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C o n t i n u o u s - T i m e  M a r k o v  Processes  as a Stochast ic  
M o d e l  for S e d i m e n t a t i o n  | 

W.  A. Rolke 2 

Markov processes with a continuous-time parameter are more satisfacto~ for  describing sedimen- 
tation than discrete-time Markov chains because they treat sedimentation as a natural process that 
happens continuously (i.e., which is unbroken in time)~ They also avoid certain technicalities that 
arise in discrete time--namely, the choice o f  a t#ne unit. Finally, they yield not only the same 
information as a discrete-time analysis, but also give information about the distribution of  the 
thicknesses o f  the lithologies. 
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I N T R O D U C T I O N  

In the past, various researchers (e.g., Gingerich 1969; Ethier, 1975; Powers 
and Easterling, 1982; Carr, 1982), have used the theory of discrete-time Mar- 
kov chains to describe the structure of a sequence of lithologies. A Markov 
process is a stochastic process, meaning a sequence of random events, in which 
the only information useful for predicting the state of the sequence at time n 
contained in the history of the process (i.e., the sequence of states visited before 
time n) is the last state observed: 

P ( Y ,  = j t Y , _ l  = i . . . . .  Yo = io)  = P ( Y , ,  = j l Y , , - ~  = i) = qii  

Here n, a natural number, is a discrete-time parameter, Y,, is the random 
variable describing the state the process occupies at time n, i, io to i,,_ ~ and j 
are elements of the state space (e.g., the rock types of a stratigraphic column). 
The matrix Q with entries qij is called the transition matrix of the process. It 
gives the probability q,.j of  a transition from state i to state j .  

This Markov chain is called time-homogeneous because the transition ma- 
trix Q does not depend on the time parameter n. This means the stochastic 
structure is the same throughout the time of the evolution of the system. Ho- 

~Received 28 June 1989; accepted 4 September 1990. 
"-Department of Mathematics, University of Southern California, Los Angeles, CA 90089. 

297 
0882-8121/91/0400-0297506.50/I i~/ 1991 International Association for Mathematical Geology 



298 Rolke 

mogeneity within the observed column is an essential assumption for the theory 
described here, although in reality it may not always be fulfilled. 

Processes with a " m e m o r y "  longer than the one considered--in particular, 
processes where the knowledge of a greater but fixed part of the history of the 
process, here, the sequence of lithologies in the stratigraphic column, is help- 
f u l - a r e  so-called multistage Markov processes. Although processes of  such a 
type will not be discussed in this paper, the theory can easily be extended to 
that case. The statistical analysis of  multistage Markov chains has been treated 
by Chatfield (1973). 

One of the problems arising in the modeling of sedimentary sequences as 
a discrete-time Markov chain is the definition of one unit, either of  time or of 
the thickness of a lithology. Ethier (1975) showed that the choice of a fixed unit 
leads to transition matrices with overly large frequences on the diagonal (i = 
j),  which means that "changes"  from a rock type to itself tend to be over- 
represented. 

Another possibility is to count the number of transitions from one rock 
type to another, disregarding the thickness of the layers. This approach leads 
to the so-called embedded Markov chains, which have zeroes on the diagonal. 
Those zeroes are structural because they do not reflect probabilities but are a 
result of the mathematical model. A statistical test for the hypothesis of  inde- 
pendence in the stochastic process (i.e., the independence of the process from 
its history, given the structural zeroes) has been described by Goodman (1968), 
and was introduced in the geological literature by Powers and Easterling (1982). 

Although the model described in this paper is essentially different from 
previous ones, this test will also be of  use for the statistical analysis of contin- 
uous-time Markov processes. 

A third method to attack this problem has not as yet been discussed in the 
literature, and that is to use continuous-time Markov processes as a model. 
These are processes with a continuous-time parameter which also have the Mar- 
kovian property that, given the present state, the future is independent of the 
past. "Continuous" does not mean uniform, but unbroken, and it only assumes 
that sedimentation does not happen instantaneously. " T i m e "  in our context will 
mean the thickness of a sedimentary segment. For this analysis to be valid, one 
has to assume that the sedimentation has reached a position where subsequent 
erosion is not likely. 

The thickness of a segment of the stratigraphic column is a random vari- 
able. I f  the continuous-time Markov model fits, then the theory of Markov pro- 
cesses show that the sequence of thicknesses of  every rock type is "memory-  
less" (i.e., it is a sequence of independent exponential random variables. For 
a mathematical derivation of this fact, see Karlin and Taylor (1975). 

To establish that a stratigraphic column follows a continuous-time Markov 
process, two steps are necessary. In the first step, one shows that the sequence 
of rock types follows a discrete Markov chain. This step is exactly the proce- 



Continuous-Time Markov Processes 299 

dure described by Powers and Easterling (1982), and it yields the same infor- 
mation. In the second step, each rock type is analyzed separately as to whether 
its thicknesses have an exponential distribution. The following artificial exam- 
ple shows one way in which this additional information can be used--namely, 
to reconstruct parts of the stratigraphic column. 

The analysis of a column consisting of three rock types, named A, B, C, 
showed that it follows a Markov process with some transition matrix Q and 
exponentially distributed thicknesses with parameters 1 for A, 5 for B, and 10 
for C. A small segment of the column is as follows: 

.. , A 2.0 units, B 1.5 units, unreadable 0.5 units, B .8 units, ..  

Then the exponential distribution of the thickness of  B yields that the probability 
that the unreadable part was in fact all type B is at least 0.87. 

Analogous to the Markov chain model, transition probabilities and ex- 
pected thicknesses of  the segments completely describe the continuous-time 
Markov process. 

Use of this model not only frees one from the necessity of choosing one 
unit of time, but also seems to fit the problem much better, because it describes 
sedimentary sequences as being created continuously in time (i.e., unbroken), 
with time being an essential part of the process. 

C O N T I N U O U S - T I M E  MARKOV PROCESSES 

A brief introduction into the theory of continuous-time Markov processes 
is given here. For details, see Karlin and Taylor (1975) and Cinlar (1975). 

A stochastic process {X,, t -> 0} is called a continuous-time Markov pro- 
cess with discrete state space S, provided that for any t, s _> 0, and j  ~ S 

P { X ,  + ,  = jig,, ,  u <. t} = P { X ,  +.~ = j lX,} 

In the case described here, S is the set of rock types, t is the thickness of 
the column, and X, is the rock type at thickness t in the column. 

A macroscopic way to describe a continuous-time Markov process is to 
look at probabilities of  changes from one rock type to another, and at the thick- 
ness of each segment. The sequence of changes forms a discrete-time Markov 
chain, called the underlying Markov chain, and is best described by a transition 
matrix Q. As already stated, a transition matrix Q completely describes the 
evolution of a discrete-time Markov chain. The process associated with the 
matrix Q is precisely the one studied by previous researchers (e.g., Powers and 
Easterling, 1982). On the other hand, the thickness of  each segment of  a rock 
type has an exponential distribution with a parameter depending on the type of 
rock. 

One can show that under the additional assumption of stationarity the 
"t ime-reversed" process (i.e., the process observed from youngest to oldest) 
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is also a Markov process. This means that it does not matter whether we view 
a sequence of lithologies in the order in which they evolved or in the order in 
which they are found. If one is a Markov process, so is the other. More about 
the theory of Markov processes can be found in Cinlar (1975), Karlin and Tay- 
lor (1975), Ross (1980), Prohorov and Rozanov (1969), and others. 

STATISTICS 

An essential assumption for tests of the distribution of thicknesses of rock 
types is the independence of the sequence of observations of each rock type. If 
the correctness of this assumption is not clear from the context, one should start 
with a test for independence of the observations. Tests for such a problem can 
be found in many statistics texts (e.g., Kreyszig, 1970). 

A test for the underlying Markov chain was first given by Goodman (1968), 
and was introduced into the geological literature by Powers and Easterling 
(1982). They used this test to solve the problem of a Markovian structure, look- 
ing only for transitions and disregarding thicknesses of the layers. In the frame- 
work of continuous-time Markov processes, this is the same problem as to test 
for the underlying Markov chain. 

To check whether the model of a continuous-time Markov process fits, one 
also has to decide if the thicknesses of the various rock types are exponentially 
distributed. Several statistical methods are known for this test (i.e., the Kol- 
mogorov-Smirnoff test or the Wilks test). For details, see Kreyszig (1970), 
Lilliefors (1969), and Wilks (1972). 

One problem that arises very often in statistics is especially serious in ge- 
ology: the problem of outliers. The objects under consideration here, sedimen- 
tary lithologies, have been built up over long periods, in the range of millions 
of years. During this time, many catastrophic events, such as tectonism, me- 
teorites, outbreaks of vulcanism, and so on, may have influenced the data and 
somewhat disturbed the Markov process. Because of this, the choice of a non- 
parametric procedure is crucial. The Kolmogorov-Smirnoff test is unfortunately 
very sensitive to outliers, and is mentioned here mainly because it is the most 
widely known nonparametric test. 

TEST RESULTS ON CLIFTON H I L L  DATA 

The Clifton Hill section has previously been discussed by Osbome (1971) 
and Ford (1967). It is a typical Cincinnatian sedimentation, Hamilton County, 
Ohio. It consists of shale and seven different kinds of limestone. For a classi- 
fication of the limestone, see Osborne (1971). 

First, a test for the Markovian structure in the underlying chain is per- 
formed. The tally matrix with the observed transitions and the expected number 
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of transitions, computed using the iterative method described by Goodman 

(1968), are shown in Table 1. 
An estimate for the divergence is: 

2 X = 15.7 

From the X 2-table critical values are 

X2(41; 975) = 24.5 > 15.7 

and so the null-hypothesis of  independence is rejected on a 5%-significance 
level. Goodman (1968) gives the degrees of freedom in this model as (m - 1) 2 

- m, where m is the number of rock types. Here this gives 41 degrees of 

freedom. 
Next, the exponentiality of the thicknesses of the rock types is tested. Ta- 

ble 2 shows the data for the thicknesses, the values of the Kolmogoroff-Smir- 

noff D-statistic, the critical values, and whether or not the hypotheses of an 
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Table  2 ° 

Lithology # of Obs. D-Stat Crit. Val. Conclusion 

Limestone 1 70 0.22 0.12 Reject Ho 
Limestone 2 8 0.39 0.36 Reject Ho 
Limestone 3 33 0.13 0.18 Accept Ho 
Limestone 4 25 0.33 0.21 Reject Ho 
Limestone 5 8 0.37 0.36 Reject Ho 
Limestone 6 10 0.35 0.32 Reject Ho 
Limestone 7 3 0.43 0.55 Accept Ho 
Shale 156 0.09 0.08 Reject Ho 

. . . .  Accept Ho'" means that the null-hypotheses of an exponential distribution is accepted. 

exponential distribution is accepted. Table 3 gives the same data for the Wilks 
W-statistic. 

A further analysis was done on limestone 1 and shale in order to check the 
influence of outliers. Dropping the two smallest observations of limestone 1 
and the two largest observations of shale leads to the results shown in Table 3 
as limestone 1" and shale*. This indicates that outliers had a strong influence 
on the outcome of the test, and that the null hypothesis of an exponential dis- 
tribution of the thicknesses of limestone 1 and of shale should be accepted. 

The analysis of the Clifton Hill Section shows strong support for the hy- 
pothesis of a continuous-time Markov process. That means that the probability 
that layer n in the sequence is a certain lithology depends only on what the (n 

Table  3" 

Lithology # of Obs. W-Statistic Conclusion 

Limestone 1 70 0.028 Reject Ho 
Limestone 2 8 0.56 Reject H o 
Limestone 3 33 0.033 Accept Ho 
Limestone 4 25 0.05 Accept Ho 
Limestone 5 8 0.33 Accept Ho 
Limestone 6 10 0.25 Accept Ho 
Limestone 7 3 0.95 Accept Ho 
Shale 50 0.008 Reject Ho 

Limestone 1" 68 0.0178 Accept Ho 
Shale* 48 0.021 Accept Ho 

"For limestone 1 * the lowest observation and for shale* the two highest observations were dropped 
from the sample in order to check for outliers. 
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- 1) ~t lithology was and not on any prior to n - 1. It also means that the 
thickness of  each layer has an exponential distribution with a parameter de- 
pending on the rock type. 

M A R K O V  R E N E W A L  P R O C E S S E S  

In practice, an analysis as described above will often show that the tran- 
sitions from one rock type to another form a Markov chain but that some of  the 
thicknesses are not distributed exponentially. One way of  proceeding is to con- 
sider a Markov renewal process. 

The stochastic process (X, T) = ((X., T.), n ~ N) is a Markov renewal 
process with state space S if: 

P ( X ,  + j = j ,  T ,  + l - T,, < tlXo . . . . .  X , ;  To . . . . .  T,,) 

= P ( X , , + ,  = j ,  T, ,+,  - T,, < tlX,,, T,,) 

for all n E N , j  ~ S and t ~ R ÷. 
The most interesting case is when 

Q ( i , j ,  t ) : =  P ( X , + I  = j ,  T , , + j  - T,, < fiX,, = i) = qii * F i ( t )  

Thus, the transitions from one rock type to another are distributed according to 
a discrete-time Markov chain with transition matrix Q = (qij) but the thick- 
nesses of  the rock types are not neccessarily exponentially distributed but have 
a continuous distribution F i ( t )  depending on the rock type i. In this case, the 
stratigraphic column does not follow a continuous-time Markov process, al- 
though an analysis similar to the one described above is still possible because 
the transitions and the thicknesses can still be studied separately. 

Continuous-time Markov processes, as considered above, are a special case 
of  Markov renewal processes, where one has Fi ( t )  = [1 - exp ( - r i  * t)], where 
1 / r i  is the mean thickness of  rock type i. 

The difficulty in applying this theory lies in finding a hypothesis for the 
distribution o f  the thicknesses. A first try could be made using a gamma distri- 
bution, because it is a generalization of  the exponential distribution. Methods 
for estimating a distribution, so-called density estimators, are known but math- 
ematically quite difficult and computationally rather time-consuming. Further 
details regarding Markov renewal processes can be found in Cinlar (1975). 

C O N C L U S I O N  

Lithologies are continuously created in time, and the thicknesses of  the 
segments can contain additional information about the structure of  the lithology. 
This makes continuous-time Markov processes a model better fitted to describe 
the evolution o f  lithologies than discrete-time Markov chains. Statistical pro- 
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c e d u r e s  are  k n o w n  a n d  fa i r ly  easy  to i m p l e m e n t .  T h e  add i t iona l  i n f o r m a t i o n  

a b o u t  the  d i s t r i bu t i on  o f  the  t h i c k n e s s  o f  a l i t ho logy  can  b e  used  in va r i ous  w a y s  

and  can  be  he lp fu l  to u n d e r s t a n d  the  p r oce s s  o f  s e d i m e n t a t i o n .  
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