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Abstract
We discuss the problem of selecting an optimal cut and then finding confidence
limits based on that cut. Even when performing a blind analysis this may lead
to a bias in the limits because the cut selected may be optimal for a real or sim-
ulated data set with limited statistics and thus may be sensitive to fluctuations
in this data set. We propose to use a variant of the bootstrap to find the limits.
A Monte Carlo study shows that these new limits have correct coverage.

1. Introduction

In recent years researchers in high energy physics have come to realize that some of the standard analysis
techniques carry with them the danger of introducing a bias. One major example is the search for a cut
combination which eliminates background events but retains as many signal events as possible. This
can lead to using a cut combination which is optimal for the data set at hand, but not for the process
that generated the data set, and that therefore depends too much on random fluctuations in the data. A
good way to lower the risk of introducing this bias is by performing a blind analysis, whereby the choice
of cut is solely based on the background sidebands or on simulated background. It should be clear,
though, that this only alleviates half the problem: we no longer are subject to upfluctuations in the signal
region, but we are still in danger of optimizing our cut on a downfluctuation in the sideband or simulated
background.

The source of the remaining problem can be understood to be the fact that we are using the same
data to do two things: to choose the cut set and to estimate the background level. One attempt at dealing
with this is to use split samples: randomly divide the data into two parts, use one part to find the optimal
cut combination, use the other to find the limits. This approach has two major flaws: first there is the
question of what the relative size of the two parts should be, and then there is the problem that the
parts have even lower statistics than the whole, thus worsening the effects of fluctuations. In this paper
we propose to use a different method to minimize this bias. Our method is a variant of a well known
technique in Statistics, the bootstrap. We will show that this method has neither of the two problems of
split samples and that it leads to unbiased estimates of the branching ratio.

When we choose a cut combination we need an optimality criterion. In this work we use the
experimental sensitivity, a variable which is derived from the sensitivity defined in Feldman and Cousins
[1] and in Review of Particle Physics [2]. The experimental sensitivity is defined as the average of the
upper limits that would be quoted for an ensemble of experiments with no true signal. It can be thought
of as a measure for the size of an effect that could be discovered by a certain experiment. The smaller
the experimental sensitivity of a cut set, the more likely we are to discover a signal that is truly present.

2. Why there might be a bias

The bias introduced by combining a minimization and an evaluation step into one procedure is actually
quite common. As one example, consider the problem of fitting a parametric curve to a histogram.
Here we usually start by estimating the parameters of the parametric function to be fit, for example by
finding the estimates of the parameters that yield the lowestχ2. Then we want to know whether our fit
is sufficiently good, so we proceed to find the confidence level of theχ2 statistic. But in fact theχ2, and
therefore the confidence level, will be biased because the parameter estimates were chosen to make the
χ2as small as possible. In the next section we will give the results of a Monte Carlo study that shows the
presence of this type of bias in the search for small signals.



Of course we have known for almost a century how to adjust for this bias in the case of theχ2,
namely by adjusting the degrees of freedom of theχ2 distribution. Unfortunately, in general it is very
difficult to find this kind of an analytic correction.

One important question is whether this bias is large or small compared to the statistical error. In
the analysis of small signals the end result is typically a confidence limit, either a two sided confidence
interval or just an upper limit. Whether or not a method to compute confidence intervals works correctly
has to be judged solely based on the true coverage rate of the limits. If two or more methods with correct
coverage are available, then one may use other criteria to make the choice of method. For example,
in physics one might prefer to use a method that never yields an empty interval, or one might prefer a
method that yields on average the shortest intervals. Such a choice has to made before examining the
data, of course.

We will use the method of Rolke and López [3] to compute the confidence intervals. This is the
only method currently known that treats the uncertainty in the background rate as a statistical error. Feld-
man and Cousins [4] independently solved this problem, and proposed a modification to their solution.
Like Feldman and Cousins [1] the Rolke-Lopez method solves the ”flip-flop” problem, and it always
results in physically meaningful limits. The problem described here as well as its solution, though, do
not depend on what method of computation is used for either the sensitivity or the limits. As long as
there is some uncertainty in the background rate the bias would be equally present if we had used for
example Feldman and Cousins [1] or a Bayesian method.

To get an idea of the size of the bias we performed a Monte Carlo study of the analysis of the
D0 → µ+µ− decay using data from FOCUS [5]. One problem in doing this MC is obtaining a large
sample of background events. In our study this sample was obtained by assuming the background was
due to other particles being misidentified as muons.

Fake data sets were generated by randomly choosingM events from the simulated signal set and
N events from the background set. For the purposes of this study we chose the number of background
eventsN from a Poisson distribution with rate16 as in the real dimuon data, andM was chosen from a
Poisson distribution with rateλ, whereλ was varied from0 (meaning no signal was present) to6. For
each value of the rateλ we generated5000 fake data sets in this manner. To each of these data sets
we applied each of13122 cuts. The cuts used for this simulation were the same cuts that had previously
been chosen as appropriate for this analysis. The cut that had the lowest experimental sensitivity was then
applied to the signal region and the Rolke-López method was used to find the corresponding confidence
limits. Finally those5000 confidence limits were used to calculate the true coverage rates. To make sure
that any observed bias is really due to the minimization-estimation problem, we also randomly chose9
individual cuts and always applied those same cuts to the fake data. Clearly in this case no minimization
takes place, and so there should be no bias.

The results of this MC study are shown in figure 1. As expected the limits for the individual cuts
have correct coverage, with the true coverage not dropping much below the nominal rate of0.9. That a
few of the coverage rates on the right side of the graph are below the 0.9 line is due to random fluctuations
in the MC as well as the discrete nature of the Poisson distribution. The apparent drop in the coverage
rates from the left to the right does not continue, with the rates forλ′s larger than6 all just above0.9.
This was verified by running the MC for various values ofλ up toλ = 15.

Correct coverage is not the only characteristic a good method should have. It is also important
to obtain the strictest limits possible. That is what the minimum sensitivity cut methodology attempts
to do but using the limits from this method results in true coverage rates well below the nominal rate.
The graph is based on just15 different values forλ, and it would be pure coincidence if the lowest true
coverage were obtained for one of those values. Therefore the worst coverage should be expected to be
well below the worst one observed of about0.845. We can therefore conclude that we have a sizable bias
in our confidence limits due to the cut selection bias.



Fig. 1: True coverage rates for individual cuts (dotted line) and for minimum sensitivity cut (solid line). The rates for the

individual cuts are always larger than the nominal rate as is desired, wheras the true coverage for the minimum sensitivity is

often well below the nominal rate of 0.9.

3. The Bootstrap

The statistical bootstrap method is a non-parametric alternative for finding error and bias estimates in
situations where the assumption of a Gaussian distribution is not satisfied and where it is difficult or
even impossible to develop an analytic solution. In this section we will show the reasoning behind the
bootstrap method and how it is applied in practice.

Let us assume we are interested in estimating a certain parameterθ such as the width of a signal
or a branching ratio. Let us also assume that we have observationsX1, .., Xn from a distributionF that
depends onθ. Furthermore we have a method for finding an estimateθ̂ of θ, sayθ̂ = T (X1, .., Xn). The
estimatorT might be as simple as computing the mean of the observations or as complicated as fitting a
Dalitz plot.

Now, in addition toθ̂ we will also need an error estimate as well as an idea of the bias in the
estimatorT . If T is fairly simple we might be able to find its distribution and get an error and a bias
estimate analytically. If the situation is more complicated we might instead try a Monte Carlo study.
To do this we would simulate sampling from the distributionF , generating many (sayk) independent
samples of sizen, apply the estimatorT to each and thereby get a sample of estimatorsθ̂1, .., θ̂k. Then
we can look at a histogram of the estimators, compute their standard deviation, and so on.

But what can we do if we do not know the distributionF? In that case the dataX1, .., Xn is all we
have, and any analysis has to be based on these observations. The best estimate of the distribution func-
tionF (x) is the empirical distribution function̂F (x) given byF̂ (x) = 1

n ·(number of observationsXi ≤ x),
x ∈ <, that is the percentage of events smaller thanx. The basic idea of the bootstrap is to replace the
distributionF in the MC study above by its empirical distribution function̂F .

It can be shown that sampling from the empirical distribution function means samplingwith re-



placementfrom the observationsX1, .., Xn. A bootstrap sample has the same sample size as the original
data. It is made up out of the original observations, some of which might appear more than once whereas
others might not be included at all. As in the MC study, we will draw many (sayB) of these bootstrap
samples, apply the estimatorT to each of them and thereby get bootstrap estimatesθ̂∗1, .., θ̂

∗
B of θ. We

can then study these bootstrap estimates to get an idea of the error and the bias ofT .

The bootstrap method as described above was first developed by B. Efron in [6]. Since then a
great deal of theoretical work has been done to show why and when the bootstrap method works, see for
example Hall [7], and it has been successfully used in a wide variety of areas. Previous applications of
the bootstrap in High Energy Physics can be found in Hayes, Perl and Efron [8] and in Alfieri et al. [9].
For a very readable introduction to the subject see Efron and Tibshirani [10].

4. The Dual Bootstrap and Bias Corrected Limits

As discussed in the introduction, the usual approach for dealing with this bias, namely the split sample
method, has some serious problems of its own. Instead we will use a variant of the bootstrap: we will
draw one bootstrap sample from the data and find the cut with the smallest sensitivity for this bootstrap
sample, then we will draw another bootstrap sample, independent from the first, to find the limits. This
procedure will then be repeatedB times, with aB of about5000. In this manner we will getB lower
and upper limits. Finally we will use the median of the lower and the median of the upper limits as
our estimates. We use the median because it is less sensitive than the mean to a few unusually large
observations. Also, in the case where the signal rate is zero, if even a few of theB bootstrap estimates
of the lower limit are positive, the mean would also be positive (and wrong), whereas the median is still
zero (and therefore correct).

In this way for each bootstrap sample we get a cut set that is optimal for the first bootstrap sample
but not necessarily for the second, which is representative of the underlying distribution. We can therefore
expect to get unbiased estimates for the limits or, in other words, limits with the correct coverage rate.

We repeated the MC study discussed in section 2, now using the dual bootstrap method. Figure
2 shows that the dual bootstrap method yields limits with the correct coverage, effectively removing the
minimization-evaluation bias. Similar MC studies with different nominal coverage rates and different
background rates, both smaller and larger than the rate of16 shown here, have confirmed this conclusion.

5. Conclusion

We have shown that performing a blind analysis is not enough to eliminate the cut selection bias. A MC
study of theD0 → µ+µ− decay indicates that this bias is quite large. We have developed a method
based on the bootstrap technique from Statistics that corrects for this type of bias. A MC study for the
D0 → µ+µ− decay shows that this new method performs very well.

FORTRAN routines for the dual bootstrap method as well as for computing the Rolke-López limits
are available from the authors by sending an email to wrolke@rumac.uprm.edu.
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