Steps for Designing a Drip Irrigation System

- 1. Obtain basic information:
 - a. Total area to be irrigated
 - b. Number of irrigation zones
 - c. Vertical distance between water source and emitter at highest elevation
 - d. Length of mainline
 - e. Crop to be grown
 - f. Soil information (texture, layering, depth)
 - g. Plant and row spacing
 - h. Shaded area of your crop
- 2. Determine number of emitters required per plant (n)
 - a. Determine area per plant or tree
 - b. Determine percent wet area
 - c. Determine wetted area from one emitter
 - d. Estimate number of emitters
- 3. Select your emitter
- 4. Determine the total number of emitters per zone and the total system flow rate.
- 5. Layout your system.
- 6. Estimate average evapotranspiration for the crop (ET_t)
 - a. Determine maximum daily ET rate (can use PRET).
 - b. Adjust using the percent shaded area to obtain ET_t.
- 7. Use irrigation equation to estimate the time required to irrigate. If the time is too great, consider selecting another emitter with a larger flow rate.
- 8. Design lateral (if applicable)
 - a. Select diameter
 - b. Determine friction loss. Take into account reduction of friction losses for multiple outlets.
- 9. Design manifold
 - a. Select diameter
 - b. Determine friction loss. Take into account reduction of friction losses for multiple outlets.
- 10. Design Submain (if applicable)
 - a. Select diameter
 - b. Determine friction loss
- 11. Design Mainline
 - a. Select Diameter
 - b. Determine friction loss
- 12. Determine head loss from elevation difference
 - a. Positive if water source is below highest outlet
 - b. Negative if the water source is above highest outlet
- 13. Estimate total head loss for the system.
 - a. Friction loss+ elevation loss + required emitter pressure+ minor losses
 - b. Minor losses are equal to 10% of all other losses.

- 14. Select Pump
 - a. https://cornell.pump-flo.com/app/storefront.aspx?sid=cornell
- 15. Check that Net Positive Suction Head (NPSH) available is greater than NPSH required.
 - a. NPSH calculator: http://irrigation.wsu.edu/Content/Calculators/General/NPSHA.php