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ABSTRACT: A hydrologic model will be used to perform real-time flood forecasting within the Mayaguez Bay drainage 

basin (847 km
2
), located in western Puerto Rico.  Minimizing run times, for this relatively large model, is important, 

therefore, the grid size should be optimized (minimizing runtime), while still producing accurate results.  In this study we 

used a numerical distributed hydrologic model to simulate the hydrologic response in a small Test Bed Subwatershed 

(TBSW) over a three months period (October 17–December 31, 2007) using gridded rainfall derived from a dense rain gauge 

network (28 rain gauges within 16 km
2
). The TBSW is located within the Mayaguez Bay drainage basin and is characterized 

by high rainfall variability over short distances (< 200 m), has an area of 3.55 square km, 29 percent average slope, and soils 

classified predominantly as Hydrologic Group B (60% of TBSW). Stream stage elevation was measured continuously at the 

TBSW outlet for use in the model calibration.  An evaluation of the interrelation between different upscaling parameters is 

being conducted to quantify their influence on hydrologic predictability.  In this paper we present the results for the baseline 

grid size (10 m) ensemble with 100 m rainfall resolution for an event that occurred on October 22, 2007. This study also 

evaluates potential evapotranspiration (PET) calculations using different methods with a daily time step for 2 years, at 2 

weather stations and at the TBSW.    

KEY TERMS: distributed model; hydrologic predictions; gridded rainfall; ensemble members, potential evapotranspiration. 

 

INTRODUCTION 

 

The overall goal of this research is to enhance flood prediction in real time and to alert the population of any flood 

potential, using radar information and a distributed hydrologic model. Knowledge of hydrologic prediction sensitivity within 

a basin is important when calibrating a model and for flood prediction accuracy. The quantification of the probability 

distribution function (pdf) is an important measure for understanding the basin response to changes in parameters and inputs. 

An up-scaling experiment will be developed by increasing the grid size to produce incrementally coarser resolution maps of 

each parameter and terrain input to be evaluated by an ensemble approach and generalized likelihood uncertainty estimation 

(GLUE) methodology. Each combination of terrain (topography) and precipitation map is called an “ensemble”, and each 

simulation with a different parameter variation is called an “ensemble member”. In this paper we present the results for one 

ensemble, configured with the terrain resolution of 10 m and rainfall interpolation of 100 meters for a rainfall event that 

occurred on October 22, 2007. Hydraulic conductivity and the roughness (Manning’s n) were perturbed at 5 levels within 

their physically realistic limits.  In total, 100 simulations were performed to create the ensemble and a best fit probability 

distribution function (pdf) was developed. Another specific objective presented here was to compare the Hargreaves-Samani 

(Hargreaves and Samani, 1985) and Penman-Monteith (Allen et al., 1998) reference or potential evapotranspiration (PET) 

methods with observed data at two Natural Resource Conservation Service (NRCS) – Soil Climate Analysis Network 

(SCAN) stations, and to derive a correction factor for the study area.  

 

Technical Approach 

 

To evaluate the predictability limits in the hydrologic simulation and study the interrelation between rainfall scales and 

terrain scales, a rain gauge network (28 tipping buckets rain gauges) was installed in a testbed subwatershed (TBSW) in 

western Puerto Rico (Figure 1). The rain gauges are located within a single GOES Satellite Hydro-Estimator (HE) pixel (4 

km x 4 km) and 64% of the rain gauges are within in the TBSW. The rain gauge network will provide a high resolution 

rainfall data set (temporally and spatially) to evaluate the Collaborative Adaptive Sensing of the Atmosphere (CASA) radars, 
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estimate biases of NEXRAD products (Rojas et al., 2009), determine sub-pixel satellite rainfall variability (Harmsen et al., 

2008), and understand the hydrologic response and predictability limits as well at small-scale spatial variations.  

In this study we used the numerical hydrologic distributed model Vflo (Vieux and Associates, Inc., 2004) to simulate the 

hydrologic response in the TBSW, with rainfall derived from the dense rain gauge network.  Most of the parameter data for 

the distributed model were prepared in ArcGIS using a digital elevation model (DEM) with 10 m resolution, land use and 

SSURGO soil maps. Overland slope, flow direction, flow accumulation and stream locations were determined using the Arc 

Hydro Tools extension used commonly in water resources.  
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Figure 1. TBSW and rain gauge network viewed in Vflo

TM
 (left). Cross section measured at TBSW outlet and flow-stage 

curve with a third order polynomial equation (right).    

 

The stream map generated was utilized to define the channel cells in Vflo; channel side slopes were assumed to be 1:1; 

and bed channel width was set to 5 m.  In most of the river sections the bed width is about 4 or 8 m.  Stream flow and flow 

volume are not sensitive to bed width, however, stream stage is sensitive to bed width.  For good flood estimation, stream 

cross section and rating curve information were assigned to selected model cells corresponding to the principal stream 

channel. The bed channel slopes were assigned by segments using the average longitudinal slope between cross sections 

digitized from the DEM (10 m) and corroborated with field measures (Figure 1). The Lower Creek has a longitudinal average 

slope of 1.25%, the Upper Creek has 2.22% and the Upper Creek2 was divided in two segments, the upstream segment shows 

a slope of 11.27% and the downstream segment, 3.27%. Flow stage measurements have been taken from October 2007 to 

October 2009. The instrument is located at 18.232667° latitude, -67.119533° longitude and 25 m elevation. Daily minimum 

barometric pressures were used to correct the stage measurements at the Miradero KPRMAYAG1 weather station (Lat. 18.2º 

and Lon. -67.13º and 22.86 m elevation), available at www.weatherunderground.com.  The average adjusted stage value 

using the minimum pressure was 0.847 m with 0.0225 m standard deviation.  

Figure 1 shows the stream cross section at the TBSW outlet, and the stream rating curve that was fitted to a third order 

polynomial equation with a regression coefficient of 1. The abstractions in the distributed model are calculated with the 

Green Ampt equation, where the principal parameters are: saturated hydraulic conductivity calculated using the percent of 

clay and sand, and bulk density of each applicable soil in the Rosetta Lite version 1.1 computer program (Schaap, 2001); 

effective porosity, soil depth and wetting front. All the parameters were assigned to a grid model resolution of 10 m. The 

dominant soil is Consumo soil, accounting for 59.85 % of the area. Although a clay texture soil, its B Hydrologic Group 

rating enhances the infiltration in the zone. Average infiltration parameters for the TBSW are tabulated in Table 1. Bouwer 

(1966) suggested multiplying the hydraulic conductivity by 0.5 for the saturated hydraulic conductivity in Green-Ampt 

model, therefore the average saturated hydraulic conductivity for the TBSW is 0.69 cm/hr.  The predominant land use is 

forest low density with 39.36 % of the area, brush rangeland with 38.17 % of the area and 14.51 % urban land use, 

respectively (Table 2). The area weighted average roughness value is 0.12 for the TBSW. 
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Table 1. Soils type classification (SSURGO), hydrologic group and infiltration parameters in the TBSW. 

Soil Name Texture 
Hydrologic 

Group 

Area 

(%) 

Wetting Front 

(cm) 

K sat 

(cm/hr) 

Depth 

(cm) 

Effective 

Porosity 

Consumo Clay B 59.85 31.63 1.273 300 0.415 

Daguey Clay C 15.11 31.63 1.266 300 0.451 

Humatas Clay C 25.03 31.63 1.736 300 0.454 

Serpentinite Rock Serpentine D 0.01 3.00 5.7 300 0.26 

Toa Silty Clay Loam B 0.01 27.30 0.294 300 0.377 

Average    31.62 1.38  0.43 

 

Table 2. Land use classification, n Manning values and Kc for Evapotranspiration quantification in the TBSW 

Land use Classification 
n 

Manning 
Kc 

Area 

(m
2
) 

Area 

Percent 

Forest low density 0.1500 1.100 1399376 39.36 

Shrub and brush rangeland 0.1300 1.000 1357012 38.17 

Urban or built-up land 0.0150 0.300 515711 14.51 

Forest high density 0.1500 1.200 208260 5.86 

Baren land 0.0150 0.300 37800 1.06 

Transition area 0.0500 0.300 21600 0.61 

Transportation, communication 0.0150 0.300 8341 0.23 

Streams and canals 0.0300 1.050 4500 0.13 

Gravel pit 0.0150 0.100 1800 0.05 

Native pastures 0.0450 0.850 900 0.03 

 

The rain gauge network data was interpolated using the Inverse Distance weighted method at 100 m resolution and 

incorporated into the Vflo model for calibration proposes. Once the calculated and measured values are sufficiently close, an 

up-scaling procedure will be developed for calibrating the TBSW and the regional scale model (i.e., Mayaguez Bay drainage 

basin). A forecast ensemble provides the capability to estimate the forecast probability distribution function (pdf). The 

ensemble member will be generated using the hydrologic simulations of the Vflo model for each terrain, rainfall input and 

parameter perturbations. Vieux and Moreda (2003) used scalars to uniformly change the parameter maps in the calibration 

process with a distributed model preserving the spatial variability. The scalars used to multiply the parameters sets are 

calculated with the following equation:  

 

 
4,3,2,1,0

32
8

1




i

i iN            (1) 

 

where Ni is the adjustment factor. From a previous sensitivity analysis study (Rojas, 2008) in a larger basin in western Puerto 

Rico, the parameters that affected principally the peak flow are roughness, initial soil moisture and hydraulic conductivity. 

The discharge volume was affected by initial soil moisture, followed by overland hydraulic conductivity and soil depth. Five 

perturbations for each parameter mentioned above were made with the adjustment factors of 0.25, 0.625, 1, 1.375 and 1.75; 

except for initial soil moisture saturation that was set to 40%, 60%, 80% and 100%.  During the previous month (September, 

2007), prior to the hydrologic simulation, a total of 247.4 mm of rainfall by the Multisensor Precipitation Estimator (MPE) 

was reported and 241.45 mm of rainfall by the rain gauge network, with a monthly bias between them of 0.98 (Rojas, 2009).  

During the first 21 days of October, 2007, a spatial rainfall average of 57.98 mm was reported by the rain gauges and on 

October 22 45.0 mm of rainfall was registered.  

The Vflo model requires potential or reference evapotranspiration as input.  Reference evapotranspiration calculated by 

the Penman-Monteith method (Allen et al., 1998) at the NRCS SCAN weather stations (USDA Tropical Agricultural 

Research Station (TARS) at Mayaguez and Maricao Forest, PR) were compared with the Hargreaves Samani method using 

equation 3 below with a daily time step (October, 2007 through October 2009).  

 8.17**0135.0  TaveRPET s
         (2) 

where Rs is solar radiation in units of mm per day and Tave is average air temperature in degrees Celsius. The coefficient of 

determination (R
2
) between methods is 0.9375 and the bias is 0.956 for this period, indicating that the Hargreaves Samani 
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constant (0.0135) could be corrected by the factor 0.956 for the study area using a more simplistic formula than Penman-

Monteith.  Goyal et al. (1988) developed monthly linear regression equations for air temperature (mean (Tave), maximum 

(Tmax) and minimum (Tmin)) in Puerto Rico, which depend on the surface elevation. PET can be calculated using these 

linear regressions (Goyal et al., 1988) along with equ (2) and equ (3). 
 

    5.0
minmax*8.17**0023.0 TTTaveRPET a         (3) 

 

where Ra is the extraterrestrial radiation in units of mm per day and Tmax and Tmin are the average daily maximum and 

minimum air temperature, respectively. Solar radiation is highly variable in space (Harmsen, 2009), therefore, the 

effectiveness of equ (2) and (3) to estimate PET using the temperature versus elevation relationships developed by Goyal at 

short time scales (daily) was evaluated in this study. Constants in Goyal’s monthly linear regressions were interpolated to 

daily constants.  All input parameters needed in the Penman-Monteith and Hargreaves-Samani methods (equ. 2) are measured 

by the SCAN stations. The elevation in the TARS is 13.72 m with an average temperature (Tave) of 23.9 C for the period of 

analysis (October, 2007-October, 2009); and in Maricao Forest the elevation is 747 m with Tave 19.7 C. The results show 

that the Goyal regressions at a daily time step predict the Tave with a coefficient of determination R
2 

= 0.46 for TARS and 

0.62 for Maricao.  However, if PET is calculated with the solar radiation measured at the stations along with the Tave derived 

from the Goyal regressions, R
2
 values of 0.987 and 0.992 are obtained at TARS and Maricao Forest, respectively (Figure 2). 

Values of R
2
 of 0.2145 for TARS and 0.0013 for Maricao were obtained using Goyal’s elevation model and equ (3). The R

2
 

is increased to 0.2254 in for the Maricao station if the PET is calculated using the Tave from the Goyal equations and the 

solar radiation is assumed to be equal to the TARS solar radiation (Figure 2). These results show that solar radiation is a 

spatially sensitive parameter in the PET calculation and that solar radiation cannot be assumed equal at locations distant from 

each other. Remotely sensed satellite measurements are suggested for a better spatially distributed solar radiation dataset, 

such as the method used by Harmsen et al. (2009). In this study, the PET for the TBSW was calculated using equ (2)  and 

assuming that the solar radiation is the same as TARS, due to its relatively close proximity, around 2.5 km, compared to 16.3 

km between TARS and Maricao Forest stations.  
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Hargreaves and Samani at Maricao Forest
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Figure 2. PET with Hargreaves-Samani relationship for observed Tmax, Tmin, Tave, solar radiation, extraterrestrial 

radiation; and temperatures predicted by Goyal relationships at SCAN-NRCS stations (left, TARS and right, Maricao Forest). 

   

The event of October 22, 2007 was selected to generate one ensemble, because it was one of the largest flows measured 

at the flow gauge, with a discharge volume of 16.64 mm and 10.1 cubic meters per second (cms) flow, and a runoff-rainfall 

ratio of 0.37.  A total of 125 runs were made, for each initial saturation value, where peak flow, volume discharge and peak 

time were compared with observed data.  In this sub-watershed, simulated changes in peak discharge and volume were not 

apparent with changes in soil depth, therefore, those runs were eliminated from the ensemble forecast. A total of 100 runs 

remained in the forecast ensemble that describes the dispersion of hydrologic predictions at a 10 m terrain resolution and 100 

m rainfall interpolation. Goodness of fit statistics were calculated to compare different probability distributions to the 

hydrologic simulation output. The Pearson correlation coefficient measures the strength of the linear relationship between the 

X and Y variables on a probability plot (a value close to 1 indicates that the relationship is highly linear). The Anderson-

Darling statistic (AD) is a measure of how far the plotted points fall from the fitted line in a probability plot. The statistic is a 

weighted squared distance from the plot points to the fitted line with larger weights in the tails of the distribution, values near 

zero are desirables. The simulated data are plotted using the principal probabilistic distributions in Figure 3, to quantify the 
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best fit for the ensemble. The extreme values in the runoff depth tend not to have a good fit with the pdf. The soil moisture 

saturation of 100% produced a very high and constant values of runoff depth, and high values of peak flow but with marked 

variation to changes in roughness. The best fit probability distribution was the Weibull and 3-Parameter Weibull with low 

AD (Table 3) and Pearson correlation coefficients of 0.98 for runoff volume and 0.989 for peak discharge (Table 3). 
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Figure 3. Probability distribution functions pair to ensemble forecast simulated data for runoff depth and peak flow.  

 

Table 3. Best fit statistic for probability distributions 

 Runoff Depth Peak Discharge 

Distribution 

Anderson-Darling 

(AD) 
Correlation 

Coefficient 

Anderson-Darling 

(AD) 
Correlation 

Coefficient 
  

Weibull 1.759 0.981 1.243 0.988 

Lognormal 3.714 0.925 3.358 0.937 

3-Parameter Weibull 1.704 0.984 1.18 0.989 

3-Parameter Lognormal 2.469 0.965 2.248 0.97 

Normal 6.927 0.923 5.409 0.936 
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Figure 4. Probability and interval plot of runoff depth and peak flow with a 95% confidence interval and Weibull distribution. 

 

Figure 4 shows the 95% confidence intervals for two variables for a Weibull distribution (left) and the 50% quartile or 

median with the lower (5%) and upper (95%) quartiles, (right).  From Figure 4 it can be observed that the “true” runoff depth 

and peak flow have a 55% and 60% chance of being selected, respectively. Statistics of behavior of this ensemble (10 m 

terrain and 100 m rainfall resolution) for one event (October 22, 2007)  shows a mean absolute error (MAE) of 8.9 cms for 

peak flow, 1.04 minutes for time to peak and 13.5 mm for runoff volume. Calculated root mean square errors (RMSE) were 

as follows respectively: 10.56 cms, and 16.07 mm for runoff volume. A bias is defined here as the ratio between the average 

of simulated and observed data, computing 1.14 for peak flow, 1.12 for time to peak and 1.0 for runoff volume.    
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CONCLUSIONS 

 

In this paper we presented the results for the baseline grid size (10 m) ensemble with 100 m rainfall resolution for an 

event that occurred on October 22, 2007, in the TBSW located in western PR.  The pdf for runoff depth and peak flow, and 

various other statistics were presented based on 100 simulations. The best fit pdf for the simulated data were the Weibull and 

the 3 parameter Weibull distributions for peak flow and runoff volume. Assumption of normal distribution is not 

recommended for these data.  Estimated biases were 1.14 for peak flow, 1.12 for time to peak and 1.0 for runoff volume.  In 

the future, statistics of the others ensembles will be developed and compared between them to measure the behavior of flood 

prediction with changes in parameters and inputs. A better understanding is needed of the watershed to improve the 

calibration and flood prediction; and this can be achieved by evaluation of additional ensembles using wet and dry season 

events.  Future efforts will also include recommendations for optimal radar spatial resolution needed to achieve accurate 

hydrologic predictions.  

The temperature/elevation linear regression equations of Goyal et al. (1988) were evaluated to calculate the PET at a 

daily time step using the Hargreaves-Samani equation and the results show similar regression coefficients between observed 

and calculated Tmax, Tmin and Tave. Therefore the most sensitive parameter is the solar radiation, because the elevation 

model (Goyal et al., 1988) cannot represent the spatial variability of this parameter using the daily interpolation for 

extraterrestrial radiation and the Tmax and Tmin calculated with the elevation model.  In this study, PET was estimated using 

the Hargreaves-Samani equation with the solar radiation for the TBSW assumed to be equal to that at the TARS, and  average 

daily temperature estimated from the Goyal et al. (1988) model. 
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