 
Therefore, the effectiveness of Eqs. (3) and (4) to estimate PET using the 
temperature versus elevation relationships developed by Goyal at short 
time scales (daily) was evaluated in the current study. Constants in Goyal’s 
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64 Flood Assessment: Modeling and Parameterization

monthly linear regressions were interpolated to daily constants [40]. All 
input parameters needed in the Hargreaves-Samani methods (Eqs. 3 and 4) 
are measured by the SCAN stations.

The elevation at the TARS is 13.72 m amsl with an average temperature 
(Tave) of 23.9°C for the period of analysis (October, 2007 to October, 2009); 
and in Maricao Forest the elevation is 747 m with Tave 19.7°C. The results 
show that the Goyal regressions at a daily time step predict the Tave with 
a coefficient of determination R2 of 0.46 for TARS and 0.62 for Maricao 
[40]. However, if PET is calculated with the solar radiation measured at 
the stations along with the Tave derived from the Goyal regressions [40], the 
improved R2 of 0.987 and 0.992 are obtained at TARS (Figure 3.22) and 
Maricao Forest (Figure 3.23), respectively.

Values of R2 of 0.2145 for TARS and 0.0013 for Maricao were obtained 
using Goyal’s elevation model [40] and Eq. (4). The R2 is increased to 
0.2254 for the Maricao station if the PET is calculated using the Tave from 
the equations by Goyal [40] and the solar radiation is assumed to be equal 
to the TARS solar radiation (Figure 3.22).

These results show that solar radiation is a spatially sensitive param-
eter in the PET calculation and that solar radiation cannot be assumed 
equal at locations distant from each other. Remotely sensed satellite mea-
surements are suggested for a better spatially distributed solar radiation 
dataset, according to Harmsen et al. [48, 49]. For a long-term hydrologic 
model, simulations for the TBSW, we used the PET calculated using 
Eq. (3) and assuming that the solar radiation is the same as TARS, due to 
its relatively close proximity to the TBSW, around 2.5 km, compared to 
16.3 km between the TBSW and Maricao Forest stations. Although not 
used in this study, another option would have been to use the daily opera-
tional solar radiation data described by Harmsen et al. [48] for Puerto Rico 
[http:/ pragwater.com/solar-radiation-data-for-pr-dr-and-haiti/].
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Flood Prediction Limitations in Small Watersheds 65

FIGURE 3.22 Potential Evapotranspiration with Hargreaves-Samani relationship 
for observed Tmax, Tmin, Tave, solar radiation, extraterrestrial radiation; and temperatures 
predicted by Goyal relationships at TARS station. Source: Goyal, M. R., E.A. González 
and C. Chao de Báez, (1988). Temperature versus elevation relationships for Puerto Rico.J. 
Agric.UPR72(3), 449–67.

FIGURE 3.23 Potential Evapotranspiration with Hargreaves-Samani relationship for 
observed Tmax, Tmin, Tave, solar radiation, and extraterrestrial radiation; and temperatures 
predicted by Goyal relationships at Maricao Forest station. Source: Goyal, M. R., E.A. 
González and C. Chao de Báez, (1988). Temperature versus elevation relationships for 
Puerto Rico.J. Agric.UPR72(3), 449-67
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FLOOD PREDICTION LIMITATIONS 
IN SMALL WATERSHEDS: 
METHODOLOGY 1, 2

ALEJANDRA M. ROJAS-GONZÁLEZ

CONTENTS

4.1 Introduction .................................................................................... 68
4.2 Additional Field Measurements ..................................................... 69
4.3  Evaluation of Parameter Aggregation Techniques  

Within the TBSW ........................................................................... 70
4.4  Determination of Hydrologic Model Sensitivity  

Due to Parameters and Rainfall Perturbations  
for the MBDB Model ..................................................................... 71

4.5 Evaluation of Current Quantitative Precipitation Estimates .......... 73
4.6  Evaluation of Predictability Due to Hydrologic Model  

Parameters and Input Resolutions at TBSW .................................. 78

1 This chapter is an edited version from, “Alejandra María Rojas González, 2012. Flood prediction 
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished 
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico –  Mayagüez 
Campus”.
2 Numbers in brackets refer to the references at the end of this book.

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



68 Flood Assessment: Modeling and Parameterization

4.1 INTRODUCTION

This chapter presents the technical methodologies used in this research 
to address the research questions presented in Chapter 1. A determination 
of parameter sensitivity in the MBDB model is presented, where vari-
ous parameters were first perturbed by multiplication factors to generate 
spider plots, and then the factors 0.5 and 1.5 (representing ±50%) were 
used to calculate the relative sensitivity (Sr) for different variables and 
events. Using the TBSW model, some parameter aggregation techniques 
are evaluated for later use in the up-scaling experiment. This section pres-
ents the evaluation of uncertainties in Quantitative Precipitation estimates 
from MPE by comparison with a high density rain gauge network; and a 
methodology to evaluate uncertainty due to hydrologic model (grid spac-
ing) and rainfall resolution were addressed.

To establish a flood alarm system in the MBDB, first, one must know 
the likelihood and uncertainty associated with a prediction due to the 
inputs and parameters variations. Some initial sensitivity tests were devel-
oped in the Mayagüez Bay model to understand how some parameters and 
inputs affect the flow prediction. The major sources of uncertainties are 
associated with inputs such as rainfall estimation, terrain slope, param-
eter values and initial conditions; and all these sources of uncertainty are 
resolution-dependent. How much rainfall variation is there at scales below 
the radar pixel size and how much does rainfall variation and DEM resolu-
tion affect predictability? These questions will be addressed in the TBSW 
analysis.

The TBSW is useful for research purposes and represents a “real 
world” laboratory to study the predictability limits due to aggregation of 
high-resolution inputs in a hydrologic model. In the TBSW (Figure 3.7 
in Chapter 3 of Part I), a dense rain gauge network was installed as part 
of this investigation and a pressure transducer for water level measure-
ments. Other high-resolution data exists for the TBSW including topog-
raphy [digital elevation model, 25]; soils and land use maps, etc. These 
sets of information are ideal to define how much detail is necessary in the 
physical modeling process and the value of increasing the rainfall resolu-
tion, as well as the hydrologic model grid resolution within small water-
sheds. Carpenter [23] mentioned that the uncertainty in the model output 
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Flood Prediction Limitations in Small Watersheds 69

is inversely proportional to the watershed area. In other words, for a small 
hydrologic model, a large degree of uncertain exists at the subwatershed 
scale. Therefore, the magnitude and behavioral impact of the rainfall errors 
in the hydrologic forecasts help to define the precision and accuracy nec-
essary in new rainfall algorithms and radar technologies. New radar tech-
nologies are being developed under the CASA project at UPRM [22] and 
are available for western Puerto Rico, promising higher resolution than 
NEXRAD, and will be a critical component in the flood alarm system.

Evaluating possible CASA radar resolution in this study with the rain 
gauges information, authors of this study determined the predictability and 
quantify the uncertainty due to terrain and rainfall grid size resolution at 
scales below the typical radar resolution (2 × 2 km2 cell size) in small 
subwatersheds. After finding the predictability limits and assessing the 
predictability in the TBSW, they formulated recommendations to initialize 
the larger model (MBDB) and enhance the flood prediction in mountain-
ous basins. All statistical analyzes in this research were performed using 
Minitab 16 [67].

The following sections describe the methodology and activities 
required to achieve a successful investigation and to address the research 
questions presented before in Chapter 1. For convenience, a summary of 
the research questions are listed here:

• How flood prediction is affected by the spatial variability of point 
rainfall at scales below that of the typical resolution of radar-based 
products?

• How does the DEM and parameter aggregation affect the model’s 
predictive capabilities and the errors of the hydrologic system?

• Would the assumptions developed for the small scale enhance the 
hydrologic predictability at larger scales?

4.2 ADDITIONAL FIELD MEASUREMENTS

A dense network of rain gauges (28 tipping bucket rain gauges with data 
loggers) were installed within a single GOES Satellite Hydro-Estimator 
(HE) pixel (4 × 4 km2) and 64% of the rain gauges are within TBSW with 
the objective to obtain high-resolution rainfall within the area. Complete 
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70 Flood Assessment: Modeling and Parameterization

records were collected since June, 2007 when the last 12 rain gauges were 
installed within the TBSW [47] with a temporal resolution of 5 min. The 
Euclidian distance was calculated between rain gauges within the TBSW, 
exhibiting a maximum range distance of 563.2 m and the mean distance 
was 218 m with a standard deviation of 99.5 m. The calculated mean 
Euclidian distance within the Hydro-Estimator pixel was estimated to be 
334 m with a standard deviation of 171 m. The Figure 3.7 in Chapter 3 
showed the location of the rain gauges network within the Hydro-Estimator 
pixel. Figure 4.1 shows the rain gauge network, the TBSW outline and the 
distance between rain gauges.

Additionally, a pressure transducer was installed at the TBSW outlet, 
which measured stage elevation data since October 2007 to May 2009 at 
5 min temporal resolution.

4.3 EVALUATION OF PARAMETER AGGREGATION 
TECHNIQUES WITHIN THE TBSW

To develop the up-scaling experiment or set up any hydrologic model, it is 
necessary to evaluate which methodology is being addressed to create the 

FIGURE 4.1 Rain gauge distribution and location within the HE pixel; TBSW location 
and Euclidean Distance between the stations.
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Flood Prediction Limitations in Small Watersheds 71

hydrologic models at different resolutions. Several aggregation techniques 
are used in GIS to develop the parameters up-scaling. The aggregation 
consists of using data from the cells that will fall within the larger up-
scaled cells and then applying to them mathematical operations to calcu-
late a new aggregated cell value. All these aggregation techniques produce 
different results, which can affect the hydrologic response. Also, the order 
in which the slope is generated can alter the results. Two different orders 
were developed using different techniques and they are listed below:

1. Aggregate the terrain to a new resolution and calculate the slope 
for this resolution; or

2. Calculate the slope from high-resolution terrain model and then 
aggregate it to a new resolution.

The aggregation techniques and the order to derive slope were tested 
in the TBSW using Arc GIS tools. The tested resolutions were 10, 50, 
100, 175, 250, 500 m, which generated graphs of how the slope has been 
degraded. A decision was taken as to which aggregation technique is best 
for the purposes of this research. Additionally the methodology was tested 
to see the degradation slope degree in the MBDB Model.

4.4 DETERMINATION OF HYDROLOGIC MODEL SENSITIVITY 
DUE TO PARAMETERS AND RAINFALL PERTURBATIONS FOR THE 
MBDB MODEL

To develop a distributed hydrologic model it is necessary to create an 
ensemble of different layers that represent the physical characteristics of 
the basin. Uncertainties associated with the model parameter values and 
their scales can be quantified by evaluating the hydrologic response given 
a range of parameter and rainfall perturbations.

The objective of this evaluation was to determine which parameters 
and rainfall are most sensitive in the mountainous areas, of the physical 
conditions present in Western Puerto Rico. Then these parameters were 
evaluated in the up scaling analysis. For this purpose, authors used the 
MBDB model at 200 m by 200 m cell resolution with three outlet points, 
summarizing different watershed characteristics in terms of area, shape 
and slopes.
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72 Flood Assessment: Modeling and Parameterization

The sensitivity analysis considered parameter and input perturbations 
by changing the magnitude of the parameter value, but not its spatial dis-
tribution. The multiplicative factors used to perturb the model and input 
(rainfall) were 0.5, 1.0, 1.5 and 2.0. The parameters used in the analysis 
were: overland and channel Manning roughness coefficient, the overland 
and channel saturated hydraulic conductivity, soil depth, and initial frac-
tion of soil saturation. By demonstration in other studies, hydrologic mod-
els have been found to be sensitive to these parameters [126]. In this study, 
for completeness, we additionally evaluated the model response to varia-
tions in land slope.

Three important events that produced flash flooding in Puerto Rico 
were evaluated. The most important event with a recurrence greater than 
100-year return period for Río Grande de Añasco River was Hurricane 
Georges in September 21–23, 1998. FEMA [32] estimated 4,078 cms at 
Río Grande de Añasco near San Sebastian for 100-year return period and 
the measured event had a peak of 4,587 cms. Other important events ana-
lyzed were November 11–16, 2003; and the Tropical Storm Jeanne on 
September 14–17, 2004. Interpolations of the rainfall amounts each time 
step (15 min) using the USGS rainfall stations available for each event in 
the MBDB area were made to obtain a distributed rainfall over the basins. 
The interpolation method used was the Exponential Weighted method.

The parameter and rainfall perturbations were evaluated at three basin 
outlets, which are: USGS 50144000 Río Grande de Añasco near San 
Sebastian, USGS 50136400 Río Rosario near Hormigueros and USGS 
50138000 Río Guanajibo near Hormigueros.

Spider plots were used to evaluate the model response to the entire 
range of the parameters and to determine if there is a portion of the param-
eter range that yields unrealistic results. Spider plots for runoff depth and 
peak flow show the percent change in model output variable versus param-
eter value change (perturbation) by a given factor.

The Relative Sensitivity Coefficient (Sr) is defined as the ratio of the 
difference in the model output to the value of the output when the input 
parameters are set to their base values, divided by the ratio of change in 
the input parameter to the initial value of the input parameter as shown 
in Eq. (1):
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 Sr

O O
O
P
P

P P P P

=

−( )+ −∆ ∆

∆2
 (1)

where, O is model output with input parameters set at base values, P is the 
value of the input parameter, are model outputs with the input parameter 
plus or minus a specified perturbation (in this case ±50%).

The behavior of the relative sensitivity coefficient was evaluated using 
two variables: discharge volume in millimeters and peak discharge in 
cubic meters per second.

4.5 EVALUATION OF CURRENT QUANTITATIVE 
PRECIPITATION ESTIMATES

The NEXRAD radar is located near the City of Cayey at 860 m mean 
sea level and approximately at 120–130 km from Mayagüez city. It 
has been operational since 1999. Some errors exist associated with 
radar measurements due to factors such as distance from radar to the 
study area; the coverage gap between the terrain and radar beam (at 
western flood plains with a radar beam of 0.5 degrees a coverage 
gap between 1.8 and 2 km was found); and Z-R relationship applied. 
Mountain blockage at lower beam angles (0.35 to 0.45 degrees) affects 
the reflectivity received from some locations within the Añasco and 
Mayagüez flood plains. Figure 4.2 shows the detail of mountain block-
age at beam angle of 0.35 degrees; for 0.5 degrees and higher blockage 
does not occur.

The NEXRAD radar resolution gives a spatial rainfall variability 
that fills the gaps between the rain gauges enhancing the spatial rainfall 
quantification. However, it is necessary to remove some bias between 
radar and rain gauges due to radar errors and rain rate quantification. 
Nevertheless, one may not know the rainfall variations at scales below 
the actual radar products (2 × 2 km2 or 4 × 4 km2), because rain gauge 
networks do not exist at these scales within the island.
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74 Flood Assessment: Modeling and Parameterization

4.5.1 EVALUATING RAINFALL DETECTION ACCURACY AND 
LONG-TERM BIAS QUANTIFICATION

Obtaining a long-term bias quantification between the radar and rain gauge 
network is an essential part of the uncertainty quantification. It is pos-
sible to observe and quantify how much change in the bias has occurred 
in time and magnitude. An evaluation of the MPE rainfall product and 
bias performance at hourly and daily temporal scales is evaluated within 
the Hydro-Estimator pixel for the year 2007 using the rain gauge net-
work located in western Puerto Rico near the University of Puerto Rico – 
Mayagüez Campus, where the TBSW is located. Some rain gauges were 
not operating during some periods owing to gauge damage or low logger 
batteries, these data were eliminated from the analysis. Five-minute rain 
gauge data was accumulated to 1-hour and 1-day intervals, with the inten-
tion of comparing data with the original MPE temporal resolution and 
daily accumulations.

FIGURE 4.2 Coverage gap between terrain elevation and radar bean of 0.35 degrees with 
the detail of blockage at mountainous area.
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Flood Prediction Limitations in Small Watersheds 75

MPE pixels are based on a HAP (Hydrologic Rainfall Analysis Project) 
grid projection. Therefore, a geographic coordinate transformation from 
Stereographic North Pole to NAD 1983 State Plane Puerto Rico and Virgin 
Islands was performed for each hour using the ArcGIS project raster tool. 
The resampling technique algorithm used was the nearest neighbor assign-
ment at 4 × 4 km2 resolution.

The N1P rainfall product is calculated from NEXRAD as a rainfall 
rate every 5 or 6 min when the radar detects rainfall, and a 10 min N1P 
product is archived when no rainfall is detected. The N1P NEXRAD 
product originally has a polar geographic coordinate system (GCS) and 
using the NOAA Weather and Climate Toolkit program (NOAA National 
Climatic Data Center available at http://www.ncdc.noaa.gov) it is pos-
sible to transform the coordinates to GCS_WGS_1984. Different formats 
are available to export the data. The GIS shapefiles maintain the original 
orientation; however, in a distributed hydrologic model it is necessary 
to use raster or ASCII files to represent the spatial rainfall variation in 
the model. Due to raster characteristics it is not possible to maintain the 
original orientation.

The study was conducted with the projected and raster pixels, with the 
aforementioned in mind, 4 MPE pixels were obtained around the HE pixel. 
Area weights were calculated for intersecting areas between the MPE pix-
els and the HE pixel which are 0.281, 0.344, 0.169 and 0.206, respectively. 
These area weights are used to calculate an average map precipitation for 
each time step. Weights for the N1P radar product were also estimated for 
9 partial N1P pixels within the HE pixel.

Long-term continuous validation between sensor rainfall estimates 
and rain gauge observations should be evaluated. The accuracy of rain-
fall estimates can be measured by decomposing the rainfall process into 
sequences of discrete and continuous random variables [78, 79, 142].

The discrete variables were evaluated with contingency tables, where 
the rain gauges are the “ground truth” values and the MPE are the esti-
mated values. In this way, the accuracy of the rainfall detection in terms of 
hit rate “H”, probability of detection “POD”, false-alarm rate “FAR” and 
discrete bias “DB” can be evaluated.

Table 4.1 shows an example of a two-way contingency table. The vari-
able “a” is the number of times that the rain gauge identifies a rainfall 
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76 Flood Assessment: Modeling and Parameterization

event and the estimator also correctly identifies a rainfall event at the same 
time and space. The variable “d” represents the number of times the rain 
gauge does not observe a rainfall event and the estimator correctly deter-
mines that there is no rainfall event. The variable “b” indicates the number 
of times the rain gauge does not observe a rainfall event but the estimator 
incorrectly indicates that there is a rainfall event. The variable “c” shows 
the number of times that the rain gauge detects a rainfall event but the 
estimator fails to detect the rainfall event [78].

Hit rate (H) is the fraction of the estimating occasions when the cat-
egorical estimation correctly determines the occurrence of rainfall event or 
nonevent. Probability of detection (POD) is the likelihood that the event 
would be estimated, given that it occurred. The false-alarm rate (FAR) is 
the proportion of estimated rainfall events that fail to materialize. Bias 
is the ratio of the number of estimated rainfall events to the number of 
observed events [142]. The typical scores that measure the accuracy of 
categorical estimation are:

 H a d
n

=
+

0

 (2)

 POD b
a b

=
+

 (3)

 FAR b
a b

=
+

 (4)

 DB a b
a c

=
+
+

 (5)

where, no = a + b + c + d.

TABLE 4.1 Two-Way Contingency Table

Observed Rainfall 
(Rain gauges)

Yes No

Estimated MPE Rainfall Yes a b
No c c
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Flood Prediction Limitations in Small Watersheds 77

The mean field bias (Bias) is used to remove systematic error from radar 
estimates and used to correct the radar quantifications in the hydrologic 
simulation. The mean field bias is defined as the ratio of the “true” mean 
areal rain gauge rainfall to the corresponding radar rainfall accumulations 
[24, 128]. The average of the rain gauge network is evaluated each time 
step with an arithmetic mean, because the area weights change in time 
according to malfunctions errors in some gauges. The mean MPE rainfall 
at each time step is calculated using the area weights as stated above.

The indicators to evaluate the accuracy of MPE rainfall estimations 
over the HE pixel at different temporal scales are the Bias and root mean 
square error (RMSE).

 Bias
G

R

i
i

N

i
i

N

t

t
= =

=

∑

∑
1

1

 (6)

 RMSE
N

G R
t

i i
i

Nt
= −( )









=
∑1 2

1

1
2

 (7)

where, Nt is the number of hours, Gi is the areal mean rain gauge-based 
rain rate value at time “i”, and Ri is the corresponding areal mean radar 
rain rate value.

For MPE Pixel 1, the associated rain gauges are: C01, C02, C03, C06, 
C07, C11, L01, L02, L05, L06 and L09, and for MPE Pixel 2 the associated 
rain gauges are: C04, C05, C08, C09, C10, C12, L03, L04, L07, L08, L10, 
L11. A mean field bias was calculated at 1 h time resolution. Percentage 
of rainfall detection by rain gauges and MPE were calculated, and divided 
into three categories:

• Rainfall not detected by MPE in percent, referred to as “No Radar 
Detection” or “c”.

• Rainfall not detected by rain gauges in percent, referred as “No Rain 
gauge Detection” or “b”.

• Rainfall detected by both sensors in percent, referred as “Coincident” 
or “a”.
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78 Flood Assessment: Modeling and Parameterization

The gauges L06 and L08 showed systematic errors in the records 
and, therefore, were ignored in the calculations. In addition to the sta-
tistics computed in the MPE Pixel 1 and MPE Pixel 2, calculations were 
made using the 4 MPE pixels and the 26 rain gauges for hourly, daily 
and monthly data accumulations. The PDF was calculated to represent the 
probability distribution of the daily bias which represents the average total 
storm correction along one year.

4.5.2 EVALUATION OF FLOW RESPONSE TO RAINFALL 
INTERPOLATION METHODS

Different interpolation methods can be used to predict areal rainfall 
between rain gauges or areas where nonareal rainfall information exists. 
It’s important to evaluate how different sources and interpolation methods 
affect the hydrologic response.

Two interpolation methods are analyzed and compared to produce 
aerial rainfall from existing rain gauges, which are exponential weighted 
(EW) and inverse distance weighted (IDW) methods. Additionally, 
NEXRAD rainfall product level 3 was compared with them. The events 
analyzed were the Tropical Storm Jean, passing over northern Puerto Rico 
on November 11–16, 2003.

The interpolations between USGS rain gauges were realized at 200 by 
200 m cell resolution and 15 min temporal resolution for each event using 
the ArcGIS tools. The Hydrologic model (Vflo) with the prepared rainfall 
information and the MBDB model configuration described in Chapter 4 
and aggregated to 200 × 200 m2 cell resolution was run with each rainfall 
product at the same resolution.

Analysis of bias quantification (Eq. 5) between rain gauges and radar 
were generated for each event and graphical comparisons between sce-
narios were generated.

4.6 EVALUATION OF PREDICTABILITY DUE TO HYDROLOGIC 
MODEL PARAMETERS AND INPUT RESOLUTIONS AT TBSW

The previous sections describe which parameters, inputs and initial condi-
tions, up-scaling and interpolation methods can be expected to affect run-
off prediction and a hydrologic distributed model in mountainous tropical 
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Flood Prediction Limitations in Small Watersheds 79

subwatersheds. With the evolution of instruments to sense the atmosphere 
(CASA radars, NEXRAD, HE and others), as well as distributed hydro-
logic models that can predict runoff at even smaller scales, it is necessary 
to evaluate how the combined effect of model inputs and parameter uncer-
tainties at different scales are spread though the hydrologic model and its 
impact on reliable operational flood prediction.

The hydrologic evaluation methodology must be objective and unbi-
ased towards a given rainfall input or hydrologic model resolution. Global 
optimization methods in model calibration seek a unique parameter set that 
best simulate the observed behavior and if the rainfall resolution or rainfall 
source is changed, Gourley and Vieux [38] indicated that the model needs 
to be recalibrated. They proposed a methodology to evaluate the accu-
racy of the inputs at the hydrologic scale using a hydrologic ensemble. 
Computing probabilities by examination of the allowable parameter space 
for each quantitative precipitation estimation algorithm, independently 
and thus remain unbiased towards a given rainfall source. Model param-
eter ensembles are created for each rainfall input, the spread and accuracy 
of the compilation of individual simulations are determined based on com-
parisons with observed streamflow.

An extension of this methodology will be addressed in this research to 
include the uncertainties associated with the parameter scale-dependence, 
in order to determine the accuracy of a given hydrologic model resolution. 
The combined effect of model parameters, rainfall and model resolution 
uncertainties are evaluated to produce the predictability limits, computing 
probabilities by examination of the allowable parameter space for each 
hydrologic scale and rainfall resolution in combination using ensemble 
predictions. The TBSW is the ideal scenario to evaluate the predictability 
limits where a network of rainfall sensors and a flow meter were installed 
in order to produce rainfall estimates at different scales and then compare 
the hydrologic prediction to observations for this research.

4.6.1 ESTIMATION OF UNCERTAINTY DUE TO HYDROLOGIC 
MODEL AT TBSW

Distributed hydrologic model configurations evaluated in this study are 
applied to represent the real world without any acknowledgment of how 
they affect the hydrologic prediction and how these uncertainties are 
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80 Flood Assessment: Modeling and Parameterization

propagated in the model at small upland watersheds. It has been shown 
before that at MBDA indicates input and parameters to be most sensitive 
in the model, which were used to be tested at the TBSW.

The DEM-derived parameters are well defined for each configuration 
and are scale-dependent, because they are mainly related to scale issues 
and aggregation techniques. This type of parameter include: flow accumu-
lation; flow direction; slope; and stream definition indicating implicitly the 
stream density (as channel cells and overland cells).

The infiltration parameters depend on field measurements of soils and 
are treated as polygons representations on a map. The soil maps are avail-
able for Puerto Rico [USDA, 106–109] and infiltration point measure-
ments are attached to the polygons with the most probable realistic value 
to represent the area. The polygons are converted to gridded information 
and, therefore, become scale-depend. The same applies to the roughness 
map which is, related to the uncertainties associated with the remote sens-
ing techniques, and a probable “realistic roughness value” is used to rep-
resent the land use. An up-scaling to the hydrologic model resolution will 
be addressed to evaluate the effect of parameter uncertainties due to scale.

The effect of slope degradation in the flow quantification was not 
evaluated. Instead, the aggregation methodology was used to preserve the 
average slope in the model and decrease the uncertainty and errors due to 
slope reduction.

The hydrologic evaluation of the resolution models was addressed 
using parameters ensembles at different resolutions. Every hydrologic 
parameter was calculated to 50 × 50 m2, 100 × 100 m2, 200 × 200 m2 and 
400 × 400 m2 resolution from the high-resolution hydrologic model at 10 × 
10 m. The hydrologic evaluation consists of making multiple runs using 
sets of parameters tested within their distribution’s physical bounds and the 
combinations of inputs for each hydrologic model. Some parameters, such 
as saturated hydraulic conductivity (Ks), Manning roughness coefficient 
(n) and initial degree of soil saturation (θ) will be perturbed within their 
known space, while preserving the spatial variability at a determined scale.

The hydrologically distributed model (Vflo), controls this sampling 
space by multiplicative factors as illustrated by Moreda and Vieux [126] 
in the OPPA method that is used to calibrate a distributed model. When no 
information is known a priori about the parameter distributions, uniform 
distribution is assumed. The scalar factors used to perturb the parameter 

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



Flood Prediction Limitations in Small Watersheds 81

maps (saturated hydraulic conductivity, Manning roughness coefficient 
are determined by the following function, which permits computation of 
probabilities by examination of the allowable parameter space:

 N ii i= +( ) =
1
8
2 3 0 2 3 4, , ,  (8)

where, Ni is the adjustment factor [126].
The initial saturation parameter was tested with factor values of 0.25% 

(dry), 0.4, 0.6, 0.8 and 0.95% (almost fully saturated) covering a sample 
of the possible parameter space. Vieux and Vieux [132, 133] tested a long-
term distributed model at Loiza, Puerto Rico and found initial saturation 
factors around 0.75 in the uncalibrated model and 0.9 in the calibrated 
model. Additionally the initial soil saturation did not fall below 0.25 in the 
run time.

Each initial condition (rainfall event and one hydrologic setting resolu-
tion) and parameter perturbation was run in the hydrologic model (Vflo) 
producing a deterministic prediction called “ensemble member”, which 
are treated collectively and are samples of the PDF, representing the true 
initial state distribution. The three-parameter perturbation in combination 
with one determined hydrologic and rainfall resolution event will produce 
a hydrologic ensemble. Each ensemble required 125 Vflo runs or ensemble 
members obtaining a simulation sample space for each hydrologic resolu-
tion model and rainfalls are stored in a separate folder.

Results of each simulation were compared to the observed streamflow 
at the TBSW outlet. Three variables are important to evaluate in a flash 
flood forecasting, providing information of the flood magnitude (peak to 
flood), spread (volume normalized by the area) and lead time (time to 
peak) for the emergency management agencies. Box plots of each ensem-
ble permit visualization of the spread of the solution due to parameters 
perturbations at each rainfall and model scale.

The estimation of uncertainty due to hydrologic model up-scaling was 
performed regrouping the ensembles mentioned. The ensembles here are 
formed by the perturbations of the parameters and rainfall resolutions. 
Then, a hydrologic model resolution is evaluated according its size and is 
not dependent on rainfall resolution, because, it is tested with all rainfall 
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82 Flood Assessment: Modeling and Parameterization

resolutions. An important tool for the modeler is to understand the impli-
cations of using one specific hydrologic model resolution to estimate the 
flow discharge reliably.

Different objective functions exist, such as the least square error or 
maximum likelihood, to evaluate the variables in a verification step. The 
least square error is computed for each streamflow prediction giving a bet-
ter understanding of the shape of the hydrograph.

The forecast or prediction verification method of an ensemble is the 
process of assessing the quality of the prediction with the corresponding 
observation. The quantitative statistics provide a simple way to evaluate 
the quality of an ensemble. To average the members of the ensemble to 
obtain a single prediction, provide a prediction that is more accurate than 
the single prediction initialized with the best estimate of the initial state 
of the hydrologic parameters. The mean ensemble is an overall indicator 
of the ensemble’s behavior and is considered to be the best estimate [99].

The spread skill relationship for a collection of ensemble forecasts 
often is characterized by the correlation between the variance o the 
square of the standard deviation of the ensembles members around their 
ensemble mean. The accuracy is often characterized using the mean 
squared error.

The mean Time, Peak and Volume of each ensemble is computed and 
compared with observations. Additionally, the following statistics were 
used: Bias, Mean Absolute Error (MAE) and Root Mean Square Error 
(RMSE). These definitions are formulated below:

 Bias E y Ok= [ ] /  (9)

 MAE
n

y OK
n

k= ∑ −=

1
1

 (10)

 RMSE
n

y OK
n

k= ∑ −( )=

1
1

2  (11)

where, y represents the prediction from the k-th simulation for Time, Peak 
and Volume, and O is the observation.

The Bias measures the correspondence between the average fore-
cast and the average observed value of the predictands. The MAE is the 
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Flood Prediction Limitations in Small Watersheds 83

arithmetic average of the absolute values of the differences between the 
members of each pair. The MAE and RMSE values near to zero are desir-
able while Bias near to one are expected.

Another diagnostic variable for representing runoff generation is the 
runoff coefficient that is equal to observed discharge volume divided by 
the basin-average rainfall event. These spread skill correlations have been 
found to be fairly modest, accounting for 25% or less of the accuracy 
variations [5, 42, 44]. Alternative approaches to the spread skill problem 
using probability distributions for forecast skill, conditional on ensemble 
spread were analyzed by Moore and Kleeman [69]. The conditional PDF 
are a statistical tool more robust than a simple ensemble mean to com-
pare to an observation. PDF’s were calculated for Time to Peak, Volume 
and Peak flow using the 625 ensemble members for the combination of 
hydrologic resolution model and rainfall event. The most widely used and 
important continuous probability distribution is the Gaussian or normal 
distribution described as:

 p x ex ( ) =
− −





1

2 2

1
2

2

πσ

µx
σ  (12)

where, µ and σ2 the mean and the variance of X, respectively.
Thus, the normal distribution is a two-parameter distribution which is 

bell-shaped, continuous, and symmetrical about the mean.
With the PDF, measures of the central tendency, prediction spread, lim-

its and skill can be estimated. The central tendency is represented by the 
50% simulation limit, or median, corresponding to 0.5 on the cumulative 
distribution function (CDF). The spread of the forecast represents the fore-
cast uncertainty due to uncertain initial conditions, rainfall inputs, slopes 
and scale dependent parameters, etc.; by determining the distance between 
the 5% and 95% confident limit simulation bounds.

The ensemble skill is assessed using the ranked probability score, RPS 
[29, 71] which is capable of penalizing forecasts increasingly as more 
probability is assigned to event categories further removed from the actual 
outcome and the ensemble are encouraged to report their “true beliefs” 
[142]. Brier scores and reliability diagrams are used to evaluate each of the 
derived binary forecasting situations, but the RPS is an option for verifica-
tion forecasts for multi category ordinal predictands.
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84 Flood Assessment: Modeling and Parameterization

The ranked probability score is the sum of squared differences between 
the components of the cumulative forecast and observation vectors as:

 RPS Y Om m= m
J∑ −( )=1

2  (13)

 RPS y O= ∑ ∑( ) − ∑( ) = = =m
J

j
m

j j
m

j1 1 1

2
 , and (14)

Ym + Om + = 1 always

where, Ym and Om are the cumulative forecast and observation, respec-
tively, yj is the cumulative probability assigned to the category or vector 
component, oj is the cumulative probability of the observation in the ith 
category or vector component and J is the number of categories and there-
fore also the number of probabilities included in each forecast. The sum of 
Ym and Om are always both equal to one by definition.

The PDFs statistics and RPS generated for each grid size will con-
tain the predictability limits for small watersheds and will be useful infor-
mation that can help the modeler to decide which grid size resolution is 
appropriate for larger watersheds where it is important to quantify flash 
flooding at upstream and ungauged sites.

The Figure 4.3 summarizes the evaluation of uncertainty propagation 
though flow prediction. The flow chart used a combination of hydrologic 
parameter perturbations within the physical bounds, rainfall input and 
model resolution or structure set up.

Knowing the uncertainty at the small scale and associated with the 
resolution selection, it will produce more realistic parameter estimations 
and flood quantification for the larger scale model. In other words, if the 
small scale, high-resolution model, is characterized by a degree of uncer-
tainty, then the goal of the modeler is to up-scale the resolutions, while 
maintaining a similar degree of uncertainty. In this way, the modeler hopes 
to maintain accuracy at the subwatershed scale.

4.6.2 ESTIMATION OF UNCERTAINTY DUE TO RAINFALL 
UP-SCALING AND TEMPORAL VARIATIONS

The same methodology, described in section 4.6.1 in this chapter, was 
used to calculate the uncertainty due to rainfall up-scaling and temporal 
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Flood Prediction Limitations in Small Watersheds 85

variations. The amounts of rainfall measured by the rain gauge network 
within the TBSW are assumed to represent the “true” rainfall. The rain 
gauges are the most reliable method to sense precipitation and are widely 
used to correct other sensors methods (e.g., radar, satellite and laser sen-
sors) and remove sensor bias.

By interpolating to various resolutions, it is possible to measure the 
importance of spatial rainfall variation in hydrologic prediction while the 
average rainfall falling on the watershed is maintained, taking into account 
that the average distance between the rain gauges is approximately 218 m 
with a standard deviation of 100 m.

Precipitation total variations between rain gauges were calculated 
and presented for each event, demonstrating the high rainfall variability 
at small scales due to orographic effects in mountainous subwatersheds. 
The rainfall events were interpolated to the following resolutions: 100 m, 
200 m, 400 m, 1000 m, and 2000 m to compare them in a probabilistic 
and deterministic sense. The interpolation method used was the inverse 
distance method. Each ensemble had 625 runs or ensemble members. 
These were the combination of: parameter perturbations (125 runs), 

FIGURE 4.3 Flow chart of the ensemble for predictability limits.
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86 Flood Assessment: Modeling and Parameterization

model structures (5 different model resolutions), and one rainfall event 
(Figure 4.3). Observed and simulated values were compared by using 
objective functions. The compared variables were time to peak, peak flows 
and volume.

In addition, PDFs were computed using the Gaussian kernel density 
estimation technique and computation of nonparametric statistics provided 
information for the 0.05, 0.5 and 0.95 quartiles, given the central tendency 
and spread of the ensemble. The PDFs are treated as conditional probabili-
ties and not as the true probability distribution. RPS’s were calculated to 
compare the skill of each rainfall input. Rainfall events were tested though 
the year using different antecedent soil moisture conditions and temporal 
patterns. The dates tested were: October 22, 2007; May 2, 2008; June 5, 
2008; August 28, 2008 and September 3, 2008. Performing the statistics 
previously described for each rainfall configuration ensemble, it was pos-
sible to evaluate the reliability of one rainfall resolution and compare them 
event-by-event and assess if there exists variations between events.
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CHAPTER 5

FLOOD PREDICTION LIMITATIONS 
IN SMALL WATERSHEDS: 
SENSITIVITY ANALYSIS1, 2

ALEJANDRA M. ROJAS-GONZÁLEZ
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5.1 INTRODUCTION

This chapter includes results for the sensitivity analysis performed in the 
MBDB (see, Section 5.2) for different hydrologic parameters and rainfall 
input. Spider plots for percentage changes in peak flow; and runoff depth 
versus scalar factors (0.5, 1, 2.5 and 2) were plotted. Additionally, relative 
sensitivity coefficient analysis was addressed for ± 50% of parameter and 
input change (or 0.5 and 1.5 multiplicative factors). The most sensitivity 

1 This chapter is an edited version from, “Alejandra María Rojas González, 2012. Flood predic-
tion limitations in small watersheds with mountainous terrain and high rainfall variability. Unpub-
lished PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico 
– Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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88 Flood Assessment: Modeling and Parameterization

parameters found were used in the up-scaling experiment to be perturbed 
in the TBSW. Section 5.3 describes the methods to fill the gaps between 
rain gauges and radar data in the MBDB.

5.2 PARAMETERS AND INPUT SENSITIVITY: SALIENT FINDINGS

To identify the parameters for which the MBDB model is most sensitive 
for the mountainous condition considered, a sensitivity analysis was con-
ducted. Uncertainties associated with the model parameters and inputs 
can be quantified by evaluating the hydrologic response given a range of 
parameter and input perturbations at 0.5, 1, 1.5 and 2 multiplicative fac-
tors or scalars. Within the study area, 3 USGS flow stations were iden-
tified, Río Grande de Añasco near San Sebastian, Río Guanajibo near 
Hormigueros and Río Rosario near Hormigueros. The parameters within 
the drainage area upstream of the USGS flow stations were perturbed 
by the multiplicative factors conserving the spatial distribution. Sets of 
parameter used in the hydrologic model were shown in Tables 5.4 and 
5.6 as well as very shallow soil depth (20 cm); and initial saturation frac-
tion of 0.5 was selected as a preliminary hydrologic model configuration 
at 200 m resolution.

The rainfall was created using additional USGS stations upon avail-
ability for each event. The point rainfall estimates at 15 min were inter-
polated at 200 m resolution using the exponential weighted interpolation. 
For hurricane Georges (September 21 to 23, 1998) only three USGS 
stations mentioned above were working. For November 11 to 16, 2003 
event, eight USGS station were interpolated and for September 14 to 17, 
2004 seven stations. Figure 5.1 shows the storm total maps for the inter-
polations performed for each rainfall event at 200 m resolution using 
the stations available; the dots within each figure are the station loca-
tions with data each 15 min. The maximum rainfall accumulation dur-
ing each event was 566.5 mm for September (Figure 5.1A), 291.6 mm 
for November, 2003 (Figure 5.1B), and 156.2 mm for September, 2004 
(Figure 5.1C).

Spider plots were drawn for the parameters and rainfall perturbed 
 additionally, relative sensitivity coefficients (Sr, Eq. (1) in Chapter 3) were 
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Flood Prediction Limitations in Small Watersheds 89

calculated with changes of ±50% using the hydrologic distributed model 
for three events mentioned and three outlet points; considering the behav-
ior of two output variables (runoff depth and peak discharge).

Spider plots are used to evaluate the model response to the entire 
range of the parameter and determine if there is a portion of the 
parameter range that yields unrealistic results. Figure 5.2 presents 
the spider plots for peak flow as percent change in the model output 
variable  versus change in rainfall value by a multiplicative given factor. 
Variations in the hydrologic response are linear; doubling the rainfall 
input increase the peak flow from 131.7% to 203.2% for Río Guanajibo 
near Hormigueros depending on the rainfall event. In the case of Río 
Grande de Añasco near San Sebastian the range is between 135.3% and 
168.5% and for Río Rosario near Hormigueros is between 127.7% and 
145.3%.

FIGURE 5.1 Total storm maps, (A) September, 1998; (B) November 2003; (C) September 
2004.
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90 Flood Assessment: Modeling and Parameterization

Figure 5.3 presents the spider plot for runoff depth where the linearity 
between rainfall perturbations and hydrologic response was not conserved. 
For example, doubling rainfall generates a runoff depth change between 
111.5% and 145% for Guanajibo and 131.4% and 135.0% for Añasco; and 
between 112.4% and 120.6% for Rosario. These results indicate that the 
infiltration is decreased with increasing the rainfall intensity providing the 
volume to the runoff that could not be infiltrated. Decreasing the rainfall 
intensity by 0.5 multiplicative factors, favors infiltration and decreases the 
runoff depth with percent changes between 25.5% and 64.8%. Lower per-
centages are presented for September 2004 (25.5% – 31.8%), which has 
a rainfall pattern different from the others (Figure 5.1C). This event is 
characterized by high rainfall intensity (red color) in the upland and lower 
in the flood plains. Minor percent variations occur with the peak flow for 
Añasco and Rosario discharge points (61.9% to 69.1%) compared with 
Guanajibo (50% to 74%).

Increasing channel roughness decreased the peak flow (Figure 5.4C), 
while increasing initial soil saturation increased the peak flow (Figure 5.4A), 

FIGURE 5.2 Spider plot for percentage change in peak flow due to rainfall multiplicative 
factors at 3 USGS station outputs.
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Flood Prediction Limitations in Small Watersheds 91

especially in Río Guanajibo near Hormigueros outlet point, for September, 
2004. Low variations were founded in peak flow with variations of soil 
depth and hydraulic conductivity for all events (Figures 5.4B, 5.4E, 5.4F).

Additionally, spider plots graphs for runoff depth changes were drawn 
and presented in Figure 5.5 for each parameter under evaluation. As for 
peak flow, percent changes were graphed for different events and outlet 
points. The parameter that produced the greatest percentage change in 
runoff depth was the initial soil saturation (Figure 5.5A), for Añasco 
near San Sebastian outlet point for November 2003 and September 1998 
and Guanajibo near Hormigueros for September, 2004. Generating a 
change between 30% and 40% in runoff depth due to doubling in the 
initial soil saturation, where the baseline was 0.5 and doubling produced 
a value of 1 (i.e., saturated conditions). Low variations were found with 
changes of the other parameters (Figures 5.5B–5.5F). The magnitude 
of change varied with the event indicating that the rainfall spatial dis-
tribution and intensity are important aspects for quantification of initial 
parameters.

FIGURE 5.3 Spider plots for percentage change in runoff depth due to rainfall multiplicative 
factors at 3 USGS station outputs.
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92 Flood Assessment: Modeling and Parameterization

FIGURE 5.4 Spider plots for changes in peak flow due to parameters multiplicative 
factors evaluated at USGS stations and 3 events. Parameters: A) Initial Saturation, B) Soil 
Depth, C) Channel Roughness, D) Overland Roughness, E) Channel hydraulic conductivity, 
F) Overland hydraulic conductivity.

Relative sensitivity coefficients were calculated for parameters and 
rainfall input using each event and outlet point. Results are presented in 
Table 5.1 for the peak flows and Table 5.2 for runoff depth as well as aver-
ages and standard deviations.

Results given below indicate that variations for both output variables 
(peak flow and runoff depth) are most sensitive to the rainfall input with a 
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Flood Prediction Limitations in Small Watersheds 93

FIGURE 5.5 Spider plots for changes in runoff depth due to parameter multiplicative 
factors evaluated at USGS stations and 3 events. Parameters: A) Initial Saturation, B) Soil 
Depth, C) Channel Roughness, D) Overland Roughness, E) Channel hydraulic conductivity, 
F) Overland hydraulic conductivity.

Sr of 69.1 and 56.5, respectively. Runoff depth was affected by initial satu-
ration, increases in this parameter increased the runoff and a Sr value of 8.2 
was obtained. Followed by overland hydraulic conductivity with a Sr of 
−5.5, increase in this parameter decreased the runoff depth; and increasing 
soil depth produced a decrease in peak flows (Sr of −4.4). Low variations 
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FIGURE 5.6 Mean relative sensitivity coefficients for peak flows at three USGS outlet points.

FIGURE 5.7 Mean relative sensitivity coefficient for runoff depth at three USGS outlet points.
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Flood Prediction Limitations in Small Watersheds 97

were observed when soil depth was doubled, indicating that soil depths 
greater than 40 cm will produce little runoff depth changes (Figure 5.4B).

The peak discharge was affected by roughness with a Sr of −13.4 for 
channel cells and Sr of −10.6 for overland cells; increases in roughness 
parameter decreased the peak flows and retarded the time to peak. The 
slope-distributed map produced a Sr of 12.6, increasing this parameter 
increased peak flow. The initial soil saturation parameter produced a Sr 
of 5.2 and is placed in the fifth place. Average relative sensitivities coef-
ficients (Tables 5.1 and 5.2) were plotted in Figures 5.6 and 5.7 with 
observed variations in terms of basin outlet points or events.

5.3 SENSITIVITY DUE TO QUANTITATIVE PRECIPITATION 
ESTIMATION WITHIN GAP AREAS

The Vflo model has the capability to support distributed rainfall and rain 
gauge data in real time, ideal for a flood alarm system. However, rainfall 
itself is the principal source of uncertainty in the model as observed in 
the previous section. The number of rain gauges in a basin are frequently 
sparse and therefore do not capture the spatial variability.

Two interpolation methods, exponential weighted (EW, Figure 5.8A), 
and inverse distance weighted (IDW, Figure 5.8B), were compared with 
radar rainfall from NEXRAD level 3 as seen in Figure 5.8C, for the 
November 11–16, 2003 period. The average total storm rainfall calculated 
at an outlet point is different between interpolation methods and radar 
source. For example for the USGS station Río Grande de Añasco near San 
Sebastian the precipitation average depth is 122.8 mm for IDW, 114.8 mm 
and for EW and 77.8 mm for radar. In the USGS station at Río Guanajibo 
near Hormigueros, the total storm was 230.6 mm with IDW, 237.1 mm 
and for EW and 199.8 mm for radar.

It should be noted that the radar is partially dependent on the rain gauge 
data and number of stations. Furthermore, when we use radar, it is neces-
sary to remove systematic error by applying a calculated correction factor 
or bias [129] for the event, which is the relationship between rain gauges 
and the radar data. For November 2003 event, the bias calculated for the 
whole area was 1.3 (Eq. (5) in Chapter 4). Figure 5.9 displays the scatter 
plot of radar and rain gauges and the adjusted line.
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98 Flood Assessment: Modeling and Parameterization

FIGURE 5.8 Total Storm Rainfall Maps at Mayagüez Bay Drainage Basin for November 
11–16, 2003 using Interpolation Methods: (A) Exponential Weighted; (B) Inverse Distance 
Weighted; and Radar data (C).

FIGURE 5.9 Radar Bias correction for storm total, November 11–16, 2003.
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Flood Prediction Limitations in Small Watersheds 99

Variations between methods to fill the gaps between rain gauges pro-
duce different responses in flow prediction. For example for the MBDB 
model we performed hydrologic simulations using the EW and IDW inter-
polation methods at 200 m resolution and NEXRAD radar level 3 at 2 km 
spatial resolution with a nominal resolution of 500 m. The results were 
compared at Río Grande de Añasco near San Sebastian and Guanajibo 
near Hormigueros stations generating differences in peak flow runoff 
depth and average total rainfall (Table 5.3).

The EW method produced greater peaks (2.4%) and runoff depth 
(2.5%) at Guanajibo outlet point, with a decrease in rainfall total storm 
(2.9%) than IDW. The reverse effect was observed at Río Grande de Añasco 
where decreasing the rainfall total rainfall (–6.5%) generated proportional 
decrease in peak flow (–7.1%) and runoff depth (–6.8%). The radar rainfall 
quantification is −12.9% and −36.7% lower than IDW for Guanajibo and 
Añasco, respectively, however the reduction in peak flow was not in the 
same proportion indicating that the rainfall intensity was maintained.

TABLE 5.3 Comparison of Hydrologic Results and Rainfall Interpolation Methods 
and Radar 

Río Guanajibo near Hormigueros

Peak Flow Runoff depth Rainfall

(CMS) Percent change (mm) Percent change (mm) Percent change

IDW 394.1 Reference 145.9 Reference 230.6 Reference
EW 403.4 2.4 149.6 2.5 237.1 2.9
Radar 376.6 –4.4 128.5 –11.9 200.9 –12.9

Río Grande de Añasco near San Sebastián
IDW 668.4 Reference 117.6 Reference 122.8 Reference
EW 620.9 –7.1 109.6 –6.8 114.8 –6.5
Radar 642.8 –3.8 72.4 –38.5 77.8 –36.7

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



CHAPTER 6

FLOOD PREDICTION LIMITATIONS 
IN SMALL WATERSHEDS: 
BIAS ESTIMATION IN RADAR 
PRECIPITATION PRODUCT1, 2

ALEJANDRA M. ROJAS-GONZÁLEZ

CONTENTS

6.1 Introduction .................................................................................. 101
6.2 Bias Estimation in Radar Precipitation Product ........................... 102

6.1 INTRODUCTION

In this chapter, an analysis of the rainfall spatial variability in a small area 
with a high-density rain gauge network is described. Radar rainfall esti-
mations were compared and evaluated with the rain gauge data. Statistical 
measurements of discrete and continuous validation scores were calcu-
lated for the radar estimates at hourly and daily time step. PDFs were cal-
culated for the Bias with the purpose of knowing the rainfall uncertainty 
over a small area.

1 This chapter is an edited version from, “Alejandra María Rojas González, 2012. Flood prediction 
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished 
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico –  Mayagüez 
Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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102 Flood Assessment: Modeling and Parameterization

6.2 BIAS ESTIMATION IN RADAR PRECIPITATION PRODUCT

To compare the Multisensor Precipitation Estimates (MPE) with the rain 
gauge network rainfall accumulation time series, it is necessary to convert 
the MPE HAP grid projection to a State Plane raster product, which will be 
used in the hydrological model. Due to changes in coordinates and raster 
conversions, the original pixels (HAP projection) oriented with a certain 
angle, were reoriented horizontally (raster).

Figure 6.1 displays the change in the orientation, including the MPE 
 pixels (left) and Hourly Rainfall Product (N1P) from NEXRAD level 3 
(right). The left image shows four square black boxes corresponding to the 
MPE raster-projected pixels, the colored pixels are the original raster with 
HAP coordinates at 4 × 4 km2 spatial resolution, and the red box corresponds 
to the Hydro-Estimator pixel at the same resolution as the MPE product.

The annual 2007 rainfall accumulations for the 4 MPE pixels were 
1546.2, 2212.1, 1949.8 and 2088.6 mm, with an annual standard deviation 
of 289.3 mm between them. Figure 6.2 shows the temporal variations in the 
cumulative rainfall during the year for each MPE Pixel. Large  differences 
are found between Pixel 1 and Pixel 2.

6.2.1 MONTHLY CUMULATIVE RAINFALL

To show how variable the rainfall distribution within a specific pixel 
can be, authors took the MPE Pixel numbers 1 and 2 and determined the 

FIGURE 6.1 HE pixel (red box) and MPE pixels (black and colored boxes) (left) and Hourly 
Rainfall Product (N1P) from NEXRAD level 3 (right) orientated in shapefile and raster formats.
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Flood Prediction Limitations in Small Watersheds 103

FIGURE 6.2 Rainfall accumulations over the time for the MPE pixels.

rain gauges associated with each pixel. A plot of the monthly cumula-
tive rainfall for MPE Pixel 1 and rain gauges are displayed in Figure 6.3. 
The cumulative rainfall for the months of April and May are not repre-
sentative of those months because we had missing rain gauge data for 
11 days for April and 9 days for May, therefore, the computations were 
made with only the available data for these months. For the case of July, 
Figure 6.3 shows that only the C06 station reported an amount of rainfall 
(206.9 mm) that was similar to the MPE Pixel 1 rainfall (259.15 mm), 
and for almost all months, note that the MPE Pixel 1 underestimated 
the rainfall value with respect to rain gauges, except for the months of 
January, June and July.

6.2.2 AVERAGE RAIN GAUGE NETWORK RAINFALL

Figure 6.4 displays the average rain gauge network rainfall in MPE Pixel 1 
versus the standard deviation for 1-hour time step for 2007. The slope 
between standard deviation and mean rainfall is equivalent to the coeffi-
cient of variation (CV), and is a measure of the dispersion of the probabil-
ity distribution. From the regression analysis, a R2 of 0.6627 and a CV of 
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104 Flood Assessment: Modeling and Parameterization

FIGURE 6.3 Monthly Total Rainfall calculation for the rain gauge stations belonging 
to MPE Pixel 1, for 2007.

FIGURE 6.4 Hourly average and standard deviation rainfall for the rain gauge network 
corresponding to MPE pixel 1 for 2007.
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Flood Prediction Limitations in Small Watersheds 105

0.3766 were obtained, indicating high rainfall variability in the MPE 
pixel 1, which cover an area of 4.5 km2.

The rain gauge network covering an area of 16 km2 shows that the 
relationship between mean rainfall and standard deviation has the trend of 
an increase in rainfall depth will produce an increase in standard deviation. 
The linear regression indicates a R2 of 0.78 and a slope of 0.45 (Figure 6.5). 
An increase in CV exists between Figures 6.5 and 6.6, related to an expan-
sion of the rain gauge area from 4.5 to 16 km2 indicating an increase in dis-
persion of the data. Therefore, the coefficient of determination increases, 
indicating that the standard deviation of a sample of mean rainfall can be 
obtained with more accuracy than in small areas.

Mean rain gauge network data and mean weighted MPE rainfall were 
graphed at the hourly time step and a linear regression equation was cal-
culated (Figure 6.6) obtaining a slope line of 0.848 and a R2 of 0.43. The 
slope represents the Bias between the rainfall from the gauge network 
and the MPE radar product, and this value can be applied to the hourly 
MPE measurements as a correction. The MPE in general is overestimating 

FIGURE 6.5 Hourly average and standard deviation rainfall for rain gauge network 
for 2007.
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106 Flood Assessment: Modeling and Parameterization

precipitation with a coefficient of determination of 0.4307. The MPE 
exhibits problems of detection at low rainfall measurements principally 
(Figure 6.6).

6.2.3 CONTINGENCY TABLES AND SCORES

The contingency tables and scores (Tables 6.1 and 6.2, respectively) were 
calculated to evaluate the Pixel 1, Pixel 2 and total 4 MPE pixels for hourly 
time step and daily rainfall accumulations for the four MPE pixels within 
the HE pixel. The number of estimated rainfall events was overestimated 
according to the discrete bias (DB) in the MPE pixel 1 (1.24) comparing 
with the Pixel 2 and the 4 MPE pixels, which have a value close to 1. For 
daily data the DB is underestimated by a factor of 0.956.

The hit rate (H) indicates the occasions when the categorical estima-
tion correctly determined the occurrence of rainfall event or nonevent and 
was around 0.82 and 0.89; nonsignificant differences were found between 
hourly and daily accumulations at the 4 pixels.

FIGURE 6.6 Average rain gauge rainfall vs. MPE radar rainfall within HE pixel at hourly 
time step.
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Flood Prediction Limitations in Small Watersheds 107

TABLE 6.1 Contingency Tables for the MPE Pixels 
Hourly Data  
MPE Pixel 1

Observed Rainfall

(Rain gauges)

Yes No

Estimated MPE Rainfall Yes 638 653
No 400 6581

Hourly Data  
MPE Pixel 2

Observed Rainfall
(Rain gauges)

Yes No
Estimated MPE Rainfall Yes 630 464

No 449 6729
Hourly Data  
4 MPE Pixels

Observed Rainfall
(Rain gauges)

Yes No
Estimated MPE Rainfall Yes 915 756

No 693 5910
Daily Data  
4 MPE Pixel

Observed Rainfall
(Rain gauges)

Yes No
Estimated MPE Rainfall Yes 225 33

No 45 341

Moreover, the probability of detection (POD) is the likelihood that the 
event would be estimated by the radar, increasing with the time step, with 
0.833 for the daily data. Daily estimates eliminate the influence of light 
rainfalls that the radar cannot detect. For the hourly time step, the Pixel 1 
POD was higher than the POD for Pixel 2 and the average of 4 MPE pixels.

TABLE 6.2 Discrete Validation Scores for the MPE Pixels and Time Scales

Hourly Data Daily Data

MPE Pixel 1 MPE Pixel 2 4 MPE pixels 4 MPE pixels

POD 0.62 0.58 0.57 0.833
FAR 0.51 0.42 0.45 0.128
DB 1.24 1.01 1.04 0.956
H 0.87 0.89 0.82 0.879A
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108 Flood Assessment: Modeling and Parameterization

6.2.4 FALSE ALARM RATES OR PORTION OF ESTIMATED 
RAINFALL EVENTS

False alarm rates or portion of estimated rainfall events that fail to mate-
rialize are similar in Pixels 1, 2 (0.50 and 0.42, respectively) and the four 
pixels average (0.45). For the daily time step there was a considerable 
reduction in the FAR (0.128). Figures 6.7 and 6.8 show the distribution of 
false alarms and the probability of no detection by the radar during 2007. 
Events in which the radar did not detect rainfall and the rain gauges did 
measure rainfall (c) were assigned a value of 1 in the graph. Events in 
which the radar did detected rainfall and the gauges did not measure rain-
fall (b) were assigned a value of 2. Differences in time when false alarms 
and probability of no detection quantities occurred can be observed in the 
graphs, and detailed statistics are presented in Tables 6.2 and 6.3.

6.2.5 MEAN FIELD BIAS (BIAS)

A mean field bias (Bias) was calculated for the MPE Pixel 1, 2 and overall 
4 pixels, as the ratio of the average of the rain gauge rainfall and the mean 

FIGURE 6.7 Hourly False Alarm Time Series for the MPE Pixel 1 for 2007.
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Flood Prediction Limitations in Small Watersheds 109

rainfall sensed for the MPE pixels using the area weights for each time step 
(hourly, daily, monthly and annually accumulations). Hourly mean field bias 
time series during the 2007 are displayed in Figure 6.9 for the MPE Pixel 1 
only and Figure 6.10 for the mean four MPE pixels within the HE pixel.

Large biases were found at the hourly time step and are associated 
with small radar rainfall and rain gauge detections (Figure 6.9). The pos-
sible effect is that the radar minimum precipitation depth capable of being 
detected is 0.01 inches or 0.254 mm; while our rain gauge network has 

FIGURE 6.8 Hourly False Alarm Time Series for the MPE Pixels within a HE Pixel for 
June to December 2007.

TABLE 6.3 Continuous Validation Scores for the MPE Pixels and Time Scales

Mean Hourly Daily Data

MPE 
Pixel 1

MPE 
Pixel 2

4 MPE 
pixels

4 MPE pixels  
Rain ≥ 0.3 mm

4 MPE 
pixels

RMSE – – 0.012 – 0.368

Bias 3.85 1.58 2.77 1.55 1.23

STD Bias 4.21 2.73 8.18 2.14 1.65
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110 Flood Assessment: Modeling and Parameterization

FIGURE 6.9 Hourly Mean Field Bias for the MPE Pixel 1 during 2007.

FIGURE 6.10 Hourly Mean Field Bias for the four MPE Pixels during 2007 within 
a HE Pixel.

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



Flood Prediction Limitations in Small Watersheds 111

a rainfall depth resolution of 0.1 mm. In addition, the NEXRAD in Puerto 
Rico is located about 100 km from the study area in Cayey at a site ele-
vation of 850 meters amsl. Due to the earth curvature, the beam has an 
elevation of 600 m above the study site at Mayagüez, affecting the cloud’s 
measurement in the lower troposphere.

To neutralize the noise effect of small rainfall quantifications in the 
hourly bias computation, rainfall depths less than 0.3 mm were eliminated. 
A considerable hourly bias reduction was observed in time (Figure 6.11) 
and in the average and standard deviation computation across the year as 
well as monthly (Tables 6.3 and 6.4).

The continuous validation scores for MPE rainfall validation (Table 6.3) 
show a root mean square error is greater (0.368 mm) in daily accumula-
tions than in hourly (0.012 mm). The mean field bias average for 2007 in 
Pixel 1 is 3.85 with a standard deviation average of 4.21. The four MPE 
pixels present a lower Bias (2.77) but a large standard deviation (8.18). 
The annual average Bias is improved after eliminating rainfall depths less 
than 0.3 mm, diminishing to 1.55 and a standard deviation of 2.14 for the 
four MPE pixels with rainfall greater than 0.3 mm.

FIGURE 6.11 Hourly Mean Field Bias for the overall MPE Pixels within a HE Pixel 
for January to December, 2007.
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Flood Prediction Limitations in Small Watersheds 113

In the months of April and May some data in the rain gauge network 
were missing, and as a consequence, the mean field bias was calculated 
only for the existing data. In addition, the MPE Pixels present the complete 
accumulations for these months while the rain gauge column showed only 
the existing data. The MPE total accumulations are 120.9 and 187 mm 
for April and May (Table 6.4), but the MPE accumulations only for the 
time window that correspond to the rain gauge data are 22.41 mm and 
143.61 mm for April and May, respectively and these data was not consid-
ered in the computations of Bias.

The mean field bias tended to decrease when the calculation was per-
formed for the whole HE pixel area (16 km2). Therefore, when the MPE is 
accumulated (e.g., over several hours or days) the bias is reduced and the 
standard deviation as well. Table 6.19 provides detailed bias computations 
for year 2007 results.

The results indicate that the month with largest hourly bias was December 
(5.68), which also had the highest variability (STD =12.92). These results 
are decreased to 1.53 and 2.52 respectively, when the average rainfall less 
than 0.3 mm in radar and rain gauges were eliminated. The greatest daily 

FIGURE 6.12 Probability plots for daily rainfall bias between rain gauges and MPE product.
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114 Flood Assessment: Modeling and Parameterization

Bias occurred in November with 2.24 and a standard deviation (STD) of 
2.6. The months with Bias close to 1 are June, July, August and September 
but only August and September maintain the value close to one in monthly 
accumulations.

Different probability distributions were tested with a 95% of confi-
dence to determine which particular distribution fits to the daily rainfall 
bias. The null hypothesis is that the data follow the distribution selected if 
P-value is greater than 0.05. The normal distribution with Box-Crox trans-
formation (λ = 0.15) was the probability distribution that obtains a better 
fit to the data. Goodness of fit was evaluated using the Anderson Darling 
(AD) test (0.677) [3] and P-value equal to 0.677. Additionally the expo-
nential, lognormal and Weibull distributions were tested (Figure 6.12), but 
obtained P-values less than 0.05 and the hypothesis was rejected, although 
Anderson Darling [3] values were small.
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CHAPTER 7

FLOOD PREDICTION LIMITATIONS IN 
SMALL WATERSHEDS: PREDICTABILITY 
LIMITS DUE TO UP-SCALING1, 2

ALEJANDRA M. ROJAS-GONZÁLEZ
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7.4  Evaluating Hydrologic Models Resolutions and Rainfall 
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7.5  Selection of the Optimal Rainfall and Grid Resolution for the 

MBDB Model .............................................................................. 143

7.1 INTRODUCTION

This Chapter analyzes the uncertainty propagation due to the model. 
Comparisons between rainfall resolutions and hydrologic model resolu-
tions serve as a guide for modelers and radar developers to know how 

1 This chapter is an edited version from, “Alejandra María Rojas González, 2012. Flood prediction 
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished 
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico – Mayagüez 
Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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116 Flood Assessment: Modeling and Parameterization

much detail is necessary to archive a reliable solution in small water-
sheds in terms of flow prediction using ensembles. This chapter presents 
Predictability Limits Due to Up-scaling.

7.2 PARAMETER UNCERTAINTY PROPAGATION 
DUE TO RAINFALL SPATIAL VARIABILITY AND 
HYDROLOGIC MODEL CONFIGURATIONS

Hydrologic evaluation was performed at the TBSW to evaluate the uncer-
tainty due to spatial rainfall variations. A most comprehensive meth-
odology was described in Section 4.4 under Chapter 4, where different 
interpolation methods represent rainfall coverage over MBDB model. The 
ensemble forecast procedure in principle draws a finite sample from the 
probability distribution describing the uncertainty of the initial state of 
the atmosphere (rainfall) or hydrologic model. Each input, parameter or 
model configuration combination is called the ensembles of initial condi-
tion, and each one represents a possible initial state consistent with the 
uncertainties in observation and analysis.

Using a deterministic model, it is possible to evaluate the propagation 
of the entire initial state probability distribution by the governing physi-
cal laws. The evaluation would bring information reliable to a determined 
initial state and would be a decision support to evaluate procedures that 
would be applied to obtain goodness of fit models at different resolu-
tions or selecting a rainfall cell size when rainfall information is avail-
able at scales below NEXRAD resolutions. Here, the word “probability” is 
treated as conditional, because parameters were perturbed in their physical 
bounds, using scalar factors, selection of possible hydrologic configura-
tion and input resolution without giving any spatial weight.

Monte-Carlo method approximation is based on a large number of 
possible initial hydrologic states drawn up randomly from the PDF of 
initial-condition uncertainty in the phase space. The stochastic dynamic 
simulation is constructed by a substantial amount of hydrologic simula-
tions, repeatedly running the model is where the knowledge of the real 
PDF’s are required. It is important that the initial ensemble member should 
be chosen well, their selection is further complicated by the fact that initial 
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Flood Prediction Limitations in Small Watersheds 117

condition of PDF in space required for a distributed model is unknown 
and it changes from day to day, so that the ideal of simple random samples 
from this distribution cannot be achieved in practice. As a practical man-
ner, computing time is a limiting factor at operational flood forecast cen-
ters. The modeler must make a subjective judgment balancing the number 
of ensemble members to include in relation to the spatial resolution of the 
hydrologic model used taking into consideration their physical bounds.

Using methods to resample parameters, it was possible to reduce the 
uncertainty due to slope degradation that result in lowest peaks and vol-
umes retarding the runoff and smoothing the hydrograph. Five hydrologic 
model configurations at different scales were tested with a distributed 
model. The computation of the parameter statistics is shown in Table 7.1.

Grid scales are from 10 m to 400 m, with changes in total area though 
3.56 km2 for a high-resolution model (10 m) to 3.84 km2 for coarser reso-
lution (400 m). Average parameter values were maintained though the up-
scaling at the TBSW. Terrain slope is reduced from 30.98 to 24.63% for 
average values and from 97 to 60.28% for maximum slopes. The most 
important change was due to channels cells ratio, because to increase the 
grid size the number of cells that represent overland and river cells are 
reduced. In the high-resolution model the total cells were 35,235 in which 
318 cells were attributed to channel representation with a ratio of 0.9%. 
For coarser model resolutions up to 400 m, 18 cells were dedicated to 
overland process, and 6 cells for channel processes.

Additionally, rainfall and stage information are necessary to feed and 
validate the model. Five important events were selected from the monitor-
ing time period (October 2007 to May 2009) for stage and rainfall. The 
methodology used to transform the pressure measurements of transducer 
installed at the outlet of the TBSW to stage measurements and poste-
rior flow-stage curve generation has been described before in Chapter 4. 
Table 7.2 shows important information for the selected events, as time 
to peak; peak flow and average runoff depth over the TBSW. These vari-
ables compared to observed data give more descriptive information of the 
hydrograph shape than statistics based on error variances. The observed 
hydrograph for each event are displayed in Figure 7.1. The base flow was 
removed as a constant value from the observations because this creek has 
a very short concentration time due its size and high slopes.
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118 Flood Assessment: Modeling and Parameterization

Events over the year represent different initial states of the parameters 
and atmospheric characteristics. Antecedent soil moisture represented by 
initial saturation in the model is a spatially distributed parameter and it is 
time dependent, affecting principally the runoff depth. Low initial saturation 
values increase the infiltration capacity due to soil moisture and reduce the 

TABLE 7.1 Descriptive Variables and Statistical Quantification for Hydrologic Model 
Resolution TBSW Configuration

Variable RESOLUTION MODEL (m)

10 50 100 200 400

Area (km2 ) 3.56 3.64 3.72 3.76 3.84

Number of cells 35235 1393 342 82 18

Number of channel cells 318 61 30 12 6

Channel Cells Ratio (%) 0.90 4.38 8.77 14.63 33.33

Roughness
Minimum 0.02 0.02 0.02 0.02 0.02

Average 0.12 0.11 0.11 0.10 0.10

Maximum 0.15 0.15 0.15 0.15 0.15

Slope (%)
Minimum 27.00 10.00 10.00 0.10 1.25

Average 30.98 29.83 27.69 26.21 24.63

Maximum 97.00 87.54 86.10 70.84 60.28

Hyd. Conductivity (cm/h)
Minimum 0.15 0.64 0.64 0.64 0.64

Average 0.69 0.69 0.69 0.69 0.70

Maximum 2.84 0.86 0.86 0.86 0.86

Wetting Front (cm) Average 31.62 31.62 31.62 31.62 31.62

Effective Porosity
Minimum 0.26 0.42 0.42 0.42 0.42
Average 0.43 0.43 0.43 0.43 0.43

Maximum 0.45 0.45 0.45 0.45 0.45

Impervious
Minimum 0 0 0 0 0

Average 0.02 0.02 0.03 0.03 0.02

Maximum 0.63 0.63 0.58 0.46 0.30

Abstraction (cm)
Minimum 0.08 0.00 0.15 0.15 0.15

Average 0.80 0.80 0.78 0.80 0.84

Maximum 1.25 1.25 1.25 1.25 1.25
Channel Width (m) Average 5.00 5.00 5.00 5.00 5.00A
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Flood Prediction Limitations in Small Watersheds 119

runoff depth. Rainfall information was collected from the rain gauge network 
for the events selected. Some rain gauges produced erroneous results or mal-
functioned and were eliminated from the analysis. The minimum number of 
rain gauges used to produce a time step rainfall map was: 15 for May 2, 2008 
and a maximum number of 18 rain gauges for October 22, 2007.

Table 7.3 presents storm totals for each rain gauge, average storm 
total for all gages and standard deviations. May 2 and September 3, 2008 
events present the highest rainfall variability with a standard deviation of 
24.3 mm and 20.8 mm between rain gauges; and totals rainfall of 80.4 mm 
and 95.7 mm respectively. Additionally, standard deviation at each rain 
gauge though the events were calculated at 10 min time step; presenting a 
maximum value of 3.29 mm, 4.29 mm, 3.23 mm, 2.88 mm and 2.59 mm 
for October 22, 2007; June 5, September 3, May 2, and August 28, 2008 
respectively. The standard deviation calculated for both: partial and total 
storms reflect the spatial variability with a 4 × 4 km2 pixel (Table 7.3).

Antecedent rainfall defines how much runoff will be produced and 
is an indicator of the antecedent soil moisture condition 5 days before 
the event occurred. The May 2 antecedent rainfall was 64.27 mm, while 
September 3 antecedent rainfall was only 4.41 mm. Therefore, initial soil 
moisture will be different for both events. Combinations of important 
smaller rainfall events with low and high antecedent rainfall accumulation 
were analyzed in this work.

Precipitation was interpolated using ArcGIS 9.3 software with the inverse 
distance weighted method at 10 min time steps. The method is a commonly 
used technique for generating weighted averaged surfaces of scatter points, 
and which places more weight (influence) by nearby points and less by dis-
tant points. The average storm for each event is shown in Table 7.4.

TABLE 7.2 Inventory of Observed Events

Events Observed peak 
Flow (m3/s)

Observed runoff 
Depth (mm)

Observed time 
to peak (h)

22-Oct-07 10.13 16.6 15:15

2-May-08 9.38 34.6 15:30

5-Jun-08 5.2 6.51 18:15

28-Aug-08 6.69 10.34 16:00
3-Sep-08 21.2 54.6 3:45
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120 Flood Assessment: Modeling and Parameterization

FIGURE 7.1 Observed flows for the events studied.

Convective and orographic rainfalls are the most common in west-
ern Puerto Rico and can occur daily during the wet season. In orographic 
events along the western coast of Puerto Rico, masses of wet air are trans-
ported by a sea breeze mechanism towards the east where it converges 
with the easterly trade wind over the mountains of western Puerto Rico. 
This, combined with the heating of the land causes the wet air to move 
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Flood Prediction Limitations in Small Watersheds 121

TABLE 7.3 Total Rainfall Event Measured in Rain Gauges Network Over 4 × 4 km2 Area

Gauge station Total Rainfall (mm)

22-Oct-07 2-May-08 5-Jun-08 28-Aug-08 3-Sep-08

C01 32.4 57.5 51.7 35.7 105.3
C02 38.1 – 46.7 32.6 105.4
C03 47.8 83.8 52.2 34.5 117.5

C04 40.4 86.7 51 – –

C05 42.4 101.1 49.5 44 112.2

C06 42.7 55.7 40 31.5 –

C07 49.5 70.3 – 23.6 107.6

C08 48.6 83.3 48.8 29.9 90.2

C09 51.7 96.3 43.5 30.5 97.3

C10 43.0 94.3 – – –

C11 48.6 – – 28.1 108.9

C12 45.4 82.6 34.1 14.2 97

L02 – – – 33.2 94.3

L03 – 40.6 – 49.9 60.3

L04 – – 52.3 – –

L05 32.7 – – 11.6 38.1

L06 – – 18.5 – –

L07 40.1 86.8 47 37.6 82.8

L08 – – – – –

L09 – – 44.1 49.2 116.5

L11 – – 40.2 – –

L13 48.5 85.3 49.5 – 100.2

L14 28.1 – – – –

L15 22.5 44.9 18.6 – –

L16 64.0 136.7 39.8 45.3 97.9

Average (mm) 42.58 80.39 42.79 33.21 95.72

STD (mm) 9.63 24.28 10.49 10.93 20.79
Antecedent rainfall: 
Average total rainfall 
previous 5 days (mm)

51.61 64.27 2.66 24.06 4.41
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122 Flood Assessment: Modeling and Parameterization

TABLE 7.4 Storm Total Produced for Different Resolutions

Total Rain (mm)
Model 
Resolution 
(m)

Rainfall 
event

Rain grid size (meter) Average 
(mm)

Standard 
deviation 
(mm)

100 200 400 1000 2000

Grid 10 2-May-08 80.1 80.1 80.0 81.2 77.4 79.8 1.4
3-Sep-08 100.5 100.6 100.4 97.5 101.3 100.1 1.5
22-Oct-07 44.9 44.9 44.8 44.1 44.4 44.6 0.3
28-Aug-08 30.2 30.3 30.3 30.2 34.6 31.1 2.0
5-Jun-08 42.3 42.3 42.5 42.2 44.6 42.8 1.0

Grid 50 2-May-08 79.9 79.9 79.8 81.1 77.6 79.7 1.3
3-Sep-08 100.5 100.5 100.4 97.2 101.2 100.0 1.6
22-Oct-07 45.0 45.0 44.9 44.2 40.5 43.9 1.9
28-Aug-08 30.0 30.0 30.0 29.8 34.4 30.9 2.0
5-Jun-08 42.2 42.2 42.4 42.1 44.4 42.7 1.0

Grid 100 2-May-08 80.6 80.6 80.5 81.5 77.7 80.2 1.5
3-Sep-08 100.7 100.7 100.6 98.1 101.5 100.3 1.3
22-Oct-07 44.8 44.8 44.8 44.1 40.4 43.8 1.9
28-Aug-08 30.8 30.8 30.8 30.8 34.9 31.6 1.8
5-Jun-08 42.5 42.5 42.6 43.3 44.8 43.1 1.0

vertically upward forming convective cloud, within which the air is cooled 
and moisture is condensed causing precipitation. Convective precipitation 
falls over a certain area for a relative short time with a limited horizon-
tal extent and variable intensity, forming rainfall cells over limited areas. 
Figure 7.2 shows the temporal variation between two selected cells after 
interpolation was made at 10 min time scale. Table 7.4 indicates the total 
storm rainfall averaged over the TBSW area, where the storm total is 
slightly different for each interpolation resolution.

Additionally small differences across model resolutions are due to 
changes in area, where the grid is intended to represent the shape of the basin.

Ogden and Julien [74] discussed the appropriateness of the correla-
tion length as indicator of spatial structure and obtained an intergage dis-
tance of 2.5 km. Distances greater than this value will not capture the true 
rainfall spatial variability. With the existing average distance between the 
TBSW rain gauges network of 200 m, this work ensures to capture the real 
spatial variability for each time step though the event.
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Flood Prediction Limitations in Small Watersheds 123

FIGURE 7.2 Hyetographs extracted from two cells (100 m resolution) for September 3, 2008.

Total Rain (mm)
Model 
Resolution 
(m)

Rainfall 
event

Rain grid size (meter) Average 
(mm)

Standard 
deviation 
(mm)

100 200 400 1000 2000

Grid 200 2-May-08 80.2 79.6 79.5 80.8 76.9 79.4 1.5
3-Sep-08 100.5 100.3 100.1 96.6 101.4 99.8 1.9
22-Oct-07 45.0 44.7 44.6 43.9 40.2 43.7 2.0
28-Aug-08 30.3 30.4 31.7 30.0 34.7 31.4 1.9
5-Jun-08 42.2 42.4 42.5 42.3 44.8 42.8 1.1

Grid 400 2-May-08 78.7 79.1 80.4 80.5 77.0 79.1 1.4
3-Sep-08 100.3 100.4 100.7 94.0 101.5 99.4 3.0
22-Oct-07 44.7 44.9 44.7 43.5 40.3 43.6 1.9
28-Aug-08 29.9 29.7 30.9 29.2 34.8 30.9 2.3
5-Jun-08 44.0  42.3 42.4 42.3 44.6 43.3 1.2

TABLE 7.4 Continued
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124 Flood Assessment: Modeling and Parameterization

7.3 EVALUATION OF PREDICTABILITY LIMITS

The predictability analysis due to rainfall inputs and hydrologic models 
resolution was performed using a total of 15,625 runs with combinations of 
five parameter perturbations to roughness, hydraulic conductivity and initial 
saturation; five hydrologic model configuration resolutions (10 m, 50 m, 
100 m, 200 m, and 400 m); five rainfall resolutions (100 m, 200 m, 400 m, 
1000 m and 2000 m) and five events presented in Table 7.3. The events 
were tested to evaluate temporal or season dependence and cover different 
mechanisms of rainfall generation as convective or orographic movements.

The total number of runs was reclassified in different ways depending 
on the type of analysis. Box plots summarize information about the shape, 
dispersion (confident levels of the ensemble at 5 and 95 quartiles), center 
of the data and outliers; also are presented as exploratory measures. A total 
of 125 runs that describes the dispersion of hydrologic predictions due to 
parameter perturbation were grouped, for each combination of model and 
rainfall resolution, where peak flows, runoff depth and times to peak were 
compared with observed data. In box plot graphs, the horizontal line rep-
resent the median of the data, the vertical lines extending from the box are 
called whiskers. The whiskers extend outward to indicate the lowest and 
highest values in the data, excluding outliers. Extreme values or outliers 
are represented by asterisks (*).

The event of October 22, 2007 was one of the largest flows measured 
at the flow gauge during the testing period, with a discharge runoff depth 
of 16.6 mm and peak flow of 10.11 cms, and a runoff-rainfall ratio of 0.37 
(Table 7.2). October 22, 2007 ensembles show a tendency almost constant 
between rain resolutions, with a slight decrease of mean peak flows with 
increase of the rainfall resolution. Additionally, hydrologic model results 
are shown in the different panels for 10 m, 50 m, 100 m, 200 m and 400 m 
resolution (Figure 7.3A).

The averages are around the observed peak flow (red line), and hydro-
logic model 50 m and 100 m present outliers for high peaks in all rain 
gauge resolutions. In the case of runoff depth (Figure 7.6A), the average 
ensembles are around the observed volume (red line) with a tendency to 
overestimate at 10 m hydrologic model and underestimate the observed 
volume for the others hydrologic model resolutions in all rainfall maps. 
No outliers were present in runoff depth box plots. The time to peak graphs 
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Flood Prediction Limitations in Small Watersheds 125

(Figure 7.6A) indicate low dispersions in modeled values for the 10, 100 
and 200 m hydrologic models.

The event of May 2, 2008 with a discharge depth volume of 34.6 mm, 
and peak flow of 9.38 CMS, and a runoff-rainfall ratio of 0.43 shows a 
tendency almost constant for the peaks though rain sizes and hydrologic 

FIGURE 7.3 Box plots of peak flows for events on: (A) October 22, 2007; (B) May 2, 2008.A
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126 Flood Assessment: Modeling and Parameterization

models, with a slight decrease of mean peak flows with increase in the 
rainfall resolution (Figure 7.3B). The average ensembles are around the 
observed peak flow, and hydrologic model 200 m presents some outli-
ers for high peaks in all rain gauges sizes. In the case of runoff depth 
(Figure 7.6B), the average ensembles underestimate the runoff depth 

FIGURE 7.4 Box plots of Peak flows for events on: (A) June 5, 2008; (B) August 28, 2008.A
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Flood Prediction Limitations in Small Watersheds 127

except for the 10 m hydrologic model with 100 m rainfall size. The aver-
age ensemble for runoff depth decreases with increasing of rainfall reso-
lution and hydrologic model resolution. No outliers were present in runoff 
depth box plots. Figure 7.9B shows the time to peak modeled where the 
average ensemble values are around the observed and low dispersions 
were found.

Box plots for June 5, 2008 are shown in Figure 7.5A for peak flow and 
Figure 7.7A for runoff depth. The event had a discharge volume of 6.51 
mm and 5.2 cms flow, and a runoff-rainfall ratio of 0.154.

The average ensembles tended to overestimate peaks and volumes as 
well, therefore, showing a tendency almost constant for the peak aver-
age though rain sizes and hydrologic models, with an increase of mean 
peak flows with increase rainfall resolution (Figure 7.4A) for the 400 m 
hydrologic model. Hydrologic models presented some outliers for high 
peaks in all rain gauges sizes, except for the 10 m hydrologic model. In 
the case of runoff depth (Figure 7.7A), the simulations for 10 m resolution 
model were out of the observed volume and the others ones ensembles 
slightly covering the observed volume. The average resemble of runoff 

FIGURE 7.5 Box plots of Peak flows for September 3, 2008 event.
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128 Flood Assessment: Modeling and Parameterization

depth decrease to increase the rainfall resolutions and hydrologic model 
resolution. No outliers are presented in runoff depth box plots. Time to 
peak ensemble means (Figure 7.10A) are within the observed value of 
18:15 min for June 5, 2008 with underestimation in hydrologic models 
greater than 50 m. For hydrologic models 200 and 400 m the quartile 95 
are below the observed value.

FIGURE 7.6 Box plots for runoff depth: (A) October 22, 2007; (B) May 2, 2008.
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The event of August 28, 2008 has a discharge depth volume of 10.34 mm, 
6.69 cms peak flow, and a runoff-rainfall ratio of 0.34. It shows a ten-
dency almost constant between rain sizes, with a slighter increase of mean 
peak flows with increase of the rainfall resolution, additionally the range 
between quartiles 5 and 95 is also increased (Figure 7.4B). The average 

FIGURE 7.7 Box plots for runoff depth: (A) August 28, 2008; (B) September 3, 2008.A
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130 Flood Assessment: Modeling and Parameterization

ensembles are below the observed peak flows, and all hydrologic models 
present outliers for high peaks in all rain gauges resolutions. In the case of 
runoff depth (Figure 7.7B), the average ensembles are below the observed 
volume with a tendency to underestimate, except for 10 m hydrologic 
model and rainfall resolution of 2000 m. Therefore, for some ensembles 
the quartiles 95 are very close to the observed volume. No outliers were 
present in runoff depth box plots.

The reason is that computations with very low initial saturation (0.25) 
did not represent the antecedent soil moisture and high hydraulic conduc-
tivities. Figure 7.10B shows the time to peak box plots showing values 
around the observed (August 28 16:00) with low dispersion for the hydro-
logic model of 100 m resolution. The hydrologic models with more disper-
sion are 50 and 400 m resolution.

The event of September 3, 2008 was the largest peak flow measured 
at the flow gauge in the studied period, with a discharge depth volume of 
54.6 mm, 21.2 cms peak flow, and a runoff-rainfall ratio of 0.5. September 3, 
2008 shows a tendency almost constant between rain sizes, with slight 

FIGURE 7.8 Box plots for runoff depth for September 3, 2008.
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changes of mean ensemble peak flows (Figure 7.5). The ensemble aver-
ages are underestimating the observed peak flow and the 10 m hydrologic 
model results are closer to the observed values as is the 400 m resolution 
hydrologic model as well. Hydrologic model at 50 m, 100 m and 200 m 
present outliers for high peaks in all rain gauge resolutions. In the case of 
runoff depth (Figure 7.8), the average ensembles at 10 m hydrologic model 

FIGURE 7.9 Box Plot of time to peak for (A) October 22, 2007; (B) May 2, 2008.
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132 Flood Assessment: Modeling and Parameterization

are around the observed depth volume with a tendency to underestimate 
the observed depth volume. The observed runoff depth volume is near to 
the quartile 95 for 50, 100, 200 and 400 m hydrologic model resolutions. 
No outliers were present in volume depth runoff box plots.

FIGURE 7.10 Box Plot of time to peak for (A) June 5, 2008; (B) August 28, 2008.A
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Figure 7.11 indicated high dispersions for the 50, 100, 200 and 400 m 
hydrologic models resolutions and a tendency to overestimate the observed 
time to peak (September 3, was 3:35). The significant dispersions are due 
to the form of the observed hydrograph that consist in three limbs. With 
low initial saturations and high hydraulic conductivities the first jump is 
absorbed and peaks are greater in the second or third limb.

In general the average ensembles were underestimating the peak flow 
and runoff depth for the analyzed events, except for June 5, 2008 where 
the contrary situation was obtained. This event is characterized by an ante-
cedent dry period and medium rainfall in a short time, revealing an anom-
aly for dry periods and lighter rainfall events.

7.4 EVALUATING HYDROLOGIC MODELS RESOLUTIONS 
AND RAINFALL RESOLUTIONS: PROBABILITY PLOTS

The 15,625 runs were grouped in a different way that helps to explain 
differences between rainfall resolutions and hydrologic model resolu-
tions as well. Probability with normal distribution and confident levels 

FIGURE 7.11 Box Plot of time to peak for September 3, 2008.
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134 Flood Assessment: Modeling and Parameterization

(5–95) were calculated and plotted for ensemble with observed values in 
Figures 7.12–7.16. The ensembles for example consist of 625 runs for 
each hydrologic model including the perturbation parameters and varia-
tions in rainfall sizes. Goodness of fit statistics was calculated to compare 
the data to probability distribution.

7.4.1 PEARSON CORRELATION COEFFICIENT

The Pearson correlation coefficient measures the strength of the  linear 
 relationship between the X and Y variables on a probability plot (The value 

FIGURE 7.12 Probability plots for October 22, 2007: (A) Rain ensembles for peak flow, 
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth 
volume, (D) Hydrologic Model ensembles for discharge depth volume.
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Flood Prediction Limitations in Small Watersheds 135

close to 1 indicates that the relationship is highly linear). Almost all graphs pres-
ent Pearson correlation coefficient values above 0.93. The event that presents the 
lowest was August 28, 2008 (Figure 7.15A) for peak flows with 0.875 coeffi-
cient of determination. Additional information such as mean and standard devia-
tion of the ensemble are shown in Figures 7.12–7.16. The lowest extreme values 
in peak and runoff depth did not have good agreement with the PDF, and was 
produced by low initial soil saturation values (0.25) in combination with high 
hydraulic conductivities. In general, the ensemble means and standard deviation 
decreased with increasing rain resolution input or increase of model resolution.

FIGURE 7.13 Probability plots for May 2, 2008: (A) Rain ensembles for peak flow, 
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth 
volume, (D) Hydrologic Model ensembles for discharge depth volume.
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136 Flood Assessment: Modeling and Parameterization

7.4.2 RPS COMPUTATION

The statistical measures (Bias, MSE, RMSE and the RPS) were calculated 
for the 625 members for each ensemble explained above. The RPS compares 
each category with observed values; 12 categories were selected for the RPS 
computation. Table 7.5 shows the statistics calculated for October 22, 2007 
where the lowest RPS for peak flow variable and different rainfall resolu-
tions are for rainfalls of 100 m (0.79) and 400 m (0.79) with similar RMSE 
(8.09 mm and 8.05 mm, respectively); and 100 m (RPS: 0.7) follow by 200 
m (RPS: 0.77) and 400 m (RPS: 0.77) for runoff depth. Therefore, the lowest 

FIGURE 7.14 Probability plots for June 5, 2008: (A) Rain ensembles for peak flow, 
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth 
volume, (D) Hydrologic Model ensembles for discharge depth volume.
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RMSE (9.23 mm) is for 400 m rainfall resolution. The time to peak pres-
ents the best RPS (0.43) for 400 m rainfall with the lowest RMSE (49 min) 
and the Bias is close to one. When the ensembles grouped by hydrologic 
model were analyzed, the best RPS for peak flow are 0.78 and 0.79 for the 
400 m and 200 m hydrologic models, respectively. The best lowest RMSE, 
6.91 cms is for 400 m and 7.52 cms for 200 m. Analyzing the runoff depth 
volume variable, the 10 m hydrologic model obtained a good RPS (0.75) as 
did the 50 m (RPS: 0.83) and 100 m (RPS: 0.83) m hydrologic model.

The hydrologic model that produced the best time to peak according 
to the RPS is 10 and 100 m resolution models with 0.38 and 0.41 RPS’s, 

FIGURE 7.15 Probability plots for August 28, 2008: (A) Rain ensembles for peak flow, 
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth 
volume, (D) Hydrologic Model ensembles for discharge depth volume.
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138 Flood Assessment: Modeling and Parameterization

additionally, these resolutions present lower RMSE’s of 40 and 34 min. 
Table 7.6 presents the ensemble statistics and skill of the prediction 
according to rainfall resolution and hydrologic model resolution for the 
event occurring on May 2, 2008. Evaluating peak flow and time to peak 
due to rainfall variations the RPS’s do not clearly favor any resolutions. 
Therefore 100 m, 200 m and 400 m resolution obtain similar value of RPS. 
In the case of runoff depth volume, the RPS favors rainfall resolutions of 
100 m and 1000 m with RPS values of 1.28 and 1.36, respectively.

Ensembles grouped by hydrologic resolution provide RPS values that 
favor the 10 and 100 m resolution for peak flow, volume and time to peak.

Table 7.7 shows the statistics and skills of the prediction for June 5, 
2008 where the rainfall resolutions favor the 100 m, 200 m and 400 m 

FIGURE 7.16 Probability plots for September 3, 2008: (A) Rain ensembles for peak 
flow, (B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge 
depth volume, (D) Hydrologic Model ensembles for discharge depth volume.

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



Flood Prediction Limitations in Small Watersheds 139

hydrologic model for peak flow, depth volume and time to peak with the 
lowest RPS values around 0.6, 1.7 and 0.77, respectively. Therefore, the 
RMSE are very similar between the resolutions. There was no clarity 
in terms of the best hydrologic model resolution, because the peak flow 
favored the 50 and 100 m resolution; runoff depth volume favored the 200 
and 400 m and time to peak favored the 10 and 50 m resolution model, 
respectively.

The August 28, 2008 event in Table 7.8 indicates the statistics and skills 
of the ensembles where the RPS favored the rainfall resolution of 2000 m 
with 0.76 for peak flow and 1.11 for depth volume. Time to peak did not 
present differences between 100 m, 200 m and 400 m rainfall resolution. 
The skill ensemble by hydrologic models gave the lowest RPS for 50 m 
resolution for peak flow and the second lowest value for time to peak.

The mean ensemble for peak and volume are underestimated for the 
event occurring on September 3, 2008, where the RPS are similar between 

TABLE 7.5 Ensemble Statistics and Skill of Prediction According to Rainfall Resolution 
and Hydrologic Model Resolution for October 22, 2007

 Rainfall Hydrologic Model

 100 200 400 1000 2000 10 50 100 200 400

Peak
Bias 0.91 0.91 0.91 0.92 0.88 0.71 1.21 0.67 0.73 0.77
MAE 6.74 6.74 6.73 6.78 6.79 6.99 8.36 6.64 6.40 5.93
RMSE 8.09 8.09 8.05 8.13 8.08 8.09 10.16 7.71 7.52 6.91
RPS 0.79 0.80 0.79 0.83 1.08 0.86 1.10 0.95 0.79 0.78
Volume
Bias 1.50 1.41 1.41 1.34 1.23 2.05 1.29 1.28 1.22 1.15
MAE 8.32 7.92 7.94 8.05 8.24 8.99 8.05 8.07 8.12 8.32
RMSE 10.02 9.21 9.23 9.32 9.81 11.24 9.35 9.38 9.48 9.74
RPS 0.70 0.77 0.77 0.85 0.88 0.75 0.83 0.83 0.94 1.03
Time
Bias 1.002 1.002 0.998 1.002 1.026 1.014 1.036 0.993 0.986 1.001
MAE 0:34 0:34 0:29 0:35 0:50 0:24 0:51 0:25 0:29 0:54
RMSE 1:09 1:12 0:49 1:17 1:45 0:40 1:40 0:34 0:35 2:04
RPS 0.47 0.45 0.43 0.47 0.72 0.38 0.69 0.41 0.66 0.94
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140 Flood Assessment: Modeling and Parameterization

rainfall resolutions for peak flow and the 10 m and 400 m hydrologic model 
are favored. The depth volume variable and the time to peak favored the 
rainfall resolution of 2000 m and a hydrologic model of 10 m followed 
by 50 m.

Beven [14] has recognized that the nonuniqueness of a model, espe-
cially in distributed models similar to the one used in this research, can 
produce results close to the observed peak flow, runoff depth and time 
to peak, using different combination of parameters and inputs. Results in 
this chapter also reveal the coexistence of alternative parameter sets that 
provide a suitable framework for model calibration and uncertainty esti-
mation. The configuration ensemble that was out of the range around the 
peak flow, 5 and 95 quartiles and minimum peak flow estimation, was 
the model at 10 m resolution with all rainfall resolutions. This ensemble 
overestimates simulated flows and cannot reproduce flows for June 5, 
2008. For the time to peak the ensembles for hydrologic model 100 m and 

TABLE 7.6 Ensemble Statistics and Skill of the Prediction According to Rainfall 
Resolution and Hydrologic Model for May 2, 2008

 Rainfall Hydrologic Model

 100 200 400 1000 2000 10 50 100 200 400

Peak
Bias 0.89 0.88 0.90 0.96 0.76 1.01 0.80 0.82 0.74 1.02
MAE 5.57 5.51 5.58 5.75 5.38 5.20 5.38 5.58 5.48 6.15
RMSE 6.49 6.40 6.51 6.72 6.22 6.16 6.18 6.41 6.34 7.21
RPS 0.73 0.73 0.73 0.76 0.75 0.71 0.75 0.78 0.79 0.80
Volume
Bias 2.50 2.30 2.32 2.38 2.11 3.02 2.24 2.26 2.12 1.96
MAE 17.63 18.01 17.94 17.95 18.67 15.23 18.31 18.31 18.79 19.55
RMSE 20.45 20.63 20.56 20.59 21.30 17.42 21.01 21.01 21.50 22.27
RPS 1.28 1.45 1.46 1.36 1.69 0.95 1.49 1.47 1.64 1.84
Time
Bias 0.992 0.992 0.990 0.991 1.003 1.001 1.014 0.991 0.981 0.985
MAE 0:30 0:29 0:29 0:32 0:46 0:22 0:41 0:27 0:29 0:46
RMSE 0:44 0:42 0:41 0:57 1:55 0:33 1:09 0:36 0:34 1:56
RPS 0.20 0.18 0.18 0.21 0.27 0.14 0.30 0.15 0.22 0.55

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use
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2000 m rainfall; 200 m hydrologic model and rains: 400 m, 1000 m and 
2000 m; 400 m hydrologic with rains: 100 m, 200 m, 1000 m 2000 m are 
out of 95% confident level. June 5, 2008 is characterized by dry conditions 
and low peak flow and volume.

The ensembles that can reproduce well the time to peak when the hydro-
graphs present 2 limbs (October 22, 2007); or 3 bumps (September 3, 2008) 
are the 10 m hydrologic model for all rainfall resolution for September and 
the 10 m, 100 m and 200 m hydrologic models for all rainfall resolutions. 
For events with only one limb like August 28 and May 2, 2008 the best 
models with low dispersions around the observed time to peak were 10 m, 
100 m and 200 m hydrologic models.

Based on the RPS calculated for the rainfall resolution ensembles in 
combination with all models resolution (625 members for each event) and 
parameter perturbations the best rainfalls simulations were observed at the 
100 m for peak flow followed by 200 m and 400 m with RPS values very 

TABLE 7.7 Ensemble Statistics and Skill of the Prediction According to Rainfall 
Resolution and Hydrologic Model for June 5, 2008

 Rainfall Hydrologic Model

 100 200 400 1000 2000 10 50 100 200 400

Peak
Bias 2.42 2.39 2.41 2.45 3.14 3.13 1.96 2.13 2.42 3.16
MAE 8.86 8.75 8.87 9.19 11.87 12.02 6.95 7.58 8.61 12.38
RMSE 12.14 12.01 12.16 12.63 15.74 15.45 10.11 10.75 11.36 16.17
RPS 0.61 0.60 0.61 0.63 0.99 1.06 0.49 0.58 0.62 1.19
Volume
Bias 3.34 3.35 3.37 3.36 3.86 5.68 3.03 3.03 2.90 2.64
MAE 11.90 11.92 12.01 12.01 14.06 23.07 10.22 10.23 9.69 8.69
RMSE 14.73 14.74 14.84 14.76 16.86 24.51 12.40 12.41 11.71 10.53
RPS 1.70 1.71 1.72 1.78 2.26 4.86 1.50 1.49 1.43 1.15
Time
Bias 0.978 0.978 0.978 0.978 0.971 0.991 0.984 0.976 0.966 0.963
MAE 0:30 0:29 0:30 0:32 0:33 0:23 0:25 0:28 0:37 0:41
RMSE 0:33 0:33 0:34 0:37 0:36 0:29 0:32 0:31 0:39 0:42
RPS 0.78 0.77 0.77 0.82 1.09 0.36 0.53 0.82 1.30 1.62
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similar. For runoff depth the rainfall at 100 m gives the better RPS for 
3 events and the exceptions favor 2000 m for August 28 and September 3, 
2008 (Table 7.9). The RPS for time to peak favored 200 m followed by 
400 m rainfall resolution. These findings reveal that the hypothesis that the 
100 m rainfall resolution will produce the best ensemble behavior for any 
event is rejected. The rainfall quantification due to rainfall interpolation 
will produce similar hydrologic ensembles behavior.

In the case of the hydrologic model resolution, the hypothesis for-
mulated was that the hydrologic model with high-resolution (10 m) will 
generate the best ensemble behavior for the events analyzed. This state-
ment is true only for 2 events evaluating the peak flow variable. For runoff 
depth, the 10 m hydrologic model did not produce the best RPS for dry 
conditions and light rainfall event (June 5, 2008) with a storm total rain-
fall of 42.79 mm. the high-resolution model obtained the better behavior 
for time to peak. This resolution model is not operationally practical for 

TABLE 7.8 Ensemble Statistics and Skill of the Prediction According to Rainfall 
Resolution and Hydrologic Model for August 28, 2008

 Rainfall Hydrologic Model

 100 200 400 1000 2000 10 50 100 200 400

Peak
Bias 0.36 0.36 0.37 0.38 0.62 0.51 0.30 0.33 0.38 0.58
MAE 4.94 4.93 4.92 4.94 4.79 4.74 5.12 4.99 4.82 4.87
RMSE 5.34 5.34 5.33 5.36 5.50 5.25 5.47 5.36 5.26 5.54
RPS 1.07 1.07 1.06 1.05 0.76 0.87 1.20 1.13 1.02 0.78
Volume
Bias 0.82 0.82 0.83 0.84 1.31 1.73 0.76 0.79 0.70 0.65
MAE 8.43 8.42 8.37 8.30 7.72 5.46 8.77 8.65 9.04 9.32
RMSE 9.41 9.41 9.36 9.34 8.93 6.35 9.72 9.62 9.97 10.25
RPS 1.73 1.73 1.68 1.67 1.11 0.66 1.95 1.91 1.96 2.07
Time
Bias 1.007 1.007 0.997 0.998 1.005 1.058 1.114 0.973 1.012 0.858
MAE 1:31 1:30 1:16 1:33 1:08 1:03 2:03 0:31 0:46 2:34
RMSE 2:47 2:46 2:19 3:01 2:18 1:30 3:27 0:36 1:07 4:24
RPS 0.36 0.36 0.38 0.37 0.40 0.21 0.49 0.57 0.42 0.92
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larger basins, and therefore an alternative has to be selected. The RPS 
analysis favored the 200 m model resolution for time to peak (5 events), 
runoff depth (4 events) and peak flow (3 events) followed by 400 m model 
 resolution principally for peak flow.

7.5 SELECTION OF THE OPTIMAL RAINFALL 
AND GRID RESOLUTION FOR THE MBDB MODEL

The goal of the research study in Part I was to develop recommendations 
for rain and grid resolutions that will provide equal accuracy with a 100 m 
and 10 m rainfall and grid resolution model, respectively (i.e., the smallest 

TABLE 7.9 Ensemble Statistics and Skill of the Prediction According to Rainfall 
Resolution and Hydrologic Model for September 3, 2008

 Rainfall Hydrologic Model

 100 200 400 1000 2000 10 50 100 200 400

Peak
Average 13.72 13.67 13.80 13.48 13.34 17.18 10.74 11.62 11.89 16.58
Bias 0.65 0.64 0.65 0.64 0.63 0.81 0.51 0.55 0.56 0.78
MAE 11.13 11.15 11.18 11.36 10.95 10.03 12.75 12.01 10.82 10.17
RMSE 12.75 12.77 12.82 12.95 12.50 11.72 14.04 13.46 12.34 12.07
RPS 1.06 1.07 1.07 1.11 1.08 0.78 1.54 1.35 1.24 0.77
Volume
Average 36.80 35.64 36.23 36.28 38.11 47.47 34.52 34.62 33.93 32.53
Bias 1.74 1.68 1.71 1.71 1.80 2.24 1.63 1.63 1.60 1.53
MAE 22.40 22.85 22.90 22.80 22.14 17.75 23.47 23.45 23.80 24.62
RMSE 26.94 27.31 27.30 27.23 26.63 20.93 27.97 27.96 28.40 29.29
RPS 1.20 1.28 1.26 1.25 1.13 0.79 1.35 1.33 1.37 1.54
Time
Average 4:30 4:29 4:25 4:20 4:58 3:58 4:47 4:37 4:49 4:30
Bias 1.20 1.20 1.18 1.16 1.32 1.06 1.28 1.23 1.28 1.20
MAE 0:30 0:29 0:29 0:32 0:46 0:22 0:41 0:27 0:29 0:46
RMSE 0:44 0:42 0:41 0:57 1:55 0:33 1:09 0:36 0:34 1:56
RPS 0.54 0.52 0.51 0.48 0.50 0.22 0.32 0.45 0.88 0.92
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144 Flood Assessment: Modeling and Parameterization

resolutions evaluated). To achieve this objective, the RPS values are sum-
marized in Table 7.10; and were evaluated in a Two-Way ANOVA test. 
The RPS data were determined to be normally distributed and have equal 
variances, which is a requirement for the Two-Way ANOVA test.

The goal of the evaluation is to determine significant differences 
between the mean of the RPS for the highest resolution (100 m rainfall 
resolution and 10 m grid resolution) and the means for the other resolu-
tions. If there is no significant difference between the mean of the RSP 

TABLE 7.10 Mean RPS Values for Peak Flow, Volume and Time to Peak for 5 Storms, 
5 Rainfall Resolutions and 5 Grid Resolutions

Storm Rainfall Resolution Grid Resolution

100 
m

200 
m

400 
m

1000 
m

2000 
m

10 
m

50 
m

100 
m

200 
m

400 
m

Peak Flow RPS Peak Flow RPS

3-Sep-2008 1.06 1.07 1.07 1.11 1.08 0.78 1.54 1.35 1.24 0.77
5-Jun-2008 0.61 0.60 0.61 0.63 0.99 1.06 0.49 0.58 0.62 1.19
28-Aug-2008 1.07 1.07 1.06 1.05 0.76 0.87 1.20 1.13 1.02 0.78
22-Oct-2008 0.79 0.80 0.79 0.83 1.08 0.86 1.10 0.95 0.79 0.78
2-May-2008 0.73 0.73 0.73 0.76 0.75 0.71 0.75 0.78 0.79 0.80

MEAN 0.85 0.85 0.85 0.88 0.93 0.86 1.02 0.96 0.89 0.86
 Runoff Depth RPS Runoff Depth RPS
3-Sep-2008 1.20 1.28 1.26 1.25 1.13 - 1.35 1.33 1.37 1.54
5-Jun-2008 1.70 1.71 1.72 1.78 2.26 - 1.50 1.49 1.43 1.15
28-Aug-2008 1.73 1.73 1.68 1.67 1.11 - 1.95 1.91 1.96 2.07
22-Oct-2008 0.70 0.77 0.77 0.85 0.88 - 0.83 0.83 0.94 1.03
2-May-2008 1.28 1.45 1.46 1.36 1.69 - 1.49 1.47 1.64 1.84

MEAN 1.32 1.39 1.38 1.38 1.41 - 1.42 1.41 1.47 1.52
 Time to Peak RPS Time to Peak RPS
3-Sep-2008 0.54 0.52 0.51 0.48 0.50 0.22 0.32 0.45 0.88 0.92
5-Jun-2008 0.78 0.77 0.77 0.82 1.09 0.36 0.53 0.82 1.30 1.62
28-Aug-2008 0.36 0.36 0.38 0.37 0.40 0.21 0.49 0.57 0.42 0.92
22-Oct-2008 0.47 0.45 0.43 0.47 0.72 0.38 0.69 0.41 0.66 0.94
2-May-2008 0.20 0.18 0.18 0.21 0.27 0.14 0.30 0.15 0.22 0.55
Mean 0.47 0.46 0.45 0.47 0.59 0.26 0.46 0.48 0.70 0.99
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Flood Prediction Limitations in Small Watersheds 145

for the finer resolution and a coarser resolution, then the model can be 
up-scaled to the coarser resolution without loss of accuracy relative to 
the finer resolution. A gray highlighted cell in Table 7.10 indicates that a 
significant difference exists between that resolution and the highest resolu-
tion. For rainfall resolution, there is a significant difference between the 
100 m resolution and the 2000 m resolution. For the grid resolution, there 
is a significant difference between the 10 m resolution and the 200 and 
400 m resolutions. Therefore, based on the Two-Way ANOVA analysis of 
the RPS, the recommended up-scaled rainfall resolution, which will pro-
vide equivalent accuracy with the 100 m rainfall resolution, is 1000 m, and 
the recommended up-scaled grid resolution, which will provide equivalent 
accuracy with the 10 m resolution, is 100 m.
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CHAPTER 8

FLOOD PREDICTION LIMITATIONS 
IN SMALL WATERSHEDS: 
CALIBRATION/VALIDATION OF A 
DISTRIBUTED HYDROLOGIC MODEL 
AT MBDB 1, 2

ALEJANDRA M. ROJAS-GONZÁLEZ
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8.1 INTRODUCTION

This chapter reveals findings in Chapters 1–7 applied to the MBDB 
using a distributed model with a resolution of 200 m and radar informa-
tion for 2003. Predictability limits (maximum and minimum peak flows 

1 This chapter is an edited version from, “Alejandra María Rojas González, 2012. Flood prediction 
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished 
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico – May-
agüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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148 Flood Assessment: Modeling and Parameterization

and runoff depths) were calculated for the calibration developed at the 
basins. The hydrologic model of 100 m was recommended in the previous 
section. However, the 200 m hydrologic model was tested because not 
significance differences were found for peak flow and runoff depth, vari-
ables analyzed here.

8.2 CALIBRATION/VALIDATION OF A DISTRIBUTED 
HYDROLOGIC MODEL AT MBDB

The rainfall source used to run one-year simulation (2003) was the NWS 
MPE radar-rainfall products. This source has a mean systematic error 
(Bias) correction for Puerto Rico and in some places cannot remove the 
local bias, correctly, principally for small areas. In section 6 of this chap-
ter, an evaluation of the efficiency in removing the local Bias from MPE 
was conducted at the TBSW and additionally bias corrections need to be 
developed for small subwatersheds.

At observed flow locations, the base flow must be removed to obtain 
runoff observations. The PART computer program analyzes daily stream-
flow records and estimates a daily ground water discharge. The method 
designates groundwater discharge to be equal to streamflow on days that 
fit a requirement of antecedent recession; linearly interpolates groundwa-
ter discharge for other days; and is applied to a long period of record to 
obtain an estimate of the mean rate of groundwater discharge and remove 
base flow at daily a time step [83].

8.2.1 MONTHLY BASE FLOW SEPARATION

Table 8.1 shows the results for monthly base flow separation for 2003 at 
three USGS stream flow stations obtained from the PART computer model 
(Figure 8.1A–8.1C for Río Guanajibo near Hormigueros, Río Grande de 
Añasco near San Sebastian and Río Rosario near Hormigueros, respec-
tively). Additionally daily computations were obtained to add them to the 
Vflo runoff results for comparison with the observed stream flow.

Figure 8.2 shows the simulated and observed accumulated runoff depth 
for the three USGS stations for 2003. The percent of errors for runoff 
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Flood Prediction Limitations in Small Watersheds 149

depth around these values were 1.81%, 1.07% and 4.47% for Guanajibo, 
Añasco and Rosario USGS outlet points. Nash–Sutcliffe model efficiency 
coefficients calculated for these outlet points were 0.46, 0.10 and 0.02, 
respectively.

Some systematic errors in the MPE rainfall product were revealed in 
the simulation period, where the MPE sensed larger amounts of rainfall 
than actually occurred within the study MBDB area. In this cases the 
observed discharges were lower than the simulated (Figures 8.3A and 
8.3B) for Añasco and Rosario rivers. Additionally, maximum and mini-
mum discharges were calculated perturbing the roughness and hydraulic 
conductivity within their limits evaluated in previous sections (0.25 and 
1.75, respectively), while setting the initial saturation to 0.25 and 0.95, 
respectively. It is clear that, for certain rainfall events, large differences 
between the modeled and observed data exist (Figures 8.4A and 8.4B), 

TABLE 8.1 Base Flow Separation at Three USGS Streamflow Stations for 2003

Guanajibo near 
Hormigueros

Añasco near San 
Sebastian

Rosario near 
Hormigueros

Stream 
flow

Base 
flow

Runoff Stream 
flow

Base 
flow

Runoff Stream 
flow

Base 
flow

Runoff

mm mm mm mm mm mm mm mm mm

Jan 10.2 9.4 0.8 44.2 41.9 2.3 32.0 30.7 1.3

Feb 4.8 4.1 0.8 28.2 25.7 2.5 25.1 23.6 1.5

March 4.1 2.8 1.3 20.6 18.5 2.0 19.3 17.3 2.0

April 33.3 14.7 18.5 59.9 30.0 30.0 45.0 26.7 18.3

May 28.2 18.5 9.7 231.6 139.4 92.2 97.3 70.4 26.9

Jun 8.9 7.6 1.3 90.4 70.6 19.8 66.5 48.5 18.0

Jul 9.7 6.9 2.8 46.5 37.8 8.6 57.7 41.4 16.3

Aug 12.2 8.4 3.8 97.3 53.3 43.9 59.9 42.7 17.3

Sep 45.7 25.4 20.3 136.7 68.6 68.1 99.1 61.5 37.6

Oct 123.4 76.7 46.7 280.7 142.7 137.9 234.4 167.4 67.1

Nov 235.0 122.9 112.0 454.2 255.5 198.6 265.4 170.4 95.0

Dec 72.6 48.5 24.1 170.2 125.5 44.7 122.4 94.5 27.9

Total 588.0 345.9 242.1 1660.4 1009.7 650.7 1124.2 795.0 329.2
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150 Flood Assessment: Modeling and Parameterization

FIGURE 8.1 Daily stream flow and baseflow computation for 3 USGS stations, 2003.
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Flood Prediction Limitations in Small Watersheds 151

indicating systematic errors due to MPE rainfall quantification, and lim-
iting flood predictability in western Puerto Rico using the MPE radar 
product.

The stream flow examples in Figures 8.4A and 8.4B, illustrate cases in 
which the up-scaled model could not reproduce the observed flow because 
the rainfall could not be quantified accurately using the MPE product. 
Forcing the model to produce maximum and minimum peak flows by judi-
ciously parameterizing the model showed that the predictability limits of 
the model were well above the magnitude of the observed flow.

8.3 SUMMARY

The implications of these results are that a better rainfall product is needed 
within the study area before accurate flood forecasts can be expected. It is 
hoped that the high-resolution CASA radar product, currently under devel-
opment, may fulfill this important need.

FIGURE 8.2 Runoff depth accumulated for the USGS stations for 2003.
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152 Flood Assessment: Modeling and Parameterization

FIGURE 8.3 Comparison between observed and simulated discharge for 2003 at hourly 
time step for: (A) Río Grande de Añasco station near San Sebastian, Y = (0.54X + 0.314), 
R2 = 0.254 and (B) Río Rosario station near Hormigueros, Y = (0.48X + 0.774), R2 = 0.301.
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Flood Prediction Limitations in Small Watersheds 153

FIGURE 8.4 Maximum, minimum and observed runoff for Añasco river (A) and Rosario 
river (B) outlet points for selected events.
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9.1 INTRODUCTION

A hydrologic model was evaluated for its potential to perform real-time 
flood forecasting within the Mayagüez Bay drainage basin (MBSB, 
819.1 km2), located in western Puerto Rico. Minimal run times, enhanced 
prediction skill, parameterization of variables and the understanding the 
dynamics of the system are issues that need to be faced to enhance flood 
prediction. In distributed models, the parameter values are physically 

1 This chapter is an edited version from, “Alejandra María Rojas González, 2012. Flood prediction 
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished 
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico – May-
agüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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156 Flood Assessment: Modeling and Parameterization

based and the watershed is represented by grids, which approximates the 
parameter distribution and the initial conditions of the system. The mod-
eler assigns the grid size resolution to the model, rainfall input scales and 
parameter values in a subjective way; subjective because the modeler has 
to select among various methods available for assigning grid point val-
ues (e.g., slope), and each method can influence the hydrologic result of 
the model. Each parameter and input are spatially and temporally scale-
dependent, probability distributions are not known a priori, and the impli-
cations, in terms of uncertainty propagation though the system, are well 
understood.

This research study in Part I provides a guide for the modeler to develop 
a hydrologic model knowing the implications of scale and parameter 
uncertainties on the flow response in small watershed where the uncer-
tainties affect more the prediction and answers several important research 
questions. An objective of this research was to address the following three 
research questions indicated in Chapter 1:

RQ1. How flood prediction is affected by the spatial variability of 
point rainfall at scales below that of the typical resolution of radar-based 
products?

RQ2. How does parameter resolution affect the model’s predictive 
capabilities and the errors of the hydrologic system?

RQ3. Would the assumptions developed for the small scale enhance 
the hydrologic predictability at larger scales?

The main conclusions that can be drawn from this research are pre-
sented below:

• Rainfall variability was measured in a mountainous area of 4 × 4 km2 
(16 km2) using a high-density rain gauge network. High spatial vari-
ability over short distances was measured. The standard deviation 
increased with increasing rainfall depth and the trend slope line 
(coefficient of variation) between average rainfall and standard 
deviation increased with increasing area of coverage (from 4.5 to 
16 km2), [RQ1].

• NOAA’s MPE (Multi-sensor Precipitation Estimation) product was 
evaluated in an area of 16 km2 using the rain gauge network at hourly 
and daily time steps. MPE overestimated rainfall at the hourly time 
step and underestimated at the daily time step. Non-significances 
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Flood Prediction Limitations in Small Watersheds 157

were found in the hit rate between time steps. The probability of 
detection (POD) by the radar increased with the time step from 0.57 
(hourly) to 0.833 (daily). False alarm rates were reduced with the 
larger time step, [RQ1].

• Large biases were found in the hourly time step and are associated 
with small rainfall detections and the resolution of both instruments. 
The bias between radar and the rain gauge network was event and 
time dependent. It is a random variable and follows a normal with 
box-crox distribution, [RQ1].

• Hydrologic predictability was studied as influenced by rainfall res-
olution inputs and hydrologic model resolutions, indicating their 
respective effects on flow response. The May 2 and September 8, 
2008 events produced the greatest total average rainfalls and stan-
dard deviations, with high and low values of 5 days antecedent rain-
fall, respectively. No significant changes in total storm rainfall were 
observed with the interpolations at different scales, but produced 
important differences in rainfall intensity changes cell to cell though 
time, [RQ1].

• The slope map is an important input to the model. Decreases in the 
average slope will delay the time to peak and reduce peak flows. 
Up-scaling methods were tested to conserve the average slope and 
Method 2 was recommended to upscale a slope map in mountainous 
basins with high elevation variability over short distances, [RQ2].

• Río Rosario watershed was most sensitive to overland roughness 
with a Sr average of −13.7 followed by channel roughness with 
−7.4, overland hydraulic conductivity with −3.3 and initial soil 
moisture with 2.8 for peak flow. Sr for Río Grande de Añasco and 
Río Guanajibo watersheds indicate that the most sensitive param-
eters were channel roughness with −13.8 and −19.0, respectively, 
followed by overland roughness with −8.5 and −10.6 and initial soil 
moisture with 6.6 and 6.1, respectively, [RQ2].

• Río Rosario, Grande de Añasco and Guanajibo watersheds were 
most sensitive to initial soil moisture followed by overland hydraulic 
conductivity and soil depth for runoff depth, [RQ2].

• Variations between events can change the ranking of the input 
parameters studied. This was observed in the case of both variables 
(peak flow and runoff depth) indicating time or event dependence in 
Sr computations related to antecedent soil moisture, [RQ2].
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158 Flood Assessment: Modeling and Parameterization

• Rainfall ensembles for different resolutions were evaluated and 
a guide was presented in which the modeler can decide or to know 
the uncertainties associated with each resolution. In general, the rain-
fall ensemble at 100 m, followed by 400 m and 200 m can represent 
very well the peak flow, volume and time to peak, three variables 
that indicate a good agreement between the observed hydrograph 
and the prediction, [RQ1, RQ2, RQ3].

• Hydrographs that present various bumps during the event can be 
represented very well with the hydrologic model at 10 m grid size 
spacing, locating the time to peak with the corresponding peak flow. 
However, this grid size has problems with volume computations 
for dry conditions. Another hydrologic model that can capture the 
bumps is the 100 m grid size spacing and can produce the results for 
runoff depth very well, [RQ2, RQ3].

• Based on the analyzes presented in this research, the recommended 
up-scaled rainfall resolution, which will provide equivalent accuracy 
with the 100 m rainfall resolution, is 1000 m. The recommended up-
scaled grid resolution, which will provide equivalent accuracy with 
the 10 m resolution, is 100 m, [RQ1, RQ2].

• Another useful result, but not specifically related to any of the 
research questions, pertains to the estimation of potential evapo-
transpiration (PET). The temperature/elevation linear regression 
equations of Goyal et al. [40] were evaluated to calculate the PET 
at a daily time step using the Hargreaves-Samani equation [45] and 
the results showed similar regression coefficients between observed 
and calculated Tmax, Tmin and Tave values with the temperature/eleva-
tion lineal regression equations by Goyal [40]. The most sensitive 
parameter is the solar radiation, because the temperature model [40] 
cannot represent the spatial variability of this parameter using the 
daily interpolation for extraterrestrial radiation and the Tmax and Tmin 
calculated with the elevation model. Therefore, the use of Eq. (2) in 
Chapter 3 is recommended with measured values of solar radiation 
and temperature values either measured or estimated using the Goyal 
et al. [40] method.

For future works, it is recommended to include more events in the 
analysis for the TBSW, covering different event types, magnitudes and 
antecedent soil moisture condition as was covered in this research, from 
dry to wet conditions. Including more events would validate the findings 
in this research.
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Flood Prediction Limitations in Small Watersheds 159

The Part I includes Bias as an additional perturbation parameter, using 
a normal with Box-crox transformation (lambda = 0.15) probability distri-
bution function, to evaluate the uncertainty propagation though the hydro-
logic model.

The methodology used in this research to evaluate the rainfall resolu-
tion impact on hydrologic response using the bias corrected MPE product, 
could be reevaluated using the CASA radar data (when available) with 
high-resolution grid size to decide which resolution is desirable from 
a hydrologic point of view.

Currently, a high-density rain gauge network, extending over the 
MBDB area, which could be used to validate the NEXRAD rainfall esti-
mates, does not exist. In the near future, it is hoped that this rainfall resolu-
tion gap will be filled by the CASA radars and that the hydrologic model 
formulated can be tested.

9.2 SUMMARY OF RESEARCH STUDY IN PART I

An evaluation of the interrelation between different up-scaling parameters 
and inputs were evaluated to quantify their influence on hydrologic pre-
dictability in complex terrain and small watersheds. An up-scaling exper-
iment was performed, consisting of increasing the grid size to produce 
incrementally coarser resolution maps of each parameter, terrain and rain-
fall inputs. Each resolution was evaluated by an ensemble approach and 
generalized likelihood uncertainty estimation (GLUE) methodology using 
high-resolution rain gauge network (rainfall resolution of 100 m) and fully 
distributed hydrologic model (10 m). Each parameter perturbation, hydro-
logic model resolution, and rainfall resolution combination were modeled 
producing deterministic forecasts called “ensemble members”.

Objective functions were used to evaluate the behavior of each ensem-
ble with observed data using the variables time to peak, runoff depth 
and peak flow observations. Ensemble skill was evaluated using scalar 
measures of accuracy for continuous prediction as mean absolute errors 
(MAE), root mean square error (RMSE) and bias between the average 
ensembles to observation variable. Probabilistic distribution functions 
(PDF) were generated for each ensemble and prediction skill was mea-
sured by ranked probability score (RPS). Based on the analyzes presented 
in this research, the recommended up-scaled rainfall resolution, which will 
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160 Flood Assessment: Modeling and Parameterization

provide equivalent accuracy with the 100 m rainfall resolution, is 1000 m, 
and the recommended up-scaled hydrologic model grid resolution, which 
will provide equivalent accuracy with the 10 m resolution, is 100 m.
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 • channel bed slope

 • channel velocity

 • coefficient of determination
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 • conceptual rainfall-runoff
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 • contributing drainage area

 • Cooperative Remote Sensing Science and Technology Center

 • cumulative distribution function

 • cumulative forecast
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 • discrete bias
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 • extraterrestrial radiation

 • false alarm

 • false alarm rate

 • Federal Emergency Management Agency

 • finite element method

 • flood alarm system

 • flood insurance study

 • flow area

 • flow depth

 • forecast

 • Gaussian distribution function
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 • generalized likelihood uncertainty estimation

 • generalized Pareto distribution

 • geographical information systems

 • GLUE

 • hit rate

 • hydro estimator

 • Hydrologic Engineering Center

 • Hydrologic Engineering Center – River Analysis System

 • Hydrologic Modeling System

 • Hydrologic Rainfall Analysis Project

 • inverse distance weighting

 • kinematic wave analogy

 • land sat

 • Manning’s roughness factor

 • maximum air temperature

 • Mayagüez Bay Drainage Basin

 • mean

 • mean absolute error

 • mean annual rainfall
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 • multisensor precipitation estimation

 • National Oceanic and Atmospheric Administration

 • net radiation

 • next generation radar

 • normal distribution function

 • North American Datum

 • ordered physics-based parameter adjustment

 • partial duration series

 • peak flow

 • Pearson correlation

 • Penman Monteith equation
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 • physically based distributed

 • physically based hydrologic developed by Vieux and Associ-
ates, Inc.

 • potential evapotranspiration

 • precipitation radar product

 • probability

 • probability distribution function

 • probability of detection

 • probability plot

 • psychometric constant

 • Puerto Rico

 • Puerto Rico Water Resources and Environmental Research 
Institute

 • Puerto Rico Water Resources Authority

 • quantitative precipitation estimation

 • quantitative precipitation estimation and segregation using 
multiple sensors

 • quantitative precipitation forecast

 • radar rain rate equation

 • rainfall

 • rainfall rate

 • ranked probability score

 • reference evapotranspiration

 • reflectivity

 • relative sensitivity coefficient

 • root mean squared error

 • runoff

 • saturated hydraulic conductivity

 • saturated vapor pressure

 • simulation

 • slope of the vapor pressure curve

 • Soil Climate Analysis Network
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 • soil heat flux density

 • Soil Survey Geographic Database

 • solar radiation

 • standard deviation

 • stream volumetric discharge

 • subwatershed

 • Systeme Hydrologique European

 • Testbed Subwatershed

 • Thematic Mapper

 • time to peak

 • Tropical Agriculture Research Station

 • Tropical Rainfall Measuring Mission

 • U.S. Army Corps of Engineers

 • U.S. Geological Survey

 • United Stated Department of Agriculture

 • upscaled

 • vapor pressure

 • variance

 • Vflo

 • wind velocity
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FLOOD ALERT SYSTEM USING 
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CHAPTER 10

FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: INTRODUCTION1, 2

LUZ E. TORRES MOLINA
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10.1 INTRODUCTION

Chapters 10 to 20 in Part II of this book volume will present in detail the 
research study on flood alert system using high-resolution radar rainfall 
data.

Portions of western Puerto Rico are subject to flash flooding due 
to sudden, extreme rainfall events, some of which fail to be detected 
by NEXRAD radar located approximately 120 km away in the town 
of Cayey, Puerto Rico and partially obstructed by topographic features. 
The use of new radars with higher spatial resolution and covering areas 

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using 
Rainfall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department 
of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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168 Flood Assessment: Modeling and Parameterization

missed by the NEXRAD radar, are important for flood forecasting efforts, 
and for studying and predicting atmospheric phenomena.

Recently, Trabal et al. [85] at the University of Puerto Rico – 
Mayagüez Campus initiated investigations using two types of radars, 
namely: Off-the Grid (OTG) and TropiNet, with radius of coverage of 
15 km and 40 km, respectively. This network will monitor the lower 
atmosphere where the principal atmospheric phenomena occur. This 
study indicates for the first time that TropiNet radar technology can be 
used for hydrologic analyzes and specifically for rainfall forecasting in 
western Puerto Rico.

Short-term rainfall forecasts have commonly been made using 
Quantitative Precipitation Forecasting (QPF). The introduction of QPF 
in flood warning systems has been recognized to play a fundamental 
role. QPF is not an easy task, with rainfall being one of the most dif-
ficult elements of the hydrological cycle to forecast [24], and great 
uncertainties still affect the performances of stochastic and determin-
istic rainfall prediction models [86]. Currently, this capability does not 
exist in western Puerto Rico, and it is needed because of the potential 
for flooding in certain areas (e.g., in flood plains near the principal riv-
ers of the region).

The Part II on flood alert system using high-resolution radar rainfall 
data includes a research study where short-term rainfall forecast anal-
ysis is performed using nonlinear stochastic methods. Once obtained, 
the rainfall forecast is introduced into a hydrologic/inundation model 
Vflo and into the Inundation Animator configured for the Mayagüez Bay 
Drainage Basin (MBDB). Specific components of the research in this 
Part II are:

• The inclusion of calibration and validation of rainfall estimates pro-
duced by the TropiNet radar network,

• The development and validation of the stochastic rainfall prediction 
methodology,

• The calibration and validation of the inundation algorithm at selected 
locations within the MBDB, and

• The proto-type of an operational, real-time flood alarm system for 
the MBDB. The proto-type, automated Flood Alarm System (FAS) 
will be able to send near-real time updated inundation images to a 
website on the Internet.
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10.2 OBJECTIVES

The prediction or forecast of natural disasters is critically important for 
emergency management workers. An aim of forecasting is to gain ade-
quate time to evacuate people from disaster zones, to minimize loss of life, 
and reduce damage to structures and infrastructure, and minimize eco-
nomic loss. Every country around the world is exposed to various types 
of natural disasters depending on its geographical location (e.g., torna-
dos, hurricanes, volcanoes, earthquakes, flash floods, hail, snow, drought, 
tsunamis, fire and others).

Flash flooding is defined as the rapid rise in water level causing flood-
ing of an area. It may be caused by heavy rainfall associated with storms, 
hurricanes or tropical storms. The World Meteorological Organization 
(WMO) has defined the flash flood as “a flood that follows the causative 
precipitation event within 6 h of time [113]”. The National Weather Service 
has estimated that more than 70% of flash flood warnings may be issued 
with less than a one hour lead-time and that more than 50% of flash flood 
occurrences allow no lead-time whatsoever (personal communication, 
Ernesto Rodriguez, NWS, San Juan [57]).

Small watersheds have short time of concentration and reaching its 
peak, the response time of smaller basins could be on the order of a few 
hours or less than one hour. Recently in Puerto Rico, flash flooding has 
occurred from some significant rainfall, events that can occur over very 
short time scales (e.g., one to several hours on September 22, 2008, over 
almost whole of Island). The susceptibility of the island of Puerto Rico 
to flooding is high due to a variety of factors including its mountainous 
runoff that drains into flat floodplain terrain with poor drainage, intense 
rainfall and urban development, and the variability of rainfall in the island 
is a huge argument to use radars in the precipitation forecast [56].

Lately, some researchers have been using radars and they have indi-
cated that a key factor for accurate flood estimates and forecast is accurate 
rainfall for input to the hydrological model. Rainfall data are traditionally 
obtained from an often-sparse network of rain gauges that may not record 
the rainfall event with adequate spatial and temporal scales. Especially 
during heavy convective storm, a significant rainfall occurs over a limited 
areal extent and the weather radar has enormous potential in this field, 
with high spatial resolution and temporal continuity [83].
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170 Flood Assessment: Modeling and Parameterization

The rainfall forecast is an important component of the flood alert 
system that is designed to collect, handle, analyze and distribute informa-
tion for the purpose of providing advanced warning of a flood condition. 
This is possible when there is a good stochastic rainfall prediction, and 
a good hydrological model. The most important hydrologic model out-
puts are: the predicted peak flow, runoff volume and time to peak. These 
parameters are dependent on the quality of the hydrologic model and the 
rainfall estimated from the rain gauge or radar network [56].

To manage these conditions, the current study seeks the use of 
the high-resolution rainfall from the TropiNet radar network that will 
provide an excellent source of rainfall data, previously not available 
for short-term rainfall and flood prediction studies in Puerto Rico. 
Furthermore, the current study introduces the application of a novel 
nowcasting model, improvements in the accuracy of short-term  rainfall 
forecast due the high spatial and temporal resolution in radar rain-
fall data, technology for real-time inundation mapping, which has 
not been used in previous flood prediction studies in Puerto Rico, and 
which will be a powerful new tool in the hands of emergency flood 
 management personnel. The methodology proposed in this research can 
be applied to other watersheds in Puerto Rico or in others regions within 
the tropics.

Rainfall forecast and their integration into the disaster plan can have 
social and economic benefits, with a lead-time adequate to allow evacu-
ation from flood prone areas within the Mayagüez Bay Drainage Basin 
(MBDB).

Therefore, the interest of this study was to develop a forecasting model 
for the prediction of short-term rainfall in the western Puerto Rico. The 
forecast results were then introduced within a hydrologic model Vflo and 
an Inundation model “Vflo Inundation Animation” to get the animation of 
the flow into the rivers. Specific study objectives were:

a. Analyze the rainfall structure and behavior to develop an accurate 
stochastic model to forecast short-term rainfall for selected areas 
within the MBDB. The results using the forecasting model were 
compared and analyzed statistically with the observed data for 
 validation and calibration of the model.
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b. Apply the forecast rainfall data to the hydrologic model Vflo and 
Inundation Analyst module to obtain animation of flooding at 
selected locations within the MBDB in real time and to compare the 
results of the rainfall and hydrologic forecasts with observed data.

c. Develop a proto-type real-time flood forecast alarm system for the 
MBDB.
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FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: A REVIEW1, 2

LUZ E. TORRES MOLINA
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11.1 STOCHASTIC MODELING AND SHORT-TERM RAINFALL 
FORECASTING

This chapter presents the literature review on flood alert system using 
high-resolution radar rainfall data. There are many approaches that 
can be used to predict the future direction and magnitude of a physical 
process, such as rainfall. Forecasting is a large and varied field having 

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using 
Rainfall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department 
of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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174 Flood Assessment: Modeling and Parameterization

two predominant branches: Qualitative Forecasting and Quantitative 
Forecasting [38]. Quantitative Forecasting should satisfy two condi-
tions, the accessible numerical information about the past and assump-
tions that some aspects of the past patterns will continue into the future. 
Quantitative Forecasting can be divided into two classes: time series and 
explanatory models. Explanatory models assume that the variables to be 
forecasted exhibit an explanatory relationship with one or more other 
variables, in contrast, time series forecasting uses only information on 
the variable to be forecasted, and make no attempt to discover the factors 
affecting its behavior [38]. The time series models attempt to capture 
past trends and extrapolate them into the future. There are many dif-
ferent time series models but the basic procedure is the same for all as 
illustrated in Figure 11.1.

Some of the most common time series methods include: Autoregressive, 
Moving Average, Exponential Smoothing, Autoregressive Moving 
Average, Extrapolation, Linear Prediction and others [5]. This research 
includes a new type of time series nonlinear with stochastic and determin-
istic components, which will be explained later.

The autoregressive (AR) method is a type of random process, which 
is used to predict some types of natural phenomena, falling within the 
group of linear prediction formulas. The moving average (MA) method is 
a way where the current observations depend on all past observations [5]. 
Exponential smoothing is a popular scheme to produce a smoothed time 
series; exponential smoothing assigns exponentially decreasing weights 
to the observations as they get older. That is to say recent observations are 
given relatively more weight in forecasting than the older observations.

With the Autoregressive Moving Average (ARMA) method, models 
are used to describe stationary time series, which represent the combina-
tion of an autoregressive (AR) model and moving average (MA) model. 
The order of the ARMA model in discrete time (t) is described by two 
integers (p, q), which are the orders of the AR and MA parts, respectively. 

FIGURE 11.1 Flowchart for a stochastic model [5].
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A process is considered to be stationary when parameters, such as the 
mean and variance, do not change over time or maintain the same range. 
Autoregressive (AR) or ARMA are the models that are widely used in the 
prediction of flows in water resources. Other time series methods include 
extrapolation and linear prediction, and the nonlinear prediction with 
exponential component, depending of data behavior.

A time series is part of a stochastic process. The word stochastic comes 
from the Greek stokhastikos, an adjective that refers to system whose behavior 
is intrinsically nondeterministic, or sporadic, and categorically not intermit-
tent [48]. The stochastic methods are techniques used in prediction of events, 
such as: winds, hurricane tracks, temperature, humidity, rainfall, floods, etc. 
The stochastic concept has been used in hydrology since the beginning of 
twentieth century [74] applied in the river flow sequence analysis, but only 
in the 1970’s were autoregressive models applied to seasonal and annual 
hydrologic time series. Research in hydrologic time series has aimed towards 
studying the main statistical characteristics, providing physical justification 
for some stochastic models, developing new models, improving existing 
modeling parameters, developing new modeling procedures, improving tests 
of goodness of fit and other parameters applied to hydrology [74].

Forecasting is a relatively new science within hydrology and the atmo-
spheric sciences [75]. Its application has led to the reduction in deaths 
caused by natural disasters. “The Time Series Analysis” of Box and 
Jenkins [5] constitutes an important contribution to the field of stochastic 
analysis for the purpose of forecasting hydrologic phenomena. The book 
focuses on the application of the autoregressive and moving average mod-
els for forecasting.

A number of researchers have developed hurricane prediction tracking 
models in Puerto Rico. For example, Ramirez-Beltran [62] used histori-
cal data to develop a stochastic model to predict the behavior of hurricane 
tracks. The parameter estimation scheme, based on recursive and iterative 
algorithms, used historical records for hurricanes to fit vector autoregres-
sive models. The identified models have been classified according to the 
order of the model. The first observations of a given hurricane are com-
pared with historical hurricane tracks. Ramirez-Beltran [62] concluded that 
the vector ARMA model has an excellent potential and may help reduce 
official forecasting error compared with a Statistical-Dynamical Hurricane 
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Track Prediction Model (NHC90) from the National Meteorological 
Center. Ramirez-Beltran et al. [64] introduced a rainfall forecast method-
ology based on NEXRAD data that was used as the basis to formulate the 
new rainfall methodology.

The ideal forecast rainfall is based on the meteorological analysis but 
this is not always available, when this information is not accessible, the 
forecast rainfall can be based on current and past rainfall. The forecast-
ing of rainfall has been investigated by Burlando et al. [8]. Their research 
relates on whom to forecasting rainfall at a point, with a simple formula-
tion. Various models can be used for representing forecasting at point. 
Several models have been developed which describe storm arrivals fol-
lowing a Poisson process. However, the formulation for real time rainfall 
forecasting based on these models is too complex [65].

Burlando et al. [8] discussed forecasting of short-term rainfall using 
ARMA models defined at 1 h and 2 h of time scale. They suggested that 
parameter estimation models based on short-term precipitation records 
defined at hourly time-scale is more complex than when data is defined at 
longer time periods such as months. They forecasted rainfall by assuming 
that hourly rainfall follows an ARMA process. This assumption is based 
on the fact that the autocovariance structure of some point processes, such 
as the hourly rainfall.

Burlando et al. [8] investigated two estimation and fitting procedures. 
The first takes all rainfall occurrences throughout the period of record as 
the basis for parameter estimation, thus a given set of parameters results 
are obtained for a given month or season, and the second is an event-based 
estimation approach, each storm or independent rainfall of the month or 
season is considered separately for parameter estimation. Thus a different 
parameter set was determined for each storm or rainfall event considered. 
These procedures were compared for rainfall data at a point and rain-
fall data averaged over the basin. The analysis used hourly rainfall from 
two gauging stations in Colorado, USA and from some stations in Central 
Italy. Their research is related to forecasting rainfall at a point using rain 
gauges, Thyessen polygons were used to weigh contribution from each 
rain gauge. The results show that the event-based estimation approaches 
yields better forecasts than the continuous approach and is capable of pro-
ducing the rainfall intensity fluctuations (Figure 11.2).
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Burlando et al. [8] assumed that the rainfall processes are typically 
nonstationary and skewed. To circumvent nonstationary, the rainfall data 
are grouped by month of season; thus the model is applied separately 
for data of a given month or a given season. Accordingly, model param-
eters such as autoregressive and moving average coefficients were deter-
mined from precipitation data pertaining to a given month or season only. 
Parameter estimation of ARMA models based on short-term precipitation 
records defined at hourly time-scales is more complex than when data is 
defined at longer time periods such as months. The main reason is the 
intermittent characteristic of hourly precipitation. Therefore, two alterna-
tive approaches were followed by Burlando et al. [8] for parameter estima-
tion and forecasting. The first was referred to as the continuous approach 
and the second as the event based approach.

In the continuous approach, all the precipitation events which occurred 
in a given month or season were considered for parameter estimation. 

FIGURE 11.2 Forecast 1 h and 2 h ahead of hourly rainfall intensity and accumulative 
rainfall. Using event-based approaches for the event of 18 February 1953, Denver station, 
Colorado, USA [8].
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Thus, a given set of parameters results for a given month or season. In 
the continuous approach, the precipitation data used for parameter estima-
tion were arranged in two different ways. In the first, no differentiation 
was made between storm events, and the whole dataset, including zero 
recorded precipitation, was used for estimation.

In the event-based estimation approach, each storm event regardless 
of the month or season is considered separately for parameter estimation. 
Thus, a different parameter set was determined for each storm event con-
sidered. On the other hand, in the event-based approach, as only data of the 
current storm is used for estimation, the number of observations is small, 
and especially at the beginning of the storm event when only a few rainfall 
measurements are available. The influence of the storm movement was 
not considered here, and the scale of  temporal and spatial aggregation at 
which data should be monitored are two factors which they may improve 
the reliability of rainfall  forecasts [8].

Delleur and Kavvas [15] used the autoregressive moving average 
(ARMA) model to study the average rainfall time series over 14 basins. 
Results showed that the model is adequate for a short-range forecast at 
one or two time steps ahead. They claimed that due to the rotation of the 
earth around the sun, the monthly rainfall time series exhibit a yearly peri-
odicity. The time series models are usually fitted to the stationary random 
component of the spectrum or equivalently to the decaying part of the 
autocorrelation function. They said that this is necessary to remove the 
nonstationary component of the process.

Delleur et al. [16] used a model that included a Markov chain to simu-
late the sequences of dry and wet days. They found that the models simu-
lated the sequences of dry and wet days well. However, the amount of 
daily rainfall was not described adequately.

McLeod [47] demonstrated that the principle of Parsimony is helpful in 
selecting the best model for forecasting river flow. His work demonstrated 
the importance of model adequacy for seasonal river flow and incorporated 
seasonal periodic correlation. Briefly, their experience with river flow time 
series suggests that the best forecasting results are obtained by following 
the general model building philosophy implicit in Box and Jenkins [5] 
with suitable modifications and improvements. Box and Jenkins [5] gave 
a method to estimate the orders of the AR and MA terms of a model based 
on autocorrelations and partial autocorrelations.
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A popular decision rule for comparing models in the time series litera-
ture is the Akaike Information Criterion (AIC) [1]. This criterion is known 
as the test for the Parsimony of parameters. Several investigations have 
used AIC criterion for choosing the model type, order and in constructing 
an appropriate model for a given streamflow series. The following proce-
dure is usually followed:

a. The appropriate type of model, among AR, MA, ARMA, ARIMA 
(autoregressive integrated moving average) and seasonal ARIMA 
models is selected.

b. The choice of order for the selected model is determined.
c. The parameters in the model using the given stream flow series 

are estimated; and validation of the model by residual testing and 
by simulation is performed. This procedure is applied to identify 
models for forecasting and synthetic generation.

Mujumdar and Nagesh [50] used two criteria for the model selection, 
Maximum Likelihood rule (ML) and Mean Square Error (MSE) are used for 
the selection of the best model for each of the rivers considered. The selec-
tion of a model by the ML rule involves evaluating a likelihood value for 
each of the candidate models and choosing the model which gives the highest 
value. In general, as the number of parameters increase in the function, the 
likelihood value decreases. Thus it is to be expected that the ML rule selects 
models with a small number of parameters, this is the principle of parsimony 
propounded by Box and Jenkins [5]. The maximum likelihood estimation cri-
terion is suited for the selection of a model for simulation purpose. For short-
term forecasting, such as one step ahead forecasting, the mean square error 
(MSE) criterion may be more useful [40]. Selection of a model based on an 
MSE criterion is quite simple and can be summarized as follows:

a. Estimate the parameters of different models using a portion,  usually 
half of the available data.

b. Forecast the second half of the series one step ahead by using the 
candidate models.

c. Estimate the MSE corresponding to each model and
d. Select the model that results in the least value of the MSE.

For all cases presented by Mujumdar and Nagesh [50], the simple 
model AR resulted in the minimum value of the MSE, underlining the 
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fact that for one step ahead forecasting, quite often the simplest model 
is sufficient. Additionally, the case study revealed that as the number of 
parameters increased, the MSE increased, which is an interesting result 
contrary to the common belief that models with larger number of param-
eters, give better forecasts. For all series of the stream flows considered, 
the AR model is strongly recommended for use in forecasting the series 
one step ahead. Salas and Obeysekera [75] worked with time series mod-
els in streamflow and have stated that data generation and forecasting of 
seasonal streamflow are often needed in the planning and management 
of water resources systems. Both data generation and forecasting are 
based either on stochastic models alone or in combination with corre-
sponding conceptual models of the system under consideration. In most 
cases, stochastic model are usually developed, based on the available 
data on hand.

In modeling time series of annual flows, the assumption of stationarity 
of the series is usually made, so that stationary stochastic models can be 
applied in the study. When dealing with time series of seasonal flows, the 
modeling is more complex. The main reason is the inherent periodicity in 
several statistical characteristics that invariably lead to stochastic models 
with periodic parameters. Most techniques available for diagnostic checks 
have been limited to stationary models, although some approximations 
have been suggested for models with periodic parameters. A number of 
conceptual simulation models representing the hydrologic cycle of water-
sheds have been suggested in the literature since early 1960 s. Examples 
of such models are the new version of the Stanford watershed model [39] 
and the Sacramento model of the National Weather Service [9]. Extensive 
literature already exists on these two modeling approaches. However, less 
attention has been given to linking both conceptual and stochastic model-
ing schemes.

Kohnova et al. [42] conducted a study involving the modeling and fore-
casting of discharge and rainfall time series in the area of the Klastorske 
Luky wetland – Slovakia. They first analyzed the systematic components 
(trends, seasonality, periodicity and residual components). Subsequently, 
prediction models for the mean monthly discharges and the mean monthly 
precipitation totals were derived. The models tested were linear ARMA 
models. The results obtained could help ecologists in making decisions on 
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wetland management, improving the ecological conditions in the analyzed 
wetland, and planning future ecotechnical measures.

Many problems related to water resources and environmental systems 
deal with temporal data which need to be analyzed by means of a time 
series analysis, which has become a major tool in hydrology. Time series 
analysis is used for building mathematical models to describe hydrological 
data, forecast hydrologic events, detect trends, provide missing data, etc.

After analyzing some types of autoregressive models, Kohnova et al. 
[42] concluded that the ARMA model can be used to generate synthetic 
traces of monthly rainfalls, particularly useful in the analysis of water 
resources projects on basins.

Katz and Skaggs [41] studied statistical problems that may be encoun-
tered in fitting ARMA processes to meteorological time series. They used 
techniques that lead to an increased likelihood of choosing the most appro-
priate ARMA process to model the available data are emphasized. ARMA 
models are well suited to the analysis and forecasting of time series which 
are by nature or by manipulation persistent and thus, are especially useful 
in climatological analysis.

Box and Jenkins [5] are primarily responsible for making readily acces-
sible the necessary statistical methodology for applying ARMA models to 
real data and for taking advantage of the use of these models in forecast-
ing. While ARMA processes have many advantages over other somewhat 
similar processes, their application to modeling meteorological data may 
require an increased degree of mathematical sophistication on the part of 
the researcher.

Other examples of rainfall forecasting models were developed and avail-
able in the literature. Prediction of Rainfall Amount Inside Storm Events 
(PRAISE) is a stochastic model developed by Sirangelo et al. [80] to fore-
cast rainfall height at site. PRAISE is based on the assumption that the 
rainfall height accumulated on a delta time is correlated with a variable that 
represent antecedent precipitation. The mathematical background is given 
by a joined probability density function and by a bivariate probability dis-
tribution, which is referred to the random variable that represents rainfall in 
a generic site and antecedent precipitation in the same site. The peculiarity 
of PRAISE is the availability of the probabilistic distribution of rainfall 
heights for the forecasting hours, conditioned by the values of observed 
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precipitation. The Calabria region in southern Italy was selected to test 
performances of the PRAISE model [80]. PRAISE was applied to all of 
the telemetering rain gauges of the Calabria region, in Southern Italy. The 
calibration model showed that the hourly rainfall series present a constant 
value of memory equal to 8 h, for every rain gauge of the Calabria network.

11.2 NOWCASTING

The interest from rainfall forecast with high spatial and temporal reso-
lution has been increased in contemporary days. Only some equipment 
like radars is capable of producing high spatial and temporal resolution. 
Early algorithms were based on pattern recognition of rainfall echoes from 
which cross-correlation coefficients can be calculated and used to predict 
the motion of the storm feature [21].

Dixon and Wiener [20] developed a nowcasting system called TITAN 
(Thunderstorm Identification Tracking Analysis Nowcasting) to predict 
convective rainfall. TITAN uses real-time automated identification track-
ing and short-term forecasting of storm which besides is able to nowcast 
storm development and movement.

Nowcasting can be described as the production of short-term (0–3) 
hours lead-time precipitation forecasts based mainly on the extrapolation 
of future data from current radar data images [81]. Nowcasting has ben-
efited many different fields in addition to flood forecasting, including more 
general public weather warnings, water management, storm sewer opera-
tion, and irrigation, wet deposition of pollutants, construction site manage-
ment, and transportation systems [7].

11.3 RADAR RAINFALL ESTIMATION AND VALIDATION

The National Weather Service is incharge of providing weather, hydrology, 
and climate forecasts and warnings for the United States including Puerto 
Rico and U.S Virgin islands, working with a network of 159 high-resolu-
tions Doppler weather radars, commonly referred to as NEXRAD (Next-
Generation Radar). The technical name for NEXRAD is WSR-88D, which 
stands for Weather Surveillance Radar, 1988, Doppler [52]. NEXRAD 
detects precipitation and atmospheric movement or wind. The NEXRAD 
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radars can provide information that can help mitigate disasters caused by 
flash floods. Errors can occur with the methodology for observations far 
from the radar, where the earth’s curvature limits the observation of the 
lower atmosphere (Figure 11.3).

NEXRAD coverage has limitations in observing below 10,000 feet 
or 3 kilometers (called the Gap) above sea level for the Mayagüez area 
and nearby towns [12]. At these locations, NEXRAD cannot “see” if rain-
drops are forming within the Gap, resulting in a different rain rate than 
other radars which can measure the lower portion of the cloud (OTG and 
TropiNet). In the OTG and TropiNet radars, the rain rate equations can 
be selected, whereas NEXRAD rain rate uses the tropical equation with a 
threshold reflectivity (Z) of 53 dBZ, Z values above 53 dBZ are assumed 
to be hail and are not considered [73]. Other difference between NEXRAD 
and TropiNet radar is that NEXRAD has Doppler capabilities given infor-
mation on cloud motion, and TropiNet has Polarimetric capabilities which 
give information on precipitation type and rate. Polarimetric radars refer 
to dual-polarization radars which transmit waves that have horizontal and 
vertical orientations. The horizontal wave provides a measure of horizontal 

FIGURE 11.3 Long-range problems with NEXRAD, based on Westrick et al. [111]. 
Note: The figure does not include topography of the land surface.
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dimension of the cloud and rainfall where the vertical wave provides a 
measure of particle size, shape and density.

The use of the new radars OTG and TropiNet with higher spatial 
resolution and their observations of the lower atmosphere in the western 
Puerto Rico area can provide better atmospheric information in the lower 
zone because curvature effect is minimal, at minimum elevation [12]. The 
OTGs radars have been developed based on the modification of off-the-
shelf marine radars, which are characterized by low power consumption 
(~180 Watts), short range (15 km) and low cost (~$30,000) [12]. The OTG 
radars are capable of operating independently of the existing power grid 
and communication infrastructure.

On January 2010, the OTG Radar No. 1 was successfully installed at 
the PR-1 radar tower on the rooftop of the Stefani Engineering Building 
at the University of Puerto Rico, Mayagüez campus. The radar has an 
estimated sensitivity of 12 dBZ at 15 km, a range and a mean cross-beam 
resolution of 120 m and 500 m, respectively, and is a 4 kw X-band marine 
radar [12]. This technology was developed by the Student Test Bed of 
the NSF Engineering Research Center for Collaborative Adaptive Sensing 
of the Atmosphere (CASA) in Mayagüez, Puerto Rico. Arocho et al. [3] 
conducted a preliminary calibration of estimated rain rates on the OTG 
Radar No. 1.

Recently, new radars (TropiNet-1) were installed in Cornelia hill 
(Guanajibo) and (TropiNet-2) in Lajas, while another will be installed 
in Isabela (UPR- agricultural Exp. Station). Previous known project as 
Puerto Rico Student Test Bed, is now part of the Puerto Rico Weather 
Radar Network (http://weather.uprm.edu). The RXM-25 radar is referred 
to as TropiNet because of the name of the project, and is designed to cover 
a range between 30 and 50 km at very high sampling resolution spatial 
60 × 60 meters and temporal one minute that offers state-of-the-art radar 
data products. The RXM-25 is prepared to operate as a single radar unit 
or as a radar network, allowing both manual and automated control while 
the radar allows a motion over the whole hemisphere. Additionally, it 
uses a low operating cost magnetron transmitter capable of delivering up 
to 12 watts of average power per polarization channel. The RXM-25 is 
designed for easy access and maintenance, all of its signal processing and 
radar control software runs on a single server. Due to these characteristics, 
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it is possible that the RXM-25 will provide the best overall data in western 
Puerto Rico area to forecast important rainfall events [25].

11.4 HYDROLOGIC AND INUNDATION (FLOOD) MODELING

Numerical hydrologic models are commonly used to predict surface run-
off from watersheds, estimate peak stream flow and stage elevation. These 
models fall within three main categories: lumped, semilumped and distrib-
uted models. The lumped model bulks all of the rainfall/runoff processes 
into a few watershed scale parameters. An example of this type of model 
is the Sacramento Soil Water Accounting System [9]. The advantage of 
the lumped type model is that they are relatively easy to configure and to 
use. The semilumped model allows for the distribution of parameters in 
a watershed within homogeneous hydrologic response units (HRUs). An 
example of a semilumped hydrologic model is the Precipitation Runoff 
Modeling System (PRMS) developed by the U.S. Geological Survey 
(USGS) [44].

The third type of hydrologic model is the numerically distributed 
model. The most common numerical methods used for this type of model 
are the finite difference or finite element methods. An example of a numer-
ically distributed model and the one that is used in this research is Vflo, 
developed by Vieux [96]. Some hydrologic studies in Puerto Rico have 
used the Vflo model, including Vieux and Vieux [100] and Rojas [56].

Vflo uses radar rainfall data as hydrological input to simulate distrib-
uted runoff and is based on Geographic Information Systems (GIS) data. It 
provides high-resolution, physics-based distributed hydrologic modeling 
for managing water from catchment to river basin scale, the prediction of 
flow rate and stage can be made in every grid cell in a catchment, river 
or region, and the output is integrated with the Vflo -Inundation-Analyst 
module. This module along with the Digital Elevation Model (DEM) data 
can be used to show the extent of flooding superimposed onto a land map.

Rojas [69] used Vflo to evaluate the influence of the interrelation 
between different up-scaling parameters and inputs on hydrologic predict-
ability for use in flood prediction in the Mayagüez Bay Drainage Basin. 
Based on the analysis, the recommended upscaled rainfall resolution, 
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which will provide equivalent accuracy with the 100 m rainfall resolution, 
is 1000 m, and the recommended upscaled hydrologic model grid resolu-
tion is 200 meters.

Much of the data used by Rojas [69] for the MBDB was originally devel-
oped by Prieto [61] as part of a preliminary hydrologic regional conceptual 
model for the MBDB and implemented in an integrated, fully distributed, 
physically based, numerical model Mike She [17]. The fully integrated model 
was capable to simulate surface and groundwater flow within the MBDB.

11.5 REAL-TIME FLOOD FORECAST SYSTEMS

The USGS has developed the Real Time Flood Alert System (RTFAS) for 
Puerto Rico [94]. RTFAS is a web-based computer program, developed 
as a data integration tool, and designed to assist emergency managers to 
predict flooding of streams in Puerto Rico. RTFAS is available online at 
“Real Time Flood Alert System – http://rtfas.er.usgs.gov/”. It should be 
noted that the system is limited to providing stage elevation data at the 
locations of the USGS stream gauges.

The National Weather Service (NWS) establishes Flash Flood Guidance 
estimates in real time based on the Sacramento soil moisture accounting 
model [9, 27]. The analysis allows for the development of curves that 
relate threshold runoff to flash flooding. Unfortunately, the model has 
not been successfully implemented in all of the island’s watersheds. For 
example, the model is incapable of producing accurate results in some 
of the watersheds of south-eastern Puerto Rico (personal communication, 
Ernesto Rodriguez, NWS, San Juan [57]), perhaps owning to the fact that 
some streams in this area loose significant amount of their flow to the 
underlying superficial aquifers [18].

Sepúlveda et al. [79] developed a hydrologic model to forecast real-
time rainfall runoff within the Carraízo reservoir basin. The model esti-
mated water volumes at the reservoir from the rainfall and discharge data 
obtained from the network stations within the basin.
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12.1 INTRODUCTION

This chapter discusses the methods that were used to study the flood alert 
system using high-resolution radar rainfall data.

The University of Puerto Rico at Mayagüez has a research weather 
radar network and a rain gauge network developed by Luz Estella Torres-
Molina for research work. The radar network provides information with 
higher spatial and temporal precision. TropiNet has a 60 x 60 meter spatial 
resolution at every pixel and temporal resolution of 1 min. A flood warn-
ing model must be operated based only on the data available at the time of 
forecast. Only the radar can display data in real time. This is not possible 
using rain gauges but the rain gauges are used for data validation. Rain 
gauges based systems must have a dependable and redundant telemetry 
system that will accurately and efficiently transmit data a central loca-
tion for processing. The Data from TropiNet radar is used for rainfall pre-
diction in MBDB, using stochastic methods. Once the rainfall forecast is 
obtained, the use of hydrologic models is necessary for analysis of flood-
ing in this area.

This project is the first attempt to implement new technology using 
high-resolution radars for performance of flood alert/warning systems. 
This research is focused at the western Puerto Rico and can be applied in 
general to other areas or regions with the same rainfall type with the cor-
responding hydrologic soil and coverage data.

12.2 STUDY AREA

The study area, which encompasses the MBDB, is 819.1 km2 in area [56, 61] 
and is located in western Puerto Rico. The region has three important water-
sheds: Río Grande de Añasco, Río Guanajibo and Río Yagüez. The area 
includes 12 municipalities: Mayagüez, Añasco, Las Marías, San Sebastián, 
Lares, Maricao, Yauco, Adjuntas, Sabana Grande, San Germán, Hormigueros 
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Flood Alert System Using High-Resolution Radar 189

and part of Cabo Rojo. These three important rivers discharge into Mayagüez, 
Añasco and Cabo Rojo branches, respectively. According the U.S. Census 
Bureau, Mayagüez has 89,080 habitants and a total area of approximately 
143.53 km2 of which about 25.20 km2 are in flooding areas; Añasco has 
29,261 habitants with a total area of about 102.82 km2 and 23.11 km2 are in 
flooding areas; and Cabo Rojo has 50,917 habitants with a total area of about 
187.81 km2 and 44.42 km2 are in flooding area [88], as shown in Figure 12.1.

The Río Grande de Añasco originates at the Cordillera Central, flows 
west and discharges into the Bahia de Mayagüez. The alluvial valley covers 
an area of approximately 46.62 km2. It is bounded by hills to the north, east 
and south and by the Bahia de Añasco to the west. The major tributaries of 
the Añasco River that flow into the lower valley are the Rio Dagüey and the 
Rio Cañas. The basin is located in west-central Puerto Rico, in the municipal-
ities of Añasco, Lares, Las Marías, Maricao, Mayagüez and San Sebastián.

12.2.1 BASIN OF THE RÍO GRANDE DE AÑASCO

The basin of the Río Grande de Añasco has an area of 467.7 km2 of which 
approximately 10% of the area is flat land and the other remaining 90% 

FIGURE 12.1 Population in floodable areas, U.S. Census Bureau [88].
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190 Flood Assessment: Modeling and Parameterization

is mountainous. The floodplain covers approximately three-fourths of the 
flat land. The residential developments in the Añasco municipality are 
partially within this area, and therefore can be affected by flooding. Río 
Grande de Añasco flows westerly 74 km to the coast, where its discharges 
into the Bay of Mayagüez. Changes in elevation (DEM model) are shown 
in Figure 12.2 and vary from zero meters at mean sea level in the coastal 
areas to 960 meters in the mountainous areas. The upper reaches of the 
basin contain four interconnected reservoirs: the Lago Toro, Lago Prieto, 
Lago Guayo and Lago Yahuecas, to the Añasco watershed downstream 
of the lakes which is not significant for regional water budget estimation 
[61]. These transport outside water to Lago Luchetti and then to the Lajas 
Valley. The total lake drainage area is about 116.55 km2 and is used as 
a boundary condition in the current model.

According to Flood Insurance Study by Federal Emergency Management 
Agency [23], the land use on the Río Grande de Añasco watershed are dis-
tributed as follows: 278 km2 are cropland; 114 km2 are pasture; 85 km2 are 

FIGURE 12.2 Digital elevation model (DEM).
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forest and woodland; 33 km2 are idle, and 13 km2 are urban development 
and other uses. The vegetation in the floodplain was primary sugar cane. 
Soils in the floodplain are clay loams. The entire Rio Grande de Añasco 
watershed is in the humid, mountainous physiographic area of Puerto Rico. 
The Atalaya Mountains extend from the coastline eastward along the north 
side of the floodplain, merging with dissected plateau remnants at slightly 
lower elevations, north of the City of Añasco [23].

Flood problems in this study area are serious and widespread. Periodic 
flood damage to pastureland, roads, and a number of residential areas is 
significant. Flood waters have inundated the main Río Grande de Añasco 
floodplain 17 times in a period of 31 years, an average of approximately 
once every 2 years. The floodplain of the lower Rio Grande de Añasco has 
been inundated extensively at least six times during the period 1899–1975: 
September 1975 (major), September 1928, September 1932, September 
1952, October 1970, August 1899, and September 1899 [23].

12.2.2 RÍO GUANAJIBO BASIN

The Río Guanajibo basin originates in the cordillera central of western 
Puerto Rico. It rises approximately 10 kilometers north-east of Sabana 
Grande at an elevation of 800 meters approximately. The topography of 
the area includes mountains, foothills and valleys. The Río Guanajibo val-
ley is approximately 27 km long and is fan-shaped, with a width varying 
from approximately 0.6 kilometers in the area located between the town 
of Sabana Grande and San German, to approximately 5.2 kilometers in 
the Cabo Rojo and Hormigueros region, and approximately 2.8 kilome-
ters in the valley outlet, near the mouth [23]. The Río Guanajibo basin is 
subdivided into subbasins for each principal tributary: Río Rosario, Río 
Duey, Río Cain, Río Cupeyes, Río Cruces, and Río Loco. The top of the 
Guanajibo valley lies in the east of Sabana Grande. In this area, serpen-
tinite and volcanic rocks are predominant, in the south serpentinite pre-
dominates in a strip along the border. Rocks along the southern border of 
the valley near Punta Guanajibo consist of weathered serpentinite, with 
some volcanic-related rocks.

The urban areas are around Sabana Grande, San German, Cabo Rojo, 
Hormigueros, and a little portion of the City of Mayagüez. Land use in 
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the Guanajibo River Basin can be divided into three main groups: agricul-
ture with 59%, forested with 33% and residential housing with 8% [23]. 
Information on the historic floods of the basin can be found in the USGS 
hydrologic Investigations Atlas HA-456 by Haire [32]. One of the great-
est floods ever recorded in the basin was caused by Tropical storm Eloise, 
which occurred on September 15–17, 1975 and had a recurrence interval 
of approximately 100 years.

Unfortunately, no efforts have been directed toward obtaining suffi-
cient data to do flow-frequency analyzes. Of the known floods, the events 
of August 9, 1899, was the largest, followed by the flood of September 13, 
1928. Both floods were associated with the passing of a hurricane over the 
island [32]. Water-surface elevations recovered from these floods were not 
sufficient to adequately define the floodplain boundaries. Other significant 
floods occurred on December 3–4, 1960; May 17–18, 1963; July 30, 1963; 
November 27, 1968; and September 15–17, 1975. The flooding area in 
this zone has been delineated on the topographic map using the flood of 
July 30, 1963, it is fairly representative of floods in 1945, 1952, 1954 and 
1960 [32].

12.2.3 RÍO YAGÜEZ BASIN

The Río Yagüez Basin is located in the west-central portion of Puerto Rico. 
It flows westerly into the Bay of Mayagüez. The drainage basin is narrow 
with a length-width ratio of approximately 10 to 1 and a total drainage area 
of 35.5 km2. The City of Mayagüez, through which Río Yagüez flows, is 
among the largest cities in Puerto Rico [23]. The largest known flood on 
Yagüez River occurred on March 3, 1933 24-hours precipitation total of 
44.2 centimeters was recorded at Mayagüez by the national Oceanic and 
Atmospheric Administration (NOAA) on that date. This resulted in a flood 
with a peak discharge of 708 m3/s and a recurrence interval of 75 years. In 
1968, a flood protection project for the City of Mayagüez was started, the 
total project consisted of a channel and a reservoir to protect the city from 
floods. Currently, the channel with the existing structures has a capacity of 
326 m3/s, but there are plans to rebuild some of these structures, thereby 
increasing the capacity of the channel [23].
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12.3 SOIL CLASSIFICATION

The soil map was provided by United States Department of Agriculture – 
Natural Resources Conservation service (USDA-NRCS [55]), Soil Survey 
Geographic Database (SSURGO) for the Mayagüez [89], Lajas Valley 
[90], Arecibo [91] and Ponce area [92]. These were used in the conceptual-
ization of the soils surface texture for the study area (Figure 3). Hydraulic 
parameter initial values for clay, loam, clay-loam, gravel, rock and sand 
soil surface texture were assumed based on values from the literature for 
representative physical properties of soil texture [82].

The soil textures present in this study as percent of area are clay with 
62.49%, clay–loam 24.96%, rock 8.69%, loam 3.00%, sand 0.81% and 
gravel 0.04%. A soil map describing the class distribution is necessary to 
assign the values the Green-Ampt infiltration parameters (Figure 12.3).

Harmsen et al. [36] developed an algorithm of Water and Energy 
Balance for Puerto Rico using data from the Geostationary Operational 
Environmental Satellite (GOES). GOES-PRWEB uses an energy balance 

FIGURE 12.3 Soil textures present in the study area [Source: Soil Survey Geographic 
(SSURGO)].
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approach similar to Yunhao et al. [109]. The latent heat flux component of 
the algorithm is used to estimate actual evapotranspiration. The algorithm 
depends on solar radiation, which is determined using GOES satellite data. 
Gautier et al. [26] were first to propose a physical model for estimating the 
incident solar radiation at the surface from the GOES.

Harmsen et al. [36] provided solar radiation data with spatial resolution 
of one km for Puerto Rico. In this chapter, authors developed a subroutine 
in MatLab to convert the original one km resolution to 200-meter resolu-
tion to obtain potential evapotranspiration estimation in a resolution com-
patible with the hydrologic model in this chapter.

National Digital Forecast Database [NDFD] estimates daily average 
wind velocity for Puerto Rico. They adjusted the virtual instrument height, 
depending on the height of vegetation. Minimum, average and maximum 
and dew point air temperatures are obtained from a lapse rate approach 
calibrated for Puerto Rico by Goyal et al. [30]. These temperatures are 
daily adjusted with a nudging technique, using forecast temperature data 
from the NDFD [51]. Detailed description of the methodology used to 
obtain potential evapotranspiration is presented by Harmsen et al. [35, 36].

12.4 LAND USE CLASSIFICATION

A digital map of the land cover developed by the Xplorah project [107] 
was used to conceptualize the different land cover categories present in the 
study area. The data was developed by the School of Planification of the 
University of Puerto Rico – Rio Piedras [Xplorah project, 107], as shown 
in Figure 12.4.

Twenty (20) different classes of land cover and forest type are present 
over the study area corresponding to different kind of forest, woodland 
and agriculture. The classification of land cover in this model is used to 
assign values for physical based parameters which are important in the 
simulation with Vflo, other important parameters with the land use are 
manning’s roughness coefficient, rainfall interception, evapotranspiration, 
crop coefficient and other.

Prieto [61] classified the land use for this watershed in six (6) major cat-
egories, shrub land, woodland and shade coffee with an area of 529.16 km2, 
pastures with 172.84 km2 of area, urban and barren area with 60.02 km2, 
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agriculture with 55.06 km2, other emergent wetlands with 1.26 km2 and 
Quarries, sand and rock with 0.75 km2.

12.5 THE LOCAL CLIMATE

The climate of the study area is considered humid subtropical. The average 
temperature at the Mayagüez City, Puerto Rico station (666073) is 70.7oF 
between the years 1971–2000, and the average max temperature in the 
Mayagüez city station between the years 1971–2000 is 88.7oF, National 
Climatic data Center (NCDC) [52]. The amount of rainfall varies consid-
erably throughout the study area. Most of the rainfall occurs during the 
month of September with 10.62 inches on average. The months of January 
through April are considered the dry season with 1.60 inches in January, 
2.59 inches in February, 3.35 inches in March and 4.17 inches in April on 

FIGURE 12.4 Land Use by Xplorah project [School of Planification of the University of 
Puerto Rico – Rio Piedras, 107].
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average rainfall. South-east Regional Climate Center [SERCC, 78] pres-
ents detailed reports (figures and tables) on the climate in the study area.

In the west, the sea breeze effect carries wet air from the Mona Channel 
eastward, converging with the Trade Wind and resulting in intense convec-
tive rainstorms almost every afternoon within the MBDB during the wet 
season. Rainfall and temperature data obtained from the National Climatic 
data Center [52]. Table 12.1 shows the average temperature between 
1948–2012 at Mayagüez City, Puerto Rico, [South-east Regional Climate 
Center (SERCC), 78] and Table 12.2 presents the precipitation average 
between 1948–2012 at Mayagüez area [South-east Regional Climate Center 
(SERCC), 78].

Other record in the Mayagüez area is the station in the Mayagüez 
Airport. Figure 12.5 shows the average of precipitation monthly between 
the years 1981 and 2010. This agrees with the Mayagüez city station with 
September been the month with more precipitation.

12.6 HIGH-RESOLUTION RAINFALL RADAR PRODUCT

Commonly, the flood alert systems have fulfilled the role of providing 
flood notification to the community and have saved lives and buildings. 
However, many alert systems fail due to low precision of the models and 
the sudden change of the atmosphere. One of the greatest sources of uncer-
tainties in the prediction of flooding is the rainfall input [56]. Therefore, it 
is essential to have an accurate source of rainfall spatial and temporal data, 
and this is possible with properly working radars.

National Weather Service has a network of approximately 150 Doppler-
radar stations S-band (10-cm wavelength) radar distributed across the con-
tinental United States, Alaska, Hawaii, Guam and Puerto Rico only one 
here [52].

The first installation of a WSR-88D for operational use in everyday 
forecasts was in Sterling, Virginia on June 12, 1992. The radars provide 
spatial rainfall estimates at approximately 16-km2 resolution. This network 
was originally designed to support Departments of Defense, Transportation 
and Commerce objectives for detection and mitigation of severe weather 
events [111].
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NEXRAD has been used by the NWS to estimate rainfall in Puerto 
Rico. The NEXRAD facility for Puerto Rico is located near the City of 
Cayey at 860 m above mean sea level and at approximately 120 km from 
Mayagüez city. The location of radars provides full nationwide coverage 
over the contiguous United States at a specified height above each of the 
individual radars, but this may present a problem in the western Puerto 
Rico due to the distance from the NEXRAD radar and topography of the 
Island. Digital distributed-precipitation radar products can be downloaded 
directly from NWS.

The WSR-88D (Weather Surveillance Radar 1988, Doppler) radar, 
commonly referred to as NEXRAD, was developed to replace preDop-
pler technology radars for the purpose of providing an advanced early 
warning system for tornadoes. The first prototype system was installed 
in Norman, Oklahoma, in 1988. The first full scale WSR-88D radar was 
deployed in 1992. The main objective of the NWS’s NEXRAD program 
from a hydrologist’s perspective is to provide, in real-time, accurate quan-
titative precipitation estimates (QPE) from its network of radars [2].

FIGURE 12.5 The average of precipitation recorded for each month of the year between 
1981–2010, at Station Mayagüez Airport, Puerto Rico. Source: NCDC, (2013). National 
Climatic Data Center – National Oceanic and Atmospheric Administration (NOAA), US 
Government. (http://www.ncdc.noaa.gov/)
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202 Flood Assessment: Modeling and Parameterization

An equation relating reflectivity (Z) and rainfall (R) as the power func-
tion, Z = aRb, is normally used to retrieve estimated values for rainfall 
rates. The parameters a and b are selected according to the specific region. 
In Puerto Rico, NWS commonly uses a = 250 and b = 1.2. The Z-R coeffi-
cients have been shown to vary as a function of many factors and previous 
studies have shown that it is not possible to derive a single equation that is 
accurate at every point in a given radar domain, and for every storm-type 
and storm intensity [87]. As part of research in this chapter, it is important 
develop a program to convert binary coded files into ASCII-formatted files 
that contain a rainfall intensity estimate in mm/h for every latitude and 
longitude in the specific area.

The NEXRAD (Next-Generation-Radar) located in Cayey measures 
reflectivity to one km by one degree resolution for a diameter (distance) 
of 460 km [52]. Figure 12.6 shows the coverage of NEXRAD radar in 
Puerto Rico.

Currently, the Puerto Rico Weather Radar Network (PRWRN) admin-
istrated by UPR-Mayagüez has five radars; of which three are OTG and 
two are polarimetric TropiNet (RXM-25) radars.

FIGURE 12.6 NEXRAD radar coverage in Puerto Rico.
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Flood Alert System Using High-Resolution Radar 203

Figure 12.9 presents the TropiNet radar at Cabo Rojo in Cornelia 
Hill, while Figure 12.8 shows the TropiNet radar at UPR-Agricultural 
Experimental Station in Lajas. A new TropiNet radar is being installed at 
the UPR Agricultural Experiment Station in Isabela, which has the same 
characteristics as the other two. When all three TropiNet radars are operat-
ing simultaneously, the cover area will be approximately one third of the 
island.

Figure 12.9 shows the coverage of the three TropiNet radars in the 
western Puerto Rico. The OTG radars were developed with a heteroge-
neous network using off the shelf hardware. The network was designed to 
provide detailed precipitation estimates (QPE) to the public, including the 
NWS staff in Puerto Rico.

12.7 TROPINET RADARS

Radars are active sensors that emit electromagnetic pulses into the sur-
roundings. A typical radar system consists of at least the following four 

FIGURE 12.7 TropiNet-1 at Cornelia Hill in Cabo Rojo.
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204 Flood Assessment: Modeling and Parameterization

FIGURE 12.8 TropiNet-2 at UPR Agric. Exp. Station in Lajas.

FIGURE 12.9 TropiNet’s radars coverage.

components: a transmitter that generates high frequency signals, an antenna 
that sends the signal out and receives the echoes returned, a receiver that 
processes the returned signals and a data display systems [67]. Lower 
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Flood Alert System Using High-Resolution Radar 205

frequency and higher wavelength suggest that the radar has robust signal 
power and less attenuation, the weather radar system discussed in the cur-
rent research is based in X-band. The common weather radar system can 
be classified as listed in Table 12.3.

The TropiNet (RXM-25) radars are Doppler polarimetric radars, which 
allow the radar beam to measure reflectivity close to the ground, overcom-
ing the shadow effect of the Earth’s curvature, while maintaining high 
range and azimuth. The first TropiNet radar has been in operation since 
February 2012. TropiNet 1 is located in “Cerro Cornelia” Cabo Rojo, 
Puerto Rico at 18.16°N, 67.17°W, and 200 ft elevation (msl), approxi-
mately. The radars, working with the X-band frequency, are about three 
times stronger than that of the traditional radar frequencies at S-band mak-
ing the measurements of rainfall more attractive. They have high space 
and time resolution for weather monitoring and detection, and are capable 
of generating very high-resolution data with a range of 40 km of radius or 
maximum radial distance (horizontal range) of 80 km of diameter.

TropiNet radar being Doppler and Polarimetric can show velocity 
data of the cloud and reflectivity for every azimuth angle from 0o to 12o. 
TropiNet displays reflectivity logarithmically (10 log(Z)), or dBZ. The 
working frequency is 9.41 GHz ± 30 MHz, which corresponds to the 
X-band (in free space has a 3.19 cm wavelength). The TropiNet radar was 
designed and developed by Colorado State University (CSU) and (UPRM) 
to serve as the principal Internet-controllable node of the TropiNet radar 

TABLE 12.3 Radar Bands with Frequencies and Wavelength. Source: [http://stb.ece.
uprm.edu/fullscreen/mobile.html]

Radar band Frequency Wave length

GHz cm

L 1–2 30–15 
S 2–4 15–8
C 4–8 8–4
X 8–2 4–2.5
KU 12–18 2.5–1.7
K 18–27 1.7–1.2
Ka 27–40 1.2–0.75
W 40–300 0.75–0.01
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206 Flood Assessment: Modeling and Parameterization

network [25]. The Operational use of radar and hydrological models are 
indicated in Table 12.4. The Table 12.5 presents the specifications of 
TropiNet radar.

To analyze the data it was necessary to develop a model to convert raw 
data to NetCDF data and after convert the reflectivity data in dBZ to rain-
rate in (mm/hr) using empirically derived Z-R relationships to transform 
reflectivity to rain rate. Marshal and Palmer [46] equation is the default 
Z/R relationship employed by the WSR-88D and TropiNet.

NOAA-NWS [53] report recommended that Z-R relationship in use 
at the time of the event be changed from Z = 300R1.4 to a relationship 
more representative of raindrop distributions in a warm tropical storm. 
The Z-R relationship for warm tropical events recommended by the NWS 
Operational Support Facility since 1995 for all WSR-88D sites experienc-
ing heavy rainfalls, and now adopted by TropiNet is Z = 250R1.2 [96].

The Z-R relationship used in Puerto Rico is the convective, further-
more was necessary to define a maximum precipitation rate threshold for 
decibels above 53 dBZ [96]. The convective rainfall is a type of precipita-
tion with some characteristics like very high horizontal gradient and very 

TABLE 12.4 Operational Use of Radar and Hydrological Models [72]

Country Spatial 
resolution

Temporal 
resolution

Radar 
type

Hydrological 
model type

Hydrological 
model name

Czech 
Republic

2 × 2 km2 
(1 × 1 km2 
planned)

10 min C-band Several Several including 
PACK, API 
Sacramento

Finland 1 × 1 km2 15 X, C, 
S-band

Conceptual, 
distributed

FEI

France 1 × 1 km2 5 min C Conceptual R-R SOPHIE
Germany Various projects, resolutions and models
Poland 1 × 1 km2 10 min C-band Conceptual R-R IHMS-based
Slovenia 1 × 1 km2 10 min C-band Lumped R-R 

conceptual
HEC-1

Spain 1 × 1 km2 6–10 min C-band Distributed, 
grid-based, 
conceptual

TOPDIST

United 
Kingdom

Smallest 
1 × 1 km2

5 min C-band Various Various
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Flood Alert System Using High-Resolution Radar 207

large vertical depths. These characteristics imply that the weather radar 
is the best tool for detecting convective precipitation, but the presence 
of different types of hydrometeors, especially hail and storm dynamics 
yielding fast varying Vertical Profile Reflectivity (VPR) usually results in 
considerable random error in quantitative precipitation estimates. Large 
differences can be found especially when comparing rain gauges and radar 
estimates because of the high temporal and spatial variability of the con-
vective storm and related vertical profile of reflectivity [71].

PRWRN has been developing an interactive web site where it is pos-
sible to observe weather conditions in real time using both, the OTG and 
TropiNet radars. It is possible to observe the overlap between these radars 
and NEXRAD. Figure 12.10 presents the web site under development. 

TABLE 12.5 TropiNet Radar Specifications. Source: CRIM, (1998). Center for Municipal 
Tax Revenues of Puerto Rico.Digital Elevation Model

Transmitter Specification

Type Magnetron

Center Frequency 9410 +/– 30 MHz
Peak power output 8.0 kW (per channel)
Average power output 12 W (per channel)
Pulse Width 400–660 ns
Polarization Dual linear, H and V
Max. Duty cycle 0.16%
Antenna and Positioner Specification

Type (diameter) Dual-polarized parabolic reflector (1.8 m)
3-dB Beam width 1.4 deg
Gain 42 dB
Max. scan rate 60 deg/s
Receiver Specification

Type Parallel, dual channel, linear I/Q output
Dynamic range 95 dB (BW=1 MHz)

Noise Figure 5 dB
Data Acquisition System Specification

Sampling rate 200 Msps
Dynamic range 105 dB (BW=1 MHz)
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208 Flood Assessment: Modeling and Parameterization

The web site is user friendly and accessible to the interested public who 
wish to observe weather conditions in real time with higher resolution 
than NEXRAD. This web site includes five radars: TropiNet – Cabo Rojo, 
TropiNet-Lajas, OTG-Mayagüez- OTG-Ponce, and OTG-Aguadilla. Only 
one TropiNet-Cabo Rojo data was used in this research.

On the other hand, Luz Torres-Molina with support of Red de Radars 
del Tiempo project developed a Rain Gauge network for comparison of 
data radar from TropiNet-Cabo Rojo. These rain gauges series are distrib-
uted at University of Puerto Rico Mayagüez Campus (UPRM) and nearby 
locations.

12.8 RADAR DATA PROCESSING TROPINET

A radar application in MatLab was developed to access the store of binary 
volume files that contain the respective information as determined by the 
operator like reflectivity, azimuth, velocity, beam width, range, elevation 
and other radar products. The operator can apply one of several possible 
scan configurations. For instance, in the Range Height Indicator (RHI), the 
radar holds its azimuth angle constant but varies its elevation angles. This 

FIGURE 12.10 Coverage Website OTG’s and TropiNet radars in real time, [http://stb.
ece.uprm.edu/fullscreen/mobile.html].
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Flood Alert System Using High-Resolution Radar 209

is essential to provide vertical resolution where the radar continuously 
scans through elevation angles at a given azimuth angle (Figure 12.11). 
Another common scan configuration is the Plan Position Indicator (PPI). 
The radar holds its elevation angle constant but varies its azimuth angle, 
rotating through 360 degrees (Figure 12.12). 

For this research, it was necessary to hold the radar scan in PPI with 
a constant elevation angle of 3 degrees. Every radar scan has two angles 
of 3 degrees and 5 degrees with a duration time of 30 seconds. The data 
information is saved in the server at http://www.weather.uprm.edu. The 

FIGURE 12.11 Range Height Indicator (RHI).

FIGURE 12.12 Plan Position Indicator (PPI).
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raw data files are stored by date, every hour, minute and second of scan 
in binary format. Each volume scan from radar has been interpolated to a 
fixed Polar grid and, after it is necessary, to convert to the fixed Cartesian 
grid. As part of the effort to further post-process the radar data, a model 
in MatLab was developed. This model performs the conversion from raw 
data polar coordinate system to ASCII data to Geographic coordinate sys-
tem necessary for the hydrological software, Vflo.

In addition, a comparison between NEXRAD and TropiNet in random 
pixels was made with the objective of validating the rainfall location using 
a time series for every storm in each pixel.

12.8.1 RADAR DATA PROCESSING: NEXRAD

The NOAA webpage (http://www.ncdc.noaa.gov/nexradinv/map.jsp) 
indicates the data from NEXRAD. NEXRAD inventory has the option to 
choose day and product [52]. There are a total of 41 level III products rou-
tinely available from the National Climatic Data Center (NCDC), general 
products include the baseline reflectivity, velocity and algorithmic graph 
products spectrum width. The base reflectivity [N0R] product is used to 
detect precipitation, evaluate storm structure, locate boundaries and deter-
mine hail potential, and a display of echo intensity measured in dBZ. 
Four lowest elevation angles are available. For this study, Level III [N0R] 
short-range base reflectivity (16 level/230 km) with 0.5 degrees was used.

The WSR-88D NEXRAD radar data is stored on the NCDC robotic 
mass storage system, commonly known as the Hierarchical data Storage 
System (HDSS). The data is easily accessible with the NEXRAD 
Inventory Search tool, which allows users to view the data completeness 
and download individual products. The ordered data is ready for use with 
the NCDC Weather and Climate Toolkit. Each order may contain up to 
24 h of data at a time for a single site. Once the data is downloaded, it is 
necessary to change data format from NetCDF to ASCII. This is only pos-
sible with a developed routine in MatLab from the current this research.

12.9 RAIN GAUGE NETWORK

As leverage to the NSF – CASA center, with support from NOAA’s 
Cooperative Remote Sensing Science and Technology Center (CREST), 
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a rain gauge network was deployed for validation of data from NEXRAD, 
OTG and TropiNet radars. The rain gauges are distributed over the 
University of Puerto Rico at Mayagüez Campus (UPRM) and other loca-
tions close to the campus.

These rain gauges are tipping bucket-type rain gauges that measure 
rainfall in 0.254 mm (1/100th inch) increments. The self-emptying, tip-
ping bucket design is accurate (±2%) and reliable. The logger is capable of 
saving 48 days of rainfall data with a 10 min reading interval. Double rain 
gauges were installed at each location to minimize errors in data collection.

A major source of error in hydrologic models is the poor quantification 
of the areal distribution of rainfall, typically due to the low density of rain 
gauges. For a good spatial distribution of data it is necessary put hundreds 
of rain gauges in a small area, otherwise it is not possible to obtain a good 
precipitation distribution.

Some data from TropiNet radars was compared with rain gauge data 
for selected storms. Figure 12.13 shows the distribution of the rain gauge 
network in the vicinity of UPRM campus.

Rainfall dates are traditionally obtained from an often-sparse network 
of rain gauges that may not record the rainfall event with adequate spa-
tial and temporal scales, especially for heavy convective storms when sig-
nificant rainfall occurs over a limited areal extent [83]. Weather radar has 
enormous potential in this field, as it can measure rainfall in real-time with 
high spatial resolution and temporal continuity [83].

FIGURE 12.13 Detailed rain gauges network.
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A favorable rainfall distribution is only acquired with radars, therefore 
it is necessary the use of weather radars, a rain gauge located at a single 
point may not represent an extensive area, with only one value. The spatial 
distribution of precipitation can have a major influence on the hydrologi-
cal models Errors may occur in the resulting hydrograph when the spatial 
pattern of the rainfall is not preserved. These errors will be magnified for 
intense, short duration and localized events especially in areas of high 
topographic variability subject to convective storms [105].

Similarly, errors in rain gauges are known from turbulence and increased 
winds around the gauge, affecting precipitation quantification in events 
where the wind is an important factor (e.g., hurricanes). Investigators 
have used mean areal precipitation as calculated by, for example, Thiessen 
polygons, [95, 105], and interpolation methods, such as Spline, Inverse 
Distance Weights, and Krigging and polynomial surface. But all of these 
methods are limited by the number of rain gauges [105].

12.10 PHYSICALLY-BASED HYDROLOGIC MODEL

The hydrologic model used in this research is Vflo [97]. Vflo is a fully 
distributed physically based hydrologic (PBD) model capable of using 
geographic information and multisensory input to simulate rainfall runoff 
from major river basins to small catchments (Figure 12.14).

Vflo is a hydraulic approach to hydrologic analysis and prediction. 
Overland flow and channels are simulated using the Kinematic Wave 
Analogy (KWA). The model uses GIS grids to represent the spatial vari-
ability of factor controlling runoff. Runoff production is from infiltra-
tion excess and is routed downstream using kinematic wave analogy. 
Computational efficiency of the fully distributed physics-based model is 
achieved using finite elements in space and finite difference in time. Vflo is 
suited for distributed hydrologic forecasting in post-analysis and in a con-
tinuous operation mode, derives its parameters from soil properties, Land 
use, and topography and in this case the precipitation is obtained from 
radar TropiNet. The goal of distributed modeling is to better represent the 
spatial-temporal characteristics of a watershed governing the transforma-
tion of rainfall into runoff.
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The hallmark of Vflo is prediction of flow rates and stages for every 
grid cell in a catchment, watershed, river basin or region. Vflo provides 
high-resolution, physics-based distributed hydrologic modeling for man-
aging water from catchment to river basin scale. Improved hydrologic 
modeling capitalizes on access to high-resolution quantitative precipita-
tion estimates from model forecasts, radar, satellite, rain gauges, or com-
binations of multi sensor products.

Model input consists of rain-rate maps at any time interval from 
radar or multisensor sources. Data input for this model (besides rain-
fall), is derived from various commonly available sources of digital data. 
Parameters include topography and drainage networks derived from a dig-
ital elevation model (DEM), infiltration derived from soils, and hydraulic 
roughness derived from land use/cover. These parameters may be input 
and edited manually or via ArcView grids.

The model formulation is a kinematic wave analogy (KWA) for over-
land flow is a simplification of the conservation of mass and momentum 

FIGURE 12.14 Detailed GIS grid runoff in the watershed.
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equations, wherein the principle gradient is the land surface slope. The 
conservative form of the full dynamic equation relates the temporal and 
x-direction gradients of flow depth y and velocity V as:

 ( )0 0f
V yV s s
t x x

υ∂ ∂ ∂
+ + − + =

∂ ∂ ∂
ℊ  (1)

where, if all other terms are small or of an order of magnitude less than the 
bed slope so, or friction gradient, sf then the KWA is an appropriate rep-
resentation of the wave movement downstream [10], V is the component 
of velocity ℊ, is acceleration due to gravity, (∂V/∂t) is local acceleration, 
V(∂υ/∂x) is horizontal momentum advection and (∂y/∂x) is hydrostatic 
pressure. The one-dimensional continuity equation for overland flow, with 
depth 𝒽, resulting from rainfall excess is:

 ( )u R I
t x
∂ ∂

+ = −
∂ ∂
� �  (2)

where, R is rainfall rate; I is infiltration rate; 𝒽 is flow depth and u is over-
land flow velocity.

In the KWA, the bed slope is associated with the friction gradient 
which amounts to the uniform flow assumption. Using this fact together 
with an appropriate relationship between overland flow velocity u and 
flow depth 𝒽 such as the Manning equation is obtained:

 
1/2

2/30su
n

= �      (3)

where, s0 is the bed longitudinal slope and n is the Manning’s hydraulic 
roughness.

Velocity and flow depth depend on the land surface slope and the 
friction induced by the hydraulic roughness. Important parameters are 
the saturated hydraulic conductivity K controlling infiltration rate I, and 
Manning’s roughness n are three of the most important parameters within 
the model. Hydraulic conductivity controls the total amount of water that 
will be partitioned into the surface runoff and the subsurface, whereas the 
hydraulic roughness mainly affects the peak flow and the time to peak 
[98]. Model results obtained from Eqs. (1)–(3) are adjusted by scalars 
applied to spatially distributed parameters:
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1/2 5/3s R      I

t n x
ϖ γ∂ ∂

+ = −
∂ ∂

�� �
 (4)

where, the three scalars ϱ, γ, ϖ and are multipliers controlling the infiltra-
tion rate I rainfall rate R, and hydraulic roughness n, respectively. The flow 
depth is 𝒽, and slope s, is the principal land-surface slope at the center of 
each grid cell.

The slope and hydraulic roughness are spatially variable, while rain-
fall, infiltration and flow depth are spatially and temporally variable. 
Infiltration excess (IE) is treated by the model as the source of runoff. 
The model represents overland flow as a uniform depth over a computa-
tional element. From hillslope to stream channel, there may be areas of IE 
and Saturation Excess (SE), however the model treat runoff generation as 
solely IE. Simulation of IE requires soil properties and initial soil moisture 
conditions. The well-known Green-Ampt equation is used to account for 
the effects of initial degree of saturation on infiltration rate [98].

12.10.1 CALIBRATION PROCESS

There is a sequence called the “Ordered Physics Based Parameters 
Adjustment” (OPPA) method developed by Vieux and Moreda [100]. The 
calibration process (OPPA) approach include estimates of the spatially 
distributed parameters from physical properties, assigns channel hydrau-
lic properties based on measured cross-sections where available, studies 
model sensitivity for the particular watershed, and identifies response sen-
sitivity to each parameter. It furthermore runs the model for a range of 
storm from small, medium to large events. It observes the characteristics 
of the hydrograph over the range of storm size and any consistent volume 
bias. Then it derives a range of response for a given change in a param-
eter and categorizes and ranks parameter sensitivity according to response 
magnitude.

The optimum parameter is that set which minimizes the respective 
objective function and matches volume by adjusting hydraulic conductiv-
ity. It can match the peak by adjusting overland flow roughness and read-
just hydraulic conductivity and hydraulic roughness if necessary. The Vflo 
model does not simulate base flow, only direct runoff; it can be simulated 
assigning a fixed value to every channel cell for every event to simulate.
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For a long-term analysis it is necessary to quantify the base flow using 
known methodologies [31]. The OPPA procedure outlined above can be 
stated as: increasing the volume of the hydrograph is achieved by decreas-
ing hydraulic conductivity, and similarly, increasing peak flow is achieved 
by decreasing hydraulic roughness.

12.11 INUNDATION (FLOOD) MODEL

The Inundation Analyst extension is a Vflo [97] that provides images, 
animations and simulated inundation, which is an indication of flood 
risk. The extension is especially useful for flood management applica-
tions. For example, a forecast inundation is useful for operational deci-
sions, warning or notification, and coordinating emergency response. The 
Inundation Analyst operates independently from the Vflo model, but can 
use data exported from Vflo as input for generating inundation forecasts. 
The Inundation Analyst requires a digital elevation model (DEM), a flow 
direction map, a channel flow direction map, and stage data. All input data 
must be in ESRI ASCII grid format (*.asc). The DEM and flow direction 
maps must have the same number of columns and rows. The DEM must 
be in units of either feet or meters, in this research the units are in meters. 
Stage data inputs are exported from a Vflo model. The resolution of the 
maps affects the quality of inundated area display, so high-resolution data 
are recommended. When a flow direction map of a different grid definition 
is used, filter files called BAG files (*.bag) may be used to convert Vflo 
stage data to the grid definition of the flow direction map. Background 
images can be included at any resolution, so long as their extent is the 
same the other form the DEM and flow direction map. Background images 
must be in JPEG or bitmap format [103].

Some storms were used as validation of the flow/inundation model. 
The methodology of validation included: comparing the stream flow and 
stage using gauge data from the U.S. Geological Survey (Current Water 
Data for Puerto Rico, [95]) with the observer data from TropiNet radar 
and rainfall nowcasting. All input data are ASCII and the flow direction is 
extracted from the DEM watershed. The DEM have units of meters, the 
stage data input are exported from Vflo model, and a background water-
shed image is included in bitmap format. The inundation results are listed 
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in order to create the animation. Once all stage files are listed in the appro-
priate order, the images that are produced show the primary inundation 
Analyst window.

12.12 STOCHASTIC MODELING OF RAINFALL OF SHORT-
TERM DURATION

For atmospherics phenomena, it is difficult to predict deterministically 
what will occur in the future. A mathematical expression which describes 
the probability structure of the time series that was observed due to the 
phenomenon is referred to as a stochastic process. The precipitation is an 
example of stochastic phenomenon that evolves in time according to prob-
abilistic laws. A time series model is adapted to a series in order to cali-
brate the parameters of stochastic process. Stochastic models are able to 
provide reliable predictions over small temporal and spatial scales, which 
are interested in hydrological applications.

Other types of prediction are the meteorological models, they produce 
qualitative and quantitative rainfall forecasting for 24–72 h. At these fore-
casting horizons, an absolute precision is not required, but rather an order 
of magnitude. They are based on atmospheric phenomena developing on a 
synoptic scale, but in general they are not able to provide reliable predic-
tions for small temporal and spatial scales, which are of interest in hydro-
logical applications [14].

12.12.1 TIME SERIES ANALYSIS

A time series is a set of observations that are arranged chronologically. 
In time series analysis, the order of occurrence of the observations is cru-
cial. When a meteorologist wants to predict a storm or a rainfall using 
forecasting or nowcasting, the more important factor is the chronological 
order of the data or the data time series. If this chronologic data is ignored, 
the information contained will be difficult to use.

In the time series analysis, stochastic models are used for describing the 
system hydrology for purposes that include modeling, forecasting, gener-
ating and investigating the underlying characteristics of the rainfall data. 
A time series is a set of observations that are arranged chronologically. 
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In this work, the observations are reflectivities which were changed to 
rainfall. They were derived from TropiNet radar obtained between the 
months of March and December of 2012 and some months in 2014. Some 
of the precipitation events from TropiNet radar observed were modeled to 
obtain the nowcasting of 10 min, 20 min and 30 min, and then this data was 
compared with the observed data of 10 min, 20 min and 30 min. In total 
10 events in Range Height Indicator (RHI) mode were used between 2012 
and 2014, when the radar was available.

12.12.2 TYPES OF FORECASTS

There are some properties needed to distinguish between different types of 
forecast. Forecast can extend to different scales in space and time; the spa-
tial is doing reference in a fixed location in a specific area o city, e.g., the 
precipitation on a grid from TropiNet radar over Mayagüez city. The tem-
poral range of a forecast is furthermore called lead-time. Short range fore-
cast cover very close events, like the next few hours or next minutes as our 
case, the long range forecast is considered the mean value of a meteoro-
logical parameter over a few days or months.

In this research, the data is correlated in space and time, where the 
strength in general decreases with spatial and temporal distance. Our mod-
els are designed to do forecast in time and space. This increases the dif-
ficulty as compared with prediction models that only use the forecast in 
time at a given place (e.g., forecast in rain gauges).

Other types of forecast are deterministic. In this case a single forecast 
value is issued at each occasion, pretending a confidence that hides the 
forecaster’s uncertainty about the outcome. They are easy to interpret even 
for user without stochastic background knowledge. The simplest case is a 
deterministic binary forecast. This area decision, like yes or no, and addi-
tionally a generalization in the forecast if necessary, distinguishes between 
types of variables to be forecasted. The variable of interest can be ordinal, 
which can be expressed by a number and can be defined by an appropriate 
number of threshold values (e.g., light rain, middle rain or heavy rain).

Other variable of interest is the nominal, where there is no natu-
ral ordering, like qualitative observation of the kind of precipitation 
(e.g., snow, rain, ice or other). A deterministic evaluation is furthermore 
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named Quantitative Precipitation Forecast (QPF), which induces the user 
to suppress information and judgment about uncertainty. In fact, it may 
create the illusion of certainty, while a probabilistic forecast is indicated 
as Probabilistic Quantitative Precipitation Forecast (PQPF). In order to 
reflect the uncertainty of the future outcome, probabilistic statements are 
more appropriate.

For this research a methodology that embrace a space-time stochas-
tic model is used, and is considered a “discrete time-series model” that 
include a special kind of nonlinear model with stochastic and deterministic 
components. Here, the rainfall process is described at a discrete time steps, 
are not intermittent and, therefore, can be applied for describing the fore-
cast within storm rainfall.

The other investigators prefer to use of meteorological model. These 
are useful qualitative and quantitative rainfall forecasting tools on 24–72 h 
interval and on a large spatial scale. In such cases, indeed absolute preci-
sion is not required for practical application. In meteorological models 
when the forecasting lag time and spatial scale decrease, the effectiveness 
and the precision of kind of model additionally decrease [43]. The next 
section shows some types of forecast models widely used.

12.13 AUTOREGRESSIVE-MOVING-AVERAGE MODELS

Autoregressive-moving-average models (ARMA) are mathematical mod-
els of autocorrelation in a time series. ARMA models are widely used in 
hydrology and were popularized by Box and Jenkins [5] who elaborated 
a comprehensive theoretical and practical development of time series mod-
els. There are several possible reasons for fitting ARMA models to data. 
ARMA modeling can contribute to understanding the physical system by 
revealing something about the physical process that builds persistence into 
the series. ARMA models can additionally be used to predict behavior 
of a time series from past values alone. Such a prediction can be used as 
a baseline to evaluate possible importance of other variables to the system.

The model consists of two parts: an autoregressive (AR) part and a 
moving average (MA) part. The AR model expresses a time series as a 
linear function of its past values. The order of the AR model indicates 
how many lagged values are included. The MA model is a form of ARMA 
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model in which the time series is regarded as a moving average of a 
 random shock. The model is usually then referred to as the ARMA (p,q) 
model where p is the order of the autoregressive part and q is the order of 
the moving average part. ARMA models in general, after choosing p and 
q, are fitted by iterative procedure of a nonlinear least squares regression 
to find the values of the parameters which minimize the error term. The 
ARMA modeling process is commonly an iterative, trial and error process. 
Thus, it is necessary to use the least possible number of parameters that 
will adequately produce forecasted values with similar statics of the his-
torical data [19].

ARMA is a methodology widely used to do predictions of all types, for 
economy as well as for the weather predictions. In any case, it is necessary 
to have a long historical data. In the literature ARMA model has been used 
to predict at one or two rain gauges at a single point but not at radar field. 
Since the ARMA model predicts at a single point. This is an important 
reason to avoid the use of ARMA methods in this research. This principle 
was applied to this thesis or this model, at the same time the principle of 
parsimony to obtain results in the model with small possible error.

12.14 POINT PROCESS MODEL

Point Process is a type of random process for which any action consists 
of a set of isolated points in time or in space. The example more global in 
point process model is the Poisson Process that counts the number of events 
(storm) and the time that these events occurs in a given time interval,. Usually 
the time between each events development has an exponential distribution 
and the numbers of occurrences are independent of each event (storm).

The Point process model has been used commonly to forecast rain-
fall in which storm origins occur in a Poisson process. The Point process 
model is applied at a single site or fixed point where the storms arrive in 
a Poisson process. Each storm incorporates a group of random number of 
rain cell, where each cell has a random duration or lifetime and depth. The 
total rate of precipitation at time (t) is the sum of contributions from all 
active cells at (t) [70]. This type of model uses complex equations and the 
analysis of precipitation is in time at a fixed point in space and the proper-
ties of the natural process can be deduced via the mathematical model.
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Stern and Coe [84] have modeled daily rainfall in which wet and dry 
days occur in a Markov chain with seasonally dependent transition prob-
abilities. In it, the amounts of rain per wet day have a gamma distribution 
with seasonally dependent parameters.

12.15 SPECIAL “NONLINEAR EMPIRICAL MODEL”

An algorithm for predicting 10, 20 and 30 min in advance the spatial dis-
tribution of rainfall rate is based on the assumption that TropiNet radar 
rainfall rate data provides estimations of the rainfall with high spatial and 
temporal resolution. Some researchers have compared radar rainfall data 
with rain gauge measurements [6, 71, 77, 108]. These comparisons may 
not been useful since a rain gauge measures precipitation at a single point 
located at the surface level, whereas the weather radar measures the aver-
age of reflectivity at certain elevation and over a much larger area. A sto-
chastic function is used to estimate the rainfall rate based on reflectivity.

When a rain gauge is compared with radar, it is expected that the aver-
age rainfall will behave as an individual point. It is known that the average 
will behave differently than that of an individual observation; therefore, 
these quantities should not be expected to be equal. When several rain 
gauges are averaged and compared with the radar measurements, the aver-
age of the rain gauges is inconsistent because it was developed with few 
points whereas the average of the radar was developed with a much larger 
number of points. The rainfall modeled over a watershed shows that the 
peak flow measurements and overall runoff from radar performed better 
that the estimated peak flow using rain gauges [76]. Additional studies 
have concluded that the peak discharge of stream-flow computed with 
radar data were more accurate than those computed from rain gauges alone 
[68]. Thus, there is no instrument that precisely measures the amount of 
rainfall over a large area. The weather radar provides an estimation of the 
rainfall rate over larger areas.

The suggested algorithm uses TropiNet (RXM-25) data to predict the 
variability of the rainfall field in time and space. It is assumed that for 
a short time period (10, 20 and 30 min), a rain cloud behaves as a rigid 
object, with all pixels moving in the same direction at a constant speed. 
Thus, the most likely future rainfall areas are estimated by tracking rain 

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



222 Flood Assessment: Modeling and Parameterization

cell centroid advection in consecutive radar images. The suggested algo-
rithm is a special kind of nonlinear model with stochastic and determinis-
tic components. The rainfall process exhibits significant changes in time 
and space, and it can be characterized as a nonstationary stochastic pro-
cess. To face the nonstationary characteristic of the process, parameters 
are estimated at every time and spatial domain.

The model consists in considering the rainfall shape data as a rect-
angular grid with 940 columns and 740 rows of pixels for a total of 
695,600 pixels, every pixel size is 0.06 kilometers wide and 0.06 kilome-
ters long. From the grid data select a zone of 81 pixels that was divided 
in squares of ∆x × ∆y pixels, where (∆x) is referenced to columns of 
9 pixels and (∆y) rows of 9 pixels with total zones of 8528 (82 × 104) 
in every window (Figure 12.15). Several zones sizes were explored for 
∆x and ∆y = {7, 9, 11, …, 25} and it was found that the larger the zone 
size, the larger the number of degree of freedom. However, resolution was 
degraded with increased zone size.

In the model, the use of the same zone in the before windows (t – 1) 
(t – 2) and is necessary (Figure 12.16). Every zone (9 × 9) should have 

FIGURE 12.15 Rectangular grid of rainfall data.
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a minimum of 24 rain pixels with 20 degrees of freedom. Zones with less 
pixel of rain could not be selected to forecast analysis. In zones where the 
prediction movement suggest there is a rainfall cell but the zone has not 
the necessary pixels required (24 pixels) an interpolation was applied. The 
interpolation was “Kriging simple” using the 20 five pixels nearest to pixel 
that has no prognostic.

The model is defined by the following equation:
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t k i j t k t k i j− ( ) − ( )+( )

( )





+2 13, , , , ,

, , }
δ

ε  (5)

where, (i,j) represents the geographic position or coordinates latitude and 
longitude of every pixel in the grid, k is the zone. This process starts in 
pixel 1 until pixel 8528. In every zone, unknown parameters should be 
determined (α, β, Φ, d1, d2, d3): α is the minimum value found between 
previous values of ht–1,k(i,j) and ht–2,k(i,j) in their respective zones (k), β is the 
reflectivity maximum value found between previous values of ht–1,k(i,j) and 
ht–2,k(i,j) in the specific zone (k).

The mathematical structure of the model is based on a previous work 
by Ramírez-Beltran [63]. In the current work, this model was used because 

FIGURE 12.16 Zone 9 × 9 at time t, t–1, and t–2.
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this scheme ensures that rainfall forecasts will fall inside of the most likely 
rainfall intensity domain [α, b], which was derived by the observed local 
rainfall distribution.
ht k i j− ( )1, ,  is the reflectivity average value in the time (t–1). The average 

value was determined in every pixel into each zone. It was obtained averaging 
the eight pixels closest to the pixel under study. Similarly, ht k i j− ( )2, ,  is the aver-
age reflectivity value in the time (t–2), as shown in Figures 12.17 and 12.18.

The variable Zt–1,k(i,j) is the ratio between the pixels with maximum 
reflectivity. Zmax(t–1),k(i,j) in every cloud or cell and the nearby pixels Zi(t–1),k(i,j) 
forming the cloud or cell and the random variable ej,k(i,j) is a sequence of an 
unobserved random variable with mean zero and constant variance associ-
ated to the pixel (i,j). Therefore, we have:

 � �N Z Z
Z Zr

i min

max min

=
−
−  (6)

The variable Phi (Φt,k) is changing in the equation every zone (9 × 9) 
in each window. This variable was determined first by linearization of the 

FIGURE 12.17 Average pixels at a specific zone using the eight nearest pixels.
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nonlinear equation (Phi-initial) and after using optimization nonlinear 
techniques with constrains Sequential Quadratic Programming (SQP), 
where the Phi parameter is a bias correction factor and its maximum value 
must not exceed 1.1.

 0 1 1< ≤Φt opt
k .  (7)

The initial coefficient deltas (d1, d2, and d3) were obtained through the 
estimation method “least squares” by linearization of nonlinear equation 
(exponential). Once the variables initial deltas were found, the next step 
is to find the variable Phi (Φt,k) initial. These values were used to forecast 
rainfall at one lead-time and successively with the following forecasts.

An additional important step in this research was defining the cloud 
motion vector in each cell, with capacity to predict the rainy pixel areas, 
plus the joint with the forecast rainfall estimation using the main equation. 
For the cloud motion, ht–1 and ht–2 direction and movement were neces-
sary to determine the direction motion vector and velocity. This veloc-
ity is compared with velocity obtained for TropiNet to assure the right 
movement of the clouds.

The proposed rainfall prediction algorithm requires the implementation 
of three major tasks: (1) Develop the cloud motion vector, (2) Predict the 
future location of the rainy pixels, and (3) Estimate the rainfall rate in the 
future rainy pixels.

FIGURE 12.18 Average pixel at ht for (2,2).
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12.15.1 CLOUD MOTION VECTOR

Derivation of the cloud motion vector requires tracking cloud rainfall 
cells [64]. The algorithm identifies first the cloud convective core based 
in a sequence of radar images between ht–2, ht–1 and ht using an empirical 
distribution method for cloud classification. Then by determining the dis-
tance between cloud center at time t–1 and the cloud center at time t of the 
same cloud (Figure 12.19).

The motion algorithm was based on a spatial and temporal comparison, 
classifying clouds with high reflectivity and removing pixel with very low 
reflectivity, in this work the minimum reflectivity was 3 dBZ. The next 
step is the normalization of reflectivity values between a range of zero and 
one using minimum and maximum values of reflectivity in each image or 
windows, as shown in the following equation, where Nr is the normalized 
reflectivity, Zi reflectivity in each pixel, Zmin minimum reflectivity 3 dBZ 
and Zmax is the maximum reflectivity in the window.

 � �N Z Z
Z Zr

i min

max min

=
−
−

 (8)

The classification of the normalized values is divided into two groups. 
This result was stored in a binary matrix Br. The value Nr exceeding the 
percent of pixel with a minimum reflectivity Nr,min is assigned value of one 
and the value Nr that is smaller than the percent of pixel with a minimum 
reflectivity Nr,min is assigned the value of zero. In this case, Nr,min is 10 per-
cent of pixels with values of minimum reflectivity.

 Br = 0 if Nr < Nr,min (9)

FIGURE 12.19 The motion cloud between time t–1 and time t.
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 Br = 1 if Nr < Nr,min (10)

Next, the binary matrix is imported into another subroutine which clas-
sified the cell with separations by rows and columns, grouping the con-
tinuous pixels. The method for cloud classification looks for a minimum 
group of 250 pixels successive with binary data. When there are more than 
three (3) rows or three (3) columns of pixels without data into the grid it 
is possible to have a division of clouds. This is the form to separate every 
one cell or cloud (Figure 12.20).

The contiguous pixels in the radar image are used to form the convec-
tive cell. It is necessary to know the centroid of every cell and the latitude 
and longitude of each pixel into the cell at the times t – 2, t – 1, and t.

The distance (d), direction (θ) and velocity (ν) are properties between 
the centroids of the cells that are moving in every lag-time. This is calcu-
lated using the next equations.

 di x x y y x y kmti ti ti ti= −( ) + −( ) = + ( )− −1
2

1
22 2 22 ∆ ∆  (11)

 θ = −tan ( )1 ∆
∆
y
x
rad  (12)

FIGURE 12.20 An example of separation of clouds.
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 v d km
t min

= ( )
( )

 (13)

To determine the centroid of the cells, it is necessary to calculate latitude 
( )La  and longitude ( )Lon  of every pixel group.

 La
n

la
i

n

i=
=
∑1

1

� (14)

 Lon
n

lo
i

n

i=
=
∑1

1

� (15)

Dixon and Wiener [20] found that a convective cell have a mean veloc-
ity of 64 km/hr. This value agrees with the velocity cell measure from 
other research [54]. For this model a velocity means of 72 km/h approx-
imately or 12 km/(10 min) was used. To apply this maximum distance 
between clouds at every lag time of 200 pixels was necessary if the analy-
sis is every 10 min. If this analysis time increases, then the distance could 
increase (Figure 12.20).

The 200 pixels represent the maximum distance of translation cell in 
two different times. Figure 12.21 shows the cloud 1 moving a Dt from 
(t – 2) to (t – 1). This is furthermore referred to as coverage diameter in 
two successive times or a delta time Dt.

12.15.2 ESTIMATION OF PRECIPITATION USING 
THE NOWCASTING MODEL

The precipitation was estimated using Eq. (5), applied to each zone in 
every time window. The rain estimated, ht k i j



+1, ( , ) at time (t – 2) is the 
result of the prediction interval Δt (10, 20, 30) between the instants iΔt 
and (i+1) Δt. It is a function of the previous database on dynamic sets 
of parameters. The constants (α, β, Φ, δ1, δ2, δ3) were determined in 
each zone (9 × 9) using optimization techniques for nonlinear regres-
sion equations. The main equation includes four fundamental products: 
h ht k i j t k i j− −1 2, ( , ) , ( , ), , ht – 1,k(i,j) and Zt – 1,k(i,j). These are the average observed rain 
at time t – 1 and t – 2. The average is calculated between the eight nearest 
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pixel to the prediction pixel. The other ht – 1,k(i,j) is the value of the rain at 
time (t – 1), and the Zt – 1,k(i,j) is the ratio of reflectivity at time (t – 1). The 
Eq. (5) has some restrictions in the parameters (α, β, Φ, δ1, δ2, δ3), which 
are changing in time and space. The clouds are in movement and the val-
ues of the variables are changing at every time and space domain. After the 
optimization, the deltas values are restricted to be positive or equal to zero.

 δ i t k i, , ; , ,≥ =0 1 2 3  (16)

The variables of α and β are the minimum and maximum reflectivity 
values, respectively, between the last two windows at (t – 1) and (t – 2) 
at the zone (9 × 9), these variables are changing in time and space (every 
zone 9 × 9). Moreover, the variable Φt,k changes in every zone and time 
windows but having a restriction limit of 1.1 in the optimization routine.

  (17)

  (18)

FIGURE 12.21 Cloud movement at time t – 2 and t–1.
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 0 1 1< ≤Φt k, .  (19)

Once the variables were found, the next step was to estimate the rain 
rate forecast in every pixel using Eq. (5). Pixels for which it was not possi-
ble to do the estimation prediction or there is not enough data at time t – 1 
and/or at t – 2. The “Kriging” interpolation method was used to estimate 
the rain pixel to derive the corresponding predictors [110]. Figure 12.22 
shows the cloud movement sequence with the centroid and their distance 
between them.

12.15.3 INITIAL VARIABLES AND THEIR OPTIMIZATION

The variables into the nonlinear equation model are fundamental in the 
precipitation forecast trend. A well-planned approach is needed to properly 
solve the nonlinear constrained problem. The explored approach includes 
two steps: (i) identifying the initial point and (ii) using a constrained non-
linear optimization technique to estimate the final parameter set for each 
zone and every window [63].

FIGURE 12.22 Cloud movement sequence.
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To estimate the initial values of deltas, it was not necessary to apply the 
constrain, so that the initial deltas values can be positives or negatives. The 
Eq. (5) was linearized by considering values of ht – 1,k(i,j), , 
αt,k, βt,k and Zt – 1,k(i,j) and the unknown values of δ1t,k, δ2t,k, δ3t,k left the param-
eter phi Φt,k temporarily ignored.

This method consists in solving the equivalent linear model and using 
these values as the initial point. The convergence of nonlinear routine 
heavily depends on the selections of the initial points. Thus, if the initial 
point is far away from the optimal solutions the algorithm may converge 
to a suboptimal point or may not converge. Linearizing the Eq. (5) and 
ignoring the phi variable [63], we get:

( ) ( )

( )
( )

, ,1, , 2, ,, ( , ) ,
, ,

, , , 1, ,

1 2
1

3
t k t kt k i j t k i jt k i j t k

t k i j
t k t k t k t k i j

h hh
Ln

Z

δ δα
ε

β α δ
− −

−

 +  −
− − = +    − +     

∑  (20)

where

 ( ), , , ( , ), ,t k t k t k i jt k i jh and hβ α> <  (21)

et,k(i,j) is an unknown random variable at time t and at location (i,j) of the 
k zone. The initial values of delta are obtained by solving the linear regres-
sion Eq. (20) by the least square method.

The phi parameter is a bias correction factor and can be estimated 
using a second linear regression. Once the delta values are estimated, the 
next step is to find the phi value (Φt,k), which can be estimated using the 
following equation:

( ) ( ) ( ) ( )
( )

, , ,1, , 2 , , 1, ,, ( 1 2 3,  ,
, , ,

, ,

[1 ]t k t k t kt k i j t k i j t k i jt k h h Zt k i j
t k t k i j

t k t k

h
e δ δ δα

ε
β α

− − −−Σ + +− 
= Φ − + −  

 (22)

For: β αt k t k i j t k t k i jh and h, , , , , ( , )> <( )
et,k(i,j) is an unknown random variable at time t and at location (i,j) in the 

zone 9 × 9.
Simplifying Eq. (22) with the initial delta estimates, the following 

equation is obtained: 
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 λ θ ηt k i j t k t k i j t k i j, ( , ) , , �, , ( , )= ( ) +( )Φ  (23)

where,

 
λ

α
β αt k i j
t k i j t k

t k t k

h
, ( , )

, ( , ) ,

, ,

=
−

−  (24)

 θ δ δ δ
t k i j

h h Ze t k t k i j t k t k i j t k t

, ,
, , ( , ) , , ( , ) ,

( )
− + += − − − −1 1 2 31 2 1Σ ,, ( , )k i j



  (25)

ηt,k(i,j) is an unknown random variable in Eq. (23) at time t and at loca-
tion (i,j) of the k zone, d � ’s are the previous estimated or initial values of 
deltas.

The next step is to find the optimum values of variables d1t,k, d2t,k, d3t,k, 
and Φt,k from initial values determined in the previous steps. The param-
eters of the nonlinear regression model can be easily estimated by solving 
a constrained nonlinear optimization problem. Since the main model or 
Eq. (5) includes four parameters with a bounded constraint:

 δ i it k, ; , ,≥ =0 1 2 3  (26)

 0 < Φt,k ≤ 1.1 (27)

Therefore, it can be solved by using the sequential quadratic program-
ming algorithm [49, 66]. The derived initial point was ingested into the 
constrained nonlinear subroutine to facilitate convergence. The param-
eters of the exponential term were restricted to be positive, and the phi 
parameter was restricted to be in the range of 0 to 1.1. This threshold 
was derived by inspection and using statistical analysis. The optimization 
objective was to minimize the errors between the estimate values for the 
regression and the observed values by radar.

In these regions during the prediction, there are clouds (or cells) pres-
ent in the movement estimation, but not the required minimum number 
of pixels. The pixels estimation predictions were obtained by Kriging 
interpolation.
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12.15.4 LEAST SQUARE METHOD

The least squares estimate of the multiples regression parameters were 
used to calculate the initial values of deltas variables. The multiple linear 
regression model is typically stated in the following form:

 y U U x U x U x= + + +…+ +0 1 1 2 2� � � ��  (28)

Where, the dependent variable is y�, U0, U1, U0, … UN are the regression 
coefficients and ε� is the random error assuming E(ε�) = 0 and Var(ε�) = σ2 
for � = 1, 2, …ℳ.

The multiple linear model can be expressed in matrix format:

 y = XU + ε , where (29)

 X
x x

x x x
x x x

U
U
U
Um m

=
…
…
…

















= …










−

1 12 1

21 22 2

1 2

0

1

1

N

N

MN N





= …
















ε
ε
ε
ε

1

2

M

 (30)

And finally U values are estimated solving the following multiple lin-
ear regressions equation:

 U = (X' X )–1 X' y (31)

It was assumed that (X' X ) is a nonsingular matrix [106].

12.15.5 SEQUENCE QUADRATIC PROGRAMMING

The function used for optimization was fmincon. This function has a con-
strained minimum of a scalar function of several variables starting at an 
initial estimate. This is generally referred to as constrained nonlinear opti-
mization or nonlinear programming [49].

The function fmincon uses one of four algorithms: active-set, inte-
rior-point, sqp or trust-region-reflective. The Sequential Quadratic 
Programming (SQP) is one of the most successful methods for the numeri-
cal solutions of constrained nonlinear optimization problems (NLP) [4]. 

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



234 Flood Assessment: Modeling and Parameterization

A nonlinear programming problem is the minimization of a nonlinear 
objective function f(�), �∈R� of � variables, subject to equation and 
inequality constrains involving a vector of nonlinear functions (�). The 
formulation can be:

 

minimize f(�), �∈R�
subject to �(�) ≤ 0 i = 1,2,…,�

�(�) = 0
 (32)

where, f: R� → R  is the objective functional, the functions �: R� → R� 
and �: R� → R� describe the equality and inequality constraints.

The nonlinear optimization problem (NLP) has special cases linear 
and quadratic programming routines, when f is linear or quadratic and the 
constraint functions �: R� → R� and �: R� → R� are affine. SQP is an iterative routine, which 
models the NLP for a given iterative �� + 1 by a Quadratic Programming 
(QP) subroutine, solves that QP sub problem, and then uses the solution to 
 construct a new iterative �� + 1. This construction is done in such a way that 
the sequence (�� + 1) converges to a local minimum �� + 1* of the NLP.

The NLP resembles the Newton and quasi-Newton methods for the 
numerical solution of nonlinear algebraic systems of equations. However, 
the presence of constraints renders both the analysis and the implementa-
tion of SQP methods much more complicated [37].

12.15.6 KRIGING INTERPOLATION

Kriging is based on the assumption that the parameter being interpolated 
can be treated as a regionalized variable. A regionalized variable is inter-
mediate between a truly random variable and a completely deterministic 
variable in that it varies in a continuous manner from one location to the 
next. Therefore, the points are near to each other and have a certain degree 
of spatial correlation. Yet, points that are widely separated are statistically 
independent [13].

The Kriging techniques are based on the estimation of weighting coef-
ficients with an assumption of unbiased-ness. Each data has its own coef-
ficient wi, which represent the influence of a particular data on the value of 
the final estimation at the selected grid node. The relationship between the 
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existing data and the estimation point has been expressed by variogram 
values or by covariance in case of second order stationarity. Such values 
describe the spatial dependence and the influence of the particular location 
in terms of its distance and direction from the estimated location [45]. The 
basic equation used in ordinary Kriging is as follows:

  (33)

where, n is the number of scatter points in the set, fi are the values of the 
scatter points, and wi are the weights assigned to each scatter point. The 
weights are found through the solution of the simultaneous equations: 

 

w S d w S d w S d S d

w S d w S d w S d

1 11 2 12 3 13 1

1 12 2 22 3 2

( ) + ( ) + ( ) + = ( )
( ) + ( ) +

› p

33 2

1 13 2 23 3 33 3

( ) + = ( )
( ) + ( ) + ( ) + = ( )

›

›

S d

w S d w S d w S d S d

p

p

 (34)

where, S(dij) is the model variogram evaluated at a distance equal to the 
distance between points i and j. It is necessary that the weights sum to unity.

 w1 + w2 + w3 = 1.0 (35)

The Kriging techniques add some constraints to the matrices, to minimize 
the error, and these techniques are unbiased-ness estimations. These factors 
would describe some external limit on the input data, which cannot simply 
be observed in the measured values [45]. The constraint factor in Ordinary 
Kriging equations is called the Lagrange multiplicator (Λ). It is used to mini-
mize possible estimation error and then the Eq. (34) can be written as:

 

w S d w S d w S d S d

w S d w S d w S d

1 11 2 12 3 13 1

1 12 2 22 3 2

( ) + ( ) + ( ) + = ( )
( ) + ( ) +

› p

33 2

1 13 2 23 3 33 3

( ) + = ( )
( ) + ( ) + ( ) + = ( )

›

›

S d

w S d w S d w S d S d

p

p

 (36)

where:
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 w1 + w2 + w3 + 0 = 1.0 (37)

The equations are then solved for the weights w1, w2, and w3. The f value 
of the interpolation point is then calculated as:

 f
p
 + w1 f1 + w2 f2 + w3 f3 (38)

An important feature of Kriging is that the variogram can be used to 
calculate the expected error of estimation (σ2) at each interpolation point 
since the estimation error is a function of the distance to surrounding scat-
ter points. The calculation of error variance for the output pixel estimate 
includes adding the Lagrange coefficient: 

 σ2= w1S(d1P) +w1S(d1P)+w1S(d1P)+Λ (37)

12.16 SELECTION OF EVENTS

To select the events, it was necessary to analyze every storm during 2012 
and 2014 that was collected by the radars. The analysis has three steps: The 
first was taking every minute data from TropiNet radar and plot it. For this, 
it was necessary to create an efficient routine in MatLab to determine that 
the radar data had not interruptions or was damaged. If the radar had corrupt 
data, the storm is discarded. In some cases, it was found that the radar col-
lected data in Plan Position Indicator (PPI) and after the radar is changed to 
Range High Indicator (RHI), such data was also discarded.

The next step was to select the radar data with the same elevation 
angle (3˚). The TropiNet radar has the capacity of store data with two 
o more different elevations angles. Within the model it was necessary 
to include a subroutine with efficiency to select a determined elevation 
angle. The final step was to choose those precipitations that have data 
with complete storm duration.

Table 12.6 includes the dates and specifications of every storm in the 
current study. The information incorporated in the column “Storm Impact” 
was provided by NWS at Carolina, Puerto Rico [58].
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12.17 HYDROLOGIC MODEL COMPOSITION

As mentioned in this chapter, the hydrological model used in this research 
was Vflo. This model uses finite elements, which can simulate streamflow 
based on geospatial data to simulate interior locations in the drainage net-
work and determine channel flow and overland flow.

TABLE 12.6 Characteristics of Studied Storms

Date Duration 
(UTC)

Storm type Storm impacts at western 
Puerto Rico

March 28, 2012 7 hr.

16:27–23:58

Stationary trough Impacts rivers, water on the 
road, and significant rainfall 
accumulation

March 29, 2012 6 hr.

00:36–06:53

Stationary trough Impacts rivers, water on 
the road, significant rainfall 
accumulation

April 30, 2012 5 hr.

17:55–22:21

Convective storm Numerous showers over 
western Puerto Rico at the 
afternoon

October 10, 2012 5 hr.

16:10–21:43

Convective storm Some urban flooding

February 12, 2014 7 hr.

16:00–23:29

Heavy convective 
storm

Reduced visibilities and 
ponding of water on roadways 
and low lying areas

May 06, 2014 7 hr.

16:45–23:59

Convective storm Street flooding and reduced 
visibility on the highways.

May 21, 2014 7 hr.

16:46–23:00

Heavy convective 
storm

The water covers the roadway. 
Ponding of water on roadways

June 29, 2014 5 hr.

17:00–22:00

Convective storm The shower activity produced 
periods of moderate to locally 
downpours

June 30, 2014 4 hr.

16:00–20:15

Thunderstorms 
associated to the 
leading edge of a 
tropical wave

Moderate to heavy rain, 
urban and small stream flood 
advisory

July 05, 2014 4 hr.

16:44–20:00

Convective storm Heavy rain, urban flood.
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Figures 12.23 and 12.24. Flow stations within radar coverage (top) and 
within basin (bottom).

It was fundamental to study the physical configuration of the watershed, 
such as a Digital Elevation Model (DEM), the digitized topography, soils 
map, land use map and information about the basin. Some hydrologic and 
hydraulic studies have been conducted by Sepulveda et al. [1996]; Villalta 
[103]; Prieto [61]; Rojas [69]. In addition, other studies by U.S Geological 
Survey -Current Water Data for Puerto Rico [2014] and FEMA [23] are 
used in this research as additional information. Some stations from the 

FIGURES 12.23 AND 12.24 Flow stations within radar coverage (top) and within basin 
(bottom).
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USGS were used to compare and validate the runoff with the results from 
the hydrological model using radar data (Table 12.7, Figures 12.23, 12.24).

FEMA [23] implemented the most recent Flood Insurance Study (FIS) 
for the Commonwealth of Puerto Rico. Standard hydrologic and hydraulic 
study methods were used to determine the flood hazard data required for 
this countywide FIS. The flood events have magnitude of exceeding once 
at any given day during the recurrence period of 10 years, 50 years, 100 
years and 500 years. These events have a percent chance of 10%, 2%, 1% 
and 0.2%, respectively. The equation employed were Mean Annual Rainfall 
(MAR) obtained from Mean Annual Precipitation (MAP) developed by 
NOAA in 2006 [precipitation record 1971–2000]. The regression analysis 
was performed based on depth to rock (DR) and contributing drainage 
area (CDA) as variables that govern the peak streamflow. A summary of 

TABLE 12.7 USGS Flow Stations

Source ID Station Station Name Lat. Long. Elev. Data

(m)

USGS 50131990 Rio Guanajibo at Hwy 
119 at San German

18.09 –67.03 45.0 Rain, Stage

USGS 50136400 Rio Rosario near 
Hormigueros

18.17 –67.07 50.0 Rain, Stage, 
Flow

USGS 50138000 Rio Guanajibo near 
Hormigeros

18.14 –67.15 2.2 Rain, Stage, 
Flow

USGS 50141500 Lago Guayo at 
Damsite near Castaner

18.21 –66.83 426.8 Rain, Stage

USGS 50142500 Lago Prieto near 
Adjuntas

18.19 –66.86 600.2 Rain, Stage

USGS 50146073 Lago Daguey above 
Añasco

18.301 –67.13 40.0 Rain, Stage

USGS 50141100 Lago Yahuecas near 
Adjuntas

18.22 –66.82 426.8 Rain, Stage

USGS 50143930 Rio Grande de Añasco 
at Bo. Guacio

18.28 –67.02 64.9 Rain, Stage

USGS 50144000 Rio Grande de Añasco 
near San Sebastián

18.285 –67.05 31.6 Rain, Stage, 
Flow

USGS 50145395 Rio Casey above 
Hacienda Casey

18.25 –67.08 75.0 Rain, Stage, 
Flow

* U.S Geological Survey – Current Water Data for Puerto Rico, 93.
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drainage area-peak discharge relationship for all of the streams studied is 
shown in Table 12.8 [23].

The following sections present the analysis of each variable in the 
hydrological model and determine the best parameters for a good opera-
tion. The analysis was based on existing literature within the study area.

12.17.1 POTENTIAL EVAPOTRANSPIRATION

A GOES satellite-based potential evapotranspiration (PET) product, with 
resolution of 1 kilometer over the entire island each day, was used in this 
research. The PET product was obtained from Dr. Eric W. Harmsen of 
the Agricultural and Biosystems Engineering Department, UPRM [59]. 

TABLE 12.8 Drainage Area Peak Discharge Relationship. Source: FEMA. Flood 
insurance study: Preliminary for Commonwealth of Puerto Rico: June 22. Federal 
Emergency Management Agency (FEMA), US Government;22 June 2012; Volume 1 of 5

Drainage 
area (sq. km) 

Station name Peak discharge (m3/s)

10 year 50 year 100 year 500 year

467.73 Rio Grande Añasco at 
Mouth

1,809 3,797 5,130 10,542

347.33 Rio Grande Añasco Near 
San Sebastián

1,390 3,031 4,078 8,329

385.26 Rio Grande Añasco 
upstream confluence Rio 
Casey

1,527 3,289 4,432 9,070

414.88 Rio Grande Añasco 
downstream confluence 
Rio Casey

1,631 3,481 4,695 9,624

35.4 Rio Yagüez at Mouth 292 595 770 1,289
329.65 Rio Guanajibo at Mouth 1,352 3,896 5,745 14,294
310.53 Rio Guanajibo

Near Hormigueros

1,215 3,637 5,343 13,196

91.39 Rio Guanajibo at Hwy 
119 at San German

604 1,325 1,713 2,991

303.04 Rio Guanajibo 
downstream confluence 
Rio Rosario

1,206 3,507 5,137 12,620
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Although PET method by Hargreaves [33, 34] is simpler to use, yet it does 
not yield PET that can be close to actual field conditions.

One of the most used methods to calculate PET or reference evapotrans-
piration, and the method used in this study, is the FAO Penman-Monteith 
method [22]. A large number of empirical methods have been developed 
over the last 50 years, and the Penman-Monteith method was considered to 
offer the best result with minimum possible error. The Penman-Monteith 
reference evapotranspiration equation is given by

 ETo
R G

T
u e e

u

n s a
=

∆ −( ) +
+

−( )
∆ + +( )

0 408 900
273

1 0 34

2

2

.

.

γ

γ
 (38)

where, ETo is reference evapotranspiration (mm day–1), Rn net is radiation 
at the crop surface (MJm–2day–1), G is soil heat flux density (MJm–2day–1), 
T is mean daily air temperature at 2 m height (˚C), u2 is wind speed at 
2 m height (ms–1), es is saturation vapor pressure (kPa), ea is actual vapor 
pressure (kPa), es – ea is saturation vapor pressure deficit (kPa), Δ is slope 
vapor pressure curve (kPa˚C–1), γ is psychrometric constant (kPa˚C–1).

The Eq. (40) uses standard climatological records of solar radiation, 
air temperature (˚C), humidity and wind speed (ms–1). The weather mea-
surement should be made at 2 m (or converted to that height) above an 
extensive surface of a hypothetical green grass with an assumed height 
of 0.12 m, a fixed surface resistance of 70 sec m–1 and an albedo of 0.23.

FIGURE 12.25 Left panel potential evapotranspiration (mm/day) and right panel 
potential evapotranspiration (mm/h) on March 28, 2012, Puerto Rico.
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The original PET data resolution is 1 km and the units are (mm/day). 
The hydrological Vflo model uses PET in units of mm/h and the same 
resolution as the Digital Elevation Map in the current study. A subroutine 
in MatLab was developed to change the resolution of the PET data from 
1 km to 200 meters, and the units from (mm/day) to (mm/hours).

The current study’s days were: March 28, 2012; March 29, 2012; April 30, 
2012; October 02, 2012; February 02, 2014; May 06, 2014; May 21, 2014; 
June 29, 2014; June 30, 2014 and July 05, 2014. Figures 12.25 and 12.26 
show the potential or reference evapotranspiration for March 28, 2012.

To evaluate the study area in western PR, it was necessary to develop an 
algorithm in MatLab to extract values of PET from the PR datasets and to 
assign them to appropriate locations within the study area (Figure 12.26). 
Finally, the 1-km PET data was projected onto a 200-meter resolution grid 
using an interpolation methodology in MatLab. Interpolation is a method 
for estimating the value at a query location that lies within the domain of 
a set of sample data points. This transformation was successful for the ten 
storm days analyzed and the data provided by the GOES-based PET was 
more accurate than PET based on a limited number of available weather 
stations (two) within the study area.

FIGURE 12.26 Left panel potential evapotranspiration (mm/day) and right panel 
potential evapotranspiration (mm/h) in the basin area on March 28, 2012.
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12.17.2 SLOPE CHARACTERISTICS

The slope map was developed using the digital elevation map (DEM) 
at 200 meters and 10 meters resolution from USGS. The digital eleva-
tion model (DEM) data consist of a sampled array of regularly spaced 
elevation values referenced horizontally either to a Universal Transverse 
Mercator (UTM) projection or to a geographic coordinate system. The grid 
cells are spaced at regular intervals along south to north profiles which are 
ordered from west to east. Figure 12.27 presents the slope map for the 
basin derived from the DEM at 200 meters resolution.

An aspect map is elaborated in Figure 12.28. The aspect map is a mea-
sured counterclockwise in degree from 0 (due north) to 360 (again due 
north, coming full circle). The value of each cell in an aspect grid indicates 
the direction in which the cell’s slope faces. Flat slope have no direction 
and are given a value of −1. There are many different reasons to use the 

FIGURE 12.27 Basin slope map 200 m resolution.
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aspect function. For example it can be used to identify areas of flat land, 
slope in a mountainous region, and locations where is possible identify the 
runoff direction.

12.17.3 CHANNEL SPECIFICATIONS

The study area includes three main rivers and their branch, Rio Grande de 
Añasco, Rio Guanajibo and Rio Yagüez, (Figure 12.29).

The roughness coefficients developed by FEMA [23] gives a general 
roughness for the Rio Añasco of 0.040 in the channel and 0.100 in the 
overbank. In the Rio Yagüez, the roughness range is between 0.030 to 
0.050 in the channel and for the overbank it is between 0.150 and 0.200. 
For the Rio Guanajibo, the channel roughness coefficient for the channel 
is between 0.040 and 0.045 and the overbank is 0.100.

FIGURE 12.28 Basin aspect map 200 m resolution.
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FIGURE 12.29 Map showing three rivers.

TABLE 12.9 Surveyed Sections Coordinates at Rio Grande de Añasco [103]

Sections Location 
Coordinates UTM, NAD 1927

Average reach from 
the mouth (km)

Latitude Longitude

P1 2,019,561.15 721,233.41 53.80
AN12 2,019,437.49 721,056.76 52.48
ANCO 2,021,257.06 717,276.30 46.24
ANC2 2,021,592.71 717,240.97 45.99
ANC1 2,021,575.04 716,905.32 45.43
AMA 2,020,603.43 714,785.44 41.592
AN21 2,021,098.07 714,538.12 40.82
AN22 2,021,469.05 714,379.13 40.41
AN32 2,021,981.35 713,319.19 39.08
AREA 2,022,246.34 710,792.99 36.32
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Sections Location 
Coordinates UTM, NAD 1927

Average reach from 
the mouth (km)

Latitude Longitude

AREABA 2,022,317.00 710, 510.34 35.99

GRAVERO ANTES 2,023,465.27 707,895.92 30.26
GRAVERO DESPUES 2,023,500.60 707,295.19 29.56
AN40 2,023,694.93 706,765.22 28.51
ANCG 2,022,617.32 704,044.70 21.79
ANCG2 2,021,769.37 701,730.50 16.60
ESPINO ANTES 2,022,264.00 699.504.62 14.19
ESPINO DESPUÉS 1 2,022,122.68 699,363.29 13.99
ESPINO DESPUÉS 2 2,021,274.73 699,151.31 12.74
OVEJAS-LILLY 1 2,021,398.39 697,932.37 11.17
OVEJAS-LILLY 3 2,020,635.42 696,879.87 8.53
SECCIÓN K 2,021,342.50 695,800.43 5.86
SECCIÓN L 2,021,512.95 694,840.73 3.49
SECCIÓN N 2,020,963.71 693,294.01 1.78
SECCIÓN O 2,020,824.82 692,574.31 1.07

TABLE 12.9 Continued

TABLE 12.10 Surveyed Sections Coordinates at Rio Guanajibo [103]

Sections Location  
Coordinates UTM, NAD 1927

Average reach from 
the mouth (km) 

Latitude Longitude

ANTES 114 2,006,663.29 695,231.54 6.69
S. DESPUÉS 114 2,006,763.13 696,049.47 6.45
S. DESPUÉS 102 2,006,933.46 695,802.80 6.05
SECCIÓN S-3 2,007,315.21 695,321.20 4.71
SECCIÓN S-2 2,008,184.45 694,528.31 3.22
SECCIÓN S1 2,008,237.31 694,287.51 2.81
SECCIÓN S2 2,008,848.12 693,541.61 1.57
SECCIÓN S3 2,009,053.68 693,300.81 1.19
SECCIÓN S4 2,009,359.09 693,054.14 0.81
SECCIÓN S5 2,009,756.40 692,713.49 0.46
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Using ArcGIS, three necessary products were determined to include in 
the hydrologic model Vflo. These are flow direction, overland slope and 
stream location, the products were developed with an extension of ArcGIS 
“Arc Hydro” using a DEM of 30 meters from the USGS, other cross sec-
tion were obtained using DEM of 10 meters where no data was available to 
define the flood plain in these areas, and channel slope. In most rivers section 

TABLE 12.11 Surveyed Sections Coordinates at Rio Yagüez [103]

Sections Location  
Coordinates UTM, NAD 1927

Average reach from 
the mouth (km)

Latitude Longitude

SECCIÓN 1 2,014,456.14 699,585.62 6.77
SECCIÓN 2 2,014,340.71 699,545.94 6.42
SECCIÓN 3 2,014,346.72 699,175.58 5.90
SECCIÓN 4 2,014,213.24 698,919.45 5.23

FIGURE 12.30 Cross sections.
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FIGURE 12.31 First transversal section farthest to mouth at Rio Grande de Añasco.

FIGURE 12.32 First transversal section farthest to mouth at Rio Guanajibo.

FIGURE 12.33 First transversal section farthest to mouth at Rio Yagüez.
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channel width is about 5 to 10 meters, coinciding with Rojas [69]. Villalta’s 
[103] survey sections data was provide by Alejandra Rojas [69], we can 
observe in Table 12.9 the surveyed sections of Rio Grande de Añasco.

Table 12.10 show the surveyed sections of Rio Guanajibo and 
Table 12.11 presents the surveyed sections of Rio Yagüez, the sections 
conserve the original name present in Villalta [103], Prieto [61] and 
Rojas [69].

Figure 12.30 presents the first upstream surveyed sections in the study 
area. Figure 12.31 presents the first upstream surveyed sections in Rio 
Grande de Añasco. Figure 12.32 shows the first upstream surveyed section 
in Rio Guanajibo and Figure 12.33 presents the first upstream surveyed 
section in Rio Yagüez. The others transversal sections were also included 
into the hydrologic model.

12.17.4 INFILTRATION AND ROUGHNESS PARAMETERS

The infiltration is an important parameter to be able to estimate the run-
off. The runoff is caused only when the rainfall rates exceed infiltration 
rates. The hydrologic model use Green-Ampt infiltration routine to model 
infiltration. Other characteristic parameters in the infiltration process are 
necessary: Hydraulic conductivity, wetting front, effective porosity, soil 
depth, initial saturation, abstraction and impervious area, these variables 
are affected by land use and soils properties. The infiltration parameter was 
developed using the SSURGO maps and database from USDA [89–92], 
which contains six textural soil classes in the basin area.

Figure 12.34 presents the six basic textures into the basin area, a large 
amount area of clay is observed. The soils name present into the clay area 
are: Alluvial land, Aguilita, Aibonito, Bajura, Consumo, Daguey, Delicias, 
Humatas, Lares, Jacana, Los Guineos, Malay, Mabi, Mariana, Mariaco, 
Montegrande, Mucara, Nipe and other. For the Clay Loam texture the 
soil name presents are: Anones, Caguabo, Descalabrado and Morado. For 
the Loam texture the soils are: Coloso, Corcega, Dique, Guainabo, Mani, 
Maresua, Palmarejo, Reilly, Talante, Toa and other. Soils that correspond 
to the rock texture are: Limestone, Serpentine and Volcanic rock land, 
for the sand texture was found the soils: Cataño, Leveled and River wash 
and the last texture is Gravel which only has one soil with the same texture 
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name. Figure 12.35 presents the percentage of textures into the watershed, 
in which the clay encompasses most the study area with 63% of total area. 

FIGURES 12.34 AND 12.35 Basic soils textures in the basin area (top: Figure 12.37), 
and percent of each type soil texture in the basin area (bottom: Figure 12.38).
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FIGURE 12.36 Hydrologic group basin map.

FIGURE 12.37 Percentage distribution of hydrologic group basin area.

On the other hand, the minimum texture present in the basin is the gravel 
with a value approximate to 0.02%.

The hydrologic group is a parameter that affects the infiltration and run-
off. The Figure 12.36 presents the basin area with the hydrologic group A, 
B, C and D. The most representative groups are C and D, C with a 32% total 
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area and D with a 40% total area, (Figure 12.37). These results match with 
the textures presented in the Figures 12.34 and 12.35, where clay and clay 
loam texture have more influence in the area. These soils are forming part 
of hydrologic groups C and D, which have the minimum infiltration rate.

Other parameters such as hydraulic conductivity, wetting front and 
effective porosity were assigned from literature [31, 103]. Table 12.12 
presents the soils texture classification with Green-Ampt infiltration param-
eters. The hydraulic conductivity (K) may especially control the infiltra-
tion process when rainfall occurs over already saturated soil; the hydraulic 
conductivity was specified for a single layer soil profile for this study area.

The wetting front is the average capillary potential of the Green-Ampt 
infiltration routine, this parameter is important because it can calculate 
infiltration under unsaturated conditions and its value is independent of 

TABLE 12.12 Green-Ampt infiltration parameter for each texture class.

Soil texture class Effective 
porosity

Wetting 
front (cm)

Depth (cm) Hydraulic 
conductivity (cm/h)

Clay 0.385 31.63 300 0.03
Clay Loam 0.309 20.88 300 0.10
Gravel 0.24 1.5 300 2.27
Loam 0.43 8.89 300 0.66
Rock 0.17 1 300 0.036
Sand 0.42 4.95 300 11.78

TABLE 12.13 Manning Roughness and Impervious 

Land Use Manning Roughness (n) Impervious % Area (Km2)

Agriculture 0.166 5 55.92
Agriculture /hay 0.190 4 0.12
Forest, shrub, woodland 
and shade coffee

0.191 2 529.12

Other emergent wetlands 0.050 1 1.24
Pasture 0.225 5 173.2
Quarries, sand and rock 0.020 95 0.56
Urban and barren 0.080 81 58.68

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



Flood Alert System Using High-Resolution Radar 253

FIGURE 12.38 Map showing Manning’s roughness coefficient.

soil moisture at any particular time. The effective porosity is the difference 
between total porosity and residual soil moisture content, this property is 
independent of soil moisture at any time, its range is between 1 and 0, with 
complete porosity being a value of one, and the value zero is for the zero 
porosity. The soil depth is the depth to which the infiltration can occur in 
the soil. If the wetting front is obstructed by a perched water table then the 
depth to the water table is the limiting depth. If the soil profile is limited by 
an impermeable layer, then the depth to that layer is the limiting depth. Soil 
depth can be modified through the calibration of simulations to observed 
stream flow [103]. The soil depth data was obtained from USDA [89–92]. 
Table 12.13 shows Manning’s roughness coefficients. The Figure 12.38 
shows Manning’s roughness coefficients in the study area.
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CHAPTER 13

FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: RESULTS 
ON DATA ACQUISITION1, 2

LUZ E. TORRES MOLINA

CONTENTS

13.1 Introduction ................................................................................ 255
13.2 Data Acquisition ......................................................................... 256

13.1 INTRODUCTION

Chapters 13–19 of this book, in detail, discusses the results of the  current 
research, which includes: data acquisition, nowcasting model results, 
comparison between estimation data and observation data from TropiNet 
radar. Hydrologic models were compared between the estimation results 
and observation stations data collected by the USGS. Furthermore, a com-
parison between rain gauges, TropiNet and NEXRAD was done. Finally 
the conclusions for this study are presented in Chapter 20.

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using 
 Rainfall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department 
of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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13.2 DATA ACQUISITION

Numerous storms were analyzed during 2012 and 2014 to select the suit-
able storms to be forecast. Some requirements to choose the storm were 
defined: the data should be constantly available without interruptions, the 
radar should have the same elevation angle for all storms, the data may 
not be altered, and the radar should not stop during the storm or change 
its position.

All radar data storage by the system were plotted to observe the behav-
ior and movement of the clouds. This was the first step in the selection 
data, graphing the data was only possible to select the data according to the 

FIGURE 13.1 TropiNet storm sequence (from left to right and top to bottom).
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features mentioned above. In the plot, the clouds should have a time series 
constant with an angle of 3˚ for TropiNet and 0.5˚ for NEXRAD.

Finally, more storms were analyzed but only 10 storms were selected for 
this research, out of which 5 are from 2012, and the other 5 from 2014. As 
an example, Figure 13.1 shows TropiNet storm sequence. The Figure 13.2 
shows a time series of cloud movement for the storm of May 06, 2014.

The TropiNet data was accessed from http://weather.uprm.edu server, 
and the data was raw data in binary format. Two types of transformations 
from binary to NetCDF were needed to handle data and from NetCDF to 

FIGURE 13.2 TropiNet and NEXRAD (Super-imposed) May 06, 2014 at 17:42 PM.
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Mat-file format. These transformations required the development of sub-
routines in MatLab. Other transformations necessary included changing the 
polar coordinates to Cartesian coordinates, and it was done to handle the data 
in the hydrological model Vflo that has been discussed in Chapters 14–19.
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CHAPTER 14

FLOOD ALERT SYSTEM USING HIGH-
RESOLUTION RADAR RAINFALL 
DATA: COMPARISON AMONG RAIN 
GAUGES, TROPINET AND NEXRAD1, 2

LUZ E. TORRES MOLINA

CONTENTS

14.1 Introduction ................................................................................ 259
14.2 Comparison Among Rain Gauges, TropiNet and NEXRAD ..... 260

14.1 INTRODUCTION

A routine was implemented to compare the data among Rain Gauges, 
TropiNet and NEXRAD data. The NEXRAD pixels have 1 km2 area and 
the TropiNet pixels have 60 meter for each side (0.0036 km2 area). This 
means that 256 TropiNet pixels is equivalent in size to one NEXRAD 
pixel. In other words, within one NEXRAD pixel there are 256 TropiNet 
pixels. Two comparison types were done: the first was pixel to pixel, and 
the second was average TropiNet pixels (256) with one NEXRAD pixel.

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using 
 Rainfall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department of 
Civil Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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14.2 COMPARISON AMONG RAIN GAUGES, TROPINET 
AND NEXRAD

The Figure 14.2 in Chapter 13 shows comparison and superimposed data 
for TropiNet and NEXRAD, for May 06, 2014 – 17:42. UPR rain gauge 
network is shown in Figure 14.1.

When the graphical comparison was done, the next step was to  compare 
the rain-rate data pixels and rain gauges. Figure 14.2 (Left) presents one 
of many comparisons between Rain Gauge, NEXRAD and TropiNet with 
the original resolution at rain gauge station designate as C1 with latitude 
18.2094˚ and longitude 67.1401˚, date: May 21, 2014. The Figure 14.2 
(right) also shows the comparison between NEXRAD and TropiNet at 

FIGURE 14.1 UPRM Rain Gauge Network.

FIGURE 14.2 Left: Comparison Rain Gauge-NEXRAD and TropiNet at station C1 on, 
May 21, 2014 (Heavy Rain); Right: Comparison Rain Gauge-NEXRAD and TropiNet 
Average at station C1, on May 21, 2014 (Heavy Rain).
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Flood Alert System Using High-Resolution Radar 261

 station C1, event May 21 of 2014, for the average pixels (256) in TropiNet, 
which was changed to match the resolution with NEXRAD.

As shown in Figure 14.2–14.6, the RMS increases under heavy rain 
conditions. Yet in all cases (light, moderate and heavy rain), TropiNet 
 consistently yields the smallest error as compared to NEXRAD.

Table 14.1 includes the statistical results, where MSE is the Mean 
Squared Errors between Rain gauge-TropiNet and Rain gauges-NEXRAD; 
and RMSE is the root means squared errors. The error is greater for the 
comparison between rain gauge and NEXRAD data. Likewise, the best 

FIGURE 14.3 Comparison between Rain Gauge-NEXRAD and TropiNet at station C1, on 
May 06, 2014 (Moderate Rain) with original resolutions data for TropiNet and NEXRAD.

FIGURE 14.4 Comparison between Rain Gauge-NEXRAD and TropiNet Average at station 
C1, on May 06, 2014 (Moderate Rain) with Tropinet data degraded to match NEXRAD’s
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262 Flood Assessment: Modeling and Parameterization

FIGURE 14.5 Comparison between rain gauge, NEXRAD and TropiNet at station C1, 
on February 12, 2014 (Light Rain). Values between TropiNet and rain gauge are very 
similar showing good agreement.

FIGURE 14.6 Comparison between rain gauge, NEXRAD and TropiNet Average at station 
C1, on February 12, 2014 (Light Rain). The pixel resolution for TropiNet was downgraded in 
order to match NEXRAD resolution. This produces larger disagreement with rain gauge data.
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result was observed between rain gauge and TropiNet data radar, when it 
has the original resolution (60 meters). The statistical calculations were 
done using following equations:

 e R TT i i i, = −  (1)

 e R NN i i i, = −  (2)

 SSE eT T i
i

n

=
=
∑ ,

2

1
 (3)

 SSE eN N i
i

n

=
=
∑ ,

2

1

 (4)

 MSE
e
nT
i

n
T i= =∑ 1
2
,  (5)

 MSE
e
nN
i

n
N i= =∑ 1
2
,  (6)

 RMSE
e
nT
i

n
T i= =∑ 1
2
,  (7)

 RMSE
e
nN
i

n
N i= =∑ 1
2
,  (8)

TABLE 14.1 Statistical Results at Station C1, on May 21, 2014

Radar-rain gauge MSE (mm/h)2 RMSE (mm/h)

TropiNet 344.2848 18.5549
Average TropiNet (256 pixels) 393.8165 19.8448
NEXRAD 577.1688 24.0243
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In Eqs. (1)–(8): eT,i and eN,i are the errors between Rain gauge-TropiNet 
and Rain gauge-NEXRAD respectively, Ri is the Rain gauge data, Ti is the 
TropiNet data and Ni is NEXRAD data, SSE is the sum-squared errors, the 
subscript T refers to TropiNet and subscript refers to NEXRAD, MSE is 
the mean square errors in TropiNet (T) and NEXRAD (N), and RMSE is 
the root mean squared errors.

Figures 14.3 and 14.4 show the comparison at the station C1 but for 
May 06, 2014. In Figure 14.3, TropiNet with the original resolution (60 × 
60 m2) presents a rain rate data with more appropriate values at C1  stations, 
considering rain gauge observations as the true values. This is possible 
due to proximity of TropiNet to the land surface and its high-resolution 
data. Using the simplest interpolation method, the TropiNet resolution 
was downgraded to the NEXRAD resolution (1 × 1 km2) (Figure 14.4). 
When it was compared with the other equipments, the rain rate value from 
TropiNet was more approximate to the NEXRAD rain rate value at the 
C1 station, but in more disagreement with the rain gauges. Possibly, it was 
due to the loss resolution.

The data tendency is very similar between TropiNet and rain gauge and 
NEXRAD, but NEXRAD presents significant subestimation. The statisti-
cal analysis showed that the errors were maximum when NEXRAD data 
was used (Table 14.2).

Other comparisons were done on February 12, 2014 at the same 
pixel C1. Figures 14.6 and 14.7 present precipitation distribution for rain 
 gauge-NEXRAD-TropiNet and rain gauge-NEXRAD-TropiNet average, 
respectively. When the TropiNet’s resolution is downgraded to match 
NEXRAD pixel resolution, it shows less agreement with the rain gauge 
values.

For this event, the tendency between TropiNet and rain gauges is the 
same but different to NEXRAD. The trend of TropiNet continues to be 

TABLE 14.2 Statistical Results at Station C1, on May 06, 2014

Radar-rain gauge MSE (mm/hr)2 RMSE (mm/hr)

TropiNet 4.1778 2.0439
Average TropiNet (256 pixels) 6.0680 2.4633
NEXRAD 10.8604 3.2955

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



Flood Alert System Using High-Resolution Radar 265

more similar to rain gauges data, specifically when this radar uses its 
 original resolutions, as shown in Table 14.3.

Other comparisons were done with different dates between 2012 and 
2014. Unfortunately, 20 rain gauges were used, but only few captured 
good data. In most cases, rain gauges alterations to the equipment were 
found due to the natural or human factors.

FIGURE 14.7 Cloud motion, forecast and observed: Top – March 28, 2012–17:10; 
bottom – on March 28, 2012–18:00.

TABLE 14.3 Statistical Results at Station C1, on February 12, 2014

Radar-rain gauge MSE (mm/hr)2 RMSE (mm/hr)

TropiNet 0.0373 0.1931
Average TropiNet (256 pixels) 0.0428 0.2070
NEXRAD 7.0266 2.6507
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CHAPTER 15

FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: NOWCASTING 
MODEL MOVEMENT AND 
REFLECTIVITY ANALYSIS1, 2

LUZ E. TORRES MOLINA

CONTENTS

15.1 Introduction ................................................................................ 267
15.2 Nowcasting Model Movement and Reflectivity Analysis ......... 268

15.1 INTRODUCTION

In this chapter, author discusses the results of a research study on nowcast-
ing model movement and reflectivity analysis.

There are many methods for forecasting with longer lead-time of 8, 24, 
and 36 h or weekly, using autoregressive methods, moving averages and 
others. However, the current study is a special kind of Nowcasting method 
for shorter lead-time in minutes. In the western Puerto Rico, sudden 

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using 
 Rainfall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department of 
Civil Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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268 Flood Assessment: Modeling and Parameterization

precipitations occur with short durations due to atmospheric  conditions 
and topographic features at a given location. Precipitation events may 
develop, occur and dissipate immediately, with its duration of about 1, 2 
or 3 h.

Knowing the precipitation characteristics, the nowcasting model 
developed in the current research only needs two lag times for prediction. 
This means that the model has the capacity to forecast the rainfall even 
if the duration is very short. The developed model is presenting the best 
 prediction when the lead-time is 10 min. The postulated rainfall nowcast-
ing algorithm involves two major tasks: (a) predicting the future location 
of the rain pixels, and (b) predicting rainfall at each pixel.

15.2 NOWCASTING MODEL MOVEMENT AND REFLECTIVITY 
ANALYSIS

Figure 7.7 (top) in Chapter 7 shows the cloud motion comparison between 
observed (right) movement and estimated (left) movement at storm date 
March 28, 2012, 17:10 h. The black point is the centroid at initial time and 
the red point is the centroid at the final time. In some cases there is more 
than one cloud centroid, and therefore there is more than one black and 
red point in this Figure. This happens when the division cloud method has 
detected more than one cloud system within the area. Figure 7.7 (bottom) 
presents the separation cloud with two centroids at cloud forecast, storm 
date March 28, 2012 18:00 h.

In this chapter, Figure 15.1 presents the sequence of event during 40 min 
considering each ten min of cloud motion within a total duration event of 7 h 
where to = 16:50 h, on March 28, 2012. Figure 15.2 has the same sequence 
with a lead-time of 20 min where to = 17:10 hr. In this case the sequence of 
event during 80 min was considered. Figure 15.3 shows 120 min of the 
event, the sequence for a lead-time of 30 min where to = 17:30 hr. Other 
storms were processed in the same way. The figures and results are in the 
office “Red de Radares del Tiempo” University of Puerto Rico at Mayagüez.

The comparison of estimated or predicting reflectivity using the main 
Eq. (5) and observer reflectivity at each pixel were furthermore performed. 
Figure 15.4 shows the comparison with a lead-time of 10 min where 
to = 16:50 hr.
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Flood Alert System Using High-Resolution Radar 269

FIGURE 15.1 Cloud motion sequence with a lead-time of 10 min, to = 16:50 hr, 
on March 28, 2012.
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270 Flood Assessment: Modeling and Parameterization

FIGURE 15.2 Cloud motion sequence with a lead-time of 20 min, to = 17:10 hr, 
on March 28, 2012.
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FIGURE 15.3 Cloud motion sequence with a lead-time of 30 min, to = 17:30 hr, 
on March 28, 2012.
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FIGURE 15.4 Reflectivity sequence with a lead-time of 10 min, to = 16:50 hr on 
March 28, 2012.
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FIGURE 15.5 Reflectivity sequence with a lead-time of 20 min, to = 17:10 hr on 
March 28, 2012.
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274 Flood Assessment: Modeling and Parameterization

FIGURE 15.6 Reflectivity sequence with a lead-time of 30 min, to = 17:30 hr on 
March 28, 2012.
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Flood Alert System Using High-Resolution Radar 275

Figure 15.5 presents a comparison between estimated and observed 
data but with a lead-time of 20 min of the event where to = 17:10 hr. Finally, 
Figure 15.6 is with a 30 min lead-time where to = 17:30 hr.

For all events, the best results were presented with a prediction of 
10 min (Figure 15.4). Western Puerto Rico area geographical position 
makes it susceptible to sudden rainfalls that are changing rapidly in time 
and space. Due to this change, a lead-time of 10 min is the time predic-
tion more adequate to this precipitation class. A larger lead-time results in 
greater statistical errors. Contrarily using a lead-time smaller than 10 min, 
the purpose of flood alert system will be annulled by the absence of time 
to evacuation.

It is important to mention that the algorithm to forecast precipitation 
uses a sequence of the observed rainfall data to estimate the movement 
direction and size of the cloud or cell. And then using the main Eq. (5) in 
Chapter 12, rainfall is estimated in each pixel within every zone. Thereby, 
the suggested regression model was developed under the following 
assumption. It is expected that in a short time (10 min) period a rain cloud 
behaves approximately as a rigid object and the cloud rain pixels moves in 
a constant speed and direction. Thus, the most likely future rainfall areas 
can be estimated by using the advection of the centroids of the rain cells in 
consecutive images. The current estimation reflectivity is a function of the 
previous reflectivity images observed. Rainfall nowcasting algorithm task 
is predicting rainfall rate at each pixel.
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CHAPTER 16

FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: ESTIMATION 
OF PARAMETERS1, 2

LUZ E. TORRES MOLINA

CONTENTS

16.1 Introduction ................................................................................ 277
16.2 Estimation of Parameters ........................................................... 278

16.1 INTRODUCTION

This methodology was applied to estimate four unknown parameters (δ1, δ2, 
δ3, and Φ) so as to:

• Find the optimum values with a bounded constraint: first linearized 
the main equation;

• Identify the initial point trough a nonlinear regression model where 
the phi Φ is temporarily ignored, and the deltas values initial are 
obtained by solving the linear regression; and

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using 
 Rainfall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department 
of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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278 Flood Assessment: Modeling and Parameterization

• Find the optimum values using a constrained nonlinear optimization 
technique to estimate the final parameter set for each zone (9 × 9) 
and every window where the phi Φ parameter is a bias correction 
factor introduced in the optimization.

16.2 ESTIMATION OF PARAMETERS

The optimum parameters for the nonlinear regression model were esti-
mated by solving a constrained nonlinear optimization problem (fmincon), 
as shown in Table 16.1.

The derived initial point was ingested into the constrained nonlinear 
subroutine to facilitate convergence, the delta parameters were restricted 
to be positives and phi parameter was restricted to be in the range of 0 to 
1.1 values. For purposes of demonstration, Table 16.1 presents the initial 
point and final point of the estimated parameters (δ1, δ2, δ3, and Φ) for a 
random zone (9 × 9) that occurred on March 28, 2012.

Figure 16.1 shows the distribution of initial and optimal values of phi 
(Φ) with a lead-time of 10 min. For the comparison between the parameters, 
initial deltas and optimal deltas were used as a statistic test (T-statistics) to 
determine whether or not the optimization causes a change in mean values. 
If the optimum mean values are significantly different from the original 
mean values, it is possible to conclude that the treatment has a significant 
effect. Figure 16.2 presents the median phi coefficient for the initial value 
and optimal value.

TABLE 16.1 Parameter Estimation for a Random Zone (9 × 9), on March 28, 2012 for a 
Lead-Time of 10 min

Parameter Initial point (Linear Regression) Nonlinear regression

Estimation T-statistics Final Estimation

δ1,k 0.03546 0.65098 0.00507
δ2,k 0.06596 2.89453 0.47448
δ3,k –2.47237 –1.01741 0.00012
φk 2.18039 – 0.81903
RMSEt 29.51233 – 2.01960
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Flood Alert System Using High-Resolution Radar 279

FIGURE 16.2 Phi median with a lead-time of 10 min, on March 28, 2012.

FIGURE 16.1 Distribution of initial value of phi (left) and the optimal values of phi 
(right) for the storm date: March 28, 2012, for a lead-time of 10 min.
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280 Flood Assessment: Modeling and Parameterization

FIGURE 16.3 Distribution of initial value of phi (left) and the optimal values of phi 
(right) for the storm date: March 28, 2012, for a lead-time of 20 min.

FIGURE 16.4 Phi median with a lead-time of 20 min, on March 28, 2012.
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FIGURE 16.5 Distribution of initial value of phi (left) and the optimal values of phi 
(right) for the storm date: March 28, 2012, for a lead-time of 30 min.

FIGURE 16.6 Phi median with a lead-time of 30 min, on March 28, 2012.
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282 Flood Assessment: Modeling and Parameterization

Figure 16.3 presents the distribution of initial variable phi (Φ) and the 
optimal value for a lead-time of 20 min and Figure 16.4 is the median of 
the value phi for lead-time 20 min. Figure 16.5 presents the distribution 
of initial variable phi (Φ) and the optimal value for a lead-time of 30 min. 
And Figure 16.6 is the median of the value phi for lead-time 30 min. The 
analysis was made for all storms (10) and similar results were obtained.
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CHAPTER 17

FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: NOWCASTING 
MODEL VALIDATION1, 2

LUZ E. TORRES MOLINA
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17.1 INTRODUCTION

An analysis for the nowcasting requires a combination of meteorologi-
cal and hydrological statistics, as this permits a better understanding of 
behavior of the spatial and temporal accuracy of storm prediction. A good 

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using Rain-
fall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department of Civil 
Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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284 Flood Assessment: Modeling and Parameterization

nowcasting include accuracy of the spatial, as well as in the temporal level 
and accuracy of the predicted rainfall intensity. Model performance cri-
teria for the prediction required quantitative comparison measures, these 
measures include ten storms mentioned before in Table 12.6 in Chapter 12.

17.2 NOWCASTING MODEL VALIDATION

The accuracy of rainfall prediction of each pixel can be measured by 
decomposing the rainfall process into sequences of discrete and continu-
ous random variables, i.e., the presence or absence of rainfall events and 
rainfall intensity. Examples of quantitative parameters used in the current 
research include: Contingency table, Mean square Error (MSE), Root 
Mean Square Error (RMSE), Bias Ratio (BR) and Mean Absolute Error 
(MAE). These parameters will be discussed in detail below.

The joint distribution of the forecast and observations has fundamental 
interest with respect to the verification of forecasts. In the most practical 
setting, both the forecast and observations are discrete variables. Even if 
the forecasts and observations are not already discrete quantities. Denote 
the forecast by yi, which can take on any of the possible I values (y1, y2, 
y3,…, yI); and the corresponding observations as OJ, which can take on any 
of the possible J values (O1, O2, O3,…, OJ). Then the joint distribution of 
the forecast and observation is denoted as:

 p y O y O y O i I j Ji j i j i j, Pr , Pr ; , ; ,( ) = { } = { } = … = …∩ 1 1  (1)

This is a discrete bivariate probability distribution function, associat-
ing a probability with each of the I × J possible combinations of forecast 
and observation [104]. The contingency table (Figure 17.1) I × J shows 
the arrangement of four possible combinations of forecast/event pairs for 
a simple I = J = 2 case.

17.3 ATTRIBUTES RELATED WITH THE CONTINGENCY TABLE

Hit rate (HR) is the ratio of correct forecasts to the number of times this 
event can occur, as shown in the following equation: 
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FIGURE 17.1 Contingency table based on Wilks [104].

 
( )

( )
a dHR

a b c d
+=

+ + +
 (2)

The probability of detection (POD) as the fraction of those occasions 
when the forecast event occurred on which it was furthermore forecasted, 
in this case it is the probability that rain occur.

 aPOD
a c

=
+

 (3)

The False Alarm Ratio (FAR) is the relation of the forecast events that 
fail to materialize: the best possible FAR is zero and the worst possible 
FAR is one. 

 FAR b
a b

=
+

 (4)

 Bias a b
a c

= +
+

( )
( )

 (5)

The Bias (Bias) is the ratio of the number of yes forecasts to the num-
ber of yes observed. Unbiased forecast exhibit Bias = 1, indicating that 
the event forecasted the same number of times that it was observed [104].
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Table 17.1 shows the contingency table for the storm of March 28, 
2012 with a lead-time of 10 min, 20 min and 30 min. Table 17.2 shows 
the contingency table for the storm of March 29, 2012 with a lead-time of 
10 min, 20 min and 30 min.

Table 17.3 shows the contingency table for the storm of April 30, 2012 
with a lead-time of 10 min, 20 min and 30 min. Table 17.4 shows the 
contingency table for the storm of October 10, 2012 with a lead-time of 
10 min, 20 min and 30 min. Table 17.5 shows the contingency table for 
the storm of February 12, 2014 with a lead-time of 10 min, 20 min and 
30 min. Table 17.6 shows the contingency table for the storm of May 06, 
2014 with a lead-time of 10 min, 20 min and 30 min. Table 17.7 shows 
the contingency table for the storm of May 21, 2014 with a lead-time of 
10 min, 20 min and 30 min.

Table 17.8 shows the contingency table for the storm of June 29, 2014 
with a lead-time of 10 min, 20 min and 30 min. Table 17.9 shows the con-
tingency table for the storm of June 30, 2014 with a lead-time of 10 min, 
20 min and 30 min. Table 17.10 shows the contingency table for the storm 
of July 05, 2014 with a lead-time of 10 min, 20 min and 30 min. Finally, 
Table 17.11 shows the average the contingency table associated with the 
ten studied storms.

The performance index is introduced in this research to measure the 
overall dichotomous (rain/no rain) forecast accuracy of the model, and is 
computed as a function of HR, FAR and POD. The performance index var-
ies from zero to one, and a value of one correspond to the best algorithm 
performance; whereas, zero corresponds to the worst case. The perfor-
mance index (PI) is defined as follows:

 PI FAR POD HR
= −

− − +1 2
3

 (6)

Table 17.12–17.14 present model performance score: HR, POD, FAR, 
Detection Bias (DB) and PI for the ten storms with 10 min, 20 min and 
30 min of lead-time. And finally Table 17.15 shows the average of detec-
tion results for all storms to the model or the performance score of all 
storms.
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17.4 HIT RATE

For lead-times of 10, 20 and 30 min, the storms provide an average hit rate 
(HR) of 0.90, 0.86 and 0.84, respectively. The hit rate score is the fraction 
of observed events that is forecast correctly. It ranges from zero (0) at the 
poor end to one (1) at the good end. The probability of detection (POD) 
of storms varies from 0.61, 0.50 and 0.41. While the false alarm rates 
(FAR) is 0.27, 0.38 and 0.46 for lead-time of 10, 20 and 30 min, respec-
tively. Figure 17.2 shows POD values and FAR values for the complete 

TABLE 17.15 Detections Results: Model Accuracy Score Considering All Events 
as a Single Group

Forecast

Skill Score 10 min 20 min 30 min

HR 0.90011 0.86536 0.84961

POD 0.61797 0.50160 0.41961

FAR 0.27597 0.38367 0.46176

Bias 0.85352 0.81386 0.77959

PI 0.74737 0.66110 0.60248

FIGURE 17.2 Probability of detection and false alarm for the all storms.

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



Flood Alert System Using High-Resolution Radar 295

set of storms. In the ideal situation POD should approach to one (1), while 
the FAR results should approach to zero (0). The performance index was 
0.74, 0.66 and 0.60 for 10 min, 20 min and 30 min, respectively for the 
model, (Figure 17.3).

Similarly, the Hit Rate (HR) of the model for the all storms was 0.90, 
0.86 and 0.84 for the 10, 20 and 30 min, respectively (Figure 17.4). Other 
strategy for validations was made: In this case the validation is for the 
quantity of rainfall estimation, by comparing each pixel predicted of rain-
fall intensity at a given time and a given specific lead-time with the cor-
responding observed rainfall intensity.

FIGURE 17.3 Performance Index for the all storms.

FIGURE 17.4 Hit rate for the all storms.

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



296 Flood Assessment: Modeling and Parameterization

17.4.1 ROOT MEAN SQUARE ERROR (RMSE) AND BIAS RATIO

These results were analyzed using the Root Mean Square Error (RMSE) 
and Bias Ratio (BR), as a mean for the estimation quantity. The calculation 
of these scores is given as follows: 

 RMSE
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where, y i jt l


+ ( ),  is the predicted rainfall intensity made at time t with 
lead-time l units for a pixel located at (i,j), and yt+1(i,j) is the correspond-
ing observed rainfall intensity, N is the total number of units of time that 
rainfall was observed, n* is the total number of rows and m is total number 
of columns of rainfall area.

The RMSE and BR for each event with a lead-time of 10, 20 and 30 min 
are given in Tables 17.16–17.18.

The Root mean square error (RMSE) and Bias ratio (BR) measure the 
accurate of the simulation for all ten studied events are given in Table 17.19, 
which furthermore shows the corresponding average values for each lead-
time 10, 20 and 30 min, respectively. The RMSE average values are 0.026, 
0.077 and 0.144 mm and the Bias average values are 0.97, 0.98 and 1.04 
for lead-times of 10, 20 and 30 min, respectively.

The estimation Bias ratio for a lead-time of 30 min presents an aver-
age over estimation prediction, while the estimation Bias ratio for a lead-
time of 10 min and 20 min shows sub estimation. The Bias ratio for the 
three lead-times is near to one; this means that they are good estimates [60]. 
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TABLE 17.19 Average Root Mean Square Error and Bias Rate for 10 Events

Estimation Results

Forecast Errors Average

Lead-time 10 min 20 min 30 min

RMSE (mm) 0.02673 0.07776 0.14474

Estimation Bias Ratio 0.97293 0.98336 1.04690

The RMSE average in 10 min lead-time presents the best result compared 
with the other lead-time of 20 min and 30 min. The RMSE is increasing due 
to the fact that large errors are occurring because the lead-time is increasing.

17.5 ACCUMULATION OF RAINFALL

Figure 17.5 shows the accumulation of rainfall for the first five events 
with a lead-time of 10 min, and Figure 17.6 presents the last five events. 
This accumulation is for every pixel and total duration. The storm duration 
is different for each date. The left panel shows the accumulated predicted 
rainfall in millimeters for 10 min of lead-time and the right panel shows 
TropiNet observed accumulated rainfall with a lead- time of 10 min.

Figures 17.7 and 17.8 show the average rainfall for all rain pixels dur-
ing each time interval (10 min) for the events. In these figures, it is possible 
to observe a time shift due to cloud velocity movement. In this methodol-
ogy the velocity was assumed as constant for each event. Corfidi et al. [11] 
determined that velocity in the convective systems required two compo-
nents: the cell velocity of the system and the propagation velocity due to 
occurrence, development and merger of the convective cell. The most dif-
ficult task is determined the propagation velocity [11]. The time shift defi-
ciency due the absence of atmospherics factors to evaluate the propagation 
velocity, could be fixed with mean time shift estimation for all storms 
depending of their lead-time.

The forecast results present the same tendency of the observed data 
where the peaks with more precipitation in TropiNet events are coinciding 
with the forecasted data. They are in good agreement considering that the 
prediction is in short time and space.
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Flood Alert System Using High-Resolution Radar 299

FIGURE 17.5 Rainfall accumulated during the each event, the first 5 events. The left 
column is the forecasted cumulated rainfall and the right column is the observed cumulated 
rainfall.
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300 Flood Assessment: Modeling and Parameterization

FIGURE 17.6 Rainfall accumulated during the each event, the last 5 events. The left 
column is the forecasted cumulated rainfall and the right column is the observed cumulated 
rainfall.
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FIGURE 17.7 The average rainfall for all rain pixels in each time interval with lead-time 
of 10 min during the first 5 events. The blue line represents the observed data (TropiNet) 
and the green line represents the forecasted data accumulated precipitation for all rain pixel 
along the total storm event.

Figure 17.9 present for the first five events, left panel is the accumulated 
average rainfall for all rain pixels during the total event. It was calculated 
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302 Flood Assessment: Modeling and Parameterization

FIGURE 17.8 The average rainfall for all rain pixels in each time interval with lead-time 
of 10 min during the last 5 events. The blue line represents the observed data (TropiNet) 
and the green line represents the forecasted data accumulated precipitation for all rain pixel 
along the total storm event.

taking the rainfall total during the storm and the precipitation total area. 
The right panel is the scatter plot at the same rainfall event. Similarly, 
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FIGURE 17.9 Continued

Figure 17.10 shows the results for last five events. These figures show that 
model exhibits a small underestimation in all events. But it is possible to 
perceive in general that the forecast is highly similar to the observed data. 
They have the same tendency in the time series during all events.
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304 Flood Assessment: Modeling and Parameterization

FIGURE 17.9 Left panel shows the accumulated precipitation average for all rain pixels 
during the all rainfall events. The blue line represents the observed precipitation and the 
green line the forecast. The right panel shows the corresponding scatter plot of the same 
rainfall event (first 5 events).

FIGURE 17.10 Continued
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FIGURE 17.10 ContinuedA
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17.6 SUMMARY

The rainfall nowcasting algorithm uses consecutives images of weather 
radar to forecast rainfall rate. The algorithm searches for contiguous rain 
pixels and identifies rain cells in the last two radar images to estimate the 
cloud motion vector. The cloud motion vector is then used to estimate 
the most likely future locations of the rain pixels, and finally, nonlinear 
regression models are developed to forecast the intensity of rainfall rate at 
each rain pixel. The new rainfall nowcasting algorithm was validated with 
ten storms and results show that the nowcasting algorithm is a potential 
tool to couple with a hydrological numerical model to predict the most 
likely inundation areas.

FIGURE 17.10 Left panel shows the accumulated precipitation average for all rain 
pixels during the total events. The blue line represents the observed precipitation and the 
green line the forecast. The right panel shows the corresponding scatter plot of the same 
rainfall event (last 5 events).
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CHAPTER 18

FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: VALIDATION 
OF HYDROLOGIC MODEL VFLO1, 2

LUZ E. TORRES MOLINA
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18.1 INTRODUCTION

The hydrological model Vflo required the ensemble of various layers that 
perform the physical and topographic characteristics of the basin area. These 
layers are formed by parameters that were previously presented as: effective 
porosity, hydraulic conductivity, wetting front, roughness, soil depth, and 
initial saturation which can be most sensitive in the watershed. Spatially 
distributed parameter and input from radar rainfall requires new methods 
for adjustment in order to minimize differences between simulated and 
observed hydrographs. The hydraulic roughness (n), hydraulic conductivity 

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using Rain-
fall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department of Civil 
Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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308 Flood Assessment: Modeling and Parameterization

(K) and initial saturation (θ) are the most sensitive parameters of the hydro-
logical model. These values are estimated from physical properties of the 
watershed adjusted to reproduce system behavior [100]. The hydraulic con-
ductivity controls the total amount of water that will be split into the surface 
runoff. The hydraulic roughness affects the peak flow and the time to peak 
and initial saturation is related with the existing humidity into the soil.

18.2 VALIDATION OF HYDROLOGIC MODEL Vflo

Scalars are multiplied by these parameter maps to adjust the value in 
each grid cell while preserving the spatial heterogeneity. The sequence of 
adjustment was recommended by Vieux and Moreda [100] to minimize 
the objective function for volume, and then peak flow, obtaining an over-
all optimal parameter set for the storms. The OPPA procedure for adjust-
ment can be stated as: increasing the volume of the hydrograph is achieved 
by decreasing hydraulic conductivity, and similar, increasing peak flow 
is achieved by decreasing hydraulic roughness. Several adjustments were 
made when it was necessary to produce consistent results at the USGS sta-
tions compared with every storm.

The reference hydrographs were developed from point observations or 
observed data of USGS stations numbers: #50144000 at Rio Grande de 
Añasco (San Sebastián), #50136400 at Rio Rosario (Hormigueros) and 
#50138000 at Rio Guanajibo (Hormigueros) (U.S Geological Survey – 
Current Water Data for Puerto Rico [93]) and compared with results from 
the hydrological model.

The ground surface optimum resolution in the model was 200 meters. 
This was based on the previous studies by Prieto [61] and Rojas [69].

The watershed parameters were adjusted upstream of the observed 
point (USGS flow stations) by the adjustment method described by Vieux 
and Moreda [100]. They employ a scalar to adjust parameter maps so that 
the proposal scalar magnitudes change while the spatial variation is pre-
served. The scalar used to multiply the n, K and θ parameter maps area is 
defined as follows [29]:

 N iii
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Flood Alert System Using High-Resolution Radar 309

Nij is the adjustment factor, where the n, K and θ values can be pertur-
bated from 25% to 175%. Study model sensitivity was done for the water-
shed to identify response sensitivity for peak flow to each storm changing 
the multiplicative factor in the parameters. The events evaluated were the 
same 10 events presented in Table 18.6. A list of parameter ensembles is 
created for each storm in every station (Figure 18.1). A total of 450 simula-
tions were done for this analysis.

Figures 18.2–18.4 present spider plots of rate of change for peak flow 
using five different adjustment factors in the roughness parameter. The 
three USGS stations were taken to perform this analysis if the given station 
recorded the corresponding event. It is possible to observe that when the 
roughness factor decreases, the rate of change increases and show a higher 
change. When the adjustment factor is >1, the range of change in peak 
flow falls and tends to remain constant or with a minimum change in the 
peak flow, just below the referenced value.

Similarly, results for effect of the hydraulic conductivity are presented 
in Figure 18.5. Here the maximum rate of change takes to place for the 
minimum values of hydraulic conductivity. These results are consistent 
with statements presented in Gourley and Vieux [29].

FIGURE 18.1 Flow chart of the calibration factor panel for peak flow.
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310 Flood Assessment: Modeling and Parameterization

FIGURE 18.2 Spider plot for rate of change of peak flow changing the adjustment factor 
in the roughness parameter. Dates of rainfall events are shown in the legend.
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FIGURE 18.3 Spider plot for peak flow changing the adjustment factor in the hydraulic 
conductivity parameter. Dates of rainfall events are shown in the legend.
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FIGURE 18.4 Spider plot of peak flow changing the adjustment factor in the initial 
saturation parameter. Dates of rainfall events are shown in the legend.
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Figure 18.6 shows the results of the sensitivity analysis for the initial 
saturation. In this case one can observe that for adjustment factor <one, 
the peak flow presents few changes or continues constant. When the factor 
adjustment in the initial saturation is 1.37, the peak flow increases exces-
sively and becomes independent of the initial saturation for higher values. 
The hydrological model with the current characteristics is most sensitive 
to initial saturation parameters. It may be due to the more presence of clay 
in the watershed. The clay is included in the soil group D. This group has 
soils with high potential runoff and very low infiltration capacity, when 
they are saturated.

The analysis suggests that the initial saturation is the parameter with 
the highest sensitivity in the peak flow for different storms with short dura-
tion. Initial saturation is a parameter that depends of how many storms 
have occurred previously to the studied storm (antecedent soil moisture). 
Different results are possible to obtain with a sample of continuous storms.

Similar results were found in peak flow with variations of roughness 
and hydraulic conductivity for all events. Low variations were found in 
peak flow when the adjustment factor takes values greater than one.

A compilation of individual simulations is determined based on com-
parison with the observed stream flow data from (U.S. Geological Survey-
Current Water Data for Puerto Rico [93]). The hydrologic evaluation 
consists of making multiples runs, setting the sensitive parameters in each 

FIGURE 18.5 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at San Sebastián station on March 28, 2012. The right panel is 
a scatter plot of USGS vs. Nowcasting.

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



314 Flood Assessment: Modeling and Parameterization

event, yielding the best simulation between observed data from USGS and 
estimated data from the nowcasting model. The matching of both peaks 
in every storm was successfully accomplished with flow values.

The separation base flow method used in the USGS stations was the 
straight line method. It is achieved by joining with a straight line the begin-
ning of the surface runoff to a point on the recession limb representing the 
end of the direct runoff. Comparison results indicate that the nowcasting 
model is capable of estimating hydrographs at distributed positions within 
a watershed based on knowledge of hydrographs at USGS stations. The 
hydrograph shape is observed with high accuracy, with rising and falling 
limbs, and hydrograph peaks timed well. Small adjustment between 0.8 
and 1.20 were present in the calibration factor. Figure 18.7 presents the 
hydrograph (left panel) of observed data from the San Sebastián USGS 
station compared with the simulated results using the nowcasting approach 
in the hydrological model Vflo.

Figures 18.6–18.16 show that the USGS hydrograph at San Sebastián 
station compared well with the nowcasting hydrograph for the events 
recorded. The right panel shows a scatter plot of the relation USGS vs. 
nowcasting results, for different events.

The Mean Square Error (MSE) and Root Mean Square Error (RMSE) 
analyzes were performed in order to directly determine the effective-
ness of the connection between the hydrological model and the rainfall 
nowcasting model for various events and durations. Results for the MSE 
showed varying degrees of both overestimation and underestimation for 

FIGURE 18.6 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at San Sebastián station on March 29, 2012. The right panel is 
a scatter plot of USGS vs. Nowcasting.
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Flood Alert System Using High-Resolution Radar 315

FIGURE 18.7 The left panel is runoff observed data (USGS) blue line and simulated data 
(Nowcasting) red line at San Sebastián station on October 10, 2012. The right panel is a 
scatter plot of USGS vs. Nowcasting.

FIGURE 18.8 The left panel is runoff observed data (USGS) blue line and simulated data 
(Nowcasting) red line at San Sebastián station on May 06, 2014. The right panel is a scatter 
plot of USGS vs. Nowcasting.

FIGURE 18.9 The left panel is runoff observed data (USGS) blue line and simulated data 
(Nowcasting) red line at San Sebastián station on May 21, 2014. The right panel is a scatter 
plot of USGS vs. Nowcasting. 
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FIGURE 18.10 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at San Sebastián station on June 29, 2014. The right panel is a 
scatter plot of USGS vs. Nowcasting.

FIGURE 18.11 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at San Sebastián station on June 30, 2014. The right panel is a 
scatter plot of USGS vs. Nowcasting.

FIGURE 18.12 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at San Sebastián station on July 05, 2014. The right panel is a 
scatter plot of USGS vs. Nowcasting.
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FIGURE 18.13 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at Guanajibo station on October 10, 2012. The right panel is a 
scatter plot of USGS vs. Nowcasting.

FIGURE 18.14 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at Guanajibo station on July 05, 2014. The right panel is a 
scatter plot of USGS vs. Nowcasting.

FIGURE 18.15 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at Rosario station on March 28, 2012. The right panel is a 
scatter plot of USGS vs. Nowcasting.
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FIGURE 18.16 The left panel is runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at Rosario station on July 05, 2014. The right panel is a scatter 
plot of USGS vs. Nowcasting.

the various storm events in the three different basins: San Sebastián, 
Guanajibo and Rosario.

Table 18.1 presents the statistic results at San Sebastián stations. The 
analysis compares the runoff between the hydrological model using the 
rainfall forecast and the observed data provided by USGS. Only eight 
events were considered for this analysis, because the USGS observed data 
were not available for the events on April 30, 2012 and February 12, 2014. 
Table 18.2 presents the hydrological statistic results between compari-
sons: observed data and estimated data for the two events analyzed in the 
Guanajibo station.

Figures 18.15 and 18.16 present the comparison between data and 
results on March 28, 2012 and July 05, 2014, respectively at Rosario sta-
tion USGS. Table 18.3 shows the statistical results using the hydrologi-
cal model at Rosario station USGS. It is important to note that the most 
rainfall occurred into the area nearest to Rio Añasco, comprising the San 
Sebastián station.

The event on July 05, 2014 had superior results than the previous 
events with respect to the tendency, peak flow and runoff at Rosario sta-
tion. Results indicate that global nowcasting model can be used to estimate 
the shape, timing and magnitude of hydrographs.
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TABLE 18.1 Hydrological Statistic Results at San Sebastián Station

USGS - Nowcasting MSE (m3/s)2 RMSE (m3/s)

March 28, 2012 330.7064 18.1853
March 29, 2012 85.9784 9.2724
October 10, 2012 97.1203 9.8549
May 06, 2014 2.3539 1.5342
May 21, 2014 54.3021 7.3690
June 29, 2014 0.7535 0.8680
June 30, 2014 7.8139 2.7953
July 05, 2014 1.3781 1.1739

TABLE 18.2 Hydrological Statistic Results at Guanajibo Station

USGS – Nowcasting MSE (m3/s)2 RMSE (m3/s)

October 10, 2012 1.8137 1.3467
July 05, 2014 2.1434 1.4640

TABLE 18.3 Hydrological Statistic Results at Rosario station

USGS – Nowcasting MSE (m3/s)2 RMSE (m3/s)

March 28, 2012 2.9655 1.7220
July 05, 2014 0.9432 0.9711
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CHAPTER 19

FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: INUNDATION 
(FLOOD) ANALYSIS1, 2

LUZ E. TORRES MOLINA
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19.1 INTRODUCTION

The probabilistic flood forecast developed in this research together with 
the inundation model is capable of providing a forecast of when and where 
river banks are likely to be overtopped. This could be more detailed with 
several cross sections into the river.

Decisions for evacuation can be categorized by determining the risk 
that overtopping represent to residents in areas adjacent to rivers or stream 
flows. The available knowledge when the evacuation decision can be made 
include probabilistic flood forecast published by each zone or location 

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using 
 Rainfall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department 
of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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322 Flood Assessment: Modeling and Parameterization

with large historical floods. Furthermore, it is then associated with the 
relevant topographical and demographical information for the basin and 
river, and the cost associated with the flooding and evacuation.

The approach of Flood Alert System (FAS) is to minimize loss of life 
and disruptions to communities through identification of the evacuation 
decision and strategy that has the maximum expected value under current 
conditions. The potential cost related with the decision model for evacu-
ation can be categorized as losses resulting from preventable flood dam-
age and losses from evacuation. The first is associated with deaths and 
injuries. Potential damage to building and property should not be con-
sidered when making an evacuation decision, as this damage is the same 
regardless of whether an evacuation is ordered or not. Losses from evacu-
ation refer to evacuation and emergency services, cost associated with the 
inconvenience, and that associated with the vacating of houses and build-
ings. Using a FAS model and an adequate flooding history, it is possible 
to determine a potential evacuation savings or amount of money saved as 
a result of no evacuation.

19.2 INUNDATION (FLOOD) ANALYSIS

Inundation Analysis is a Vflo extension that provides images and anima-
tion showing the extent of forecast inundation, which can be used an indi-
cation of flood risk [103].

To show the full potential of this tool in enhancing the visualization of 
the flood area, the program was run with a large storm data. Figure 19.1 
presents a time-series flow for the basin area on March 28, 2012. The 
area north was the most affected by the rainfall on this event. Inundation 
Analysis presents an inundation sequence each hour. Other events were 
modeled using inundation animation, but the March 28, 2012 event is good 
enough to show the potential of this tool. The flow depths results from Vflo 
model were introduced into the inundation to create the animation flow. 
The animation flow is attached as a link in: http://www.mediafire.com/
download/l42s3nbpprk08ib/Appendix.zip.
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FIGURE 19.1 Inundation sequence each hour, on March 28, 2012 (from the left to right 
and top to bottom).
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CHAPTER 20

FLOOD ALERT SYSTEM USING 
HIGH-RESOLUTION RADAR 
RAINFALL DATA: CONCLUDING 
REMARKS1, 2
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20.1 INTRODUCTION

This chapter concludes the research study presented in Part II. It indicates 
that TropiNet radar technology has been used first time for hydrologic 
analyzes and specifically for rainfall forecasting in Puerto Rico. Results 

1 This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using 
Rainfall Data in the Mayagüez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department 
of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez Campus”.
2 Numbers in brackets refer to the references at the end of this book.
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from the nowcasting model at spatial and temporal scales demonstrated 
the capability of the model to reproduce observed rainfall, for each now-
casting lead-time with relatively good agreement.

The best statistical results were found in the rainfall nowcasting model 
with a lead-time of 10 min. It is well known that prediction of sudden 
storms using rainfall nowcasting models represent the category that are the 
most difficult to predict, and consequently, providing accurate flash flood 
warnings from these types of storms is a major challenge.

The nowcasting model has a limitation in the time shift, because it is 
assumed that the cloud is a rigid object and that the cloud speed is con-
stant, when in reality these parameters can vary. To find the actual weather 
conditions, more atmospheric parameters should be taken into account. 
In fact, cloud speed depends on its formation, and other physical param-
eters that are constantly changing [11]. These factors should be taken into 
account in future works.

Several parameter estimations were developed at each spatial and 
temporal domain, and the stochastic behavior of rainfall intensity was 
represented by an exponential time and spatial lag model, which is an 
approximation of a stochastic transfer function.

The rainfall nowcasting algorithm searches for contiguous rain  pixels 
and identifies rain cells in the last two radar images to estimate the cloud 
motion vector. This newly developed rainfall nowcasting algorithm 
was validated with ten storms and results comparing the algorithm with 
observed data as well as the hydrological results showed that the nowcast-
ing model is a suitable tool for predicting the most likely areas to become 
inundated.

Comparisons between rain gauges, TropiNet and NEXRAD demon-
strated that the TropiNet radar system provides a higher degree of accuracy 
in rainfall estimation compared to NEXRAD. The RMSE was increased for 
heavy rain conditions, nevertheless in all cases (light, moderate and heavy 
rain), TropiNet consistently yielded the smallest error compared with rain 
gauges, while NEXRAD produced the largest errors. This was the first 
attempt to evaluate a rainfall prediction in the western Puerto Rico area. 
The most hydrological sensitive parameter in the basin area is the initial 
saturation.
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When the hydrologic model was evaluated within the Mayagüez bay 
drainage basin with three USGS reference stations, the San Sebastian sta-
tion showed the highest flow. The events under analysis presented more 
rainfall in the north basin area.

Use of a GOES based satellite remote sensing product allowed for 
the spatial and temporal distribution of potential evapotranspiration input 
(PET, mm/h) in the hydrologic model. The post-processing algorithm 
developed in this study provided the ability to change the PET size resolu-
tion through interpolation.

Differences in the order of 0.75 and 330 MSE percent between the 
observed data from USGS and the results of hydrological model may be 
due to initial conditions prior to storms, such as soil moisture and daily 
evapotranspiration distribution.

A study of flood levels can be conducted with the model in the future 
within the study watershed to estimate flood depths resulting from embank-
ment overtopping, thereby providing recommendations for improving cur-
rent flood hazard maps.

The nowcasting model was evaluated with the available events from 
TropiNet radar, but it was also developed to work with events with high 
precipitation. At the same order, the hydrological model was evaluated 
in this study with relatively small flow (180 m3/s), but can be evaluated 
with extraordinary events when they occur. Unfortunately, during the 
study period, there were no high precipitation events. The data for this 
research is available in the link below: http://www.mediafire.com/down-
load/l42s3nbpprk08ib/Appendix.zip.

20.2 STUDY LIMITATIONS

The nowcasting model presents a time shift limitation in the prediction 
of 10, 20 and 30 min. This can be a linear trend in the given data. In the 
future, an algorithm may be configured to fix the time shift using more 
than 10 events within the study area.

Figure 20.1 presents a prototype of result with the time shift  correction 
in the average rainfall for all pixels for a time interval of 10 min. In this 
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case, Figure 7.7 in Chapter 17 would look like Figure 20.1. The Figure 20.2 
presents a prototype of results with the time shift correction in the accu-
mulated rainfall average for all rain pixels during the complete event on 
March 28, 2012. It can be seen that the bias in accumulated rain is reduced 
with this time shift correction. The events selected were limited to the data 
available in the TropiNet radar server. It is recommended to extend both 
methodologies to high precipitation events.

20.3 FUTURE WORK

The nowcasting model and hydrological model can be evaluated with 
extreme event data. When the three TropiNet radars are finally operating 
as a network, they will provide higher resolution data that can be used in 
the nowcasting model and hydrological model. Using a bias correction in 

FIGURE 20.1 Adjusted average rainfall plots using a bias correction factor in the time 
variable on March 28, 2012.
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the time shift, it is possible to make predictions more accurately. To imple-
ment this, an extensive number of events, physical and atmospheric data 
will be necessary.

20.4 SUMMARY OF RESEARCH STUDY IN PART II

Floods are one of the most costly types of natural disasters in the world. 
The current work is an attempt to introduce a Flood Alert System in the 
western Puerto Rico, using radars with high temporal and spatial resolu-
tion and developing a forecasting model for convective precipitation for 
time periods of a few hours or less (nowcasting).

The accuracy of these forecasts generally decreases very rapidly during 
the first 30 min because of the very short lifetime of individual convective 

FIGURE 20.2 Adjusted accumulated precipitation average rainfall results using a bias 
correction factor in the time on March 28, 2012.
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pixels. A number of observational studies have shown that individual con-
vective cells have mean lifetime of about 20 min, with best performance 
associated with a lead-time of 10 min. Numerical simulation studies have 
contributed significantly to the understanding of storm composition and 
duration; this is just beginning to be recognized in current nowcasting sys-
tems. In Part II, a review of the literature is provided related to what is 
currently known from numerical and observational studies about the orga-
nization, lifetime and motion of storms.

The nowcasting technique proposed in this chapter is a special kind of 
nonlinear model with stochastic and deterministic components. The rain-
fall forecasts obtained using the considered method is then routed through 
a rainfall runoff model Vflo. Thus, a coupled rainfall-runoff forecasting 
procedure can be implemented for a watershed in western Puerto Rico. 
The prediction results with lead-time of 10, 20 and 30 min were analyzed 
and compared using statistical methods. The forecast result with lead-time 
of 10 min is the best alternative with least percent of error. It was used in 
the hydrological model Vflo to compare the estimated hydrograph with 
the observed hydrograph from USGS stations. Furthermore, it was used 
in the flooding model Inundation Animator to show the extent of flooding 
superimposed onto a land map.
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Earth
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distribution, 327
methods, 28
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Federal Emergency Management 

Agency (FEMA), 31, 32, 72, 161, 190, 
238–240, 244

Fine-grained 
aphanitic, 56
fertile soil, 55

Finer resolution, 145
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procedure, 116
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Forecasts, 82, 83, 151, 159, 168, 176, 
178, 180, 182, 196, 216, 224, 225, 
284, 285, 329, 330

Forest
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Fundamental role, 168
Future work, 328
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Gaussian
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Pareto distribution (GPD), 24, 162

Index 353

A
pp

le
 A

ca
de

m
ic

 P
re

ss

A
ut

ho
r C

op
y

For Non-Commercial Use



354 Flood Assessment: Modeling and Parameterization

Geographic
coordinate system (GCS), 75, 243
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information systems data, 185
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sampling methods scan, 21
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method, 158
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Hit rate (HR), 39, 75, 76, 106, 157, 162, 

284, 286, 294, 295
Horizontal

line, 124
vertical orientations, 183
wave, 183

Hormigueros, 29, 32, 72, 88–91, 97, 99, 
148, 152, 188, 191, 308

Hourly 
false alarm time series, 108, 109
mean field bias time series, 109
rainfall product (N1P), 102

Humid, 191, 195
Hurricane, 3, 14, 31, 32, 72, 169, 175, 

212
Hydraulic

conditions, 20
conductivity, 21, 23, 29, 52, 53, 
55–57, 72, 80, 81, 91, 93, 124, 130, 
133, 135, 149, 157, 214–216, 249, 
252, 307–309, 311, 313
model, 25, 45
properties, 21, 215
roughness, 9, 19, 213–216, 307, 308
studies, 29, 238
study methods, 239

Hydraulics, 18, 25
Hydro estimator (HE), 14, 69, 70, 75, 

77, 79, 102, 106, 109–111, 113, 162
pixel, 70, 74, 102

Hydrograph, 13, 20, 21, 32, 58, 82, 117, 
133, 158, 212, 215, 216, 308, 314, 
330, 331

Hydroinformatic tools, 14
Hydrologic, 4–11, 13–18, 20–22, 25–29, 

38–41, 43, 47, 51, 55, 58, 62, 64, 
68–72, 75, 77–84, 87–90, 99, 115–
117, 124–128, 130–134, 137–142, 
148, 155–160, 170, 171, 175, 180, 
181, 185, 186, 188, 192, 194, 211–
213, 238, 239, 247, 249, 251, 252, 
313, 325, 327

analyzes, 168
approach, 16
calibration, 16
community, 4, 8
configuration, 116
cycle, 17, 180
distributed model, 78
engineering center, 45, 162

river analysis system, 162
ensemble, 79, 81
evaluation, 80
fluxes, 17
forecasts, 8, 69, 171
group, 57

group A, 251
group B, 53
group C, 55

inundation (flood) modeling, 185
distributed models, 185
lumped, 185
semilumped, 185

inundation model (Vflo), 78, 168
model 6–11, 18, 21, 28, 38, 39, 43, 
51, 62, 64, 68–71, 75, 79–82, 88, 
115–117, 124, 126–128, 130–134, 
137–142, 148, 155–160, 170, 171, 
185, 186, 194, 212, 247, 249, 327, 
258, 307, 308, 313, 314, 318, 
327–331

channel specifications, 244 
composition, 237
configuration resolutions, 124
configuration, 47, 79, 116, 117, 88
ensembles discharge depth vol-
ume, 134–138
ensembles peak flow, 134–138
grid resolution, 68, 160, 186
infiltration roughness parameters, 
247
potential evapotranspiration, 240
resolution, 9, 10, 79, 81, 124, 159
sensitivity, 10
slope characteristics, 242

modeling, 16, 25, 26, 47, 162, 213
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numerical model, 306
parameter, 5–7, 80, 82, 87
predictability, 7–11, 69, 156, 159, 
185
prediction, 5, 7, 41, 79, 85, 124
processes, 18
rainfall analysis project (HAP), 16, 
75, 102, 162
resolution model, 81
response units (HRUs), 185
response, 4, 7, 16, 71, 78, 88–90, 159
scale, 79
sensitive parameter, 326
simulation, 9, 16, 77, 99, 116
soil group, 38
solution, 8
states, 116
statistic, 318
system, 8, 9, 11, 69, 156
time series, 175

Hydrologically distributed model, 80
Hydrologist’s perspective, 201
Hydrology, 7, 175, 181, 182, 217, 219, 

331
Hydrometeors, 207
Hypothesis, 9, 114, 142
Hypothetical

green grass, 241
reference crop, 63
storms, 24

I
Infiltration, 17, 18, 21, 25, 29, 37, 47, 

52, 53, 55, 56, 80, 90, 212–215, 249, 
251–253, 313
capacity, 118
excess (IE), 215
parameter, 29, 57, 249
process, 249, 252
routine, 249

Infrastructure, 169
Initial saturation, 92, 93
Input parameter, 23, 58, 72, 73
Integrated model, 186
Intensity, 90, 91, 122, 202, 295, 306

Intergage distance, 122
Internet, 168, 205
Interpolation, 10, 14, 44, 72, 78, 85, 88, 

97, 99, 116, 122, 142, 158, 212, 223, 
230, 236, 242, 264, 327
lines, 44
method, 14, 72, 78, 85, 97, 116, 212, 
230, 264
resolution, 122

Inundation 
analysis, 322
analyst, 171, 216

extension, 216
module, 171

animator, 168, 330, 331
configured, 168

areas, 306
images, 168
model, 170, 216

Inverse distance
method, 85
weighted (IDW), 78, 97, 99
weighting, 162
weights, 14, 212

Investigation, 41, 68, 69
Irrigation, 31, 182

K
Kinematic wave analogy (KWA), 18–20, 

162, 212–214
Kolmogorov-Smirnov (K-S) test, 23
Krigging 

equations, 235
interpolation, 232
polynomial surface, 14, 212
simple, 223
techniques, 234, 235

L
Lagrange

coefficient, 236
multiplicator, 235

Lajas valley, 37, 190, 193
Lambda, 159
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Land
map, 185, 330, 331
sat, 162
slope, 72
surface slope, 47
use classification, 38–40, 58, 194

Large biases, 109, 157
Larger scale model, 84
Latin hypercube methodology, 23
Least square error, 82
Least squares, 220, 225, 233
Lighter rainfall events, 133
Limbs, 133, 141, 314
Limestone, 54
Limestone rock, 54
Linear

prediction, 174
quadratic programming routines, 234
regression equation, 105
relationship, 134

Linearization, 224, 225
Lithic, 56
Lithic rocks, 56
Local climate, 195
Lognormal Weibull distributions, 114
Lump parameters, 17
Lumped

model, 8, 185
type model, 185

Luz Torres-Molina, 208

M
Magnetron transmitter, 184
Magnitude, 24, 31, 69, 72, 74, 91, 151, 

158, 173, 214, 215, 217, 239, 308, 318
Manning’s roughness, 162, 214, 253

coefficient, 19, 23, 253
roughness factor, 162
values/crop coefficient, 59

Maricao
Forest, 62, 64
soils, 53

Mat-file format, 258
Mathematical

formulation, 18

model, 220
operations, 71
sophistication, 181
structure, 223

MatLab, 194, 208, 210, 236, 242, 258
Maximum likelihood rule (ML), 179
Maximum potential warning time, 26
Maximum/minimum peak flows, 147, 

151
Mayagüez

area, 183, 196
basin model, 51
bay drainage basin (MBDB), 10, 28, 
42, 44, 48, 51–53, 56–59, 62, 67–69, 
71, 72, 78, 87, 88, 98, 99, 115, 116, 
143, 147–149, 159, 162, 167, 168, 
170, 171, 173, 185–188, 196, 255, 
259, 267, 277, 283, 307, 321, 325
bay drainage, 7, 11, 155

basin study area, 29
bay model, 41, 45, 68
city station, 195, 196

Mean, 14–16, 20, 21, 28, 29, 32, 33, 
41, 45, 48, 51, 63, 70, 73, 77, 82, 83, 
103, 105, 108, 109, 111, 113, 124, 
126–131, 135, 139, 144, 148, 159, 
162, 175, 179, 180, 184, 190, 201, 
212, 218, 224, 228, 241, 264, 278, 
296, 298, 330
absolute error (MAE), 82, 83, 159, 
162, 284
annual precipitation (MAP), 239
annual rainfall (MAR), 32, 162, 239
distance, 70
Euclidian distance, 70
field bias (Bias), 16, 77, 108, 109, 
111, 113
rainfall, 103, 105
slope (dashed lines), 48, 51
square error (MSE), 136, 179, 180, 
261, 264, 265, 284, 314, 327
squared error, 82

Metamorphic rock, 56
Meteorological

analysis, 176
data, 181
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hydrological statistics, 283
models, 217, 219

Methodology, 16, 20–22, 25, 68–71, 79, 
80, 84, 116, 117, 159, 170, 176, 181, 
183, 194, 216, 219, 220, 242, 277, 298

Metric system, 18
Mineral calcite, 55
Minimum air temperature, 162
Mitigating responses, 26
Mitigation, 20, 196
Model

calibration, 6, 21, 22, 79, 140
configuration, 3, 78, 116
grid, 21, 42
infiltration, 249
output, 21, 23, 68, 72, 73, 89
parameter, 16, 23, 25, 79, 88, 177
parameterization, 23
prediction, 9, 22, 23
resolution, 86, 122, 135, 143
selection, 179
structure, 22

Model’s predictive capabilities, 9, 11, 
69, 156

Modeler, 7, 11, 82, 84, 117, 156, 158
Momentum equation, 18
Mona channel eastward, 196
Monitoring time period, 117
Monte Carlo

experiment, 23
generated parameters, 23
method, 23
simulations, 22, 23

Month/season, 176–178
Mountainous

areas, 17, 29, 71, 190
basins, 9, 69, 157

Moving average (MA) method, 16, 23, 
25, 79, 88, 174, 177

Multiple
linear regression model, 233
linear regressions equation, 233
regression techniques, 33

Multiples regression parameters, 233
Multiplication factors, 68

Multiplicative factors/scalars, 72, 80, 87, 
88, 90–93

Multisensor precipitation, 10, 18
Multisensor precipitation estimates 

(MPE), 10, 14, 16, 68, 74, 75, 77, 78, 
102–113, 148, 149, 151, 156, 159, 162
accumulations, 113
measurements, 105
pixels, 75, 106, 109, 111
product, 102
total accumulations, 113

Multisensor sources, 213

N
Nash–Sutcliffe model efficiency coef-

ficients, 149
National Climatic data Center, 75, 195, 

196, 201, 210
National Digital Forecast Database 

(NDFD), 194
National Meteorological Center, 176
National Oceanic and Atmospheric 

Administration (NOAA), 14, 16, 32, 
33, 36, 75, 156, 160, 162, 192, 201, 
206, 210, 239, 330

National Weather Service (NWS), 5, 6, 
14, 15, 148, 169, 180, 182, 186, 196, 
201–203, 206, 236

Natural
disasters, 169, 175, 329
phenomena, 174
process, 220
Resources Conservation Service 
(NRCS), 33, 37, 62

Neighbor
assignment, 75
resample technique, 51
resampling technique, 51

Net radiation, 63, 162
Network 

formulation, 19
stations, 5, 186

New radars, 184
TropiNet-1, 184

Cornelia hill, 184 
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TropiNet-2, 184
Isabela, 184

Newton quasi-Newton methods, 234
Next generation radar (NEXRAD), 4, 

10, 14–16, 24, 25, 42, 69, 73, 75, 78, 
79, 97, 99, 102, 111, 116, 159, 162, 
167, 168, 176, 182, 183, 201, 202, 
207–211, 255, 257, 259–262, 264, 
265, 326

Nodal values, 19
Noise effect, 111
Nonareal rainfall information, 78
Nonbehavioral, 22
Noncontinuous parameter variation, 20
Nondeterministic/sporadic, 175
Nonlinear

algebraic systems, 234
equation, 225, 230
model, 219, 222, 330
optimization

nonlinear programming, 233
problem (NLP), 233, 234
technique, 230, 278

prediction, 175
programming problem, 234
regression

coefficients, 15
models, 306

stochastic, 174
Nonsensical rain rates, 15
Nonstationary

characteristic, 222
component, 178

Nonuniqueness, 22, 140
Normal distribution

confident levels, 133
function, 162

North American Datum, 162
Novel nowcasting model, 170
Nowcast storm development movement, 

182
Nowcasting, 170, 182, 216–218, 267, 

268, 275, 283, 284, 306, 314, 326–330
algorithm, 306, 326
approach, 314

model, 228, 255, 326, 328
movement reflectivity analysis, 
267, 268
validation, 284

Numerical
information, 174
methods, 185

O
Off-theshelf marine radars, 184
One-dimensional continuity, 18
Optimal model, 22
Optimization techniques, 228
Optimum parameter, 21, 215
Ordered physics-based parameter adjust-

ment (OPPA), 19, 21, 80, 162, 215, 
216, 308

Organic matter, 29, 53
Orographic

effects, 85
events, 120
rainfalls, 120

OTG radars, 184, 203
Outliers (dots), 51
Overland

cells, 9, 47, 80, 97
hydraulic conductivity, 92
roughness, 27, 92, 93

P
Paralithic rock, 57
Parameter

aggregation effects, 6
distribution, 80, 83, 156
estimation models, 176, 177
maps, 19, 81, 308
quantifications, 10
scale-dependence, 79
space, 21, 79, 81
statistics, 117
uncertainty propagation, 116
value, 19, 21, 23, 52, 53, 56, 68, 71, 
72, 117, 155, 156

Parsimony of parameters, 179
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Partial
autocorrelations, 178
duration series (PDS), 24, 162

Peak flow, 7, 21, 24, 31, 32, 58, 72, 
87–92, 97, 99, 117, 124–129, 130–
133, 136–143, 148, 157–159, 162, 
170, 214, 216, 221, 308–313, 318
estimation, 140
variable, 136, 142

Pearson correlation, 63, 134, 135, 162
Pedotransfer functions, 53
Penman Monteith 

equation, 162
evaporation equation, 62
method, 62, 241

Percentage error, 20, 21
Performance index (PI), 286
Personal communication, 169, 186
Perturbation, 72, 73, 81, 84, 85, 88, 124, 

134, 141, 159
Phi parameter, 231, 232, 278
Photo-triangulation, 28
Physical 

based distributed model, 17, 25, 28, 
163
based hydrologic developed by Vieux 
and Associates, 163
based hydrologic model, 212
bounds, 80, 84, 116, 117
conditions, 71
justification, 175
laws, 116
modeling process, 68
parameters, 326
phenomena, 17
process, 173, 219
properties, 21, 193, 215, 308

Physics-based
distributed hydrologic modeling, 185
model, 17, 18, 212
physically based distributed (PBD) 
models, 17

Pits, 54, 55
Pixel, 75, 78, 102, 103, 106–111, 210, 

221–228, 232, 259–261, 265, 268, 
275, 298, 301, 302, 304, 306, 326–330

Plan position indicator (PPI), 209, 236
Planification, 194, 195
Point

process model, 220
processes, 176

Poisson
distribution, 24
process, 176, 220

Polar grid, 210
Polarimetric 

capabilities, 183
radars, 183
TropiNet (RXM-25), 202

Polygons, 14, 80, 176
Polynomial equation, 45
Poor drainage, 169
Porosity, 52, 53, 253
Posterior flow-stage curve generation, 

117
Potential evapotranspiration (PET), 63, 

64, 158, 163, 240–242, 327
Power

grid, 184
polarization channel, 184

PR-1 radar, 4, 184
Precipitation, 

distribution, 211
radar product, 163
runoff modeling system (PRMS), 17, 
185

Predictability
analysis, 124
limits, 147

Prediction
accuracy, 7, 21
rainfall amount inside storm events 
(PRAISE), 181, 182

Predominant branches, 174
qualitative/quantitative forecasting, 
174

Pre-doppler technology radars, 201
Pressure transducer, 8, 44, 46, 68, 70
Principal

parameters, 51
source, 97
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Probabilistic
analysis, 24
calibration methods, 16
deterministic sense, 85
distribution functions (PDFs), 7, 84, 
86, 101, 159, 181
laws, 217
quantitative precipitation forecast 
(PQPF), 219
statements, 219
structure, 23

Probability, 7, 16, 23, 75, 78, 83, 84, 
86, 103, 107, 108, 114, 116, 133, 134, 
156–159, 163, 181, 217, 284, 285, 294
detection (POD), 75, 76, 107, 157, 
163, 285, 286, 294, 295
distribution, 7, 23, 78, 83, 86, 103, 
114, 116, 134, 156, 181, 284
plot, 133, 134, 163
score, 83, 84

Propagation, 8, 10, 84, 115, 116, 156, 
159, 298

Proto-type, 168, 171
Prototype system, 201
Psychometric constant, 63, 163, 241
Puerto Rico, 3–6, 11, 13, 15, 16, 27–33, 

38–41, 52, 53, 58, 60, 62–65, 67, 69, 
71, 72, 74, 75, 78, 80, 81, 87, 101, 
111, 115, 120, 147, 148, 151, 155, 
163, 167–170, 173, 175, 182–207, 
211, 216, 236–241, 255, 259, 267, 
268, 275, 277, 283, 307, 308, 313, 
321, 325, 326, 329–331
Electric Power Authority, 30
flooding, 169
Water Resources and Environmental 
Research Institute (PRWRERI), 39, 
41, 44, 58, 60, 163
Water Resources Authority 
(PRWRA), 30, 163
Weather Radar Network (PRWRN), 
184, 202, 207

Q
Quadrangles, 28, 42

Quadratic programming (QP) subrou-
tine, 234

Qualitative 
forecasting, 174
observation, 218
quantitative rainfall forecasting tools, 
219

Quantification, 13, 14, 16, 62, 73, 74, 
78, 80, 91, 142, 211, 212

Quantitative
forecasting, 174

explanatory models, 174
time series, 174

precipitation, 8, 16, 79, 201, 207
estimates (QPE), 13, 16, 67, 163
estimation/segregation using mul-
tiple sensors, 163
estimation techniques, 14, 17, 
168, 219
estimation within gap areas, 97
forecast, 163
forecasting (QPF), 168

statistics, 82
Quarries, 54, 55

R
Radar 

application, 208
beam, 73, 205
bias correction, 20
control software, 184
coverage area, 16
data, 88, 97, 159, 182, 184, 208, 210, 
221, 236, 239, 256

images, 182
NEXRAD, 210
processing tropinet, 208
processing, 208

detection, 77
frequencies, 205
images, 25, 222, 226, 306, 326
measurements, 73, 221
measures, 15, 221
minimum precipitation depth, 109
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network, 170, 184, 188
pixel size, 68
precipitation product, 102

average rain gauge network rain-
fall, 103
contingency tables and scores, 106
false alarm rates/portion of esti-
mated rainfall events, 108
mean field bias (BIAS), 108
monthly cumulative rainfall, 102

product, 6, 8, 10, 73, 75, 105, 151, 
208
quantifications, 77
rain rate equation, 163
rainfall, 4, 8, 14, 20, 28, 77, 97, 99, 
106, 109, 167, 168, 170, 173, 185, 
221, 307

data, 188
estimation and validation, 182
estimations, 101
merging algorithm, 14
products, 148
quantification, 99

scan, 209
sources, 10
subpixel scale, 4
technology, 4, 7, 69, 168, 325
unit, 184

Radars types, 168
Off-the Grid (OTG), 168
TropiNet, 168

Rain gauge, 4–6, 8, 10, 13, 14, 16, 30, 
33, 41, 42, 68–70, 73–78, 85, 88, 97, 
101–106, 108, 109, 113, 119, 122, 
124, 126, 127, 130, 131, 156, 157, 
159, 160, 169, 170, 176, 182, 188, 
207, 208, 211–213, 218, 221, 255, 
260–265, 326
area, 105
column, 113
data, 74, 97, 101, 113, 262
detection, 77
distribution, 70
network, 109, 208, 210

Rain rate
equations, 183
quantification, 73

Rain resolutions, 124
Rain sizes, 125, 127, 129, 130
Raindrop distributions, 206
Rainfall, 3–11, 13–20, 23–29, 32, 33, 

67–69, 71–79, 81, 83–92, 97, 99, 101–
117, 119, 122, 124–130, 133–149, 
151, 155, 156–161, 163, 167–171, 
173, 175–178, 180–188, 194–196, 
201, 202, 205, 206, 210–218, 226, 
237, 249, 252, 268, 275, 284, 295–
302, 304, 306, 310–312, 314, 318, 
322, 325–330
accumulation, 88, 102, 119, 237
algorithms, 69
configuration, 86
data, 170, 176, 177, 211, 221
depth, 105, 111, 156
detection, 10, 75, 77
distribution, 24, 102, 212, 224
errors, 69
estimation, 68, 225, 295, 326
event/nonevent, 76, 106
excess, 18, 19, 214
frequency, 32
generation, 124
infiltration, 6
information, 78, 116
input, 7, 11, 16, 25, 79, 83–87, 89, 
92, 124, 156, 159, 196
intensity (red color), 3, 90, 99, 157, 
177, 202, 224, 284, 295, 296, 326
intensity fluctuations, 176
interpolation methods, 10, 99
map, 119, 124
methodology, 176
model resolution, 79
model scale, 81
observations, 8
pattern, 4, 90
perturbations, 10, 71, 72, 90
product, 8, 74, 75, 78, 149, 151
quantification, 111, 151
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rate, 15, 19, 24, 75, 163, 202, 221, 
225, 249, 275, 306
resolution, 8–10, 68, 79, 81, 86, 115, 
124, 126–130, 136–142, 144, 145, 
157–160, 185, 186
runoff, 19, 20, 25, 330, 331

forecasting, 330, 331
model, 19, 25, 331
predictions, 20

source, 79, 148
spatial, 4, 91, 116

distribution, 4, 91
variability, 116

tests, 28
time series, 178
up-scaling temporal variations, 84
validation, 111
value, 89, 103
variability, 3, 8, 13, 23, 27, 67, 73, 
85, 87, 101, 105, 115, 119, 147, 155
variation, 68, 73, 75, 85, 138

Rainy pixels, 225
Random

error, 207
samples, 23, 117
variable, 157, 181, 224, 231–234

Range height indicator (RHI), 208, 209, 
218

Ranked probability score (RPS), 83–86, 
136–139, 141–145, 159, 163

Raster, 6, 44, 75, 102
conversions, 102
layer, 44

Real time flood alert system (RTFAS), 
186

Real-time
application, 26
flood forecast systems, 186
flow information, 25
inundation mapping, 170
systems, 25

Red de Radars del Tiempo project, 208
Reference evapotranspiration, 163, 241

Reflectivity, 4, 15, 73, 163, 183, 202, 
205–208, 210, 221, 223, 224, 226, 
229, 267, 268, 275

Regression
analysis, 103, 239
coefficients, 45, 158, 233
equations, 31, 63, 228
model, 232, 275, 277, 278

Relative sensitivity (Sr), 68
coefficient, 73, 87, 92, 96, 97, 163

Remote
sensing techniques, 80
sensors, 14

Remotely sensed (GIS/RS) geospatial 
data, 18

Reproduce system behavior, 308
Resample

methods, 52, 53
techniques, 48, 50

Resampling 
technique algorithm, 75
techniques, 48

Research questions (RQ), 8, 10, 11, 68, 
69, 156, 158

Resolution, 
data, 9, 10, 68, 205, 216, 264
maps, 7, 9
model, 139, 142

Río grande de añasco basin, 30
Río guanajibo

basin, 32, 191
Río Cain, 191
Río Cruces, 191
Río Cupeyes, 191
Río Duey, 191
Río Loco, 191
Río Rosario, 191

valley, 191
Río yagüez basin, 32, 192
River

basin scale, 185, 213
beds, 55
forecast center, 5
gauging stations, 25

Robotic mass storage system, 210
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Root mean square error (RMSE), 21, 28, 
77, 82, 83, 136–139, 159, 261, 264, 
265, 284, 296, 298, 314, 326
bias ratio, 296

Rosseta lite program, 53
Roughness, 9, 19, 23, 29, 38, 58, 72, 80, 

81, 97, 124, 149, 157, 194, 214, 215, 
244, 253, 307–310, 313
coefficient, 244
scalars, 19

Runoff, 5, 7, 13, 17, 19–21, 25, 26, 29, 
72, 78, 79, 83, 87–93, 96–99, 117–
119, 124–133, 135–140, 142, 143, 
148, 153, 157–159, 163, 169, 170, 
185, 186, 212–215, 221, 239, 244, 
249, 251, 308, 313–318, 330
coefficient, 83
depth, 20, 21, 72, 87–93, 96–99, 
117–119, 124–133, 135–140, 142, 
143, 148, 157–159

box plots, 124, 127, 130
change, 90

generation, 17, 20, 83, 215
prediction, 78
processes, 185
rainfall ratio, 124, 125, 127, 129, 130

S
Sabana Grande, 29, 188, 191
Sacramento 

model, 180
soil moisture accounting model 
(SAC-SMA), 5, 186, 17
soil moisture, 5, 26, 186
soil water accounting system, 185

Satellite laser sensors, 85
Saturated hydraulic conductivity, 53, 56, 

163
Saturation, 81, 88, 91, 93, 118, 124, 130, 

149, 215, 241, 249, 307, 308, 312, 
313, 326
excess (SE), 215
fraction, 88
parameter, 81, 312
values, 118

S-band, 196, 205
Scalar, 80, 87, 116, 159, 233, 308
Scalar factors, 80, 87, 116
Scale-dependent, 20, 80, 156
Scan configurations, 208
Scatter plot, 97, 302, 304, 306, 313–318
Sea breeze mechanism, 120
Seasonal periodic correlation, 178
Selection events, 236
Selection optimal rainfall grid resolu-

tion, 143
Semilumped model, 185
Sensitivity

analysis, 5, 20, 23, 26, 72, 87, 88, 
313
tests, 68

Sensor
bias, 85
rainfall, 75

Sensors, 77, 79, 85, 203
Sequential quadratic programming 

(SQP), 225, 232, 233, 234
Serpentine rock, 54
Serpentinite, 191
Serpentinite predominates, 191
Shade coffee, 38, 194
Shelf hardware, 203
Shrub land, 38, 194
Silica content, 56
Simplistic formula, 63
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values, 47, 48, 50, 51
vapor pressure curve, 163

Snow, 169, 218
Social economic benefits, 170
Soil 

bulk density, 29
characteristics, 29
classification maps, 29
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climate analysis network (SCAN), 
33, 62, 64
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heat flux density, 164
map distribution, 37
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parameters, 9
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135
suction, 29
surface, 57, 193
survey geographic (SSURGO), 29, 
37, 38, 52, 53, 55, 57, 193, 249

database, 164, 193, 
texture, 193, 250
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type, 37
water characteristics hydraulic prop-
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Soil
classification, 37
surface texture, 193
textures, 250

Solar radiation, 63–65, 158, 164, 194, 
241
data, 64
dataset, 64

South-East Regional Climate Center 
(SERCC), 196

Spaceborne, 14

Spatial 
correlation, 234
distribution, 13, 14, 72, 88, 211, 212, 
221
rainfall variations., 116
resolution, 28, 99, 167
scale, 219
structure, 122
temporal, 17, 169, 211, 212, 218, 326

characteristics, 17, 212
distance, 218
scales, 169, 211, 326

variability, 3–5, 7, 8, 11, 69, 80, 97, 
101, 119, 122, 156, 158, 207, 212
weight, 116

Special nonlinear empirical model, 221
cloud motion vector, 226
estimation precipitation using now-
casting model, 228
initial variables optimization, 230
kriging interpolation, 234
least square method, 233
sequence quadratic programming, 
233

Spectrum/equivalently, 178
Spider plots, 10, 68, 72, 87–93, 309
Spline surfaces, 14
Square error, 28, 82, 111, 159, 179, 296
Stage rating curve, 44
Standard deviation, 45, 47, 48, 70, 82, 

85, 92, 102–105, 111, 113, 114, 119, 
135, 156, 157, 164

State plane raster product, 102
Stationary random component, 178
Statistic test (T-statistics), 278
Statistical

analysis, 232, 69, 264
characteristics, 175, 180
dynamical hurricane track prediction 
model, 176
errors, 275
measures, 136
methods, 23, 330
model, 331
sampling, 23
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tool, 83
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deterministic, 168, 219, 222, 330
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rainfall prediction models, 168

dynamic simulation, 116
methods, 168, 175, 188
model, 170, 174, 175, 180, 181, 217, 
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modeling rainfall, 217

time series analysis, 217
types of forecasts, 218

Storm impact, 236
phenomenon, 217
process, 175, 217, 222
rainfall prediction methodology, 168, 
170
transfer function, 326

Storm
sewer operation, 182
structure, 210
water drainage infrastructure, 20

Stream
cross-sections, 45
density, 80
network map, 42
volumetric discharge, 164

Streamflow, 5, 9, 16, 17, 21, 32, 52, 79, 
81, 82, 148, 150, 151, 179, 180, 185, 
216, 237, 253, 313
flow volume, 44
forecasts, 16
prediction, 9, 82
records, 17, 148
volume, 5

Subcritical flow condition, 45
Subpixel scale, 4
Subwatershed, 6, 8, 10, 24, 28, 32, 40, 

47, 48, 69, 84, 85, 148, 164
map, 47

scale, 69, 84
Subwatershed’s internal outlets, 6
Sugar cane, 191
Synthetic traces, 181
System monograph, 24
Systematic 

biases, 16
components, 180
error, 77, 78, 97, 148, 149, 151

Systeme Hydrologique European (SHE), 
17, 21, 23, 164

T
Taiwan government agencies, 26
Technical methodologies, 68
Telemetering, 182
Telemetry system, 188
Temperature/elevation linear regression 

equations, 158
Terrain

model, 9, 44, 71
scales, 48
slope, 68

Test bed subwatershed (TBSW), 6, 8, 
10, 27, 28, 40–44, 46–48, 50, 51, 
56–58, 61, 62, 64, 67–71, 74, 78–81, 
85, 88, 116–118, 122, 148, 158, 164

Texture class approach, 53
Thematic Mapper, 164
Thiessen polygons, 212
Threshold

runoff relationship, 26
value, 22

Time scales, 107, 109
Time series, 102, 174–181, 210, 217, 

219, 220, 257, 303
analysis, 175, 217, 331
methods, 174

autoregressive moving average, 
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exponential smoothing, 174
extrapolation, 174
linear prediction, 174
moving average, 174

Topographic
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Tornados, 169, 201
Transducer, 117
Transformation equation, 23
Transmit

data, 188
waves, 183

Transportation 
commerce, 196
systems, 182

Trapezoidal
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river section, 44

Tributary 
areas, 30
rivers, 48

Tropical 
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coefficients, 15
conditions, 15
environments, 6
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rainfall measuring mission (TRMM), 
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Troposphere, 111
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Upstream flow rates, 25
Urban
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drainage systems, 20
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inundation animation, 170
model, 21, 25, 28, 47, 97, 160, 
185, 215, 216, 242, 322
runoff, 148

Valleys, 32, 191
Vapor

curve, 63, 241
pressure, 63, 163, 164, 241

Vaporization, 63
Variability, 4, 14, 16, 113, 156, 157, 169, 

212, 221
Variance, 82, 83, 164, 175, 236
Variogram, 235, 236
Vector component, 84
Velocity, 18, 194, 205, 208, 210, 214, 

225–228, 298
Verbatim, 18
Verification

method, 82
step, 82

Vertical profile reflectivity (VPR), 207
Volcanic, 32, 56, 191

rock, 54, 191
Volcanoes, 169

W
Warm stratiform rainfall values, 15
Water

budget estimation, 31, 190
level measurements, 68
management, 26, 182

emergency response agencies, 26
resources, 26, 175, 180, 181, 331

management system, 26
retention, 53, 54

points, 53
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area, 69
image, 216

scales, 25
volumes, 5, 186

Weather
climate toolkit, 75, 210
conditions, 207, 208, 326
events, 196
measurement, 241
monitoring detection, 205
radar, 169, 188, 205, 207, 211, 221, 
306
stations, 62, 242
Surveillance Radar 1988 Doppler 
(WSR-88D), 15, 182, 196, 201, 206, 
210, 331
warnings, 182

Weathered layer, 57
Web-based computer program, 186
Website radars, 168, 207, 208

OTG-Aguadilla, 208
OTG-Mayagüez, 208
OTG-Ponce, 208
TropiNet-Cabo Rojo, 208
TropiNet-Lajas, 208

Wet season, 33, 120, 196
Wetting front, 29, 52, 55, 56, 249, 252, 

253, 307
Wildfire conditions, 22
Wind

speed, 33, 63, 241
velocity, 164

Woodland, 38, 191, 194
World Meteorological Organization 

(WMO), 169

X
X variables, 134
X-band, 20, 184, 205

frequency, 205
marine radar, 184

Xplorah project, 194, 195

Y
Y variables, 134
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Zero 

constant variance, 224
meters, 29, 190

porosity, 253
recorded precipitation, 178

Z-R relationship, 15, 16, 73, 206
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