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This glossary brings together some statistical concepts that physicists may happen upon in the
course of their work. The aim is not absolute mathematical precision—few physicists would tolerate such
a burden. Instead, (one hopes) there is just enough precision to be clear. We begin with an introduction
and a list of notations. We hope this will make the glossary, which is in alphabetical order, somewhat
easier to read.

The mistakes that remain can be entirely attributed to stubbornness! (H.B.P.)

Probability, Cumulative Distribution Function and Density

1) A sample spaceS is the set of all possible outcomes of an experiment.

2) Probability cannot be defined on every subset of the sample space but only those sets in aσ-
algebra. (Aσ-algebra is the set of subsets ofS, that contains the empty set,̄A if it containsA,
∪Aj if it contains the sequenceAj .) Don’t panic—this isn’t used elsewhere in this glossary.

3) Statisticians define a random variable (r.v.)X as a map from the sample space into the real num-
bers, that is,X : S → R (at least in one dimension).

4) The (cumulative) distribution function is defined byF (x) = P (X ≤ x). Herex is a real num-
ber, X is a random variable, andP (X ≤ x) is interpreted asP (A) whereA = {X ≤ x} =
{ω ∈ S : X(ω) ≤ x} . We talk about the probability of an event (set). Note that this definition
does not distinguish between discrete and continuous random variables. The distribution may
depend on parameters.

5) In the discrete case, we define the probability mass function (pmf) by

f(x) = P (X = x).

Note that ifX is a continuous r.v., all these probabilities are0. In the continuous case, we define
the probability density function (pdf) by

F (x) =
∫ x

−∞
p(z)dz,

or equivalentlyp(x) = d
dxF (x).

Notation

P (A) Probability ofA
P (AB) Probability ofA andB
P (A + B) Probability ofA or B
P (A|B) Probability ofA givenB
∪Aj Union of setsAj

∩Aj Intersection of setsAj

X Random variable
x Particular instance of a random variable
t(X) Statistic
d(X) Estimator



θ Parameters of some modelM

θ̂ Estimate of parameterθ
p(X|θ) Probability density ofX givenθ
P (X|θ) = p(X|θ)dX Probability ofX givenθ
D(p||q) Kullback-Liebler divergence between densitiesp andq
X ∼ p(X|θ) X is distributed according to the probability densityp(X|θ)
iid identically and independently distributed
P (θ|x) = p(θ|x)dθ Posterior probability ofθ given datax
P (M) Prior probability of modelM
P (x|M) Evidence for modelM (probability of datax given modelM )
P (M |x) Posterior probability of model M given datax
b(θ) Bias
EX [∗] Expectation operator
VX [∗] Variance operator
L(θ) Likelihood function
L(d, θ) Loss function
R(θ) Risk function
Remp(θ) Empirical risk function

GLOSSARY

Ancillary Statistic

Consider a probability density functionp(X|θ). If the distribution of the statistict(X) is inde-
pendent ofθ and the statistic is also independent ofθ, then the functiont(X) is said to be an ancillary
statistic forθ. The name comes from the fact that such a statistic carries no information aboutθ itself,
but may carry subsidiary (ancillary) information, such as information about the uncertainty of the esti-
mate. ExampleIn a series ofn observationsxi, n is an ancillary statistic forθ. The independence of
the distribution on the ancillary statistic suggests the possibility of inference conditional on the value an
ancillary statistic. See also Conditioning, Distribution Free, Pivotal Quantity, Sufficient Statistic.

Bayes Factor

See Posterior Odds.

Bayes’ Theorem

P (B|A) = P (A|B)P (B)/P (A),

is a direct consequence of the definition of conditional probabilityP (A|B)P (B) = P (AB) = P (B|A)P (A).
A similar algebraic structure applies to densities

p(z|w) = p(w|z)p(z)/p(w),

wherep(w) =
∫

p(w|z)p(z)dz. Frequentists and Bayesians are happy to use this theorem whenboththe
variablesz andw are related to frequency data. Bayesians, however, are quite happy to use the theorem
whenw is nota random variable; in particular, whenw may be an hypothesis or one or more parameters.
See also Probability.

Bayesian

The school of statistics that is based on thedegree of beliefinterpretation of probability, whose
advocates included Bernoulli, Bayes, Laplace, Gauss and Jeffreys. For these thinkers, probability and fre-
quency are considered logically distinct concepts. The dominant sub-group among Bayesians is known
as the Subjective school, interpreting probability as a personal degree of belief; for these, use in a sci-
entific setting depends on accepting conclusions shown to be robust against differing specifications of



prior knowledge. Sufficient data (and the consequent peaking of the likelihood function) makes such ro-
bustness more likely. The injunction of distinguished American probabilist Mark Twain against overly-
informative prior densities is apposite: “It ain’t what people don’t know that hurts them, it’s what they
do know that ain’t so.” See also Prior Density, Default Prior, Posterior Density, and Exchangeability.

Bias

Let d(X) be an estimator of the unknown parameterθ. The bias is defined by

b(θ) ≡ EX [d(X)]− θ,

where the expectationEX [d] is with respect to an ensemble of random variables{X}. The bias is just
the difference between the expectation value,with respect to a specified ensemble, of the estimatord(X)
and the value of the parameter being estimated. If the ensemble is not given, the bias is undefined. If an
estimator is such thatb(θ) = 0 ∀ θ then the estimator is said to beunbiased; otherwise, it is biased. Bias,
in general, is a function of theunknownparameterθ and can, therefore, only be estimated. Further, bias
is a property of a particular choice of metric. In high energy physics, much effort is expended to reduce
bias. However, it should be noted that this is usually at the cost of increasing the variance and being
further away, in the root-mean-square sense, from the true value of the parameter. See also Ensemble,
Quadratic Loss Function, Re-parameterization Invariance.

Central Credible Interval

In Bayesian inference, a credible interval defined by apportioning the probability content outside
the region equally to the left and right of the interval boundaries. This definition is invariant under change
of variable, but may be unsatisfactory if the posterior density is heavily peaked near boundaries. See also
Central Interval, Highest Posterior Density Region, Re-parameterization Invariance.

Central Interval

An interval estimate where the probability in question is intended to be in some sense centered,
with the probability of being outside the interval equally disposed above and below the the interval
boundaries. See Confidence Interval, Central Credible Interval.

Compound Hypothesis

See simple hypothesis.

Conditional Probability

This is defined by

P (A|B) =
P (AB)
P (B)

.

The symbolP (A|B) is read as the “probability ofA given B.” The idea is very intuitive. Say we
want to guess the probability whether an experiment will result in an outcome in the setA. Without
any additional information this is given byP (A), where this probability is computed using the sample
spaceS. Now say we do have some more info, namely that the outcome is in the setB. Then one way
to proceed is to change from the sample spaceS to the sample spaceB, and this is indicated by the
notationP (A|B). The formulaP (A|B) = P (A∩B)

P (B) says that instead of computing one probability using
the sample spaceB we can find two probabilities using the old sample spaceS, which is often easier.
See Probability.

Conditioning

Making an inference contingent on some statistict(x) of the observed datax. Conditioning
amounts to selecting that sub-ensemble, of the ensemble of all possible dataX, consistent with the
observed data. Bayesian inference entails the most extreme conditioning, namely, conditioning on the
data observed and nothing else.



Confidence Interval

A set of random intervals[l(X), u(X)], defined over an ensemble of random variablesX, is said
to be a set of confidence intervals if the following is true

Prob{θ ∈ [l(X), u(X)]} ≥ β ∀ θ and ∀λ,

whereθ is the parameter of interest andλ represent all nuisance parameters. The valuesl(X) andu(X)
are calledconfidence limits. Confidence intervals are a frequentist concept; therefore, the probability
“Prob” is interpreted as a relative frequency.

For fixed values ofθ and λ there is an associated setC(X, θ, λ) = {[l(X), u(X)] : θ, λ =
constant} of intervals, of which some fraction bracket the (true) valueθ. That fraction “Prob” is called
thecoverage probability. In general, as we move about the parameter spaceΩ(θ, λ), the setC(X, θ, λ)
changes, as does its associated coverage probability “Prob.” Neyman introduced the theory of confidence
intervals in 1937, requiring that their coverage probabilitiesneverfall below a pre-defined value called
theconfidence level(CL), whatever the true values of all the parameters of the problem. We refer to this
criterion as theNeyman Criterion. A set of intervalsC(X) is said to havecoverage, or cover, if they
satisfy the Neyman criterion. Exact coverage can be achieved for continuous variables, but for discrete
variables, the interval over-covers for most true values.

To fully specify a confidence interval, the CL alone does not suffice: it merely specifies the proba-
bility content of the interval, not how it is situated. Adding a specification that during construction of an
interval of size CL, the remaining probability(1−CL) is apportioned equally defines Central Intervals;
other procedures provide upper (l(X) = 0) or lower limits (U(X) = ∞),or move smoothly from limits
to central intervals.

Confidence Interval (CI) Estimation and Hypothesis Testing are like two sides of the same coin:
if you have one you have the other. Technically, if[l(X), u(X)] is a (1− α) 100% CI for a parameter
θ, and if you defineC(θ0) = {X : θ0 ∈ [l(X), u(X)]} then this is a critical region (see Hypothesis
Testing) for testingH0 : θ = θ0 with level of significanceα. The most important use of this duality is
to find a CI: First find a test (which is often easier because we have a lot of methods for doing this) and
then “invert the test” to find the corresponding CI.

It is important to note the probability statements for Confidence Intervals concern the probabil-
ity that the limits calculated from data in a series of experiments surround the true with the specified
probability. This is a statement about probability of data, given theory. It is not a statement about the
probability that the true value lies within the limits calculated for this particular experiment (a statement
of probability of theory, given data). To make such a statement, one needs the Bayesian definition of
probability as a degree of belief, and a statement of one’s degree of belief in the theory (or parameter
values) prior to the measurement.

See also Neyman Construction, Hypothesis Testing, Re-parameterization Invariance. Contrast
with Credible Region.

Confidence Level

See Confidence Interval.

Confidence Limit

See Confidence Interval.

Consistency

An estimatord(X) is consistent for a parameterθ if d(X) converges in probability toθ asn (the
number of samples) goes to infinity, that isP (|d(X) − θ| > ε) → 0 for all ε > 0. That means both the
bias and the variance also have to go to0. Estimators obtained using Bayesian methods or maximum
likelihood are usually consistent.



Coverage

See Confidence Interval.

Coverage Probability

See Confidence Interval.

Cramér-Rao Bound

See Minimum Variance Bound.

Credible Interval

See Credible Region.

Credible Region

In Bayesian inference, this is any sub-setω of the parameter spaceΩ of a posterior probability
P (θ|x) having a given probability contentβ, that is,degree of belief. A credible regionω is defined by

β =
∫

ω
P (θ|x) =

∫

ω
p(θ|x)dθ.

If θ is one-dimensional, one speaks of acredible interval. The latter is the Bayesian analog of a
confidence interval, a frequentist concept introduced by Neyman in 1937.

The above specification of probability content is insufficient to fully define the region, even in the
case of a single parameter; one must further specify how to choose among the class of intervals with the
correct probability content. See also Highest Posterior Density Region, Central Credible Interval.

Default Prior

Default, reference, conventional, non-informative etc. are names given to priors that try to cap-
ture the notion of indifference with respect to entertained hypotheses. Although such priors are usually
improper (see Improper Priors), they are often useful in practice and practically unavoidable in complex
multi-parameter problems for which subjective elicitation of prior densities is well-nigh impossible.

Distribution Free

A distribution, of a statistict(X), is said to be distribution free if it does not depend on the
parameters of the underlying probability distribution ofX. The classic example of such a distribution is
that of the statistict(X) = [(X − µ)/σ]2, whereX ∼ Gaussian(µ, σ) with σ known andµ unknown.
Although the distribution ofX depends on the two parametersµ and σ the distribution oft(X), a
χ2 distribution, depends on neither. This is a useful feature in frequentist statistics because it allows
probabilistic statements aboutt(X) to be transformed into exact probabilistic statements aboutµ. See
also Ancillary Statistic.

Empirical Risk Function

In many analyses, the risk function, obtained by averaging the loss function over all possible data,
is usually unknown. (See Loss Function, Risk Function.) Instead, one must make do with only asample
{xi} of data, usually obtained by Monte Carlo methods. Therefore, in lieu of the risk functionR(θ) one
is forced to use theempirical risk function

Remp(θ) ≡ 1
N

N∑

i=1

L(di, θ),

wheredi ≡ d(xi) are estimates ofθ andL(di, θ) is the loss function.Empirical risk minimizationis the
basis of many methods used in data analysis, ranging from simpleχ2 based fits to the training of neural
networks.

Ensemble

One would be hard-pressed to find this term used by statisticians. But one would be even harder-
pressed to excise it from the physics literature! In the context of statistics, an ensemble is the set of



repeated trials or experiments, or their outcomes. To define an ensemble one must decide what aspects of
an experiment are variable and what aspects are fixed. If experiments are actually repeated no difficulty
arises because the actual experiments constitute the ensemble. A difficulty arises, however, if one per-
forms only a single experiment: In that case, because the ensemble is now an abstraction, the embedding
of the experiment in an ensemble becomes a matter ofdebate.

The ensemble definition is necessary, for example, to write simulations that evaluate uncertainties
in frequentist error calculations, and as such typically requires definition of the relevant models leading to
probability densitiesp(x|θ) for the contributing processes, and the Stopping Rule for data taking which
defines how each experiment in the ensemble ends. See also Stopping Rule, Likelihood Principle.

Estimate

See estimator.

Estimator

Any procedure that provides estimates of the value of an unknown quantityθ. In simple cases,
estimators are well-defined functionsd(X) of random variablesX. In high energy physics, they are
often complicated computer programs whose behaviour, in general, cannot be summarized algebraically.
When a specific set of datax are entered into the functiond(X) one obtains an estimatêθ = d(x) of the
value of the unknown quantityθ.

Evidence

Given priorP (θ|M) = p(θ|M)dθ for modelM , characterized by parametersθ and the likelihood
L(θ) ≡ p(x|θ, M), the evidencep(x|M) for the modelM is given by

p(x|M) =
∫

p(x|θ,M)p(θ|M)dθ.

This is a very important quantity in Bayesian inference. See also Model Comparison.

Exchangeability

Exchangeable events are those whose probability is independent of the order in which they occur.
The corresponding concept in frequentist statistics is that of independently and identically distributed
events. In Bayesian statistics, de Finetti’s theorem makes a connection between degree of belief proba-
bilities and classical frequency probabilities. If the number of successful outcomes isS and the number
of trialsT , the theorem states that under rather general conditions, the limit

lim
T→∞

S/T → r

exists with probability 1 for any exchangeable sequence of events. For a fuller discussion, see for exam-
ple O’Hagan, Kendall’s Advanced Theory of Statistics, Volume 2B: Bayesian Inference, Edward Arnold
(1994). See also iid, Law of Large Numbers.

Expectation

Ez[∗] is theexpectationor averaging operatorwith respect to the variablez. Given a functionf(z)
its expectation is

Ez[f ] =
∫

f(z)p(z)dz,

wherep(z) is the probability density ofz. In frequentist inferencez is a random variableX; in Bayesian
analysis it can be a parameter.

Fisher Information

Consider the probability densityp(X|θ), where bothX andθ may be multi-dimensional. Define
the random vectorΘ(X) = ∂

∂θ ln p(X|θ). The Fisher information (matrix) is defined by

J(Θ) = EX [Θ(X)Θ(X)T ].



Example:LetX ∼ Poisson(θ) = exp(−θ) θX/X!; thenΘ(X) = X−θ
θ . Therefore,J(Θ) = EX [(X−θ

θ )2] =
1/θ; J−1 is the variance of the Poisson distribution.

See also Likelihood, Jeffreys’ Prior, Minimum Variance Bound, and Quadratic Loss Function.

Flat Prior

An attempt at specifying a default prior with minimal structure by specifying that the prior prob-
ability is independent of the parameter value. It has the seductive appeal of mathematical simplicity, but
hides some pitfalls, encapsulated in the question: “flat in what variable?” If the flat prior represents your
actual subjective prior knowledge of values of possible parameters, You should be ready to answer “why
flat in mass, rather than cross section, ln(tanβ), or Poisson mean?” If you are consistent, you should re-
express (transform) your flat prior to other variables by multiplying by a Jacobian; flat priors in different
variables expressinconsistentstates of prior knowledge. Some try to justify this choice, in a particular
variable, by finding numerical similarities of credible intervals or limits to confidence intervals, despite
the different interpretations of these intervals. Any attempt to estimate probabilities or calculate limits
by “integrating the likelihood function” has implicitly assumed a flat prior in a particular variable, and
almost certainly is then vulnerable to making inconsistent (but Bayesian degree-of belief) probability
statements, depending on which parameterization of the likelihood function is chosen.

See also, Bayesian, Default Prior, Improper Prior, Prior Density, Re-parameterization Invariance.

Frequentist

The school of statistics that is based on therelative frequencyinterpretation of probability, whose
advocates included Boole, Venn, Fisher, Neyman and Pearson. This school sees no logical distinction
between probability and frequency.

Goodness Of Fit

See P-value.

Highest Posterior Density (HPD) Region

The smallest credible region with a given probability contentβ. (See Credible Region.) In one
dimension this region is found by minimizing the length of the interval[a, b] defined by

β =
∫ b

a
p(θ|x)dθ.

According to this definition, disjoint regions are possible if the posterior probability is multi-modal. HPD
regions arenot invariant under a change of variable: a probability integral transform of the posterior den-
sity would render the posterior flat, rather hindering choice of a HPD region. See also Central Credible
Interval, Probability Integral Transform, Re-parameterization Invariance.

Hypothesis Testing

A hypothesis is a statement about the state of nature, often about a parameter. Hypothesis testing
compares twohypotheses, called the null hypothesisH0 and the alternative hypothesisH1. A hypothesis
may be simple, such asH0 : p = 0.5, or compound, such asH0 : p ≤ 0.5. In practiceH0 is usually a
simple hypothesis whereasH1 is often compound. The null hypothesis is the boring, bland explanation.
The alternative hypothesis is why you did the research: the more interesting and exciting possibility,
for which evidence must be offered. Nature, alas, is not constrained to be described by either of the
hypotheses under consideration.

A hypothesis test is a procedure that decides whetherH0 or H1 is true. The subspace of the sample
space for whichH0 is rejected is called the critical region (or the rejection region). When performing a
hypothesis test we face the following possibilities:



True State of Nature
Decision made by hypothesis testH0 is true H0 is false
Fail to rejectH0 (“Accept” H0) correct decision Type II error (false negative),

with probabilityβ

RejectH0 (“Accept” H1) Type I error (false positive), correct decision
with probabilityα

The probabilityα is called the significance of the test;1 − β is called the power of the test. IfH1 is
compound, the power is a function of the true parameter. More later on why one can only “Accept”, not
simply Accept, hypotheses.

The logic of hypothesis testing is as follows: ChooseH0, H1, α and the test procedure. Ideally
these should be chosen before looking at the data, although this is often not practical. The choice of
α should be made by considering the consequences of committing the type I error (such as claiming to
have discovered a new decay mode that really does not exist) or the type II error (such as not publishing a
discovery and then have the glory go to somebody else). The crucial point here is that makingα smaller
usually means getting a largerβ.

One very important, and often overlooked, point in hypothesis testing is the role of the sample
size. What can we conclude after we performed a hypothesis test, and failed to rejectH0? There are
two possibilities: eitherH0 is actually true (and we should accept it), or we did not have the sample size
necessary to reject it. As an illustration of the role of the sample size consider this mini MC: generate
n observations from a normal distribution with mean0.1 and variance1. Then do the standard test for
H0 : µ = 0 vs. H1 : µ 6= 0, usingα = 0.05. Repeat this500 times and check how oftenH0, which we
know is wrong, is actually rejected. The result is as follows:

sample sizen 10 20 30 40 50 60 70 80
% that correctly rejectH0 29 60 79 90 93 97 98.6 98.8

Clearly whether we reject the null hypothesis depends very much on the sample size. In real life,
we never know why we failed to rejectH0 and so the terminology “failed to rejectH0” really is more
correct than “acceptH0”.

See also Neyman-Pearson Test, Simple Hypothesis.

iid A set of measurements are iid (identically and independently distributed) if they are independent, and
all governed by the same probability distribution.

Improper Prior

A prior density function that cannot be normalized to unity. A flat prior density over an infinite
domain is an example of an improper prior.

Indicator Function

Any functionI(x, ..), of one or more variables, that assumes only two values, 0 or 1, depending
on the values of the variables. An example is the Kroneckerδ(i, j), which is equal to 1 ifi = j and 0
otherwise. Another is the Heaviside step functionh(x), which is 1 ifx > 0, 0 otherwise.

Invariance

See Re-parameterization Invariance.

Jeffreys’ Prior

Jeffreys suggested the following general default prior density

π(θ) =
√

J(θ),

based on the Fisher informationJ(θ). (See Fisher Information.) It is re-parameterization invariant in
the sense that if one transforms fromθ to the new set of variablesφ the Jeffreys priorsπ(φ) andπ(θ)
are related by the Jacobian of the transformation. Many different arguments yield this prior. (See, for



example, Kullback-Liebler Divergence.) However, while it works extremely well for one-dimensional
problems, typically, it is less than satisfactory in higher dimensions.

Use of this prior may violate the Likelihood Principle, as the form taken by Jeffreys’ Prior can
depend on the stopping rule. For example, the binomial and negative binomial distributions produce
different Jeffreys’ priors, even though they produce likelihoods which are proportional to each other.

Jeffreys also had made other suggestions for priors in specific cases (location parameters, for
example). Confusingly, these other specific suggestions (which may conflict with the general rule above)
are also sometimes referred to as Jeffreys’ prior or Jeffreys’ rule.

See also Stopping Rule, Re-parameterization Invariance, Likelihood Principle.

Kullback-Liebler Divergence

This is a measure of the “dissimilarity”, or divergence, between two densities with the property
that it is zero if and only if the two densities are identical. Given two densitiesp(X|θ) andq(X|φ), the
Kullback-Liebler divergence is given by

D(p||q) =
∫

p(X|Θ) ln[p(X|Θ)/q(X|Φ)]dX.

BecauseD(p||q) is not symmetric in its arguments it cannot be interpreted as a “distance” in the usual
sense. However, if the densitiesp andq are not too different, that is,q(X|φ) ≈ p(X|θ + ∆θ), it is
possible to writeD(p||q) ≈ 1

2∆θT J(θ)∆θ, which may be interpreted as the invariant distance in the
parameter space between the densities (Vijay Balasubramanian, adap-org/9601001). The metric turns
out to be the Fisher information matrixJ(θ). Consequently, it follows from differential geometry that
the invariant volume in the parameter space is just

√
J(θ) dθ, which we recognize as none other than the

Jeffreys prior. See also Jeffreys Prior.

Law of Large Numbers

There are several versions of the weak and strong laws of large numbers. We shall consider one
version of the weak law. The weak law of large numbers is the statement, first proved by Jakob Bernoulli,
about theprobability that the ratio of two numbers, namely the number of successful outcomesS over the
number of independent trialsT , converges to theprobabilityp of a success, assuming that the probability
of success is the same for each trial. The statement is

∀ ε > 0, Prob(|p− S/T | > ε) → 0 as T →∞.

In words: The probability thatS/T deviates fromp goes to zero as the number of trials goes to infinity.
A sequence that converges in this manner is said toconverge in probability. This theorem provides
the connection between relative frequenciesS/T and probabilitiesp in repeated experiments in which
the probability of success does not change. While the theorem provides an operational definition of
the probabilityp, in terms ofS/T , it leavesun-interpretedthe probability “Prob.” Note that it is not
satisfactory to interpret “Prob” in the same way asp because that would entail an interpretation ofp that
is infinitely recursive. For this reason, Bayesians argue that “Prob” is to be interpreted as some sort of
degree of beliefabout the statementS/T → p asT →∞.

The strong law of large numbers is similar to the weak in that it is a statement about the conver-
gence in probability ofS/T to p, except that the convergence in probability is to unity rather than zero.
(See for example, E. Parzen,Modern Probability Theory and Its Applications(Wiley, New York, 1992),
Chapter 10.)

Likelihood

The common notation for a likelihood isL(θ) ≡ p(x|θ), found by evaluating a probability density
function p(X|θ) at the observed dataX = x. Note the distinction between the probability density
functionp(X|θ), which is a function of the random variableX and the parameterθ, and the likelihood
functionL(θ), which, because the data are fixed, is a function ofθ only. In practice, the structure of the



probability calculus is often clearer using the notationp(x|θ) rather thanL(θ); contrastp(θ|x)p(x) =
p(x|θ)p(θ) with p(θ|x)p(x) = L(θ)p(θ). If x are multiple iid observations, the likelihood may be written
as a product of pdf’s evaluated at the individual observationsxi. The likelihood concept was championed
by Fisher. In the method of Maximum Likelihood, the value of the parameter at which the likelihood has
a mode is used as an estimate of the parameter. Because of their good asymptotic properties, frequentists
often use maximum likelihood estimators. See Likelihood Ratio, Likelihood Principle, and contrast with
Posterior Mode.

Likelihood Principle

The principle thatinferencesought to depend only on the data observed and relevant prior in-
formation. Thus any two choices of pdf (probability model) which produce the same or proportional
likelihoods should, according to the Likelihood Principle, produce the same inference.

Acceptance of this principle doesnot imply that one must, of necessity, eschew ensembles. Indeed,
ensembles must be considered in thedesignof experiments, typically, to test how well a procedure, be it
frequentist or Bayesian, might be expected to perform on the average. But ensembles are not needed to
effect an inference in methods, such as standard Bayesian inference, that obey the Likelihood Principle.
Frequentist methods such as use of minimum variance unbiased estimators violate the Likelihood Prin-
ciple. This can be seen by examining the definition of bias, which involves Expectation over all values
of x of the values of the statistic. This average includesp(x|θ) for values ofx other than that actually
observed, and thus not part of the likelihood. See also Ensemble, Stopping Rule, and Jeffreys’ Prior.

Likelihood Ratio

The ratio of two likelihoods:L(H1)
L(H2) . Likelihood ratios are important in many statistical procedures,

such as the Neyman-Pearson test of simple hypotheses,H1 andH2. See also Neyman-Pearson Test, Prior
and Posterior Odds, Simple Hypothesis.

Loss Function

Any function that quantifies the loss incurred in making a decision, such as deciding, given some
data, on a particular value for an unknown parameter. In practice, the loss functionL(d, θ) is a function
of the estimatord(X) and the unknown quantityθ to be estimated. The loss function is a random variable
by virtue of its dependence on the random variabled(X). For a specific example, see Quadratic Loss
Function.

Marginal Distribution

Given any distributionp(X, Y ) the marginal distribution is

p(X) =
∫

p(X,Y )dY.

Marginalization

Summation or integration over one or more variables of a probability distribution or density. Such
a procedure follows directly from the rules of probability theory. In Bayesian inference it is the basic
technique for dealing with nuisance parameters,λ, in a posterior probability density

p(θ|x) =
∫

p(θ, λ|x)dλ,

that is, one integrates them out of the problem to arrive at the marginal posterior densityp(θ|x).

Mean

The first moment, about zero, of a distributionp(X)

Mean≡
∫

Xp(X)dX.



Median

For a one-dimensional distribution, the median is the point at which the distribution is partitioned
into two equal parts.

Minimum Variance Bound

A lower bound on the variance of an estimator, based on the Fisher Information.

The Fisher Information describes in some sense the information in a (prospective) data set. As
such, it provides a bound on the variance of an estimatord for a parameterθ of the form

VX [d] ≥ (1 + ∂b/∂θ)2/ J(θ) ,

whereb is the bias of the estimator. That is, the parameter is better estimated when the Fisher Information
is larger (for example if more measurements are made). The Fisher Information, from its definition,
is clearly related to the (expected) curvature of the likelihood function, and is thus sensitive to how
well-defined is the peak of the likelihood function (particular for a maximum likelihood Estimator). In
the multidimensional case, one compares diagonal elements of the covariance matrix and the Fisher
Information. See also Fisher Information, Variance, Bias, and Quadratic Loss Function.

Mode

The point at which a distribution assumes its maximum value. The mode depends on the metric
chosen. See Re-parameterization Invariance.

Model

A model is the abstract understanding of underlying physical processes generating some or all
of data of a measurement. A well specified model can be realized in a calculation leading to a pdf.
This might follow directly if the model is simple, such as a process satisfying the assumptions for a
Poisson distribution; or indirectly, via a Monte Carlo simulation, for a more complex model such as
p(x|θ), θ = MHiggs, for a number of potential Higgs masses. See also Model Comparison.

Model Comparison

The use of posterior probabilitiesP (Mi|x) to rank a set of models{Mi} according to how well
each is supported by the available datax. The posterior probabilities are given by

P (Mi|x) =
p(x|Mi)P (Mi)∑
i p(x|Mi)P (Mi)

,

wherep(x|Mi) is the evidence for modelMi and P (Mi) is its prior probability. See also, Model,
Evidence and Posterior Odds.

Moment

Therth momentMr(a), about the pointa, is defined by

Mr(a) =
∫

(X − a)rp(X)dX.

Neyman Construction

The method by which confidence intervals are constructed. (See, for example, the discussion in
G. Feldman and R. Cousins, Phys. Rev.D57, 3873 (1998), or the Statistics section of the current Review
of Particle Properties, published by the Particle Data Group.) The theory of confidence intervals was
introduced by Jerzy Neyman in a classic 1937 paper.

Neyman-Pearson Test

A frequentist test of a simple hypothesisH0, whose outcome is either rejection or non-rejection
of H0 (for example, that an observation is from a signal with a know pdf). The test is performed against
an alternative simple hypothesisH1(for example, that the observation is due to a background with a



known pdf). For two simple hypotheses, the Neyman-Pearson test is optimal in the sense that for a given
probabilityα to commit a type I error, it achieves the smallest possible probabilityβ to commit type II
errors. (See Type I and Type II Errors.)

The test statistic is the ratio of probability densities

λ(X) =
p(X|H1)
p(X|H0)

.

The critical region is defined byC = {X : λ(X) > k} with the significanceor sizeof the test given
by α = P (X ∈ C|H0), supposingH0 to be true. The basis of the test is to include regions of the
highestλ (ratio of probability densities) first, adding regions of lower values ofλ until the desired size
is obtained. Thus, nowhere outside the critical region, whereH0 would fail to be rejected, is the ratio
p(X|H1)/p(X|H0) greater than in the critical region. The test, based on a likelihood ratio, is not optimal
if the hypotheses are not simple. See also Hypothesis Testing, Simple Hypothesis.

Nuisance Parameter

Any parameter whose true value is unknown but which must be excised from the problem in order
for an inference on the parameter of interest to be made. For example, in an experiment with imprecisely
known background, that latter is a nuisance parameter.

Null Hypothesis

See P-value, Hypothesis Testing, and Neyman-Pearson Test.

Occam Factor

In Bayesian inference, the Occam factor is a quantity that implements Occam’s razor: “Plurality
shouldn’t be posited without necessity” (William of Occam, 1285-1349). Basically, keep it simple!
Consider the evidencep(x|M) =

∫
p(x|θ,M)p(θ|M)dθ. Let p(x|θ̂, M) be the value of the likelihood

L(θ) ≡ p(x|θ, M) at its mode. Suppose that the likelihood is tightly peaked about its modeθ̂ with a
width ∆θ. We can write the evidence as

p(x|M) ≈ p(x|θ̂,M)× p(θ̂|M)∆θ.

The factorp(θ̂|M)∆θ is called theOccam factor. Complex models tend to have prior densities spread
over larger volumes of parameter space and consequently smaller values ofp(θ̂|M). On the other hand, a
model that fits the data too well tends to yield smaller values of∆θ. The Occam factor is seen to penalize
models that are unnecessarily complex or that fit the data too well.

From the form of the Occam factor one may be tempted to conclude that the absolute value of
the prior density is important. This is not so. What matters is that prior densities be correctly calibrated
across the set of models under consideration. That is, theratio of prior densities across models must be
well-defined. See also Model, Model Comparison.

P-value

The probability that a random variableX could assume a value greater than or equal to the ob-
served valuex. Consider a hypothesisH, observed datax and a probability density functionp(X|H)
that is contingent on the hypothesis beingtrue. We suppose thatX > x represents values ofX that are
judged more extreme than that observed—usually, those values ofX that render the hypothesisH less
likely. The p-value is defined by

p ≡
∫ ∞

x
p(Y |H)dY.

P-values are the basis of a frequentist procedure forrejectingH: Before an experiment, decide on a
significanceα; perform the experiment; ifp < α—implying that the data observed are considered too
unlikely if H is true—onerejectsthe hypothesisH. A hypothesis that can be rejected according to this
protocol is called anull hypothesis.



A significance test requires one to decide ahead of time the valuex0 of X, with significance
α =

∫∞
x0

p(Y |H)dY , such that if the observed valuex > x0 the hypothesis is to be rejected. Clearly,
this is equivalent to rejection whenp < α.

Note that smaller p-values implygreaterevidence against the hypothesis being tested. Note also,
that agoodness of fittest is just a particular application of a significance test. “Goodness of fit” is a
misnomer because a significance test provides evidenceagainstan entertained hypothesisH. So what to
do if p > α or equivalentlyx < x0? Do another experiment, since one may only conclude that the data
and the test have failed to reject the hypothesis. The question is not the natural one “Does the curve fit?”
but rather “Does the curve not fit?”!

There is an (unfortunately widespread) incorrect application of the p-value. Using the p-value
approach to hypothesis testing, which is what statisticians advocate, requires the analyst to worry about
the level of significanceα. Indeed, deciding on anα is the very first thing one needs to do, even before
any data are analyzed or maybe even before any data are taken. For example, an experiment should
decide ahead of time what level of significance is required to claim a certain type of discovery. It is not
correct to do the analysis, findp = 0.0012, say, and then decide that this is sufficient to rejectH0. What
the p-value adds to the process is an idea of how close one got to rejectingH0 instead of failing to do
so, or vice versa. If one decided before hand that an appropriateα is 0.005, and then findsp = 0.0007,
one can be much more certain of not committing a type I error (rejecting a true hypothesis) than if
p = 0.0041, but, in either case, one would rejectH0. See also Hypothesis Testing.

Pivotal Quantity

A function of data and parameters whose distribution, given the parameters, does not depend on
the value of the parameters of the sampling distribution .ExampleSuppose thatX ∼ Gaussian(µ, σ),
with meanµ and known standard deviationσ. The distribution of the statistict(X) = [(X − µ)/σ]2 (a
χ2 variate) is independent ofµ. Therefore,t(X) is a pivotal quantity forµ andσ, but not an ancillary
statistic, because it includesµ andσ in its definition. Any ancillary statistic is also a pivotal quantity,
but not vice versa; ancillary statistics are much rarer. Pivotal quantities may be useful in generating
Confidence Limits. See also Ancillary Statistic.

Posterior Density

Given a likelihoodL(θ) ≡ p(x|θ) and prior densityp(θ), the posterior density, by Bayes theorem,
is

p(θ|x) =
L(θ)p(θ)∫
L(θ)p(θ)dθ

=
p(x|θ)p(θ)∫
p(x|θ)p(θ)dθ

,

whereθ represents one or more parameters, one or more of which could be discrete.ExampleSuppose
that the likelihood depends on three classes of parameters:θj , λj andMj , whereθj , the parameters of
interest andλj , the nuisance parameters, pertain to modelMj . The posterior density in this case is given
by

p(θj , λj ,Mj |x) =
L(θj , λj ,Mj)p(θj , λj ,Mj)∑

j

∫ ∫
L(θj , λj ,Mj)p(θj , λj ,Mj)dλjdθj

.

The posterior density can be marginalized to obtain, for example, the probabilityP (Mj |x) of modelMj ,
given datax. See Marginalization, Model.

Posterior Mean

The mean of a posterior density. See Mean.

Posterior Median

The median of a posterior density. See Median.

Posterior Mode

The mode of a posterior density; it is near the maximum of the likelihood if the prior density is
flat near the peak of the likelihood. See Mode.



Posterior Odds

Given modelsMi andMj , with posterior probabilitiesP (Mi|x) andP (Mj |x), respectively, the
posterior odds is the ratio

P (Mi|x)
P (Mj |x)

=
p(x|Mi)
p(x|Mj)

P (Mi)
P (Mj)

.

The first ratio on the right, that of the evidencep(x|Mi) for modelMi to the evidencep(x|Mj) for model
Mj , is called theBayes Factor. The second ratio,P (Mi) to P (Mj), is called thePrior Odds. In words

Posterior odds = Bayes factor× Prior odds.

See also, Model, Evidence.

Power

The probability to reject false hypotheses. See also Hypothesis Testing.

Predictive Density

The probability density to observe datay given that one has observed datax. The predictive
density is given by

p(y|x) =
∫

p(y|θ)p(θ|x)dθ,

wherep(θ|x) is the posterior probability density of the parametersθ. The predictive probability finds
application in algorithms, such as the Kalman filter, in which one must predict where next to search for
data.

Prior Density or Prior

The prior probability (and prior density for the case of continuous parameters) describe knowledge
of the unknown hypothesis or parameters before a measurement. If one chooses to express subjective
prior knowledge in a particular variableπ(θ), then coherence implies that one would express that same
knowledge in a different variable as by multiplying by the Jacobian:π(φ) = π(θ)∂θ/∂φ. Specification
of prior knowledge can be difficult, and even controversial, particularly when trying to express weak
knowledge or indifference among parameters. See also Bayesian, Default Prior, Flat Prior, Occam Factor,
Re-parameterization Invariance.

Prior Odds

See Posterior Odds.

Probability

Probability is commonly defined as a measureP (A) on a setA ∈ S that satisfies the axioms

1. P (A) ≥ 0 ∀A.

2. P (S) = 1.

3. P (∪Aj) =
∑

P (Aj), if Ai ∩Aj = ® for i 6= j.

A measure, roughly speaking, is a real-valued number that assigns a well-defined meaning to the size of
a set. Probability is an abstraction of which there are several interpretations, the most common being

1. Degree of belief,

2. Relative frequency.

Statisticians sometimes denote a random variable by an uppercase symbolX and a specific value thereof
by its lowercase partnerx. For example,p(X) represents a function of the random variableX while
p(x) represents its value at the specific pointX = x.



Abstract notation Description
P (A) Probability ofA
P (AB) Probability ofA and B
P (A + B) Probability ofA or B
P (A|B) Probability ofA givenB.

This is called a conditional probability:
P (A|B) = P (AB)/P (B)
P (B|A) = P (AB)/P (A)
which leads to Bayes’ theorem:
P (B|A) = P (A|B)P (B)/P (A)

Concrete notation Description
P (X|θ) = p(X|θ)dX p(X|θ) is a probability density function (pdf);

P (X|θ) is a probability.
X ∼ p(X|θ) means that the variableX is distributed

according to the pdfp(X|θ).
Probability Integral Transform

For a continuous random variable, a (cumulative) distribution function

R = F (X|θ) =
∫ X

−∞
p(Y |θ)dY,

mapsX into a numberR between0 and1 by knowledge of the densityp(X|θ). If the X are distributed
according top(X|θ), theR are distributed uniformly. So if the pdf is known in one choice of variable,
one can use that knowledge to transform (choose a new variable) in which the pdf is flat. A statistic
formed by applying this transform to observations satisfies the definition of Pivotal Quantity, and as such
can be useful for calculating confidence intervals. Such a transformation also may be used to map data of
potentially infinite range into a finite range, which may be convenient during multidimensional analyses.
The inversion (often numerical) of this transform is a common technique in Monte Carlo generation of
random variates, as the inverse maps a uniform random numberri into an valuexi with the distribution
p(x|θ). See also Pivotal Quantity, Highest Posterior Density.

Profile Likelihood

Given a likelihoodL(θ, λ), which is a function of the parameterθ and one or more parameters
λ, the profile likelihood isL(θ, λ̂) whereλ̂ is the maximum likelihood estimate of the parametersλ.
The profile likelihood is used in circumstances in which the exact elimination of nuisance parameters is
problematic as is true, in general, in frequentist inference.

Quadratic Loss Function

This is defined by
L(d, θ) = (d− θ)2,

whered is an estimator ofθ. Thesquare rootof the corresponding risk function,EX [(d− θ)2], obtained
by averaging with respect to an ensemble of possible dataX, is called themean square error(MSE) or
root mean square(RMS). It is one measure (the most tractable) of average deviation of an ensemble of
estimates from the true value of a parameter. The RMS, bias and variance are related as follows

RMS2 ≡ EX [(d− θ)2] = b2(θ) + VX(d).

See also Bias, Variance.

Re-parameterization Invariance

This property holds if a procedure is metric independent, that is, it produces equivalent results,
no matter which variable is chosen for the analysis. For example, invariance holds if a procedure for



obtaining an estimatêθ, in a new variable, produces an estimateφ̂(θ̂), whereφ(θ) is a new variable
which is a (possibly nonlinear) function ofθ. More fundamentally, probability densities transform by the
Jacobian,p(z) = p(w)∂w/∂z, so that the probability (integrals over the density) for regions containing
values ofz are equal to the probabilities for regions contain equivalent valuesw(z), assumingw andz
are related by a one to one, monotonic transformation. However, the values of the densities themselves
at equivalent points arenot the same.

Physicists tend to place more emphasis on this property than do statisticians: we are trying to
understand nature, and don’t want a particular choice of coordinates to change our conclusions. Max-
imum Likelihood Estimators have the property: the value of the likelihood itself is unchanged by re-
parameterization,L(φ) = L(φ(θ)); and since∂L/∂φ = (∂L/∂θ)∂θ/∂φ, zeros of the derivative occur
at the corresponding places. By construction, frequentist Confidence Intervals also have this property:
the Neyman Construction begins with probability statements for ranges of measured values forx, so
with a correct change of variable in the density forx, the same probability will be found for the equiv-
alent region iny(x). For Confidence Intervals, that means, for example,u(Y ) = u(Y (X)) However,
the property of un-biased-ness is not invariant under re-parameterization: for example, the square of the
expectation ofX does not equal the expectation ofX2.

In the same sense, integrals on Posterior Densities (pdf’s for parameters) calculated with Jef-
freys’ Prior also have this property, since this Prior transforms by a Jacobian, and the Likelihood is
unchanged as discussed above. Similarly, subjective prior knowledge described in one variable can be
transformed by a Jacobian into a corresponding Prior in another variable. Thus, with these choices of
priors (Jeffreys or subjective knowledge), the posterior median, central credible intervals, and any other
estimators defined as percentile points of the posterior density are invariant. However, even with these
choices of priors, posterior means and modes, and Highest Posterior Density Credible Regions, are not
re-parameterization invariant. See also Confidence Interval, Prior Density, Jeffreys’ Prior.

Risk Function

The expectation value,R(θ) = EX [L(d, θ)], with respect to an ensemble of possible sets of
dataX, of the loss functionL(d, θ). Given a risk function, the optimal estimator is defined to be that
which minimizes the risk. In frequentist theory, the risk function is a function of the parameterθ. In
Bayesian theory, there is a further averaging with respect toθ, in which each value ofθ is weighted by
the associated posterior probabilityP (θ|x). However, minimizing this risk function with respect to the
estimatord(X) is equivalent to minimizing the risk function over an ensemble containing asinglevalue
of X = x. One can summarize the situation as follows:frequentist riskis the loss function averaged
with respect to all possible dataX for fixedθ, while Bayesian riskis the loss function averaged with
respect to all possibleθ for fixeddataX = x. This is an illustration of the fact that Bayesian inference
typically obeys thelikelihood principle, whereas frequentist inference typically does not. See Likelihood
Principle.

Sample Mean

Given a random samplex1, x2, . . . , xn of sizen, the sample mean is just the average

Mn = (x1 + x2 + · · ·+ xn)/n,

of the sample. Its convergence to the true mean is governed by the law of large numbers. See Law Of
Large Numbers.

Sampling Distribution

The sampling distribution is the (cumulative) distribution function of a statistic, that is, of a (pos-
sibly vector-valued) function of the data.

Sampling Rule

A rule that specifies how a random sample is to be constructed.



Significance Test

See P-value.

Simple Hypothesis

A completely specified hypothesis. Contrast the simple hypothesisθ = 42 with the non-simple,
that is, compound hypothesisθ > 42. That an event is due to a signal with a known pdf with no
free parameters is a simple hypothesis. That an event is due to one of two backgrounds, each with a
known pdf, but whose relative normalization is unknown, is a compound hypothesis. If the relative
normalization of the two backgrounds is known, this is again a simple hypothesis. See Neyman-Pearson
test, Hypothesis Testing.

Statistic

Any meaningful function of the data, such as those that provide useful summaries, for example,
the sample mean. See Sample Mean.

Stopping Rule

A rule that specifies the criterion (or criteria) for stopping an experiment in which data are acquired
sequentially. It is a matter of debate whether an inference should, or should not, depend upon the stopping
rule. This is related to the question of how to embed a finite sequence of experiments into an ensemble.

A classic example arose in connection with the measurement of the top quark mass by the DØ
collaboration. The experimental team found 77 events, of which about 30 were estimated to be due to
top quark production. To assess systematic effects and validate the methods of analysis required the em-
bedding of the 77 events into an ensemble. The conundrum was this: Should the ensemble be binomial,
in which the sample size is fixed at 77? Or should it be a Poisson ensemble with fluctuating sample size?
Or, though this was not considered, should it be the ensemble pertaining to experiments that run until
77 events are found, yielding a negative binomial distribution? The answer, of course, is that there is no
unique answer. Nonetheless, the choice made has consequences: the Poisson and binomial ensembles
produce different likelihoods; the binomial and negative binomial produce equivalent likelihoods, but
would produce different confidence intervals.

See also Ensemble, Likelihood Principle, Jeffreys’ Prior.

Sufficient Statistic

If a likelihood function can be re-written solely in terms of one or more functionst(x) of the
observed datax then thet(x) are said to be sufficient statistics. They are sufficient in the sense that their
use does not entail loss of information with respect to the datax. ExampleConsider a samplex1, ..., xn

with likelihood functionL(θ) =
∏n

i=1 exp(−θ)θxi . This can be re-written asL(θ) = exp(−nθ)θnt,
where the statistict is the sample mean. Since the likelihood can be written solely in terms ofn andt,
these together are sufficient statistics. See also Ancillary Statistic.

Type I and Type II Errors

One commits a type I error if a true hypothesis is rejected. A type II error is committed if a false
hypothesis is accepted.

Variance

The variance of a quantityd, for example an estimatord(X), is defined by

VX [d] ≡ EX [d2]− E2
X [d],

whereEX [∗] is theexpectationor averaging operatorwith respect to an ensemble of valuesX. See also
Quadratic Loss Function.


