A Cooperative Spatial-Aware Cache
for Mobile Environments

Fernando J. Maymi *, Manuel Rodriguez-Martinez ** Wolfgang Andre Rolke ***

*Dept. of Electrical Engineering & Computer Science
U.S. Military Academy
West Point, NY, USA

fernando.maymi@usma.edu

**Dept. of Electrical & Computer Engineering
University of Puerto Rico
Mayaguez, PR, USA

manuel.rodriguez7@upr.edu

***Dept. of Math. Sciences
University of Puerto Rico
Mayaguez, PR, USA
wolfgang.rolke@Qupr.edu

Abstract—In many scenarios, particularly in military and
emergency response operations, mobile nodes that are in close
proximity to each other exhibit a high degree of data affinity.
For example, all soldiers in the same region, regardless of their
specialty, will want to know all nearby threats, as well as all
friendly assets. Since relaying queries to a distant server is costly
in terms of bandwidth and battery power, it would be ideal to use
local resources that are only a hop away. In this paper we propose
a shared spatial cache that can be thought of as residing in a
region rather than in any given node. Each node that participates
in the cache holds an expendable part of the data, so that the loss
of any node or small group of nodes can be tolerated with little or
no degradation of service. We describe the analytical models that
verify our claims and show the results of extensive simulations
that validate our models under simulated but realistic conditions.

I. INTRODUCTION

There exists information that can literally save your life.
If you are about to step on a landmine whose existence
is known to intelligence officers in their headquarters, then
having access to their knowledge will prevent the loss of
your life. If you are the pilot of an already-loaded helicopter
extracting victims from a flooded area, and you spot an elderly
person stranded on a rooftop, then making that information
available to anyone who enters that area can help save that
victim’s life. In both cases, there probably exists a master
data store into which the reports, of the landmine and of the
victim, are entered. In both cases, personnel in the areas will
likely query these data stores for this information. In both
cases, delays or interruptions in moving the information from
the servers to the mobile clients can be tragic.

Our work was born of the need to warn dismounted troops in
Iraq and Afghanistan of the threat of incoming mortar rounds.
We developed a system of pagers and bridging devices called

Ancile [1] that worked very well during live-fire testing in the
deserts of Arizona. During these tests, mortar rounds were
fired at a target area, picked up by radars, and a warning
message transmitted across multiple networks to dismounted
soldiers in the area; all with plenty of time for the soldiers
to move away before the rounds ever landed. Based on this
success, we extended the scope of the framework to also
warn soldiers whenever they approached the vicinity of a
suspected improvised explosive device (IED) given that some
other soldier already knew about the potential danger.

As we continued extending the architecture to encompass
other threats besides IEDs, it quickly became obvious that
there existed a large and important set of problems in both
the public and private sectors for which Ancile could provide
a viable solution [2]. Among these problems is the monitoring
and control of emergency response personnel at the site of a
man-made or natural disaster. We could have, for instance,
allowed medical personnel to quickly move to ad-hoc casu-
alty collection points in the aftermath of hurricane Katrina.
Additionally, the system could be used to warn key personnel
when a tsunami has been detected so that they may, in turn,
warn people in their vicinity.

A shortcoming of our framework, however, was that we
still relied on connectivity to centralized data stores across
an ad-hoc network that is frequently slow and unreliable.
Nodes attempting to acquire situational awareness (SA) would
likely experience delays and failed transmissions, particularly
as they moved further away from their headquarters. These
communications problems oftentimes translate into loss of life
in military and emergency response scenarios. An attractive
solution is to take advantage of neighboring nodes to satisfy
some queries.

As we detail in section III, exceptionally good work has

Tactical
Internet

Database
Server

| guess I'l take it,
but I'l have to
delete the
demonstration

I'm leaving.
Someone please
remember the
IED

\
\
. o2
Soldier 1 Cache Soldier 2 Cache
Item Value ltem Value
Enemy sniper 95 Looting 52 @
Suspected IED | 95 - T o7 —
lJ u
Fig. 1. Cooperative Cache Scenario.

been done in the area of cooperative caching in mobile ad-
hoc environments. Significantly, however, the existing body
of work does not address a coordinated interaction among the
nodes in order to ensure that spatial data concerning a region
stays within (or as close as possible to) that region. Nodes
in these approaches act altruistically in providing cached data
to their neighbors, but do not coordinate with those neighbors
their own departures from the area or their deletions of cached
data. This means that these cooperative caches are repaired as
data is lost (as happens when caching nodes leave), but are
not proactively maintained

Our idea, which is sketched at a very high level in figure
1, is to have nodes monitor each other’s cache contents as
well as their own impending departure from the region for
which data is being cached. When a node leaves the region, it
jettisons its cached data thereby giving the remaining nodes a
chance to adopt some or all of the items that would otherwise
be lost. All neighboring nodes would receive the messages,
and individually decide whether to adopt the data items into
their own share of the collective spatial cache. The adopting
nodes may have to make room in their own caches for the new
items, which means that they have to periodically reevaluate
the value of the items in their own caches in order to identify
the least valuable ones for possible deletion. This process of
jettisons and adoptions reduces the transmission and time costs
of repairing the cache as nodes leave.

A. Motivational Example 1

A military patrol in a hostile zone suspects an improvised
explosive device (IED) has been emplaced in their area. They
report this threat up their chain of command so that the proper
commander can dispatch an explosive ordnance disposal team
to investigate. Though the central server is the data repository,
the patrol members’ mobile devices can act as caches for nodes
in their vicinity. Furthermore, these caching nodes can detect
the arrival of new nodes in their area and push the threat
information to them. When the patrol returns to base, this

cached data leaves with them, forcing friendly forces in the
area to query the remote server explicitly until one of these
nodes starts acting as a cache. If the patrol could handover
these data to other nodes when they depart, the cost and speed
of accessing them would remain low. This could literally mean
the difference between life and death.

B. Motivational Example 2

A search team in disaster operation is combing a large
area looking for survivors. The team finds a seriously injured
survivor who needs immediate evacuation. The team leader
reports their discovery to the rescue operations center, leaves
a paramedic behind to stabilize the patient, and moves the
rest of the team out in order to continue searching for others.
Though the paramedic has a portable communications device,
the report was filed by the team leader, so only that device
and the central server know of the casualty. If, as it leaves
the area, the team leader’s device could ask the paramedic’s
device to cache the report, then that data would remain in
the appropriate spatial region. Later, as a truck drives by en
route to a supply point, and it’s on-board computer requests
situational awareness on its location, it would learn from the
paramedic’s caching device of the location of the casualty. The
reduced time required to get the patient to a medical facility
could very well save a life.

The work we describe in this paper could be developed
into a significant enabler for sharing situational awareness.
As such, it would allow personnel in both scenarios above to
operate with greater effectiveness and efficiency, which could
very well lead to saving lives in the situations of interest to
us. The specific contributions of this paper are as follows.

1) A framework for distributed, cooperative caching of
spatial data in bounded regions of space.

2) An analytical model of the bounds of cooperation among
nodes sharing data in a spatial region.

3) An extensive simulation study of the performance of the
proposed framework under realistic conditions.

The rest of this paper details our work and is organized
as follows. In section II we highlight the essential concepts
which the reader will need to understand our work. We follow
with a brief survey of relevant research published by others
in section III, before we detail our own architecture in section
IV. We then delve into a detailed model analysis in section
V and a realistic simulation that is documented in section VI.
Finally, we draw our conclusions in section VII and provide
directions for our future work.

II. SUPPORTING CONCEPTS

In our paper, we assume the reader is familiar with certain
concepts upon which we rely for our framework. In the interest
of completeness, we briefly cover these in the following
sections. Readers who are familiar with these ideas may safely
skip ahead to section III.

A. Military Grid Reference System

Most civilian geospatial applications use the Universal
Transverse Mercator (UTM) to specify locations based on
degrees of latitude and longitude. Though UTM is intuitive
and allows for arbitrary precision in specifying a point on
the Earth, military land forces in the North Atlantic Treaty
Organization (NATO) use the Military Grid Reference System
(MGRS) instead. MGRS divides most of the planet into 100
km. by 100 km. grid squares, which are then subdivided into
10 km., 1 km., 100 meter, 10 meter and 1 meter squares.
Unlike degrees of latitude and longitude, grid squares maintain
consistent lengths, which makes them preferable for appli-
cations in which distances between regions are frequently
determined.

The MGRS provides us with a convenient way to define the
spatial regions that define our caches. Their terse naming con-
vention has the added benefit of reducing the space required
to identify regions and data within them. Furthermore, the fact
that MGRS is widely used in virtually all military as well as
many emergency operations makes its use justifiable from the
users’ perspective.

B. R-trees

Data which pertains to a given geospatial point or region,
such as an MGRS grid square, is known as spatial data. Spatial
data is not well suited for traditional indexing structures be-
cause it is difficult to create a partial order out of a collection of
them. One of the most popular approaches to spatial indexing
was first proposed by Anton Guttman and is called R-trees
[3]. R-trees are similar to the B-trees used in conventional
databases in that they are height-balanced trees whose leaf
nodes contain pointers to data objects. Non-leaf nodes contain
entries consisting of an n-dimensional rectangle and a pointer
to a child node containing all objects in that rectangular space.
This creates a hierarchical structure of minimum bounding
rectangles (MBBs). MBBs are aggregated at each level of the
tree, so that all non-leaf nodes are described and indexed by a
MBB that encompasses all of the children nodes’ geometries.

Figure 2 depicts a hypothetical R-tree index. Note that, for
the sake of simplicity, we are combining fixed features (e.g., a
train station), with moving objects (e.g., people); it is usually
more advisable to not include these two different types of
information in the same relation. A critical parameter of an
R-tree index is M, the maximum number of entries which will
fit in one (non-leaf) node. Each internal node other than the
root node is required to have m entries, where % <m< M.
When m = M and a new item is inserted, the node is split
into two nodes with roughly the same number of entries each.
This change propagates up through the tree an may result in
parent nodes being likewise split in two all the way to the
root. Conversely, when m = % and an item is removed from
the tree, that node is deleted and its now-orphaned items will
be re-inserted into the tree at the deleted node’s parent node.

Indexing in general and R-trees in particular, are applicable
to data collections spanning several thousands or even millions
of records. While this can realistically be the case for the

Airport

Fig. 2. An R-tree Example.

servers in our framework, we do not envision the need for
R-trees in our mobile nodes. The utility of R-trees in our
framework stems from ease with which servers that use them
can select a given number of records within a spatial region.
By defining our regions in terms of R-tree MBBs, we expedite
the process of building caches from the server’s perspective.

C. Query Result Caching

Even with R-tree indexes, spatial queries are expensive in
terms of both processing at the server and, more importantly
in our current line of work, in terms of transmission costs
of moving the data from the server to the requesting node.
Obviously, it would be beneficial to reuse the results of past
queries to satisfy future ones. In order to do this, there exist
a variety of both local (i.e., intra-nodal) and cooperative (i.e.,
inter-nodal) caching schemes. At the most basic level, a node
can store the results of its queries in hopes that they may be
able to satisfy future queries from the application layer. This
simple caching mechanism fails to exploit items that may be
stored in neighboring nodes. In terms of cooperative caching,
two promising approaches which have been developed by
others are the 7DS architecture [4], which shares cached
data among directly connected neighbors, and a more flexible
approach proposed by Liangshong Yin and Guohong Cao
[5], which allows nodes to exploit the caches of others that
are not directly connected. We discuss this later approach
next, followed by others that are relevant to our proposed
framework.

III. RELATED WORK

Yin and Cao [5] describe a cooperative caching scheme for
nodes in mobile ad-hoc networks (MANETS) in which both
query originators and query forwarders perform caching. Their
scheme is cooperative, because of the caching performed by
the relaying nodes. In their paper, they show that the best
results are obtained when nodes are allowed to cache both
data items and also the paths to nearby nodes that have those
items. This means that, once a data item has to be removed

from the cache, a node may still remember the nearest source
for that data. This facet of their scheme is of much interest to
us, because it can be used as the basis for a more elaborate
collaboration scheme.

Just as Yin and Cao expanded the contents of a traditional
cache in order to support routing information, Hu, et al. [6],
similarly broaden the concept, but in order to support semantic
caching. In semantic caching, nodes cache not only the data,
but also the semantics of the query which yielded it. In order
to efficiently support semantic caching in spatial databases,
Hu and his team store the indexing structure which supports
the query. The inclusion of a partial index allows nodes to
determine which future queries could also be supported by
the cached data, which makes their approach proactive. As
promising as this is, it does not incorporate node cooperation,
though we believe its key elements are amenable to our efforts.

Huang, et al. [7], proposed a fairly straightforward mecha-
nism for nodes to keep track of the data which their neighbors
are caching. At the heart of their approach is a string that
is as long as the number of data items in the database and
which nodes use to advertise which items are in their caches.
Obviously, this assumes that all nodes are aware of the identity
(though not necessarily the attributes) of each data item in ex-
istence. This information is periodically provided to all nodes
by the server to maintain system-wide coherence. Though
this use of cache signatures is very promising for our own
purposes, their dependence on nearly constant connectivity to
the server violates one of our basic constraints.

Finally, Chow, et al. [8], proposed GroCoca, an approach
to mobile peer-to-peer (P2P) cooperative caching that exploits
the tendency of mobile nodes in certain situations to cluster
into groups based on either mobility, or data needs, or both.
These tightly-coupled groups (TCGs) create opportunities for
significant collaboration among group members. Though we
can certainly exploit their use of TCGs in our own work, we
have to relax group membership rules in order to support our
specific needs. Moreover, Chow and his colleagues make an
implicit assumption, as did Huang, et al., that nodes know the
extent of the items in the global database and use this to create
their own cache signatures. Again, we cannot assume this, so
we had to find a workaround.

IV. ARCHITECTURE

Our shared spatial cache allows nodes to collectively cache
all known data pertaining specific spatial regions. Under
optimal conditions, this allows any query on that region to
be answered using the shared cache. Clearly, this requires that
there are enough nodes to cache all known data for that region.
Our approach is spatial both in terms of the data it contains,
as well as in terms of the location of the cache: a spatial
region. As nodes enter that region, they become potential
repositories for some of its data. When nodes leave the region,
they hand whatever data they may be caching for that region
to their neighbors; the neighbors, in turn, independently decide
whether or not to adopt the data into their own portion of the
shared cache.

A. Cache Regions

We divide space into regions using the Military Grid Ref-
erence System (MGRS) introduced in section II. Note that
any similar regular decomposition of space (e.g., degrees
of latitude and longitude) will work equally well, provided
that the total area of a region is not excessive with regard
to the amount of memory in the mobile devices. For ease
of tractability, we will only simulate a single cache region
in section VI. However, it makes sense to allow nodes to
participate in the shared caches of multiple regions since the
nodes are expected to move fairly frequently. The number of
regions in whose caches a node may participate is bounded by
the information density (i.e., number of data items) of those
regions and by the amount of available cache memory in the
nodes themselves.

If a node is configured to participate in multiple shared
cache regions, it will choose the regions that are closest to
it. A node always participates in the cache for the region
in which it is located, which we call its home region. Every
region that touches the home one is then examined in turn to
see the minimum distance between the node and the closest
point in that region. In the case of square regions such as
those described by the MGRS, eight regions border the home
region, so eight minimal vectors are calculated that touch each
of those neighboring regions. The shortest » — 1 vectors are
selected for a node that participates in r shared caches. The
regions to which these vectors point are then added to the
node’s collection of caches.

In figure 3, for instance, we depict four shared caches
(r = 4), each based on 1,000 x 1,000 meter grid squares. In
this configuration, nodes participate in the four regions whose
closest points to the node are minimal. This is to say that a
node would participate in the shared cache for the region in
which it is currently located, and also in the shared caches for
the three neighboring regions whose closest point is closest to
the node. Node A, in figure 3, participates in shared caches
for grid squares 8902, 9002, 8903, and 9003. Similarly, node
B only participates in shared caches for grid squares 9003,
9103, 9004, and 9104. Since the only common shared cache
between nodes A and B is the one for square 9003, this cache
will be the only one in which the two nodes will collaborate
with each other.

As nodes move in space, the shared caches in which they
participate change too. Suppose that, in the example depicted
in figure 3, node A moved one kilometer due north along
the road on which it is depicted. Then it could no longer
participate in shared caches for squares 8902 and 9002 and it
would, instead, be able to do so for squares 8903, 9003, 8904,
and 9004. If that were the case, then it would then collaborate
with node B on the shared caches 9003 and 9004. If node A
continued moving another kilometer up the road, it would no
longer participate in the shared cache 9003, and would jettison
any items from that cache so that other nodes such as node B
could cache the data instead.

Node B's 4 Possible
Shared Caches

9004 9104

o .

/ B
8903 9103

@
A
Node A and B's

8902 9002 Shared Spatial Cache

Node A's 4 Possible
Shared Caches

Fig. 3. Shared Spatial Cache Regions

B. Cache Structure

Each node’s cache consists of five lists of pages: one
for each of the four spatial caches in which the node may
collaborate, and one for all pages that are available for use.
Initially, the four cache lists are empty and the free list contains
all the empty cache pages for the node. As items are adopted
for a spatial cache, pages are removed from the free list and
placed in the corresponding cache list. When a node moves
away from a spatial cache region, all pages in that cache’s
list are moved to the free list. Note that the contents of the
pages are not immediately deleted, which means that if the
node subsequently moves back into that region it may be able
to restore some or all data previously cached, as long as the
pages were not already used for and overwritten in another
cache.

Each page has pointers to the next and previous pages on
its list, and is divided into one or more slots. Each slot in
turn contains one data item from the shared spatial cache.
The slot also contains metadata used for cache management.
Specifically, each slot has fields for the following metadata.

1) Authoritative server ID: this is the unique identifier of
the server from which this data item originates.

2) Number of cache hits: the number of times that this
item has been used to respond to a query (either from a
neighbor or a local application).

3) Number of cache copies: the number of nodes that are
participating in this spatial cache and that are known to
have a copy of this item. This value includes the local
node, so it is always greater than zero.

4) MBB: the minimum bounding box for the data item,
obtained from the item’s R-tree index entry.

5) Last update: the time at which this the item was last
updated (or created).

6) Expiration: the time after which the item is assumed to
be stale and, thus, unreliable.

When a node that is caching data about a region leaves

that region, it jettisons the entire contents of the cache page
slot: data and meta-data. This ensures that adopting nodes will
have access to the item’s metadata for inclusion into their own
cache pages. Adopting nodes reset the number of cache hits
and number cache copies, but retain the values in the other
fields.

C. Building a Shared Cache

Suppose a node arrives at a region and detects no neighbors.
Since nodes are assumed to automatically acquire relevant (to
the user’s role) information about any regions through which
they traverse, then this node will query an authoritative server
for whatever data it needs for this region. With that query,
the node sends a parameter specifying the number of regional
items it is willing to cache. The server eventually responds to
the query and may provide, in addition to the requested items,
extra ones up to the value specified by the requester in its
cache size parameter. In addition, the server will send a count
of the total amount of data items that it has for the region.
Note that, since the query result may be a subset of the total
data for the region, the total data item count may be different
from the number of items returned. Let’s say that the server
responds with more items than the node can store in its cache.
The node will pass all the data up to the application layer for
processing and keep some of it (as much as it can) in its cache
so that it may be used to respond to later queries from either
the local node or others nearby. The node will also make a
note as to how many total items reside in the server for the
region in question.

Suppose another node subsequently arrives. Again, it will
attempt to gather all relevant information by querying neigh-
bors or servers. Its only neighbor (the one in the preceding
paragraph) may respond with the relevant data items from its
cache if it has any, as well as the number of total items that
exist in the authoritative server. Now the second (querying)
node may be able to immediately provide some relevant data
to its applications even as it waits for the remaining items from
the server. When the rest of the items arrive from the server,
the querying node will pass them up to its applications, and
then add to its cache as many items as it can from among the
set that was not cached by its neighbor. Since items cached
by its neighbors are only one hop away, the node will not also
cache them. This means that in the early stages of a shared
spatial cache, data items will tend to exist in only one node’s
cache. Though we need the replication of data items among
multiple nodes in order for the shared cache to survive the
loss of a portion of its constituent nodes, this is a feature that
emerges later in a cache’s lifespan.

Cached items are tracked approximately by the server. In
order to minimize communications costs, the server does
not receive feedback from the nodes as to which items are
collectively cached in the region. Instead, the server marks
each item with a timestamp indicating the last time it was
submitted to a shared regional cache. In this manner, the server
is able to cycle through it’s items as it chooses which ones to
send to the region for caching, ensuring that the oldest ones

are refreshed first as new nodes request non-cached data and
indicate a willingness to host additional data in the cache.

As additional nodes arrive in the region, each node will
come to know what data is available in its neighbors’ shared
caches as well as how much total data exists for the region.
Since messages are broadcasted, other (existing) nodes in the
region will also become aware of the shared cache contents
of each other, which helps them determine which items are
safer to delete when they start running out of space in their
shared caches. As the node density in the region increases,
the server eventually cycles through the items pertaining to
the region and additional copies of previously-cached items
emerge within the cache. Furthermore, as nodes depart the
region, they jettison their cached items and this, as we discuss
in detail in section IV-D, commonly results in multiple copies
of cached items. Note that a node will not cache multiple
copies of the same item, but different nodes in the region
may, over time, hold copies of the same item.

The cache admission process is described in detail in
algorithm 1. We require that the length of a node’s cache at
any point in time is no more than the stated maximum length
for that cache. We use this precondition in lines 2 and 9 to
test for a full cache. Lines 1 through 5 drive nodes to always
cache data arriving from a server in response to a query by that
node. The rest of the algorithm describes the random process
by which nodes decide whether or not to cache items from
either a server or a jettisoning neighbor that are not specifically
sent to those nodes. Note that the formula for p in line 7 is
derrived explicitly in section V-B later in this paper.

Algorithm 1 Cache Admission Algorithm

Require: cache.length < cache.mazlength
1. if msg.src = SRV R and msg.dst = THIS then
2: if cache.length = cache.maxlength then
3 JETTISON()
4 end if
5. cache «— cache + msg.payload
6: else if msg.src = SRV R or msg.type = JETTISON
then

7. p e TALntVE00w 2160

8: if RANDOM() < p then

9: if cache.length = cache.maxlength then
10: JETTISON()

11: end if

12: cache «— cache + msg.payload

13: end if

14: end if

D. Data Jettison

A key aspect of our architecture is the inclusion of a jettison
mechanism by which nodes, as they depart the shared cache
region, eject the contents of their caches. The purpose of this
process is twofold: firstly, it serves to keep high-value items
within the cache even as the nodes that hold them leave, and
secondly, it serves to create multiple copies of popular items

within the cache, ensuring that the loss of any one node does
not adversely affect the cache performance.

The jettison process is illustrated in figure 4. It depicts a
spatial region with 26 data items {a,..,z} and four nodes
A,B,C, and D. Node A is crossing the region boundary
and jettisons its two cached items, b and c. The messages
containing the items also let recipients know the number of
neighbors that node A had within the region just prior to
leaving it. This information lets other nodes determine the
expected number of nodes that will consider adopting the item.
Intuitively, the more neighbors a departing node has, the lesser
the chance that any one of them will adopt the jettisoned item.
If we chose this probability carefully, we can ensure that only
a relatively small number of nodes adopt the jettisoned item,
which helps distribute data throughout the cache so that the
loss of no single node results in drastic loss of information.

Node C' has empty slots in its cache for this region and
independently determines whether or not to adopt the jetti-
soned items based on the probabilistic model mentioned in the
preceding paragraph. In the figure, we show node C' adopting
both items b and c. Node B, on the other hand, already has
a full cache for this region and, should it choose to adopt
one or both jettisoned items, must make room for them by
discarding one or two of its previously cached items. In the
illustration, node B chooses to adopt item b only. In order to
make room in its already full cache, node B decides to discard
item a, in part because it knows that node C'is already caching
it. Recall from our earlier discussion that nodes monitor the
broadcast communications medium to discover, among other
information, the contents of their neighbors’ caches.

Note that the number of replicas of item b increased
by one as a result of node A departing the region while,
simultaneously, the number of replicas of item a decreased
by one. This makes sense because our jettison process deletes
the least valuable items in adopting nodes in order to make
room for the items jettisoned by departing nodes.

E. Cache Replacement

When choosing items to discard in order to make room
for new item adoptions, nodes calculate the relative value of
the items they already cache. This value is a proportional to
the number cache hits (h) for the item which is a measure of
popularity, and to the inverse of the number of known replicas
(%). Note that r is guaranteed to be at least one, since the local
node has a copy of the item. Therefore, we chose to assign
this value using the formula in equation 1.

v(i) = = (1

This value is computed for each item in the cache. The item
with the lowest value is replaced with the newly adopted item.
In this case, the data from the previously cached item is lost.
In general, however, nodes do not necessarily delete the data
from a shared cache when they leave its region. If there is
no new data of higher value, nodes could conceivably carry
around the old data indefinitely, or until the items have to be

N o=

O

‘max

>

[b]ec]
[Cras

Region Boundary

Fig. 4. Data Jettison

replaced with newer ones. This means that the shared spatial
cache will encompass a larger area than its data.

The cache replacement, or deletion, process is described in
algorithm 2. Note that we examine each item in the cache once
to determine its value. As we do this, we keep track of which
item has the lowest value so that, once the loop terminates,
we know which item to delete. Note that the test in line 13 is
necessary for the case in which the size of the cache is zero.

Algorithm 2 Replacement Algorithm

1: choice «— 0
2: minValue +— oo
3: for ¢ =1 to cache.length do

4: d « distanceTo(cache[i].server)
5. h < cacheli].hits

6: 1« cacheli].replicas
7: UV — %

8: if v < minValue then
9: minValue «— v

10: choice — i

11: end if

12: end for

13: if choice > O then

14: delete(cache[choice])
15: end if

F. Cache Consistency

Under normal conditions, new or updated data items are
automatically relayed to the affected region by the network.
This process is described in a previous paper on geocasting by
the authors [9]. This means that the data in the spatial region
is updated as needed without any need for action from the

nodes within it. This mechanism can break down whenever
the network becomes disconnected from the servers, from the
data sources, or from both. Under those adverse conditions,
we need a mechanism for ensuring that stale data is identified
as such and, if appropriate, removed from the shared cache.

The absence of updates on a known data item may mean
that there is no fresher information on it, but it can also mean
that connectivity to the server has been broken. The nodes,
however, do not know which is the case and must consider
the item to be stale. When a node receives a query which
may be answered with a stale item it has, it will first issue
a query to the server that owns the data, and then respond
to the neighbor node with the stale data. The neighbor will
realize that the data is stale, but may use it while fresher data
is acquired. Once the caching node receives a response to its
query to the server for the fresh data, it broadcasts it within
the region so that other caching nodes can update their own
copies.

Nodes do not proactively refresh data from the server prior
to it becoming stale. Recall that, under normal conditions,
this data will be automatically delivered to the region by
the server or an updating node. Under this assumption, it
would be wasteful to spend precious CPU cycles searching
through the cache for items that are about to become stale.
Furthermore, as we mentioned in section IV-C above, the
server may refresh items as it responds to new queries using
cache item timestamps.

Our approach requires the data creators and updaters to
provide an estimated expiration time for their data. In some
cases, such as permanent structures (e.g., buildings), there is
no expiration time. In other cases, such as a moving person,
the expiration time is simply an estimate of how long the data
creator or updater thinks the person will remain near their
current location. Obviously, this later case has a very large
margin of error. Individual nodes can calculate how dynamic
a given spatial data item is by simply comparing its last update
time with its expiration time. The shorter this interval is, the
more dynamic the object.

V. ANALYTICAL MODELS

It was important for us to understand the conditions under
which nodes would score misses against the spatial cache.
Clearly, misses will occur whenever the data on a spatial
region exceeds the aggregate cache capacity of nodes in that
region. What was not all that clear was how the hit ratio
behaved as a function of node density and mobility.

A. Queue Model

To help us understand the behavior of our scheme, we
modeled a region as a M/M /oo queue, as shown in figure
5. We assumed that nodes arrived at the region at a rate which
followed a Poisson distribution with rate A\. The nodes would
loiter or remain in the region for an amount of time following
an exponential distribution with mean 1/u. This means that
the expected number of nodes in the region is @7 = A/p and
the rate at which nodes leave the region is ny [10].

Service Rate Time in Region
: @ 7

Arrival Rate Departure Rate
A nu
i AN
\

Fig. 5. Spatial Regions as M /M /oo Queues

We assume that nodes are connected to all other nodes in
that same region using a shared broadcast medium with usable
bandwidth B. If all data items have identical size S, then cache
entry transfers are bounded from above by B/S. This means
that, even under ideal conditions, we cannot transfer more than
B/S cache entries per unit time.

So the question is, how many entries can each node have as
part of the shared spatial cache? Using the derivations above,
it follows that the maximum number of cache entries C,qq
must satisfy inequality 2.

B

Cmaz < S 2)
Now that we knew the maximum contribution of any one
node to the shared cache, we wanted to understand the
probability that every data item concerning the region was
cached by at least one node in that region. To do this, we
first have to define the probabilities for the data cached by a
departing node to be successfully transfered to another node

that is still in the region.

B. Individual Cache Model Analysis

When a node is about to leave the region, it will transmit
(or jettison) it’s shared spatial cache entries so that they may
remain within the region. Since the items are sent out without
waiting for an acknowledgement of receipt, we want to ensure
that there is a reasonable chance of some other node picking
them up. The departing node helps the remaining nodes in this
effort by letting them know, in that final message, how many
neighbors it has.

When a node receives a jettisoned cache item, it will
determine the probability of storing it as a function of how
many neighbors the departing node had. If the number is large,
then each receiving node should be less likely to store the item,
since some other node may very well do it. This dynamic
probability calculation makes it more likely that at least one

node (but not too many) stores the jettisoned item. We can then
model this situation using a binomial probability distribution
where the number of experiments is the number of neighboring
nodes n, and the probability p that each node stores the item
is unknown. The question is what value of p will give us a
99% probability that at least one success will occur?

To answer this question, we first note that the mean number
of successes is np and the standard deviation is /np(1 — p).
We need a p such that, with probability 0.99, at least one node
will cache the jettisoned data, or P(X > 1) = 0.99 (where
X is the number of nodes caching the data). This is the same
as saying 0.01 =1 — P(X < 1). We can then use a normal

approximation X ~ N(np, \/np(1 — p)), and derive equation
1—
—) —o0 3)
p)

3.
PlX<
(np(1 —

We can use basic probability tables to assert that the 0.01
quantile of a normal distribution is —2.326, which means that,
in order to compute p, all we need to do is solve equation 4
for p. After a bit of algebra, we are left with a formula for
calculating the value of p as a function of n, which is described
by equation 5.

1 _
ST 9396 4)
np(1 —p)
 741n +/50.9n% — 21.64n)
pP= 2n2 + 10.82n

As we show in figure 6, we are able to achieve a very high
probability that at least one node will adopt the cache item
jettisoned by the departing node. At the same time, we see
that the probability of any one node adopting the item drops
sharply as the number of neighboring nodes increases. Despite
this, as we show in figure 7, the expected number of nodes
adopting the item is usually more than one.

Now that we know the upper bound on the number of data
items in a node’s shared spatial cache, C,,,,, and we know
the probability that a node will adopt a new, offered data item,
we are ready to calculate the expected number of items in a
node’s portion of the shared spatial cache. Recall that we need
that number to be bounded from above by Cj,qz.

From our earlier queue analysis, we know that the duration
of a node’s presence in a given spatial region is a random
variable Y ~ Exp(1/u), we know that the expected duration
of a node’s stay in that region is 1/u. We also know that
the expected number of nodes in that same region is A/p,
and that the rate at which nodes will leave the region is ngu.
This means that the expected number of departures, and hence
whole-cache jettisons, that a node will experience is 2 /n.

By substituting the expected number of nodes within the
region (A/p) in equation 5 above, we then know that the
expected probability for adopting a jettisoned cache item is
given by equation 6.

(=]
, S Prob. of at least one neighbor caching
/
o |
= i
i
w | 1
s ° |
= i
9 I
=] |
9 |
o A
<o 1
i
i
i
A
S '
1
]
| Prob. of each neighbor caching
=
o
T T T T T T
0 10 20 30 40 50
Number of neighbors
Fig. 6. Probability of item adoption
© -
-
£
2
=
<
g2 ¥
o
<
<
8
-g ™ -
z
o -
T T T T T T
0 10 20 30 40 50
Number of neighbors
Fig. 7. Number of nodes adopting an item
A A 2 A
7412 +4/50.9(2) —21.644
K K I
Ep= (6)

2
2(2) +10822

If we consider the adoption of a jettisoned data item by
each of n = A/ nodes as a series of Bernoulli experiments,
then the number of nodes that adopt the item can be modeled
as a random variable A with a Binomial distribution A ~
Bin(\/u, Ep). The results for various values of n are depicted
in figure 7.

VI. SYSTEM SIMULATIONS

A. Estimating Queue Model Parameters

Our entire system model hinges on the parameters of its
underlying queue model. The arrival (\) and service () rates
determine the number of nodes in the region (n;) as well as
the number of nodes departing the region (d;) at any given

point in time. Recall that the service rate p is the inverse
of the expected time a given node will remain within the
region. The number of departures drive the number of cache
data jettisons (j;). These events, together with the number of
remaining nodes, in turn tell us how many shared cache items
reside at each node at a point in time (N; ;). What we now
need to know is what fraction of the total D data items for the
region are actually in the shared spatial cache over time. The
higher this value, the better our system’s performance can be
expected to be.

Our models quickly become analytically intractable as the
number of interacting nodes increases. We therefore turned
to simulations to get the answers we needed. Our first order
of business was to determine reasonable representative values
for our node arrival and service rates A and pu. For this,
we made use of BonnMotion, a mobility scenario generation
and analysis tool developed at the University of Bonn [11].
With it, we ran six different mobility scenarios using three
models and two population sizes, all operating in a square
area measuring three kilometers on each side. The central, one
square kilometer, region of this area is the one of interest to us.
The first model used was the random waypoint mobility model
[12], which is commonly used for modeling unconstrained
pedestrian traffic. We also used the Manhattan Grid model [13]
to force nodes to travel along streets in a virtual city. Lastly,
we used the reference point group mobility model (RPGM)
[14], which allowed us to explore the effects of nodes traveling
more or less in groups. For each of these, we chose 30 and
100 nodes in order to approximate the sizes of an infantry
platoon and company (respectively), which are military units
that could reasonably be expected to be operating in an area of
nine square kilometers. All nodes moved at randomly chosen
speeds between zero and five kilometers per hour to simulate
people walking on foot.

We generated 30 distinct scenarios for each of the six cases
under study and ran the simulations for eight hours each. The
results, which are highlighted in table I show that the arrival
and service rates for the random waypoint and RPGM models
were fairly similar, while those of the Manhattan Grid model
were about half their value. This makes sense, seeing how this
last model imposes additional constraints on the mobility of
the nodes.

Our simulations allowed us to revisit equation 2 and deter-
mine a reasonable approximation of it under the conditions
in which we are interested. We wanted to choose values for
the various parameters that were realistic, and yet accounted
for conditions that were not benign. Accordingly, we chose
the Random Waypoint and RPGM models with 100 nodes.
This allowed us to approximate A = 0.023 and p = 0.001.
For the value of n, we chose the upper range of the 99%
confidence interval for that parameter, which by the central
limit theorem turns out to be n = 30 in our experiments. Based
on these approximations, table II gives us the maximum size
of any node’s portion of a shared spatial cache under common
bandwidths and page sizes.

TABLE I
QUEUE MODEL PARAMETERS

Parameters
Model A m n
Random Waypoint | 0.007149306 | 0.001037162 6.720866
(30 nodes)
RPGM 0.006862805 | 0.001212537 6.508561
(30 nodes)
Manhattan Grid 0.003011179 | 0.0008679334 | 3.409662
(30 nodes)
Random Waypoint | 0.02302894 0.001051836 21.46979
(100 nodes)
RPGM 0.0235813 0.001117267 22.66135
(100 nodes)
Manhattan Grid 0.01004065 0.003837517 10.96548
(100 nodes)
TABLE II
ESTIMATED VALUES OF Cyax
Page size (in bytes)
Bandwidth 1,024 2,048 4,096 8,192

384 kbps 1,562 781 390 195

1 Mbps 4,069 2,034 1,017 508

11 Mbps 44,759 22,379 | 11,189 | 5,594

53 Mbps 215,657 | 107,828 | 53,914 | 26,957

B. Shared Cache Model Simulations

So far, our analysis has only looked at the behavior of
individual nodes. To understand the aggregate node behavior,
however, we need to expand our probabilistic analysis so that
we may look at the behavior of a region, and not just of the
nodes within it. Specifically, we are interested in determining
the hit ratios on the shared cache as a function of the size of a
single node’s contribution to that shared cache. In other words,
given that each node contributed a specific number of items
to the cache, and also given a fixed total number of items in
the database server for that region, how often are node queries
satisfied by the shared cache, as opposed to by the server.

In our simulations, we consider the same one-square-
kilometer region that we studied in the previous section.
Again, we use the same mobility scripts based on the random
waypoint model with a population of 100. Recall that the total
area being simulated measures nine square kilometers, but we
only track the nodes that enter the central square kilometer
region.

We make a simplifying assumption that nodes are com-
pletely connected to each other within the region, so that any
node is a single hop away from any other node within the
same region. This allows us to focus on cache dynamics and
not network transmission issues. We also assume that nodes
will generate only one query per visit to the region, which is
not all that unusual in the scenarios of interest to us.

C. Experiment Design

Our simulation environment is R, which is widely used in
many sciences as well as in industry for simulating stochastic
processes and for statistical analyses. We wrote a customized
script that reads the mobility files from our earlier studies and
translates them into a list of nodes that are present within
the region of interest at each of the 28,800 seconds of our
simulation. We developed a second script which takes as input
these lists and simulates behavior of each node as it enters the
region, becomes part of the shared cache, and eventually leaves
the region, jettisoning any cached items.

We are interested in random vectors comprised of the items
being requested by nodes as they enter the region of the shared
cache. We approximate the values of these vectors using a Beta
distribution with parameters o« = 2 and § = 8. The random
value generated by our distribution is then multiplied by the
number of items in the database server to yield the number
of items in a query. For each element of the query response,
we again use the same distribution to determine the specific
data item identity. The Beta distribution allows us to model a
situation in which we estimate that most queries will involve
roughly 20% of the available data. This figure has been used
before to simulate database queries. The Beta distribution also
accounts for rare, but important, queries which involve almost
all data for the region.

Another random variable of interest to us is the vector of
items being jettisoned by nodes as they leave the region and
which are adopted by neighboring nodes. As we’ve already
shown, this variable follows a binomial distribution. The
probability associated with this distribution is discussed in
detail in section V-B of this paper.

The main goal of our simulations was to determine the
effectiveness of our proposed shared spatial cache. Specifi-
cally, we wanted to know the effects on cache hit ratios of
varying local node cache sizes. Clearly, there are infinitely
many ways of comparing local cache size with total number
of data items for a given region, so we arbitrarily chose a
300 megabyte (MB) dataset for the region. We then ran the
simulation repeatedly for node cache sized of 15 (5% of
dataset) to 150 MB (50% of dataset) in 15 MB increments.
Recall that we are using a total population of 100 randomly
moving nodes of which no more than 30 are in the region at
any one time.

For each of the chosen cache sizes, we ran the simulation
using a local cache in which nodes do not collaborate with
each other, as well as full regional node collaboration with a
replacement policy based on our value function described in
section IV-E. Additionally, for the shared spatial cache, we ran

1.0

0.8
1

0.6

D local cache
, -~~ shared cache (no jettison)
% —— shared cache (w/jettison)

Hit Ratio

0.4
N

0.2

0.00 0.02 0.04 0.08 0.08 0.10
Cache size (% of db)

Fig. 8. Cache Hit Ratios

the simulation with and without the use of the jettison mecha-
nism in order to compare its performance with and without this
implemented. In this set of experiments, our principal measure
of performance was the cache hit ratio. Obviously, a higher
value of this metric is preferable, particularly if it does not
require more memory than the alternative approaches.

Finally, we gathered statistics to show us the resiliency of
the cache. Our measure of performance was the number of
copies of a data item within the cache. As the number of
copies in the cache increases, we can afford to loose a larger
number of nodes without suffering cache degradation in terms
of hit ratios. This is important when a catastrophic event such
as an enemy attack destroys a significant fraction of the nodes
in a region.

D. Experiment Results

The results of our first set of experiments is depicted in
figure 8. The curves correspond to the cache hit ratios as a
function of the individual node cache sizes. For illustration
purposes, we chose a database containing 30,000 pages per-
taining to the central one-square-kilometer region. Each node’s
cache memory can hold between 300 and 3,000 pages (1% to
10% of the total region’s pages) in increments of 300 pages
(1%). Our shared cache approach shows significantly better
performance in both its flavors (with and without data jettison-
ing) than the local caches acting alone. In fact, our approach
yields at least a full tenfold performance improvement for the
same amount of cache memory. Interestingly, the performance
improvement tapers off around the 10% mark, indicating that
further increasing the amount of cache memory yields reduced
benefits after that point.

It is important to note that this performance increase is a
product not only of the individual node’s cache memory, but
also of the total number of nodes in the region. Recall that
our analytical model indicates that in this scenario we expect
to see between 20 and 30 nodes in the region at any point in

Mean page replicas

-~ local cache
--- shared cache (no jettison)
—— shared cache (w/jettison)

T T T T T T
0.00 0.02 0.04 0.06 0.08 0.10

Cache size (% of db)

Fig. 9. Number of copies of items in cache

time. Clearly, we would have to increase the cache memory
as the node density decreases if we were to achieve the same
performance.

We were not only interested in hit-ratio performance, but
also in survivability. This was particularly important for mil-
itary scenarios. The main measure of performance in this
respect is the number of replicas of a given item among
the nodes in the region. Though a higher value of this
measure would obviously degrade the hit-ratio performance,
it would also mean that a larger portion of the nodes can be
suddenly lost with relatively minor effects in terms of overall
performance degradation. Figure 9 shows the results of our
analysis of the number of replicas in the region as a function
of the size of the individual node’s cache memory. When using
our shared cache approach with data jettisoning, our approach
is only slightly better in terms of number of replicas than a
traditional local cache approach. However, when we consider
the previous hit-ratio performance results, this small difference
becomes significant because it underscores the effectiveness of
shared spatial caching.

VII. CONCLUSIONS AND FUTURE WORK
A. Conclusions

We have presented a novel and innovative method of co-
operatively caching spatial data among nodes in a region.
Our analytical models showed the conditions under which
such a shared spatial cache would be feasible. Based on our
experience in both the technical aspects of database systems as
well as the tactical aspects of conducting military and emer-
gency response operations, the parameters of our analytical
models seem well within the boundaries of realism. Based on
those parameters, we conducted detailed simulation studies to
determine the performance of our shared spatial caches.

The results of both our analysis and simulations have shown
that our approach to caching spatial data in mobile environ-
ments works significantly better than local caching alone both

in terms of hit-ratios as well as cache survivability. In fact our
shared spatial caches perform one order of magnitude better
than local caches in terms of cache hit ratios. These results
are, in our opinions, important enough to warrant follow-on
development as we describe next.

B. Future Work

As we noted in our analysis of our results, the overall shared
cache performance depends on both the cache size of each
constituent node as well as on the total number of nodes within
the region. While this is hardly surprising, it does point out
an opportunity for improving our model by making the nodes
dynamically adjust their cache size in response to both the
density of nodes in the region and the density of information
about the region that is stored in the server.

Similarly, the fact that mobile nodes have limited power
that varies from one node to the other opens an opportunity
to study the effects of dynamic cache size selection as a
function of available power. A larger cache is more expensive
to maintain from a power perspective, because it implies
more transmissions in order to support both queries from
neighboring nodes, as well as jettisoning as the node leaves
the region. Power-aware shared caching is thus a promising
line of research for us.

Lastly, we intentionally separated the caching issues from
the underlying network transmission in order to be able to
derive a model that was more agreeable to detailed analysis.
Having accomplished our objective, we would like to combine
this effort, with our previous one on probabilistic geocasting
in order to study the problem of end-to-end data dissemination
in a holistic manner.

REFERENCES

[1] F. J. Maymi and P. Manz, “Ancile: Dismounted soldier tracking and
strike warning,” in Proceedings of the 25th Army Science Conference,
2006.

[2] F. Maymi, M. Rodriguez-Martinez, Y. Qian, and P. C. Manz, “Ancile:
Pervasively shared situational awareness,” IEEE Internet Computing,
vol. 12, no. 1, pp. 48-50, 2008.

[3] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
SIGMOD Rec., vol. 14, no. 2, pp. 47-57, 1984.

[4] M. Papadopouli and H. Schulzrinne, “Effects of power conservation,
wireless coverage and cooperation on data dissemination among mobile
devices,” in MobiHoc '01: Proceedings of the 2nd ACM international
symposium on Mobile ad hoc networking & computing. New York,
NY, USA: ACM, 2001, pp. 117-127.

[5] L. Yin and G. Cao, “Supporting cooperative caching in ad hoc networks,”
Mobile Computing, IEEE Transactions on, vol. 5, no. 1, pp. 77-89, Jan.
2006.

[6] H. Hu, J. Xu, W. S. Wong, B. Zheng, D. L. Lee, and W.-C. Lee,
“Proactive caching for spatial queries in mobile environments,” Data
Engineering, 2005. ICDE 2005. Proceedings. 21st International Con-
ference on, pp. 403—414, April 2005.

[71 Z. Huang, C. S. Jensen, and B. C. Ooi, “Collaborative spatial data
sharing among mobile lightweight devices,” Advances in Spatial and
Temporal Databases, vol. 4605/2007, pp. 366-384, 2007.

[8] C.-Y. Chow, H. V. Leong, and A. T. Chan, “Grococa: group-based peer-
to-peer cooperative caching in mobile environment,” Selected Areas in
Communications, IEEE Journal on, vol. 25, no. 1, pp. 179-191, Jan.
2007.

[9] F. J. Maymi and M. Rodriguez-Martinez, “A probabilistic approach to
geocasting queries in mobile spatial databases,” in Proceedings of the
35th International Conference on Very Large Data Bases, 2009.

[10]

[11]

[12]

[13]

[14]

T. Robertazzi, Computer Networks and Systems: Queueing Theory and
Performance Evaluation. Springer-Verlag, 2000.

M. Gerharz and C. de Waal, “Bonnmotion:
ity scenario generation and analysis tool,”

A mobil-
April 2009,

http://iv.cs.uni-bonn.de/wg/cs/applications/bonnmotion/.

J. Broch, D. A. Maltz, D. B. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network routing
protocols,” in MobiCom ’98: Proceedings of the 4th annual ACM/IEEE
international conference on Mobile computing and networking. New
York, NY, USA: ACM, 1998, pp. 85-97.

J. Markoulidakis, G. Lyberopoulos, and M. Anagnostou, “Traffic model
for third generation cellular mobile telecommunication systems,” Wire-
less Networks, vol. 4, no. 5, pp. 389-400, September 1998.

X. Hong, M. Gerla, G. Pei, and C.-C. Chiang, “A group mobility model
for ad hoc wireless networks,” in MSWiM ’99: Proceedings of the 2nd
ACM international workshop on Modeling, analysis and simulation of
wireless and mobile systems. New York, NY, USA: ACM, 1999, pp.
53-60.

