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We survey and illustrate a Monte Carlo technique for carrying out simple simultaneous
inference with arbitrarily many statistics. Special cases of the technique have appeared
in the literature, but there exists widespread unawareness of the simplicity and broad
applicability of this solution to simultaneous inference.

The technique, here called “calibration for simultaneity” or CfS , consists of 1) lim-
iting the search for coverage regions to a one-parameter family of nested regions, and
2) selecting from the family that region whose estimated coverage probability has the
desired value. Natural one-parameter families are almost always available.

CfS applies whenever inference is based on a single distribution, for example: 1) fixed
distributions such as Gaussians when diagnosing distributional assumptions, 2) condi-
tional null distributions in exact tests with Neyman structure, in particular permuta-
tion tests, 3) bootstrap distributions for bootstrap standard error bands, 4) Bayesian
posterior distributions for high-dimensional posterior probability regions, or 5) predic-
tive distributions for multiple prediction intervals.

CfS is particularly useful for estimation of any type of function, such as empirical
Q-Q curves, empirical CDFs, density estimates, smooths, generally any type of fit, and
functions estimated from functional data.

A special case of CfS is equivalent to p-value adjustment (Westfall and Young, 1993).
Conversely, the notion of a p-value can be extended to any simultaneous coverage
problem that is solved with a one-parameter family of coverage regions.

Key Words: Permutation tests, randomization tests, bootstrap confidence regions,
credible regions, posterior probability regions, predictive regions, Q-Q plots, p-values,
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1 Introduction

The following are typical examples of problems that are often in need of simultaneous infer-
ence:
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• When comparing a univariate sample with a theoretical distribution, it is standard
practice to examine Q-Q plots where empirical quantiles q̂(α) are plotted against their
theoretical counterparts q(α). If the values of the variable at hand are in fact samples
from the theoretical distribution, the Q-Q plot is expected to be near the line q̂ = q.
The problem is assessing how near is “near”, preferably with some type of simultaneous
coverage bands.

• In the two-sample problem of comparing two empirical distributions, it is standard to
examine Q-Q plots where empirical quantiles q̂2(α) of the second sample are plotted
against the corresponding empirical quantiles q̂1(α) of the first sample. If the two
samples arise from the same population, the Q-Q plot is expected to be near the line
q̂1 = q̂2. Again, the problem is assessing how near is “near”.

• When fitting smooths, additive models or ACE regressions to predictor-response data,
one likes to provide standard error or confidence bands with the estimated curves. The
bands tend to have pointwise coverage probabilities of, say, 95%. It would be desirable
to show bands that have simultaneous 95% coverage across a dense grid of predictor
values and across all predictors.

• Functional data are a form of multivariate data in which the n’th case is thought of
as the discretized realization of a stochastic process xn(t). The parameter t ranges
in a finite subset T of a domain such as time, frequency, spatial location. If such
functional data are further structured by a one-way classification into K groups, one
may be interested in comparing the group means mk(t) = ave{n∈group k} xn(t). One
would want to establish whether some of these process means are significantly different
from the others, and one would like to see significance in a simultaneous sense across
the whole domain T .

These are just a few examples, selected for no other reason than being the authors’ starting
point for this article. These examples and others will be illustrated in Section 5.

The search for simultaneous coverage bands often ties statisticians’ minds in knots: it
seems infeasible to perform a search among coverage bands because all pointwise intervals
that make up the band can be widened and shifted independently, imposing on us a search
space of dimension 2K, if K is the number of locations at which we require simultaneous
coverage.

One can cut through this knot of problems with a simplifying assumption: limit the
search to a one-parameter family of nested bands. An example would be a band consisting
of intervals f(t) ± s · σ(t), where s is chosen for 95% pointwise coverage. By playing with
the parameter s, however, we can adjust the width of the band such that its approximate
simultaneous coverage probability is a prescribed value 1 − α. In other words, we calibrate
the bands for desired simultaneous coverage (hence the proposed name). It may, for example,
be found that a band with 98% pointwise coverage yields 90% simultaneous coverage. The
essential step is to consider the collection of bands as a one-parameter family that can
be searched for the desired simultaneous coverage. Limiting oneself to a one-parameter
family of bands is often natural, and it has the crucial advantage of reducing the search
for simultaneous coverage to a calibration problem. Simultaneous coverage probabilities can
often be estimated with sampling or resampling, depending on the context; it is then natural
to perform CfS by searching the estimated simultaneous coverage probabilities.

CfS has been used in a couple of contexts, in particular in the bootstrap literature.
Examples are the “wild bootstrap” of Härdle and Marron (1991) and proposals by Faraway
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(1990) and Hall and Pittelkow (1990). They consist of bootstrapping residuals in nonpara-
metric and parametric regression and using CfS for confidence bands. Another published
example is by Tibshirani (1992) who used bootstrap-based CfS for confidence bands in
the analysis of medical data. CfS has also been proposed for Bayesian inference by Be-
sag, Green, Higdon and Menger (1995). Their particular version of CfS turns out to be
equivalent to frequentist p-value adjustment (Section 7).

The present article is a partial survey, a systematic account and an illustration of CfS ,
as well as an extension to frequentist null bands. Because we have observed considerable
unawareness of this simple technique, we think this survey may be useful. In the following
sections we give motivations and some history (Section 2), describe some controversies (Sec-
tion 3), we illustrate the generality of the problem (Section 4), demonstrate a few worked ap-
plications (Section 5), outline computations in a general framework (Section 6), and describe
the connection with p-value adjustment (Section 7). Among the latter are the one-sample
problem of distributional assessment with normal Q-Q plots (Section 5.1), the two-sample
problem of comparing two groups of observations with empirical Q-Q plots (Section 5.2), a
one-way ANOVA problem involving functional data (Section 5.3), bootstrap standard error
bands for the transformations of ACE regression (Section 5.4), and simultaneous bootstrap
intervals for correlations (Section 5.5).

The first author has had a long-standing interest in the relation between inference and
exploratory data analysis (EDA), with an emphasis on infusing a measure of inferential
honesty into the visual tools of EDA (Buja et al. 1988, Section 5, pp. 292-295). The same
can be said about the present article: null bands, standard error or confidence bands, and
posterior bands are often inferential crutches propped onto exploratory graphical tools. By
lifting coverage properties from pointwise to simultaneous, one may obtain a greater degree
of trustworthiness when facing the question “is what we see real?”

2 Motivation

The motivation for this article came from the first of the above examples, the problem
of assessing Q-Q plots for comparing univariate data with a theoretical distribution. The
importance of this problem for normal Q-Q plots of regression residuals was recognized early
on by Daniel and Wood (1980, 1999) who proposed and practiced the following informal
method: Generate extensive series of normal Q-Q plots of normal pseudo-random samples
in order to convey a sense of the variability that should be expected for a given sample size
when the null hypothesis of normality is in fact true. Many pages of such “null plots” are
contained in Daniel and Wood’s book, a testament to the fact that it was published before
the advent of ubiquitous computing.

While Daniel and Wood proposed plotting many null curves one at a time, it is equally
plausible to overplot many null curves in a single plot, often called a “spaghetti plot”. Over-
plotted null curves create the visual impression of a null band in which the observed curve
should fall if it is compatible with the null hypothesis. If the observed curve reaches clearly
outside the null band anywhere on its domain, significant deviation from the null hypothesis
is inferred, and the exact shape of the excursion outside the band gives clues to the nature
of the deviation. Figure 1 (top right) shows a band of overplotted null curves, but the curves
are only plotted as series of points at the abscissae of interest. Actual spaghetti plots are
shown in Figure 9 in a different context.
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A next step was taken by Ripley (1981, chap. 8, p. 175) in the analysis of spatial data.
He plots envelopes for cumulative distribution functions by computing the minimum and
the maximum of 50 cdf’s simulated under a null assumption. Note again that these are not
confidence bands but null bands for cdf’s.

Subsequently, Atkinson (1981, 1987) proposed the following inferential twist, for Q-Q
plots again: simulate 19 Q-Q curves under the assumption of normal data; then the minimum
and maximum envelopes can be interpreted as having 90% pointwise coverage, because a
20’th curve following the assumption would fall outside the extrema at a given point with
probability 2*(1/20)=10%. This recipe was adopted by Cook and Weisberg (1982, 1999)
and Venables and Ripley (2002).

Atkinson’s proposal, intended for linear regression, has a second twist: it involves sim-
ulation of curves from artificial residuals obtained by regressing normal pseudo-random re-
sponses, the idea being to mimic the covariance structure of the actual residuals. Together
with the inferential twist, the procedure amounts to a parametric bootstrap test.

Ripley’s and Atkinson’s envelopes worked well at a time when computing was difficult and
slow. Being computationally less constrained now, there is no reason to favor computational
shortcuts over conceptual and practical needs. An example of such a need is greater precision
in estimating the lower 5% and upper 95% pointwise quantiles, which is what Atkinson’s
extrema of 19 simulations are doing. Another need is to move from pointwise to simultaneous
coverage. A third need is to clarify the choices we have in selecting shapes of coverage bands.
Here is a discussion of these issues:

• Shapes of coverage bands: Atkinson’s inferential twist points in the direction of
using bands formed by collections of intervals that have a specified pointwise coverage
such as 90% or 95%. This choice has been universally adopted for confidence bands in
nonparametric regression. For null bands in testing, this may be a lesser known choice,
probably because there does not exist a theory of power for the resulting tests. Still, in
the absence of such theory, we adopt the principle for all coverage problems, including
confidence bands, null bands, posterior bands, predictive bands: the bands we consider
have pointwise constant coverage probabilities, and the intervals that make up a band
are formed by fixed marginal quantiles.

This choice solves the problem of selecting one-parameter families of nested bands.
There is obviously no deeper principle behind this choice other than the desire for
a uniform pointwise treatment (see Härdle and Marron (1991), p. 783), but there is
an added convenience: the natural parameter for the resulting one-parameter families
of bands is the pointwise coverage probability, which permits a direct translation of
pointwise to simultaneous coverage, and nesting is automatic because a band with lower
pointwise coverage is necessarily contained in a band with higher pointwise coverage.

• Approximation of pointwise quantiles: Since we have decided to generally use
pointwise quantiles to define coverage intervals, there is a question of how to compute
them. Here are three typical cases:

– Marginal quantiles can be theoretically known. An example are Q-Q curves for
testing a fixed distribution: its order statistics can be mapped to uniform order
statistics whose marginals are known to be certain Beta distributions.

– If theoretical quantiles are not available, MC approximation may be used in one
of two ways:

4



Observed Data Null Data Overplotted

Nonparametric Null Band Beta Null Band

Figure 1: Q-Q Plots for One-Sample Comparison with the Gaussian. Top left: the observed
curve; top right: 100 overplotted null curves (shown only at quantile locations); bottom left:
a 90% simultaneous null band based on pointwise quantile estimates; bottom right: a 90%
simultaneous null band based on the Beta distribution of uniform order statistics.

∗ Quantiles may be approximated with simulated order statistics. To gain
greater precision for estimating lower and upper 5% quantiles, for example,
Atkinson’s extrema of 19 simulations would be replaced with the 500’th and
the 9,500’th order statistics of 9,999 simulations.

∗ If a normal approximation is reasonable, it may be more efficient to estimate
marginal means and variances from simulations and use the corresponding
normal quantiles.

• MC approximation of simultaneous coverage: For any given band, one can
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approximate its simultaneous coverage probability as the fraction of simulated curves
that are simultaneously contained in all intervals that make up the band. As with
all simulations, this approximation can be made arbitrarily precise by increasing the
number of simulations.

• Search for bands with prescribed simultaneous coverage, or CfS : Assuming
that a one-parameter family of nested bands is given, and also assuming that MC
sampling or resampling is used for calibration, here is how an implementation may
proceed: We start by observing that it is often easy to find the minimal band that
fully contains a given curve. Therefore, in an MC simulation of curves, it is sufficient
to collect for each curve the parameter of the minimal containing band. After the
simulation of, say, 9,999 curves, one has as many minimal parameter values; their
upper 5% quantile (= order statistic 9,500) determines a band with an approximate
simultaneous coverage probability of 95%. This procedure is similar to an algorithm
described by Besag et al. (1995) for the construction of simultaneous posterior credible
regions.

Figure 1 (bottom plots) shows two examples of null bands that have been calibrated for
an approximate simultaneous null coverage probability of 95%. One band is obtained
by CfS of theoretical quantile bands, the other is obtained by CfS of pointwise MC
estimates of quantiles. For more details see Section 5.1.

A case of CfS for Q-Q plots is in Davison and Hinkley’s book on bootstrap (1997, sec-
tion 4.2.5), where they interpret Q-Q plots as graphical parametric bootstrap tests. As far
as they give computational details, they seem to be similar to those of Besag et al. (1995) in
their re-use of simulations for constructing a one-parameter family of bands and estimating
their simultaneous coverage properties; their description of the calibration step is left some-
what informal. In spite of its potential, this use of CfS seems isolated and tentative in their
book.

CfS for confidence bands based on bootstrapping regression residuals has been proposed
multiple times in different versions (Faraway 1990; Härdle and Marron 1991; Hall and Pit-
telkow 1990; Tibshirani 1992). Curiously this is the most problematic application area of
CfS , for two reasons: (1) Even with a full enumeration of bootstrap samples, that is, the
true bootstrap distribution, one obtains only an estimate of an intended error distribution,
not the error distribution itself, whereas in frequentist testing the null distributions and in
Bayesian approaches the posterior distributions are not approximations to anything other
than themselves. (2) Confidence intervals and bands in regression always face difficult bias
problems; see Loader’s (1993) criticisms, but also Sun and Loader’s (1994) work. The bias
problem can be done away with by redefining and down-scaling the goal: instead of confi-
dence bands, estimate standard error bands that attempt to capture the expectation of the
estimates, as opposed to the underlying truth. [This would be in the spirit of Chaudhuri and
Marron’s (1999) SiZer if done for multiple bandwidths.] The former problem, though, that
of approximation due to estimation, is inherent in the bootstrap and cannot be defined away.
Yet, applying CfS with bootstrap is simply irresistible, and we show a couple of bootstrap
applications as well (Sections 5.4 and 5.5).
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3 Controversies and Objections

There are objections to some types of sampling/resampling-based simultaneous inference.
For example, C. Loader (2001) argued in characteristically strong language against boot-
strapping nonparametric regression residuals for simultaneous confidence bands:

... one should beware of using bootstrap methods for this type of problem, since
they are extremely unreliable, and just an unnecessary addition to computational
expense. The basic problem is that one works far out in the tail of marginal
distributions, and the combination of bootstrap approximation with simulations
cannot accurately model these tails.

We answer as follows: Whether one is far out in the tails of the marginal distributions
can be readily learned from sampling/resampling itself. If, for example, a simulation shows
99% pointwise intervals to have only 40% simultaneous coverage, we will conclude that it is
fruitless and even dangerous to strive for 99% simultaneous coverage, because this will drive
us extremely far out in the pointwise quantiles. As a corollary, the goal of constructing bands
with pre-specified stringent simultaneity properties is sometimes unattainable; instead, one
will have to make do with estimating the effective simultaneity properties of realistic bands
that are not too extreme in terms of pointwise quantiles. This is in fact the idea behind
frequentist p-value adjustment (Westfall and Young 1993), see Section 7.

If simultaneous inference based on (re)sampling is to be useful, it is best to be in a sit-
uation where the Bonferroni adjustment is too conservative because of strong correlations
among the multiple statistics for which simultaneous coverage intervals are sought. Inde-
pendence provides a benchmark for extreme cleavage between pointwise and simultaneous
coverage properties; for example, 100 intervals with 99% pointwise coverage will have only
36.6% simultaneous coverage, and in order to obtain 99% simultaneous coverage, one needs
99.99% pointwise coverage. By contrast, strong correlations will prevent pointwise and si-
multaneous coverage properties from becoming unbridgeable. Obvious examples are function
estimates whose evaluations at nearby locations have strong correlations by construction, and
this is indeed where we find the majority of applications of CfS .

In practice we like to compute the savings achieved by CfS over Bonferroni by forming
the ratio αsim/αptwise, where the α’s are the complements of the coverage probabilities of
either type for a given band; we call this ratio the “equivalent Bonferroni ratio.” It describes
approximately for how many independent variables this would be the Bonferroni adjust-
ment. In one example below (Section 5.4) the coverage probabilities are 10% and 0.02% for
simultaneous and pointwise, respectively. The equivalent Bonferroni ratio is 10/.06≈167. In
other words, this would be the Bonferroni adjustment for 167 independent variables, which
compares favorably with the fact that this example involved 1,006 variables.

A further objection against simultaneous inference says that the resulting intervals,
bands, regions, are often too conservative. S. Marron (1997) formulates it as follows:

... “too conservative”, i.e. you don’t find features that are actually discernible
by other means.

The “other means” he has in mind is his powerful SiZer methodology (Chaudhuri and Mar-
ron 1999). This argument points out the simple fact that it matters to what type of statistics
one applies simultaneous inference. For example, evaluations of raw function estimates may
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form a rather powerless set of statistics when it comes to establishing the reality of quali-
tative features such as modes; it may be necessary to use a set of evaluations of estimated
derivatives instead. Thus, “other means” might just be another set of statistics, whereas
simultaneous inference as such is not the issue. The most elementary lesson of the theory of
testing statistical hypotheses should not be lost: for detecting certain features (= rejecting
certain null hypotheses in favor of certain alternatives), some statistics are more powerful
than others. In this article we do not address the question of power and choice of statistics;
our only focus is the question of simultaneity given a set of statistics.

This article focuses mostly on simultaneous coverage bands, but CfS can also be applied
to one-parameter families of coverage regions that are not bands. An alternative are high-
density coverage regions, which make natural nested one-parameter families by raising and
lowering the contour threshold of a density function.

One may wonder whether coverage bands/boxes aren’t generally inferior to high-density
coverage areas. This is indeed what Knorr-Held (2003) maintains against Besag et al.’s
posterior credible boxes. Note that the objection is general and not peculiar to Bayesian
inference. Knorr-Held argues that boxes often contain large areas with very little posterior
mass, in particular when the estimates are highly correlated under the posterior. This is
illustrated in Figure 2 (a).

While this is true, it seems that the argument applies only in relatively low-dimensional
settings and when the estimates are not curves. When they are curves, a very different
viewpoint is needed. Counter-intuitively, it is in very high-dimensional situations with very
strong correlations where Knorr-Held’s criticism applies the least.

For one thing, there is a question of feasibility: it is infeasible and meaningless to at-
tempt density estimation, for example, on the distribution of a 100-dimensional vector of a
nonparametric fit evaluated at 100 locations.

The less intuitive aspect is that of high correlation that also works against Knorr-Held’s
argument. We use the following stylized situation as an “intuition pump” (the philosopher
Daniel Dennett’s term): We assume the estimates are variables X(t) that are correlated
in such a way that they have only two independent degrees of freedom, such as X(t) =
cos(t)Y + sin(t)Z, where Y and Z are two latent independent variables with zero mean and
equal variance, and t is in a finite subset of IR. We note that there is no interest in the fact
that a large part of a box {x| − c ≤ x(t) ≤ c ∀ t} has low probability density because in
this example we know about the trivial correlations for nearby t’s, just as we know about
correlations between nearby evaluations of a nonparametric fit. It is of interest, however,
that the same high-dimensional box can give a pretty good approximation to a high-density
coverage region in the plane spanned by the latent variables Y and Z. This is illustrated in
Figure 2(b) where the meaning of the ten intervals is shown in the space of Y and Z: the
intervals that define the simultaneous coverage box approximate a circular disk. Indeed, if Y
and Z are normal, this circular disk is a simultaneous highest-density coverage region. The
bands therefore represent a coverage region that is more meaningful in the space of latent
variables Y and Z than in the space of observables X(t).

4 Generality of the Simultaneous Coverage Problem

Bands with simultaneous coverage properties have generality in at least two dimensions:
1) the type of object for which simultaneous inference is sought, and 2) the type of distribu-
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Figure 2: Coverage Boxes/Bands: (a) Two variates with correlation cos(.4) = 0.92; the
north-west and south-east have low probability. (b) A simultaneous band on ten variables
with only two latent dimensions, Y and Z, shown in the Y -Z plane; the ten intervals in
ten directions approximate a circular disk. Each point represents a curve X(t) = cos(t)Y +
sin(t)Z.

tion that gives rise to simultaneous coverage probabilities.
We start with distributional situations where simultaneous inference is possible. The

simple but essential assumption is that there exists a single probability distribution for
which simultaneous coverage probabilities need to be calculated.

• Null regions for testing null hypotheses: In many testing situations significance
levels and hence null coverage probabilities are obtained from a single distribution.

– Simple null hypotheses: An example is testing a normal distribution with a specific
mean and variance.

– Composite null hypotheses with pivotal structure: An example is testing for nor-
mality, with unknown mean and variance. Pivotality is achieved by standardizing
the data, that is, subtracting a location estimate and dividing by a scale estimate.
The distribution of the standardized data is independent of the true mean and
variance. Although this joint distribution may not be analytically tractable under
most location and scale estimates, it can be easily simulated.

– Exact tests with Neyman structure: In many (though far from all) composite null
hypotheses, nuisance parameters can be eliminated by conditioning on a statistic
that is sufficient under the null hypothesis but not under alternatives. The result
are “conditional” or “similar” or “exact” tests (Lehman 1986).

The best-known examples are permutation tests (Good 2000, Mielke and Berry
2001) of null hypotheses of independence or, more generally, exchangeability.
They can be illustrated with two-sample tests, in which a quantitative variable is
assumed to be independent of a binary variable that labels the two samples. In
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Section 5.2 we give an example where an empirical Q-Q plot of the two groups
is assessed in terms of a null band whose simultaneous coverage probability is
obtained from the permutation distribution of the data. In Section 5.3 we give
another example where a permutation distribution is applied to a 1-way ANOVA
situation.

The class of exact tests comprises many examples in addition to permutation tests
and they are probably insufficiently exploited. A companion paper (Buja 2003)
looks into these issues and proposes another type of exact test that may be called
“rotation test”.

– Nonparametric Bootstrap tests: Bootstrap tests are unlike the usual non-parametric
bootstrap used for standard error estimation. In bootstrap tests one resamples
the data after modifying them to agree with the null hypothesis (Efron and Tib-
shirani 1993, Davison and Hinkley 1997). For example, the null hypothesis may
state that the medians of two or more groups are equal. In a bootstrap test, one
would subtract from each observation the median of its group and resample the
resulting data.

Bootstrap tests are more often applicable than permutation tests, but the latter
are exact, the former are not. When they both apply, they differ in the resampling
mode: permutation tests use sampling without replacement, bootstrap tests use
sampling with replacement. For example, a null hypothesis of independence of
two variables is tested as follows: a permutation test matches permutations of the
values of the first variable with permutations of the values of the second variable
(the second permutation is vacuous); a bootstrap test matches i.i.d. resamples of
the first variable with i.i.d. resamples of the second variable (the second resam-
pling is essential).

– Parametric Bootstrap tests: Parametric bootstrap relies on a parametric model.
The test version of this type of bootstrap consists of 1) fitting a model under the
null hypothesis and 2) calculating significance levels or null coverage probabilities
under the fitted model.

• Bootstrap standard error regions: These are typically constructed with pointwise
coverage properties, but we have seen that CfS has been proposed more than once in
the context of bootstrapping regression residuals. The distribution used to estimate
simultaneous coverage is an appropriate type of bootstrap distribution. For examples
see Sections 5.4 and 5.5.

• Bayesian posterior regions: Bayesian posteriors are usually analyzed one parameter
at a time, which means using pointwise rather than simultaneous posterior coverage
probabilities. Bayes procedures, however, have simultaneity problems also, and the
revolution in Bayesian computing has produced a wealth of opportunities for using
Markov chain Monte Carlo techniques to simulate draws from posterior distributions
in complex models and using them for simultaneous inference. We already mentioned
two proposals: “simultaneous credible regions based on order statistics” (Besag et al.
1995) which amount to a type of simultaneous posterior bands or boxes, and “posterior
contour areas” (Korn-Held 2003) which are high-density regions with regard to the
posterior, or an approximation thereof.
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• Predictive regions: When the statistical problem is not about interpretation or
prediction of parameters, it may be about prediction of future observations instead.
When the predicted observations are multidimensional, it may be necessary to account
for multiplicity, just like in any other type of inference. Given a predictive distribution,
be it frequentist or posterior Bayesian, CfS may be the construction of choice for
predictive simultaneous coverage regions when analytics are not available.

The other direction in which the reach of simulation-based simultaneous inference can be
extended is in terms of the objects for which inference is sought. Fundamentally, all objects
have the same structure: they are finite collections of statistics for which coverage intervals
are to be constructed in such a way that the joint coverage probability has a prescribed size
1 − α. Just the same, it is worthwhile pointing out the variety of special cases that are
covered by this simple setup. Here is an incomplete list:

• Multiple parameter estimates: This is the conventional case of simultaneous infer-
ence. In a typical situation one would have estimates of several regression coefficients or
ANOVA effects, for which one needs simultaneous confidence intervals or non-rejection
regions. Other examples are the entries in a correlation matrix or eigenvalue profiles in
principal components analysis (Buja and Eyuboglu 1993). Situations with more het-
erogeneous sets of parameter estimates are easy to conceive, for example two-sample
problems for which one needs simultaneous comparisons of means and variances.

General multiple parameter estimates can be given a graphical device that parallels the
idea of plotting curves with coverage bands. The idea is to use a parallel coordinate
display for the observed and simulated values of the estimates as well as their coverage
intervals, as in Figure 11 of Section 5.5. This representation is formally equivalent
to the more familiar scatterplot display (Figure 10), but it gives us a way to think
of coverage boxes as coverage bands, even when the estimates are not curves but
heterogeneous types of variables.

• Diagnostics curves for distributional assessment and two-sample compar-
isons: Both one- and two-sample problems are often approached with Q-Q plots for
which we now know how to construct simultaneous null bands. See Sections 5.1 and
5.2 for worked examples.

Null plots and null bands are not restricted to Q-Q plots. In the two-sample problem,
for example, they can be equally applied to other types of plots such as paired his-
tograms, paired density plots, or paired percentile plots. More recently, Ghosh (1996)
proposed a graphical tool called T3 plot for the one-sample problem, and Ghosh and
Beran (2000) proposed a variant of T3 plots for the two-sample problem.

• Smooths and non-parametric transformations of data: Smooths for simple x-y
data, generalized additive models based on smooths, and ACE regression with smooth
transformation of the response are all amenable to CfS . Smooths can be augmented
with permutation null bands for the overall null hypothesis, or with bootstrap standard
error bands. The type of smoother is immaterial: kernel, local polynomial, smoothing
spline, regression spline smooths can all be subjected to the same simultaneous infer-
ence procedures. Nonparametric regression seems to stretch the framework of CfS due
to the potentially large number of variables involved. Indeed, see Section 5.4 for an
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ACE fit involving fourteen variables with simultaneous inference for a total of over
1,000 locations, executed in a high-level language on a small computer. Computing
was not a limiting factor.

• Surfaces in spatial/temporal modeling: Models can be used to simulate possible
data, either in a parametric bootstrap fashion by using the fitted parameters, or in
a Bayesian fashion by drawing parameters from a posterior. Either way, simulation
of spatial or temporal processes can be used to obtain simultaneous confidence or
posterior intervals for surfaces or simultaneous predictive intervals for future data at
locations or times of interest.

• Curves that arise as functional data: Functional data are multivariate data in
which the collection of variables is thought of as a discretized random function or
random signal. Typically the number of variables is large and all variables are on the
same scale. Estimation for functional data usually leads to parameter vectors that
are also thought of as discretized dual processes. One therefore interprets a set of
confidence intervals for the parameters as a confidence band because the parameters
are thought of as representing a function defined on a domain such as space, time or
frequency. A worked example involving a functional one-way ANOVA problem is in
Section 5.3.

In all examples we assume that the functions are discretized at finitely many locations,
and we consider only simultaneous inference at these locations (as in Härdle and Marron
1991, p. 783). We ignore the problem of simultaneous inference at all or infinitely many
locations; in practice this is more often an aesthetic than an essential problem. In many
situations one can choose the discretization fine enough that the original function estimates
and their bounds can be replaced by linear interpolants, so that simultaneous inference at
the discretization locations is equivalent to simultaneous inference on the whole function
domain.

5 Some Applications

5.1 Null Bands for a One-Sample Comparison Based on Q-Q Plots

Here are details for the plots in Figure 1 for testing normality with Q-Q curves. The data
are the response variable “Median Housing Value” (MEDV0 from the well-known Boston
Housing data, in all a set of 506 values, here denoted {Yt}t=1..506. The values were sorted
and standardized (studentized): X(t) = (Y(t)−µ̂)/σ̂. Because the distribution of these values
is independent of the true mean and variance, we can use sorted studentized values from any
normal distribution (in particular N(0,1)) in the null simulation.

For the plot in the bottom left of Figure 1, we estimated pointwise quantiles from 9,999
normal pseudo-random samples. Another simulation of the same size was used to estimate
simultaneous coverage for the 506 test statistics. Figure 3 shows the correspondence between
pointwise and simultaneous significance levels. One reads off that in order to achieve a 10%
simultaneous significance (= 1-coverage), one needs a 0.12% pointwise significance, for an
equivalent Bonferroni factor of 10/0.12≈83, which compares favorably with the number of
variables, 506. In the bottom right of Figure 1 we used a parametric family of bands derived
from the known Beta distribution of uniform order statistics (Section 6.3), which strictly
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Figure 3: Simultaneous versus Pointwise Significance Levels for the One-Sample Problem.
For example, in order to achieve a simultaneous significance level of 0.10, a pointwise sig-
nificance level of approximately 0.0012 is required.

speaking is not quite proper because it does not account for the standardization. CfS was
again achieved with a simulation of the same size. Both bands are significant at the 10% level
due to 90% simultaneous coverage. The nonparametric band on the left is somewhat more
powerful than the parametric band on the right: the former has 181 out of 506 excursions
of the actual data outside the band, the latter only 129.

It is one of the virtues of simulation approaches that the distributions of exactly the
desired statistics can be obtained, without resorting to approximations such as that of a tn

with a Gaussian. If the statistics arise for example as studentized residuals from a regression,
one can account for the correlations among the residuals by regressing normal null data on
the predictors and forming studentized null residuals that mimic the exact computation
of the actual studentized residuals (Atkinson 1981). Furthermore, the regression does not
need to be linear OLS: It can be robust, model-searched, nonlinear, nonparametric, cross-
validated, ... .

5.2 Permutation Null Bands for Two-Sample Comparisons with
Q-Q Plots

The following example uses the New Jersey lottery payoff data from the “New S” book by
Becker, Chambers and Wilks (1988). The payoffs are given in dollars for each number, but
we ignore the dependence on the numbers. Instead, we consider the dependence on time
periods: We compare the payoffs of the 1975-76 period and the 1980-81 period.

Retracing the steps for the one-sample comparison in the previous section, we show a
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Observed Data Single Null Data

Null Data: Overplotted Null Band: Bounding Functions

Figure 4: Q-Q Plots for the Two-Sample Problem of Testing Equality of Two Populations.
Top left: a single null curve; top right: the observed curve; bottom left: a null band repre-
sented by overplotted null curves; bottom right: a 95% simultaneous null band represented by
lower and upper bounding curves.

Q-Q plot of the actual two payoff distributions against each other in the top left panel of
Figure 4. The null assumption of identical payoff distributions is tested with a permutation
test whereby null data are generated by randomly permuting the period labels “1975-76”
and “1980-81” against the payoff values. The remaining panels of Figure 4 show the results:
The top right shows an example of a Q-Q plot for one such set of permutation null data. The
bottom left shows 100 overplotted Q-Q curves of null data, together with the Q-Q curve of
the actual data. Finally, the bottom right shows a simultaneous permutation null band for
the Q-Q curves at the 0.05 level, together with Q-Q curve of the actual data. CfS required
widening pointwise null bands to the 0.002 level (0.998 coverage) to achieve a simultaneous
0.05 level, for an equivalent Bonferroni factor of 0.05/0.002=25.

As the null band shows, the 1975-76 period had significantly greater variability than would
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be expected under the null assumption of no difference: The high payoffs were significantly
larger and the low payoffs significantly lower in 1975-76 than 1980-81.

A point of interest are the computations of the null bands for two-sample Q-Q curves:
The symmetry between the two samples suggests that the null band should be constructed
symmetrically. Note that for the one-sample comparison in the previous subsection we
treated the theoretical and the empirical quantiles asymmetrically by choosing the theoretical
quantile axis for parametrization of the Q-Q curves and their null band. For the present
two-sample comparison by contrast, we chose a parametrization in terms of the 45 degree
diagonal to achieve a symmetric treatment of the two samples. We constructed 50 test
statistics in terms of 50 equispaced locations on the 45 degree diagonal. The number 50 was
chosen for computational expediency. The bands are drawn by computing the orthogonal
distances of the upper and lower bounds from the 45 degree diagonal.

5.3 Permutation Null Bands for Multivariate/Functional One-Way
ANOVA

The following “pizza commercial data” form a sample of curves that fall into several groups
and should hence be analyzed as a functional one-way ANOVA. The data are courtesy of
Jianqing Fan who in turn obtained them from D. Hudge and N.M. Didow at the University
of North Carolina at Chapel Hill. Fan and Lin (1998) applied what they call “adaptive
Neyman tests on Fourier transformed data” in order to detect group differences. Our aim
is to use simultaneous confidence bands on the more or less raw data to the same end. Fan
and Lin (1998) give the following background description:

In evaluating business advertisements, evaluators are asked to dynamically assign
scores to a commercial as they are watching. The resulting observations are a
collection of curves: the score of the i’th subject assigned at time t of the com-
mercial advertisement. Figure 1 presents this kind of data on a pizza commercial.
The commercial was played at studios at six different time slots and assessed by
different evaluators. Of interest is to test if there is any significant time effect.

The curve of each evaluator is given at 200 time points. The 6 time slots (not to be confused
with the 200 time points) constitute the six groups of curves. The groups are unbalanced and
their sizes can be read from Figure 5 where the raw data are shown. The evaluation values
observed at each time point range between 0 and 100; because the evaluation device was
initialized at 50, one observes many 50s in the beginning of each time slot. We take the last
sentence of Fan and Lin’s description as meaning that there is an interest in significant effects
of time slots because they presumably correspond to controlled experimental conditions.

Because the design does not use repeated measures, one will expect considerable noise
caused by the presence of different evaluators in each group. As Figure 5 shows, the noise is
indeed considerable and no clear group differences are evident at this point.

Fan and Lin mention a need for dimension reduction which they perform with Fourier
analysis. For our techniques, there is in principle no need to reduce the dimensionality: Null
bands for 200 test statistics (one for each time point) do not pose conceptual problems; to
the opposite, staying close to the raw data is advantageous for plotting and interpretation.

Just the same, we made a small concession to dimension reduction to speed up the
computations: we reduce the number of abscissa by using averages of four consecutive time
points, thus reducing the effective number of time points to 50.
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Figure 5: Raw Pizza Commercial Data.

Although the data look quite badly behaved, it was assumed that differences between
groups should be formulated in terms of the mean curves of the groups. Thus, one is
interested in simultaneous null bands for the six mean curves under the null assumption
of absent group differences. The test statistics are effectively the group means at the 50
reduced time points in all 6 groups, amounting to 300 test statistics all together.

The null assumption of identical distributions of the curves in all groups suggests the use
of a permutation distribution whereby the curves are randomly assigned group memberships.
The permutation distribution was approximated by 10,000 randomly permuted datasets.
Figure 6 shows mean curves for 10 of these random datasets. Note that the mean curves of
the smaller groups have greater variability, as would be expected. Consequently, null bands
should be expected to be wider for small groups. It becomes apparent that most likely there
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Figure 6: Pizza Commercial Data: Mean curves of the actual data (solid with circles) and
mean curves of ten randomly permuted datasets (dotted)

is not much significance to be achieved for group differences among the mean curves.
From the 10,000 null datasets, estimated pointwise quantiles were obtained for each of the

300 means (by sorting the 10,000 mean values at each time point). The result are 6 pointwise
quantile curves for any quantile level. The 10,000 null datasets are then re-used to estimate
the simultaneous coverage for each pointwise quantile level. The desired simultaneous null
coverage can thus be found by a simple search over the outer pointwise quantile levels.

Figure 7 shows three types of null bands at the 10% simultaneous level: a two-sided null
band (the outer band) and an upper and a lower one-sided null bound. It appears that no
mean curve achieves significance in the two-sided mode, and only few curves come close to
significance in the considerably more lenient one-sided mode, most notably the early time
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Figure 7: Pizza Commercial Data: Mean curves and 90% simultaneous null bands. Solid:
two-sided, dotted: one-sided.

points of group 2.
Although it should be obvious, we note that the null bands are not confidence bands;

it is only the absence of clear group differences that gives the visual appearance of bands
accompanying the mean curves. One would have hoped that at least some of the observed
mean curves would reach clearly outside the null band.
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Figure 8: Boston Housing Data: Bootstrap standard error bands for ACE transformations.
The inner bands (dotted) have 95% pointwise coverage; the outer bands (solid gray) have
90% simultaneous coverage. The transformations are shown on identical vertical scales in
order to show their importance graphically.
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5.4 Bootstrap Standard Error Bands for Smooths, Additive Fits,
ACE Regression

Function estimates (often called “smooths” when smoothness is assumed) are usually shown
with confidence bands or standard error bands or posterior bands. Which of the three terms
applies depends on the coverage claims: confidence bands for the true underlying func-
tion, standard error bands for the expectation of the function estimates (thus bypassing the
bias problem), posterior bands for Bayesian posterior uncertainty. For most major estima-
tion methods (kernel smooths, smoothing splines, regression splines,...) pointwise coverage
bands are quite easily derived (for a concise and very readable reference see Loader 1993; more
complete is Sun and Loader 1994). Some smoothers, however, have no bands with known
coverage properties, an example being Friedman and Stuetzle’s (1982) supersmoother. But
even for fixed-bandwidth smoothers coverage properties of bands are invalidated when sub-
jected to bandwidth selection based on cross-validation. The situation complicates further
when smoothers are used as building blocks of additive models, although here again coverage
bands exist when fixed-bandwidth smoothers are used.

We illustrate CfS with bootstrap standard error bands for Friedman’s original imple-
mentation of ACE regression (Breiman and Friedman 1985), which we treat as a black-box.
Two complications make CfS particularly appealing for ACE: first, Friedman’s implemen-
tation of ACE rests on the supersmoother, for which coverage bands may be difficult to
justify by any other means; second, ACE is strictly speaking not a regression but a canonical
correlation method, which puts it outside the analytical approaches suitable for regression
methods.

Breiman and Friedman applied ACE to the well-known Boston Housing data, and so
will we, although many objections can be raised against i.i.d.-based inference about data
that is aggregate (census tracts), spatial (greater Boston), and not a sample (complete enu-
meration). Just the same, the point is to demonstrate feasibility of simultaneous bootstrap
inference on a dataset that involves 14 data transformations on 506 objects.

Bootstrap has seen several proposals for CfS for nonparametric regression (Sections 1
and 2), and they all are cases of conditional bootstrap that conditions on the predictors and
resamples residuals. By contrast, we favor when applicable the observational-data bootstrap
that resamples cases with their full predictor-response vectors. Resampling cases mimics ob-
servational data better than resampling residuals, which ignores for example inhomogeneous
variances or capped response values, which we find in the Boston Housing data where the
response (median housing values, MEDV) seems to be capped at 50 thousand with a tie of
16 census tracts.

As always we replaced an uncountable number of function values with a finite number,
here as follows: for the seven variables that take on fewer than 100 values, we computed
intervals for the transformations at each observed value; for the other seven variables we
subselected 100 values (for example, about every fifth order statistic if there are about 500
values). All together we were left with 1,006 different variable values at which we obtained
standard error intervals for the variable transformations. We thus computed simultaneous
coverage properties across the transformations of the response (MEDV) and all 13 predictors,
and across evaluations of the transformations at up to 100 locations per variable

The construction of the simultaneous bootstrap standard error bands was as follows:
1) We used ACE fits on 9,999 bootstrap samples in order to approximate extreme pointwise
quantiles at the 1,006 variable values. 2) We used ACE fits on another 9,999 bootstrap
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Figure 9: Boston Housing Data: Four “spaghetti plots” of ACE transformations of the vari-
able NOX. Each frame shows 20 bootstrap replications. Also shown are: the 90% simulta-
neous coverage band (gray lines), and a fine-grained histogram of the variable NOX, which
takes on only 81 values for 506 cases. The highest spike corresponds to a tie of 23 cases.

samples in order to obtain simultaneous coverage properties of the pointwise intervals. It
turned out that a pointwise coverage of 99.94% was required in order to achieve an approxi-
mate 90% simultaneous coverage at the 1,006 variable values, corresponding to an equivalent
Bonferroni factor of 167. With 99.94% pointwise coverage, Loader’s (2001) warning against
going too far out in the tails of the pointwise distributions may have some validity here; yet
it seems preferable to use this imperfect crutch than relying on purely pointwise intervals.

In Figure 8 we show both the pointwise 95% and the simultaneous 90% standard error
bands. In contrast to Breiman and Friedman (1985), we retained the full set of variables
whereas they performed a stepwise backward variable selection procedure. A couple of ob-
servations: It appears that the response MEDV (Median Housing Values) does not require
a nonlinear transformation. It is gratifying to see that the descending stretch of the trans-
formation of RM (average number of rooms) is not significant, but some kind of kink in
the center of the transformation seems to hold up. The band for NOX (an air pollution
variable of primary interest) shows two cusps that are somewhat implausible; they are, how-
ever, “real” in the sense that the bootstrap transformations of NOX exhibit the most erratic
behavior among all variables, in particular at the locations of the cusps which may have to
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do with the many ties present in this variable. The “spaghetti plots” in Figure 9 give an
idea of the qualitative variety of transformations that are typical under bootstrap sampling.
In our experience, spaghetti plots retain their usefulness and can never be fully replaced by
coverage bands. They may indicate in this case that the real significance may exist in the
first derivatives more so than in the raw function values.

Finally, note that we used the basic percentile bootstrap as opposed to, for example,
the adjusted percentile bootstrap which is known to generally have better properties (Efron
and Tibshirani 1993, Davison and Hinkley 1997). The reason is simply a desire to limit the
complexity of computations. One should also keep in mind that we choose the width of the
bootstrap intervals with CfS , which means that the pointwise percentile bootstrap is used
for choosing the relative shapes of the intervals at different locations, not for selecting their
actual widths. CfS may amount to a small degree of “borrowing strength” across locations
by relying on all locations for selecting the ultimate widths in the one-parameter families of
pointwise bootstrap percentile intervals.

5.5 Simultaneous Bootstrap Confidence Regions for Correlations

The data example in this section arose from a phone usage study at a large telecommuni-
cations firm. For a sample of 500 customers, three variables were recorded: the number of
incoming and outgoing calls as well as the average monthly bill. The three variables had
sizeable correlations as expected: 0.66 0.58 0.79 for the variable pairs (1,2), (1,3) and (2,3).

We used bootstrap to construct a confidence box with simultaneous 90% coverage for
the three correlations. From 10,000 bootstrap samples we approximated marginal lower and
upper quantiles. We then searched all boxes formed from intervals spanned by marginal
lower and upper α-quantiles. It turned out that simultaneous 90% coverage was achieved
by marginal α = 1.9% quantiles, as opposed to 5% quantiles that yield the marginal 90%
coverage intervals. The equivalent Bonferroni factor is 10/3.8≈2.6, which is not a huge
savings compared to a Bonferroni adjustment with 3.

The result is depicted in Figure 10: The pairwise correlations of 10,000 bootstrap samples
are plotted as three pointclouds on the same axes. The narrower marginal 90% intervals
are shown as well as the projections of the wider simultaneous 90% coverage box. Figure 11
shows the same but in a parallel coordinate representation which is reminiscent of confidence
bands for function estimates. The differences to function plots are that 1) there are only
three abscissae, and 2) the abscissae do not form the domain of a function (they are just
representations of some statistics).

Although a drop from the marginal 5% quantiles to the 1.9% quantiles to achieve simul-
taneity might seem like a substantial difference, in terms of absolute increase in size of the
intervals on the correlation scale there is relatively little difference. This is not too surprising
because the simultaneity problem among three variables is not as great as it is in problems
with 20 or even 1,000 variables.

A point of possible confusion should be addressed: The correlated shapes of the point-
clouds in Figure 10 express a different kind of correlation. The statistics considered here
are the estimates of pairwise correlation. These statistics are correlated as they should be
when for example the estimate of cor(1,2) and the estimate of cor(1,3) share variable 1. In
summary: each point in Figure 10 expresses a bootstrapped correlation estimated from the
data, while the correlated shape of the pointclouds expresses the correlation between the
correlation estimates...
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Figure 10: Marketing data: pointwise 90% confidence intervals and simultaneous 90% confi-
dence box for the correlations of three variables. The three pointclouds represent the pairwise
views of the correlations of variable pairs (1,2), (1,3) and (2,3) in 10,000 bootstrap replica-
tions. The correlation estimates from the full data are shown as diamonds. Note that not all
points inside the simultaneous confidence rectangles are inside the simultaneous confidence
cube in 3-D; some points may fall outside in the third dimension.

The final Figure 12 illustrates a different type of simultaneous confidence region that is not
based on intervals: it shows a three-dimensional confidence ellipsoid in all three coordinate
projections. The ellipsoid is computed from a principal component analysis of the three-
dimensional bootstrap resamples, and it is calibrated for 90% coverage. The ellipsoid is
adapted to the shape of the bootstrap resampling distribution in 3-D. In effect we may
have constructed an approximate high-density coverage region (compare Knorr-Held, 2003)
without density estimation.
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Figure 11: Same as Figure 10 but in parallel coordinate representation.

6 A Framework for Simultaneous Coverage Problems

6.1 Nested One-Parameter Families of Coverage Regions

The examples of Section 4 share these commonalities: In each case, one is given a random
vector or random function, X(t), with a known probability distribution. In order to avoid
technicalities that play no role in practice, we assume a finite domain T (3 t) for X(t). The
random function X = (X(t))t∈T is therefore just a random vector with values in IRT . A
realization of X is written lower-case x = (x(t))t∈T , and if it is an observed realization we
write it as xo = (xo(t))t∈T .

The general task is to find coverage regions C ⊂ IRT for which Pr[X ∈ C] = 1 − α. We
confine the search to one-parameter families {Cs}s of nested sets:

Cs′ ⊂ Cs” for s′ ≤ s” ∈ S ,

where we assume that all Cs are closed subsets of IRT , that the parameter set S ⊂ IR is
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Figure 12: Projections of a three-dimensional confidence ellipsoid with 90% coverage. The
ellipsoid is adapted to the 3-D pointscatter by way of a principal component analysis.

closed, and that the family is downward continuous:

Cs =
⋂

s′>s,∈S

Cs′ .

Coverage probabilities will then also be downward continuous:

Pr[Cs] = inf
s′>s,∈S

Pr[Cs′] .

Such regularity conditions are practically irrelevant because the probability distributions P
are estimated by discrete empirical measures obtained from MC or MCMC sampling, and
the values of s are often confined to a finite grid. Regularity conditions would be relevant in
proofs of consistency.

Now the calibrated choice for coverage 1 − α is

sα = inf { s′ | Pr[Cs′] ≥ 1 − α } .
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This does not guarantee exact coverage 1 − α, but it is the closest possible approximation
from above, which is conservative in the sense that the coverage probability never drops
below the target value 1 − α.

It is important to note that in practice the construction of the sets Cs is based on the
observed xo(t) as well as the known distribution of X(t): C = Cxo,P . A simple example
is in Section 5.5 where we construct a family of nested bootstrap confidence ellipsoids in
3-space. They can be interpreted as balls Ct = { x | dist(x, xo) ≤ t} in the Euclidean metric
on the sphered bootstrap resamples. The resamples are not only used for calibration, but
for shaping the neighborhoods as well.

Often, the sets are constructed as upper level sets of a function on IRT :

Cs = {x | f(x) ≥ sup f − s } .

[We assumed f bounded to use this parametrization which maintains our ordering conven-
tion. We also assumed f upper semi-continuous so Cs is closed.] An example are highest-
density regions, where f(x) is a density function, usually a density estimate of the distribution
of X. An example in Bayesian inference are highest posterior density regions, investigated
by Knorr-Held (2003).

Given a nested family Cs as above, one can construct a lower semi-continuous function
f(x) whose lower level sets are the sets Cs: If we let f(x) = min{s | x ∈ Cs }, then {x | f(x) ≤
s } = Cs. [The construction could be for upper level sets by reversing the parametrization.]

6.2 Nested One-Parameter Families of Coverage Bands and Boxes

We speak of coverage bands when X(t) is a interpreted as a curve, and of coverage boxes
when X(t) is an arbitrary collection of variables. Bands and boxes are described by lower
and upper bounding functions, l(t) and u(t), where l(t) ≤ u(t) ∀t ∈ T :

C = {x | l(t) ≤ x(t) ≤ u(t), ∀t ∈ T } .

The one-sided cases of upper or lower coverage regions are trivially accommodated by setting
either l ≡ −∞ or u ≡ +∞. A t-like version of writing C is as

C = {x | max
t

|x(t) − m(t)|

b(t)
≤ 1 } ,

where m(t) = (u(t) + l(t))/2 and b(t) = (u(t) − l(t))/2.
Nested one-parameter families of coverage bands/boxes are specified by parametrizing

the bounding functions, ls(t) and us(t), such that

ls”(t) ≤ ls′(t) ≤ us′(t) ≤ us”(t) ∀s′ ≤ s” .

Then
Cs = { x | ls(t) ≤ x(t) ≤ us(t) ∀t }

represents a particular form of nested family of coverage regions. [We may assume ls(t)
upper and us(t) lower semi-continuous in s to satisfy the regularity conditions of the previous
section.] Calibration for (upper approximate) coverage probability 1 − α is given by

sα = min{ s | Pr[ ls(t) ≤ X(t) ≤ us(t), ∀t] ≥ 1 − α } .
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Again, the coverage is not necessarily exactly 1−α, but it is the lowest attainable conservative
coverage ≥ 1 − α.

When estimating sα in practice, one simulates a large number nsim of realizations Xν(t),
ν = 1, ..., nsim, and uses the obvious Monte Carlo estimate P̂r of Pr:

P̂r[ ls(t) ≤ X(t) ≤ us(t), ∀t ∈ T ] =
1

nsim
#{ν| ls(t) ≤ Xν(t) ≤ us(t), ∀t ∈ T }

The estimate for sα becomes

ŝα = min{s ∈ IR | P̂r[ ls(t) ≤ X(t) ≤ us(t), ∀t ∈ T ] ≥ 1 − α }

By construction, the set {x ∈ IRT | lŝα
≤ x(t) ≤ uŝα

(t), ∀t ∈ T } is a band with simultaneous
coverage probability 1 − α, up to simulation error.

6.3 Types of One-Parameter Families of Bounding Functions and

Their Construction

The simplest example of a one-parameter family of bounding functions are constants such
as

ls(t) = 0, us(t) = s ,

in its upper one-sided version. This has been used by Ghosh (1996) and Ghosh and Beran
(2000) in their T3 method for one and two sample problems as alternatives to Q-Q plots.

More commonly, though, the bands are at least conceptually based on marginal or point-
wise quantiles:

• The bounding functions ls(t) and us(t) are the lower and upper pointwise s-quantiles,
respectively, of the distribution of X(t):

ls(t) = qX(t)(s) , us(t) = qX(t)(1 − s) , 0 ≤ s ≤ 1/2 , (1)

where the pointwise quantile functions qX(t)(s) are implicitly defined by Pr[X(t) ≤
qX(t)(s)] = s and assumed continuous and strictly monotone.

• If approximate marginal normality holds, one may let

ls(t) = µ(t) − s · σ(t) , us(t) = µ(t) + s · σ(t) (s ≥ 0) ,

where µ(t) is the mean function and σ(t) the standard deviation function. This is
equivalent to the pointwise quantile approach with qX(t)(s) = µ(t) + σ(t)Φ−1(1/2 + s).

The more important distinctions between types of coverage bands are in terms of con-
struction and estimation:

• Analytic bands: In some cases families of bands can be derived analytically. Impor-
tant examples are the following:
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– Q-Q plots for a fixed distribution (1): In Q-Q plots the variables X(t) = Y(t) are
the order statistics of univariate data. Their marginal distributions are known if
the data are i.i.d. with fixed known cdf F because they can be reduced to the
distribution of order statistics of a uniform distribution. The marginal distribu-
tion of the t’th order statistic of a uniform sample of size N in [0, 1] is a Beta
distribution B(t, N − t + 1). Therefore

qX(t)(s) = F−1(F−1
B(t,N−t+1)(s)) .

– Q-Q plots for a fixed distribution (2): Chambers et al. (1983, p. 229ff) gave
approximate standard errors for empirical quantiles, to be used in normal null
bands:

µ(t) = qt , σ(t) =
σY

f(qt)

(

pt(1 − pt)

N

)1/2

,

where t = 1, ..., N , pt = (t−1/2)/N , qt = F−1(pt), and f(q) = F ′(q) is the density
of the distribution. The standard deviation of the data, σY , is irrelevant because
the multiple will be chosen through CfS from the family

ls(t), us(t) = µ(t) ± s
(pt(1 − pt))

1/2

N1/2 f(qt)
.

– Linear estimation in parametric and nonparametric regression: Estimates of linear
model coefficients and many nonparametric regression fits with fixed bandwidths
are linear in the responses. Under the assumption of normal errors with constant
variance, one can then construct normal quantile-based standard error bands (or
even confidence bands if one is willing to tackle bias). The reason is that σ(t) can
be derived up to a proportionality factor: if

X(t) =
∑

j

βj(t)Yj = 〈β(t), Y 〉

is a nonparametric fit at location t, then

σ2(t) =
∑

j

β2
j (t) σ2

Y = ‖β(t)‖2 σ2
Y ,

where σ2
Y is the same for all j. The specific value of σY is irrelevant because we

determine the width of the band with CfS , as in the preceding example.

Often one uses these analytic bands even in situations where they do not strictly apply.
For example, the above Beta-based null bands for Q-Q plots are used when the data are
standardized to zero mean and unit variance, even though standardization invalidates
the derivation of these analytical forms. Similarly in nonparametric regression, one uses
the above bands even if the bandwidth is selected with cross-validation, for example,
which also invalidates their derivation.

The reason for stretching the reach of analytic bands is that they obviate the need for
individual pointwise approximation of quantiles, which carries a burden of approxima-
tion error that may produce unaesthetic results in cases where smooth dependence on
t across the underlying domain T is assumed.
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• Pointwise estimated bands: We distinguish two cases, a direct case in which quan-
tiles are estimated based on order statistics of an MC simulation, and a normal case
in which quantiles are those of normal distributions for which means and variances are
estimated pointwise.

– Direct quantile bands: One approximates ls(t) and us(t) by empirical quantiles
of MC samples Xν(t) (ν = 1, ..., nsim). These empirical quantiles are simply the
pointwise sorted values or order statistics, (X(ν)(t))ν=1...nsim

, sorted separately for
each t ∈ T .

– Normal quantile bands: One approximates the mean profile µX(t) and variance
profile σ2

X(t) by empirical means and standard deviations of MC samples, for each
t ∈ T separately.

For the direct quantile bands there are only a finite number of quantile estimates
available: qs = ν/(nsim+1)(t) = X(ν)(t). If nsim = 9, 999, for example, one has pointwise
estimates of quantiles for probabilities that are multiples of 1/10,000. For any one of
these 9,999 quantiles, one has a pointwise quantile curve which can be used for the
construction of coverage bands: ls(t) = qs(t) and us(t) = q1−s(t), for s ∈ {1/(nsim +
1), 2/(nsim + 1), ..., 1/2}. [This parametrization follows the reverse convention.]

Direct quantile bands as well as pointwise normal bands can suffer from unsightly rough-
ness due to pointwise approximation. If the set T is a subset of a domain such as time or
space, one might gain by slightly smoothing µ̂X(t), σ̂X(t), or q̂s(t) over T , rather than com-
pletely relying on separate approximations for each t ∈ T . In the worked examples below,
though, we did not take advantage of smoothing.

Simple early versions of direct quantile bands are Ripley (1981, for cdf’s) and Atkin-
son (1981, for Q-Q plots of regression residuals). Their envelopes formed from minima and
maxima of small numbers of MC simulations (Atkinson nsim = 19) are crude estimates of
tail quantiles. Direct quantile bands were also proposed by Landwehr, Pregibon and Shoe-
maker (1984) with nsim = 25 for P-P plots as a diagnostic tool for logistic regression. With
simulations so small, it is impossible to even entertain the idea of CfS . Two later examples
where CfS on direct quantile bands were used are Härdle and Marron (1991) for confidence
bands based on resampling nonparametric regression residuals, and Besag et al. (1995) for
simultaneous posterior credible regions in Bayesian inference.

6.4 Computation of Direct Quantile Bands

Direct quantile bands can be computationally intensive, in particular when the number |T |
of quantities X(t) is large. In one of our examples, bootstrap standard error bands for ACE
regression, |T | is in excess of 1,000, for which we performed over 20,000 ACE runs using a
high-level language (R, see http://www.r-project.org/). At the time of writing this took in
the order of an hour or two to compute.

Depending on the size of T , we use different ways of computing coverage bands: a
memory-intensive method for small |T |, a memory-saving method for larger |T |. They have
different advantages: using more memory is not only faster but permits the computation of
greater detail; using relatively less memory permits the computation of considerably larger
problems.
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In what follows we denote the number of simulation runs by nsim. At typical number
would be nsim = 9, 999. The reason for the odd number is that nsim order statistics make
nsim + 1 equally likely spacings and hence are estimates of quantiles that are multiples of
1/(nsim + 1).

• Memory-intensive method: We store equally spaced quantiles across the whole range
of each variable. To this end, allocate a matrix of size nsim × |T |, so that each column
stands for one variable X(t). Fill each row with the results of one simulation. Then
sort the columns. This destroys the relationships across variables but yields for each
variable a set of order statistics that are estimates of marginal or pointwise quantiles.
The ν’th row will contain the estimates for the ν/(nsim + 1)-quantiles. This is part of
the algorithm described by Besag et al. (1995, sec. 6.3).

• Memory-saving method: We store order statistics only for the extremes of each variable.
Hence a decision has to be made how many extreme order statistics should be kept.
For nsim = 9, 999, for example, we may limit ourselves to order statistics corresponding
to quantiles below 1.5% and above 98.5%. This may seem excessively little, but given
that we look for simultaneous coverage it is realistic to expect the desired pointwise
quantiles to be somewhat extreme. Continuing for concreteness with a figure of 1.5%,
the number of order statistics on each side will be nord = 150. The algorithm processes
small batches of simulations one at a time, hence we also have to choose a batch
size, such as nbatch = 100. We allocate a matrix with the number of rows equal to
nord + nbatch + nord = 150 + 100 + 150 = 400, and the number of columns equal to the
number of variables |T |.The algorithm is as follows:

– Initialize the 400 rows of the matrix with simulation results, one simulation per
row.

– Sort each column of the matrix.

– Let nrep = ceiling((nsim − 2nord − nbatch)/nbatch) = 96. This is the number of
batches to be processed. Also let nrem = (nsim − 2nord − 1) mod nbatch + 1 = 99.
This is the size of a remainder batch in case the numbers nsim, nbatch and nord do
not make a whole number of batches (which is almost always the case).

– Repeat nrep = 96 times:

∗ Fill the nbatch = 100 center rows (here 151 to 250) with as many simulation
results.

∗ Sort each column of the matrix. This moves very large values in the current
batch to rows 251...400, and very small values to rows 1...150.

In one repetition fill only a remainder batch of nrem = 99 rows out of nbatch = 100
to achieve exactly nsim = 9, 999 simulations.

The first and last 150 rows of the matrix will contain the extreme order statistics of
the variables. The working memory for the batches can be discarded at the end. We
may name this algorithm “RSS”, for “Repeatedly Simulate and Sort.”

Strictly speaking, the memory-intensive method is a special case of RSS, whenever 2nord +
nbatch = nsim. A comparison of the two methods shows the following:
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• With the given numbers, the RSS algorithm requires a factor of 25 (≈400/9,999) less
memory. This permits us to compute problems with 25 times more variables X(t). For
example, the first method may accommodate 40 variables, the second 1,000 variables
with the same memory usage.

• RSS computations are somewhat more time-consuming, but the repeated sorts are
actually not as laborious as it may seem because the top and bottom nord entries of
each column are in sorted order at all times, which helps the sorting algorithm.

• The RSS algorithm can be restarted. For example, nsim = 9, 999 can be increased to
nsim = 19, 999 by running another 10,000 simulations in 100 batches. However, the
quantile range shrinks from nord/(nsim + 1) = 1.5% to .75% because the number nord

of order statistics on each side cannot be increased.

• The major advantage of the memory-intensive method is to permit simultaneous (=ad-
justed) p-value computations (Section 7) of all sizes because it stores all quantile esti-
mates. The RSS method does so only for the chosen extreme ranges on either side.

6.5 Computation of CfS

At this point we are given a one-parameter family of bounding functions. The way it may
be given is either as computable functions in case of analytical bands and normal bands, or
as two matrices of upper and lower bounding values in case of direct quantile bands. These
matrices are the result of the computations described in the previous subsection. They
contain ls(t) and us(t), respectively, for a selection of parameter values s. For direct quantile
bands computed with RSS they are of size nord × |T |. Even if the the bands are analytic,
though, it may be more efficient to form an l- and a u-matrix with bounding vectors for
a grid of quantiles such as the outermost 150 quantiles on each side for probabilities that
are multiples of 1/10,000. Greater precision is rarely meaningful. If l and u are stored in a
matrix, the parameter to be searched is effectively the row number.

One needs next a set of simulations for calibration. Two situations are possible:

• Simulations are relatively cheap and a new set of simulation runs for calibration can
be afforded.

• Simulations are expensive and have been stored in a matrix of size nsim × |T |. This
may be the same set of simulations that were used to construct direct quantile bands
by sorting the columns according to the memory-intensive method.

In either situation, we have a series of simulations of length denoted again by nsim, and
results denoted again by Xν(t) (ν = 1...nsim, t ∈ T ).

Calibration can now be computed as follows:

• For each simulated Xν determine the minimal parameter s = sν for which ls(t) ≤
Xν(t) ≤ us(t) simultaneously for all t ∈ T . This can be done efficiently with bisection
which requires searching log2(nord) parameter values. For nord = 150, for example, this
means searching about 7 values.

• For the collection of parameter values (sν)ν=1...nsim
determine the upper 1−α quantile.

This will be the estimate ŝα for a band with coverage probability minimally ≥ 1 − α:
[ l(t), u(t) ] = [ lŝα

(t), uŝα
(t) ].
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Besag et al. (1995, sec. 6.3) give the following alternative computation in case the simu-
lated data is completely stored and used both for the construction of direct quantile bands
and calibration: They compute the rank transformations of the columns of the matrix at
the same time that they sort them. Denoting the rank of Xν(t) in the t’th column by Rν(t),
they form the set of values

{max(max
t

Rν(t), nsim + 1 − min
t

Rν(t) | ν = 1, ..., nsim } ,

which is equivalent to our set (sν)ν=1...nsim
. If n∗ is the α-quantile of this set, then [l(t), u(t)] =

[X(nsim+1−n∗)(t), X(n∗)(t)] is the same band found above.

7 Simultaneous P-Values for One-Parameter Families

of Coverage Bands

Coverage bands in the context of testing amount to non-rejection (“acceptance”) regions.
Non-rejection and rejection regions, however, are in practice the less frequent way of express-
ing testing results. More often, one uses p-values, because they express test results at all
possible significance levels. P-values work well for pointwise testing, but for simultaneous
testing they are problematic. The problem of adjusting p-values for simultaneous inference is
the topic of a book by Westfall and Young (1993). While their book is concerned with many
cases of simultaneous inference, including multiple nested and non-nested null hypotheses, we
are concerned here with only one case: multiple test statistics under a single null hypothesis.
For us, however, testing is just one of several simultaneous coverage problems.

It turns out that one can define adjusted p-values not only for null bands in testing
problems, but for all types of simultaneous coverage problems, including confidence bands
and posterior bands. [We will say more on Bayesian p-values at the end of this section.] These
bands require a test profile which we denote by Xo = (Xo(t))t∈T . A p-value with regard to
a set of coverage bands will indicate how extreme Xo is with regard to the underlying (null,
bootstrap, posterior, ...) distribution of X = (X(t))t∈T . To make this work, it is again
essential to limit oneself to a one-parameter family of nested bands. We describe pointwise,
simultaneous, and adjusted p-values in turn:

• The usual pointwise p-value at t is defined as follows: Let st(X) be the parameter for
the smallest interval [ls(t), us(t)] that contains X(t):

st(X) = min{s | ls(t) ≤ X(t) ≤ us(t) } .

Upper and lower semicontinuity assumptions on s 7→ ls(t) and s 7→ us(t), respectively,
grant the existence of the minimum. The pointwise p-value at t is

pvalt(Xo) = Pr[st(X) ≥ st(Xo)] = 1 − Pr[ lst(Xo) ≤ X(t) ≤ ust(Xo)] .

• The simultaneous p-value for all of T is defined as follows: Let ssim(X) be the parameter
for the smallest band [ls, us] that contains all of X:

ssim(X) = min{s | ls(t) ≤ X(t) ≤ us(t), ∀t ∈ T } .
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In particular, the band corresponding to ssim(X) covers all the variables. More gener-
ally one has

ssim(X) ≤ s ⇐⇒ ls(t) ≤ X(t) ≤ us(t), ∀t ∈ T .

The simultaneous p-value is obtained for s = ssim(Xo):

pvalsim(Xo) = Pr[ssim(X) > ssim(Xo)] = 1−Pr[ lssim(Xo) ≤ X(t) ≤ ussim(Xo), ∀t ∈ T ] .

where Xo is fixed, and Pr[...] refers to the random variable X which follows the un-
derlying distribution.

• It may seem a contradiction in terms, but adjusted p-values are pointwise yet simul-
taneous. As for pointwise p-values, let s = st(Xo) be the parameter corresponding
to the smallest interval at t that contains Xo(t). While the pointwise p-value is the
complement of the marginal coverage probability at t alone, the adjusted p-value at t
is the complement of the simultaneous coverage probability of the whole band [ls, us],
not just the interval [ls(t), us(t)] at t:

pvalt,adj(Xo) = 1 − Pr[ lst(Xo) ≤ X(τ) ≤ ust(Xo), ∀τ ∈ T ] .

Thus the adjusted p-value at t adjusts the pointwise p-value for the presence of the
other statistics. This agrees precisely with the notion of p-value adjustment in the
literature (Westfall and Young 1993, Sec. 1.3).

Adjusted p-values are always less than (or equal to) pointwise p-values, and the simultaneous
p-value is the smallest of the adjusted p-values:

pvalt,adj(Xo) ≥ pvalt(Xo) , pvalsim(Xo) = min
t∈T

pvalt,adj(Xo) .

We see that the role of one-parameter families in p-value calculations is two-fold:

1. One-parameter families of nested intervals provide a notion of extremeness: in order
to measure how extreme Xo(t) is, one obtains the narrowest interval [ls(t), us(t] that
contains Xo(t) and calculates either the coverage probability of this interval or its
complement, which is the pointwise p-value.

2. One-parameter familes of nested bands provide a link between coverage intervals across
variables by imposing the simultaneous use of intervals [ls(t), us(t)] and [ls(t

′), us(t
′)]

at locations t and t′. Therefore, if one asks in p-value fashion what the probability of
observing something more extreme than Xo(t) is, one needs to consider not only the
narrowest interval [ls(t), us(t] at t, but all intervals [ls(t

′), us(t
′] with that parameter s

at all locations t′ and calculate the simultaneous coverage or its complement, which is
the adjusted p-value.

Obviously some one-parameter families of coverage bands are more plausible than others.
With p-value technology in mind, quantile bands seem particularly attractive because they
link intervals with identical pointwise coverage across all locations.

Approximations of p-values can be obtained as always by approximating probabilities Pr
with relative frequencies P̂r from MC sampling.

The interpretation of p-values in the context of frequentist testing is clear, but less clear
is their meaning for confidence bands or posterior bands. In fact, their interpretation is quite
different. The proper interpretation follows from basic observations:
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• The bootstrap estimates the distribution of parameter estimates based on data.

• The posterior distribution is weighted evidence about the parameters after observing
data.

Therefore, in both cases Xo(t) is a possible parameter value at t, as opposed to the usual
observed test statistic at t. The use of Xo(t) as parameter values of interest in bootstrap and
posterior inference is practical and useful, particularly in model selection: submodels can
often be expressed by zeroing specific model parameters, which means in current notation:
Xo(t) = 0 for a specific t. It is then natural to ask how extreme such a parameter is, and
it is natural to answer with a bootstrap or posterior p-value. In either case one asks how
wide an interval has to be to cover Xo(t) = 0. For the interval with the required width one
can calculate a bootstrap or posterior coverage probability or its complement, a bootstrap
or posterior p-value.

Simultaneous inference enters when many parameters are assessed with a joint bootstrap
or posterior distribution, in which case a pointwise p-value for X(t) has to be adjusted for
the presence of the other X(t′) that could also have produced small pointwise p-values. For
example, a smooth curve fitted at locations t ∈ T might be essentially straight; it might
permit a straight line (represented by Xo) to run simultaneously through all intervals with
one or two exceptions. The significance of those exceptions can obviously not be assessed
without taking into account the whole range of fitted t’s that could also have produced
exceptions.

[We conclude with remarks on Bayesian p-values. We start by noting that the posterior
p-values defined here are not identical with the posterior predictive p-values found in the
literature (see Gelman et al. (1995) or Carlin and Louis (1996), and the references therein).
The short version is that our posterior p-values are for testing submodels against the current
model, whereas posterior predictive p-values are for testing the current model against an
unspecified larger model. Here is why:

Posterior predictive p-values are based on a test quantity T (y, θ), a function of the data
and the model parameters. Extremeness of the observed data yo in relation to a model
p(y|θ) and prior p(θ) is judged in terms of Pr[T (y, θ) > T (yo, θ) | yo ], where the probability
is w.r.t. the posterior of θ and the corresponding predictive distribution of y — hence the
name “posterior predictive p-value”. This type of p-value yields a test of the present model
against unspecified larger models that are hinted at by T (y, θ). Gelman et al. (p. 170f)
illustrate this with binary data assumed i.i.d. Bernoulli and T equal to the number of runs
(-1), so that the posterior predictive p-value measures evidence of correlation among the
binary observations, which is the unspecified larger model. The test quantity T is then not
even a function of θ.

By contrast, the present posterior p-values are based solely on the parameters and their
posterior distribution, without the predictive distribution of the data. Recall that a one-
parameter family of bands defines implicitly a test quantity, namely: T (θ) = inf { s | ls(t) ≤
θ(t) ≤ us(t) }. Our posterior p-value is Pr[ T (θ) > T (θo) ], which defines a test of a
hypothetical parameter θo within the current model and in light of the posterior distribution.

We finally note a possible wrinkle in posterior predictive model checks: they also run
into simultaneity issues if they use multiple test quantities, X(t) = Tt(y, θ). Naturally,
CfS applies here as well, and the resulting p-values will indeed be pointwise, simultaneous
and adjusted posterior predictive p-values.]
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8 Conclusions

We surveyed a method for simultaneous inference based on one-parameter families of cover-
age regions and calibration for simultaneity (CfS ). The method is of great generality, both
in terms of types of inference and types of objects to which it applies. CfS has appeared
many times in the literature, but generally with a particular application in mind; pointing
out its generality and reach is one of the main purposes of this article. Computations of
coverage regions with almost no parametric assumptions is currently possible for more then
1,000 variables. While some caution is needed about the fact that simultaneous regions tend
to reach far out in marginal distributions, the method can be used in two ways, either for
finding regions with given simultaneous coverage or, if this is unrealistic, for estimating the
simultaneous coverage of a given realistic region. CfS is another example for the advan-
tages of sampling/resampling-based methods: most simultaneity problems are theoretically
intractable, but easily solved with simulations.
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