
ESMA 6836: Computational Statistics with R
Dr. Wolfgang Rolke
December 2018

Getting Started

Resma3.RData (Ver 3.1)

R

For a detailed introduction to R you can read the material of my course Computing with R

Installation and Updating

Installing R

You can get a free version of R for your computer from a number of sources. The download
is about 70MB and setup is fully automatic. Versions for several operating systems can be
found on the R web site
https://cran.r-project.org
Note
• the one item you should change from the defaults is to install R into a folder under the

root, aka C:\R
• You might be asked at several times whether you want to do something (allow access,

run a program, save a library, . . .), always just say yes!
• You will need to connect to a reasonably fast internet for these steps.
• This will take a few minutes, just wait until the > sign appears.

FOR MAC OS USERS ONLY
There are a few things that are different from MacOS and Windows. Here is one thing you
should do:
Download XQuartz - XQuartz-2.7.11.dmg
Open XQuartz
Type the letter R (to make XQuartz run R)
Hit enter Open R Run the command .First()
Then, every command should work correctly.

1

http://academic.uprm.edu/wrolke/Resma3/Resma3.RData?Ver%203.1
http://academic.uprm.edu/wrolke/esma6835/Computing-with-R.pdf
https://cran.r-project.org

RStudio

We will run R using an interface called RStudio. You can download it at RStudio.

Updating

R releases new versions about every three months or so. In general it is not necessary to
get the latest version every time. Every now and then a package won’t run under the old
version, and then it is time to do so. In essence this just means to install the latest version
of R from CRAN. More important is to now also update ALL your packages to the latest
versions. This is done simply by running
update.packages(ask=FALSE, dependencies=TRUE)

R Markdown, HTML and Latex

R Markdown

R Markdown is a program for making dynamic documents with R. An R Markdown document
is written in markdown, an easy-to-write plain text format with the file extension .Rmd. It
can contain chunks of embedded R code. It has a number of great features:
• easy syntax for a number of basic objects

• code and output are in the same place and so are always synced

• several output formats (html, latex, word)
In recent years I (along with many others) who work a lot with R have made Rmarkdown
the basic way to work with R. So when I work on a new project I immediately start a
corresponding R markdown document.

to start writing an R Markdown document open RStudio, File > New File > R Markdown.
You can type in the title and some other things.
The default document starts like this:

title: “My first R Markdown Document”
author: “Dr. Wolfgang Rolke”
date: “April 1, 2018”
output: html_document

This follows a syntax called YAML (also used by other programs). There are other things
that can be put here as well, or you can erase all of it.

2

https://www.rstudio.com/

YAML stands for Yet Another Markup Language. It has become a standard for many computer
languages to describe different configurations. For details go to yaml.org
Then there is other stuff you should erase. Next File > Save. Give the document a name
with the extension .Rmd

Basic R Markdown Syntax

for a list of the basic syntax go to
https://rmarkdown.rstudio.com/articles_intro.html
or to
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

Embedded Code

There are two ways to include code chunks (yes, that’s what they are called!) into an R
Markdown document:

stand alone code

simultaneously enter CTRL-ALT-i and you will see this:
“‘{r}
“‘
Here ‘ is the backtick, on most keyboards on the ~ key, upper left below Esc.
you can now enter any R code you like:
“‘{r}
x <- rnorm(10)
mean(x)
“‘
which will appear in the final document as
x <- rnorm(10)
mean(x)

Actually, it will be like this:
x <- rnorm(10)
mean(x)

[1] -0.1869992

so we can see the result of the R calculation as well. The reason it didn’t appear like this
before was that I added the argument eval=FALSE:

3

http://yaml.org
https://rmarkdown.rstudio.com/articles_intro.html
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

“‘{r eval=FALSE}
x <- rnorm(10)
mean(x)
“‘
which keeps the code chunk from actually executing (aka evaluating). This is useful if the
code takes along time to run, or if you want to show code that is actually faulty, or . . .
there are a number of useful arguments:
• eval=FALSE (shows but doesn’t run the code)

• echo=FALSE (the code chunk is run but does not appear in the document)

• warning=FALSE (warnings are not shown)

• message=FALSE (messages are not shown)

• cache=TRUE (code is run only if there has been a change, useful for lengthy calculations)

• error=TRUE (if there are errors in the code R normally terminates the parsing (executing)
of the markdown document. With this argument it will ignore the error, which helps
with debugging)

inline code

here is a bit of text:
. . . and so the mean was -0.1869992.
Now I didn’t type in the number, it was done with the chunk `r mean(x)`.

Many of these options can be set globally, so they are active for the whole document. This is
useful so you don’t have to type them in every time. I have the following code chunk at the
beginning of all my Rmd files:
library(knitr)
opts_chunk$set(fig.width=6, fig.align = "center",

out.width = "70%", warning=FALSE, message=FALSE)

We have already seen the message and warning options. The other one puts any figure in the
middle of the page and sizes it nicely.
If you have to override these defaults just include that in the specific chunk.

Creating Output

To create the output you have to “knit” the document. This is done by clicking on the knit
button above. If you click on the arrow you can change the output format.

4

HTML vs Latex(Pdf)

In order to knit to pdf you have to install a latex interpreter. My suggestion is to use Miktex,
but if you already have one installed it might work as well.
There are several advantages / disadvantages to each output format:
• HTML is much faster

• HTML looks good on a webpage, pdf looks good on paper

• HTML needs an internet connection to display math, pdf does not

• HTML can use both html and latex syntax, pdf works only with latex (and a little bit
of html)

I generally use HTML when writing a document, and use pdf only when everything else is
done. There is one problem with this, namely that a document might well knit ok to HTML
but give an error message when knitting to pdf. Moreover, those error messages are weird!
Not even the line numbers are anywhere near right. So it’s not a bad idea to also knit to pdf
every now and then.
As far as this class is concerned, we will use HTML exclusively.

Tables

One of the more complicated things to do in R Markdown is tables. For a nice illustration
look at
https://stackoverflow.com/questions/19997242/simple-manual-rmarkdown-tables-that-look-good-in-html-pdf-and-docx
My preference is to generate a data frame and the use the kable.nice function:
Gender <- c("Male", "Male", "Female")
Age <- c(20, 21, 19)
kable.nice(data.frame(Gender, Age))

Gender Age
Male 20
Male 21
Female 19

probably with the argument echo=FALSE so only the table is visible.

LATEX

You have not worked with latex (read: latek) before? Here is your chance to learn. It is well
worthwhile, latex is the standard document word processor for science. And once you get

5

https://miktex.org/
https://stackoverflow.com/questions/19997242/simple-manual-rmarkdown-tables-that-look-good-in-html-pdf-and-docx

used to it, it is WAY better and easier than (say) Word.
A nice list of common symbols is found on https://artofproblemsolving.com/wiki/index.php/
LaTeX:Symbols.

inline math

A LATEX expression always starts and ends with a $ sign. So this line:
The population mean is defined by E[X] =

∫∞
−∞ xf(x)dx.

was done with the code
The population mean is defined by $E[X] = \int_{-\infty}ˆ{\infty} xf(x) dx$.

displayed math

sometimes we want to highlight a piece of math:
The population mean is defined by

E[X] =
∫ ∞
−∞

xf(x)dx

this is done with two dollar signs:
$$
E[X] = \int_{-\infty}^{\infty} xf(x) dx
$$

multiline math

say you want the following in your document:

E[X] =
∫ ∞
−∞

xf(x)dx =∫ 1

0
xdx = 1

2x
2|10 = 1

2

for this to display correctly in HTML and PDF you need to use the format
$$
\begin{aligned}
&E[X] = \int_{-\infty}^{\infty} xf(x) dx=\\
&\int_{0}^{1} x dx = \frac12 x^2 |_0^1 = \frac12
\end{aligned}
$$

6

https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols
https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols

R Basics I

To start run
ls()

This shows you a “listing”" of the files (data, routines etc.) in the current project. (Likely
there is nothing there right now)
Everything in R is either a data set or a function. It is a function if it is supposed to do
something (maybe calculate something, show you something like a graph or something else
etc.). If it is a function is ALWAYS NEEDS (). Sometimes the is something in between the
parentheses, like in
mean(x)

[1] 6

Sometimes there isn’t like in the ls(). But the () has to be there anyway.
If you have worked for a while you might have things you need to save, do that by clicking on
File > Save
RStudio has a nice recall feature, using the up and down arrow keys. Also, clicking on the
History tab shows you the recently run commands. Finally, typing the first three letters
of a command in the console and then typing CTRL-ˆ shows you a list of when you ran
commands like this the last times.
R is case-sensitive, so a and A are two different things.
Often during a session you create objects that you need only for a short time. When you no
longer need them use rm to get rid of them:
x <- 10
x^2

[1] 100
rm(x)

the <- is the assignment character in R, it assigns what is on the right to the symbol on the
left. (Think of an arrow to the left)

Data Entry

For a few numbers the easiest thing is to just type them in:
x <- c(10, 2, 6, 9)
x

[1] 10 2 6 9

c() is a function that takes the objects inside the () and combines them into one single object
(a vector).

7

Data Types in R

the most basic type of data in R is a vector, simply a list of values.
Say we want the numbers 1.5, 3.6, 5.1 and 4.0 in an R vector called x, then we can type
x <- c(1.5, 3.6, 5.1, 4.0)
x

[1] 1.5 3.6 5.1 4.0

Often the numbers have a structure one can make use of:
1:10

[1] 1 2 3 4 5 6 7 8 9 10
10:1

[1] 10 9 8 7 6 5 4 3 2 1
1:20*2

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
c(1:10, 1:10*2)

[1] 1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12 14 16 18 20

Sometimes you need parentheses:
n <- 10
1:n-1

[1] 0 1 2 3 4 5 6 7 8 9
1:(n-1)

[1] 1 2 3 4 5 6 7 8 9

The rep (“repeat”) command is very useful:
rep(1, 10)

[1] 1 1 1 1 1 1 1 1 1 1
rep(1:3, 10)

[1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
rep(1:3, each=3)

[1] 1 1 1 2 2 2 3 3 3
rep(c("A", "B", "C"), c(4,7,3))

[1] "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "B" "C" "C" "C"

what does this do?

8

rep(1:10, 1:10)

Commands for Vectors

To find out how many elements a vector has use the length command:
x <- c(1.4, 5.1, 2.0, 6.8, 3.5, 2.1, 5.6, 3.3, 6.9, 1.1)
length(x)

[1] 10

The elements of a vector are accessed with the bracket [] notation:
x[3]

[1] 2
x[1:3]

[1] 1.4 5.1 2.0
x[c(1, 3, 8)]

[1] 1.4 2.0 3.3
x[-3]

[1] 1.4 5.1 6.8 3.5 2.1 5.6 3.3 6.9 1.1
x[-c(1, 2, 5)]

[1] 2.0 6.8 2.1 5.6 3.3 6.9 1.1

Instead of numbers a vector can also consist of characters (letters, numbers, symbols etc.)
These are identified by quotes:
c("A", "B", 7, "%")

[1] "A" "B" "7" "%"

A vector is either numeric or character, but never both (see how the 7 was changed to “7”).
You can turn one into the other (if possible) as follows:
x <- 1:10
x

[1] 1 2 3 4 5 6 7 8 9 10
as.character(x)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
x <- c("1", "5", "10", "-3")
x

9

[1] "1" "5" "10" "-3"
as.numeric(x)

[1] 1 5 10 -3

A third type of data is logical, with values either TRUE or FALSE.
x <- 1:10
x

[1] 1 2 3 4 5 6 7 8 9 10
x > 4

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

these are often used as conditions:
x[x>4]

[1] 5 6 7 8 9 10

This, as we will see shortly, is EXTREMELY useful!

Data Frames

data frames are the basic format for data in R. They are essentially vectors of equal length
put together as columns.
A data frame can be created as follows:
df <- data.frame(

Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21),
GPA=c(3.5, 3.7, 2.9, 2.8, 3.1)

)
df

Gender Age GPA
1 M 23 3.5
2 M 25 3.7
3 F 19 2.9
4 F 22 2.8
5 F 21 3.1

Lists

The most general data structures are lists. They are simply a collection of objects. There are
no restrictions on what those objects are.

10

Example

lst <- list(
Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21, 26, 34),
f=function(x) x^2,
list(A=c(1, 1), B=c("X", "X", "Y"))

)
lst

$Gender
[1] "M" "M" "F" "F" "F"
##
$Age
[1] 23 25 19 22 21 26 34
##
$f
function (x)
x^2
##
[[4]]
[[4]]$A
[1] 1 1
##
[[4]]$B
[1] "X" "X" "Y"

A data frame is a list with an additional requirement, namely that the elements of the list be
of equal length.

Case Study: UPR Admissions

consider the upr data set . This is the application data for all the students who applied and
were accepted to UPR-Mayaguez between 2003 and 2013.
dim(upr)

[1] 23666 16

tells us that there were 23666 applications and that for each student there are 16 pieces of
information.
colnames(upr)

[1] "ID.Code" "Year" "Gender" "Program.Code"
[5] "Highschool.GPA" "Aptitud.Verbal" "Aptitud.Matem" "Aprov.Ingles"
[9] "Aprov.Matem" "Aprov.Espanol" "IGS" "Freshmen.GPA"
[13] "Graduated" "Year.Grad." "Grad..GPA" "Class.Facultad"

shows us the variables

11

head(upr, 3)

ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
1 00C2B4EF77 2005 M 502 3.97 647
2 00D66CF1BF 2003 M 502 3.80 597
3 00AB6118EB 2004 M 1203 4.00 567
Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
1 621 626 672 551 342 3.67
2 726 618 718 575 343 2.75
3 691 424 616 609 342 3.62
Graduated Year.Grad. Grad..GPA Class.Facultad
1 Si 2012 3.33 INGE
2 No NA NA INGE
3 No NA NA CIENCIAS

shows us the first three cases.
Let’s say we want to find the number of males and females. We can use the table command
for that:
table(Gender)

Error: object 'Gender' not found

What happened? Right now R does not know what Gender is because it is “hidden” inside
the upr data set. Think of upr as a box that is currently closed, so R can’t look inside and
see the column names. We need to open the box first:
attach(upr)
table(Gender)

Gender
F M
11487 12179

there is also a detach command to undo an attach, but this is not usually needed because
the attach goes away when you close R.
Note: you need to attach a data frame only once in each session working with R.
Note: Say you are working first with a data set “students 2016” which has a column called
Gender, and you attached it. Later (but in the same R session) you start working with a
data set “students 2017” which also has a column called Gender, and you are attaching this
one as well. If you use Gender now it will be from “students 2017”.

Subsetting of Data Frames

Consider the following data frame (not a real data set):
students

Age GPA Gender

12

1 22 3.1 Male
2 23 3.2 Male
3 20 2.1 Male
4 22 2.1 Male
5 21 2.3 Female
6 21 2.9 Male
7 18 2.3 Female
8 22 3.9 Male
9 21 2.6 Female
10 18 3.2 Female

Here each single piece of data is identified by its row number and its column number. So for
example in row 2, column 2 we have “3.2”, in row 6, column 3 we have “Male”.
As with the vectors before we can use the [] notation to access pieces of a data frame, but
now we need to give it both the row and the column number, separated by a ,:
students[6, 3]

[1] "Male"

As before we can pick more than one piece:
students[1:5, 3]

[1] "Male" "Male" "Male" "Male" "Female"
students[1:5, 1:2]

Age GPA
1 22 3.1
2 23 3.2
3 20 2.1
4 22 2.1
5 21 2.3
students[-c(1:5), 3]

[1] "Male" "Female" "Male" "Female" "Female"
students[1,]

Age GPA Gender
1 22 3.1 Male
students[, 2]

[1] 3.1 3.2 2.1 2.1 2.3 2.9 2.3 3.9 2.6 3.2
students[, -3]

Age GPA
1 22 3.1
2 23 3.2

13

3 20 2.1
4 22 2.1
5 21 2.3
6 21 2.9
7 18 2.3
8 22 3.9
9 21 2.6
10 18 3.2

another way of subsetting a data frame is by using the $ notations:
students$Gender

[1] "Male" "Male" "Male" "Male" "Female" "Male" "Female"
[8] "Male" "Female" "Female"

Subsetting of Lists

The double bracket and the $ notation also work for lists:

Example

lst <- list(
Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21, 26, 34),
f=function(x) x^2,
list(A=c(1, 1), B=c("X", "X", "Y"))

)
lst[[4]][[2]]

[1] "X" "X" "Y"
lst$Gender

[1] "M" "M" "F" "F" "F"

Vector Arithmetic

R allows us to apply any mathematical functions to a whole vector:
x <- 1:10
2*x

[1] 2 4 6 8 10 12 14 16 18 20
x^2

[1] 1 4 9 16 25 36 49 64 81 100

14

log(x)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
[8] 2.0794415 2.1972246 2.3025851
sum(x)

[1] 55
y <- 21:30

x+y

[1] 22 24 26 28 30 32 34 36 38 40
x^2+y^2

[1] 442 488 538 592 650 712 778 848 922 1000
mean(x+y)

[1] 31

Let’s try something strange:
c(1, 2, 3) + c(1, 2, 3, 4)

[1] 2 4 6 5

so R notices that we are trying to add a vector of length 3 to a vector of length 4. This
should not work, but it actually does!
When it runs out of values in the first vector, R simply starts all over again.
In general this is more likely a mistake by you, check that this is what you really wanted to
do!

apply

A very useful routine in R is apply, and its brothers.
Let’s say we have the following matrix:
Age <- matrix(sample(20:30, size=100, replace=TRUE), 10, 10)
Age[1:5, 1:5]

[,1] [,2] [,3] [,4] [,5]
[1,] 20 27 27 20 29
[2,] 25 23 26 25 27
[3,] 25 26 20 21 24
[4,] 25 30 23 22 20
[5,] 23 26 30 30 26

and we want to find the sums of the ages in each column. Easy:

15

sum(Age[, 1])

[1] 249
sum(Age[, 2])

[1] 263

. . .
sum(Age[, 10])

[1] 269

or much easier
apply(Age, 2, sum)

[1] 249 263 252 226 251 248 271 252 271 269

There are a number of apply routines for different data formats.

Case Study: upr admissions

Let’s say we want to find the mean Highschool GPA:
mean(Highschool.GPA)

[1] 3.65861

But what if we want to do this for each year separately? Notice that apply doesn’t work here
because the Years are not in separated columns. Instead we can use
tapply(Highschool.GPA, Year, mean)

2003 2004 2005 2006 2007 2008 2009 2010
3.646627 3.642484 3.652774 3.654729 3.628072 3.648552 3.642946 3.665298
2011 2012 2013
3.685485 3.695046 3.710843

R Basics II - Writing Functions

General Information

In R/RStudio you have several ways to write your own functions:
• In the R console type

myfun <- function(x) {
out <- x^2
out

}

16

• RStudio: click on File > New File > R Script. A new empty window pops up. Type
fun, hit enter, and the following text appears:

name <- function(variables) {
}
change the name to myfun, save the file as myfun.R with File > Save. Now type in the code.
When done click the Source button.
• fix: In the R console run

fix(myfun)

now a window with an editor pops up and you can type in the code. When you are done
click on Save. If there is some syntax error DON’T run fix again, instead run
myfun <- edit()

myfun will exist only until you close R/RStudio unless you save the project file.
• Open any code editor outside of RStudio, type in the code, save it as myfun.R, go to

the console and run
source('../some.folder/myfun.R')

Which of these is best? In large part that depends on your preferences. In my case, if I expect
to need that function just for a bit I use the fix option. If I expect to need that function
again later I start with the first method, but likely soon open the .R file outside RStudio
because most code editors have many useful features not available in RStudio.
If myfun is open in RStudio there are some useful keyboard shortcuts. If the curser is on
some line in the RStudio editor you can hit
• CTRL-Enter run current line or section

• CTRL-ALT-B run from beginning to line

• CTRL-Shift-Enter run complete chunk
• CTRL-Shift-P rerun previous

Testing

As always you can test whether an object is a function:
x <- 1
f <- function(x) x
is.function(x)

[1] FALSE
is.function(f)

[1] TRUE

17

Arguments

There are several ways to specify arguments in a function:
calc.power <- function(x, y, n=2) x^n + y^n

here n has a default value, x and y do not.
if the arguments are not named they are matched in order:
calc.power(2, 3)

[1] 13

If an argument does not have a default it can be tested for
f <- function(first, second) {

if(!missing(second))
out <- first + second

else out <- first
out

}
f(1)

[1] 1
f(1, s=3)

[1] 4

There is a special argument . . . , used to pass arguments on to other functions:
f <- function(x, which, ...) {

f1 <- function(x, mult) mult*x
f2 <- function(x, pow) x^pow
if(which==1)

out <- f1(x, ...)
else

out <- f2(x, ...)
out

}
f(1:3, 1, mult=2)

[1] 2 4 6
f(1:3, 2, pow=3)

[1] 1 8 27

This is one of the most useful programming structures in R!
Note this example also shows that in R functions can call other functions. In many computer
programs there are so called sub-routines, in R this concept does not exist, functions are just
functions.

18

Return Values

A function can either return nothing or exactly one thing. It will automatically return the
last object evaluated:
f <- function(x) {

x^2
}
f(1:3)

[1] 1 4 9

however, it is better programming style to have an explicit return object:
f <- function(x) {

out <- x^2
out

}
f(1:3)

[1] 1 4 9

There is another way to specify what is returned:
f <- function(x) {

return(x^2)
}
f(1:3)

[1] 1 4 9

but this is usually used to return something early in the program:
f <- function(x) {

if(!any(is.numeric(x)))
return("Works only for numeric!")

out <- sum(x^2)
out

}
f(1:3)

[1] 14
f(letters[1:3])

[1] "Works only for numeric!"

If you want to return more than one item use a list:
f <- function(x) {

sq <- x^2
sm <- sum(x)
list(sq=sq, sum=sm)

19

}
f(1:3)

$sq
[1] 1 4 9
##
$sum
[1] 6

Basic Programmming Structures in R

R has all the standard programming structures:

Conditionals (if-else)

f <- function(x) {
if(x>0) y <- log(x)
else y <- NA
y

}
f(c(2, -2))

[1] 0.6931472 NaN

A useful variation on the if statement is switch:
centre <- function(x, type) {

switch(type,
mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
centre(x, "mean")

[1] -1.063426
centre(x, "median")

[1] 0.4230036
centre(x, "trimmed")

[1] -0.06293897

special R construct: ifelse
x <- sample(1:10, size=7, replace = TRUE)
x

[1] 8 1 3 6 2 5 8

20

ifelse(x<5, "Yes", "No")

[1] "No" "Yes" "Yes" "No" "Yes" "No" "No"

Loops

there are two standard loops in R:
• for loop

y <- rep(0, 10)
for(i in 1:10) y[i] <- i*(i+1)/2
y

[1] 1 3 6 10 15 21 28 36 45 55

sometimes we don’t know the length of y ahead of time, then we can use
for(i in seq_along(y)) y[i] <- i*(i+1)/2
y

[1] 1 3 6 10 15 21 28 36 45 55

If there is more than one statement inside a loop use curly braces:
for(i in seq_along(y)) {

y[i] <- i*(i+1)/2
if(y[i]>40) y[i] <- (-1)

}
y

[1] 1 3 6 10 15 21 28 36 -1 -1

You can nest loops:
A <- matrix(0, 4, 4)
for(i in 1:4) {

for(j in 1:4)
A[i, j] <- i*j

}
A

[,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 2 4 6 8
[3,] 3 6 9 12
[4,] 4 8 12 16

• repeat loop
k <- 0
repeat {

k <- k+1

21

x <- sample(1:6, size=3, replace=TRUE)
if(length(table(x))==1) break

}
k

[1] 1

Notice that a repeat loop could in principle run forever. I usually include a counter that
ensures the loop will eventually stop:
k <- 0
counter <- 0
repeat {

k <- k+1
counter <- counter+1
x <- sample(1:6, size=3, replace=TRUE)
if(length(table(x))==1 | counter>1000) break

}
k

[1] 15

Random Numbers and Simulation

Random Numbers

Everything starts with generating X1, X2, .. iid U[0,1]. These are simply called random
numbers. There are some ways to get these:
• random number tables

• numbers taken from things like the exact (computer) time

• quantum random number generators

• . . .
The R package random has the routine randomNumbers which gets random numbers from a
web site which generates them based on (truly random) atmospheric phenomena.
require(random)
randomNumbers(20, 0, 100)

V1 V2 V3 V4 V5
[1,] 33 54 51 92 2
[2,] 11 19 0 15 67
[3,] 17 86 8 18 70
[4,] 85 42 30 56 11

22

Most of the time we will use pseudo-random numbers, that is numbers that are not actually
random but are indistinguishable from those. In R this is done with
runif(5)

[1] 0.2349160 0.6613743 0.1086612 0.1734862 0.7146776
runif(5, 100, 300)

[1] 204.2313 187.1649 270.9583 137.8778 129.0428

Standard Probability Distributions

Not surprisingly many standard distributions are part of base R. For each the format is
• dname = density

• pname = cumulative distribution function

• rname = random generation

• qname = quantile function
Note we will use the term density for both discrete and continuous random variable.

Example Poisson distribution

We have X ∼ Pois(λ) if

P (X = x) = λx

x! e
−λ, x = 0, 1, ...

density
dpois(c(0, 8, 12, 20), lambda=10)

[1] 4.539993e-05 1.125990e-01 9.478033e-02 1.866081e-03
10^c(0, 8, 12, 20)/factorial(c(0, 8, 12, 20))*exp(-10)

[1] 4.539993e-05 1.125990e-01 9.478033e-02 1.866081e-03
cumulative distribution function
ppois(c(0, 8, 12, 20), 10)

[1] 4.539993e-05 3.328197e-01 7.915565e-01 9.984117e-01
random generation
rpois(5, 10)

[1] 12 7 9 12 11

23

quantiles
qpois(1:4/5, 10)

[1] 7 9 11 13

Here is a list of the distributions included with base R:
• beta distribution: dbeta.
• binomial (including Bernoulli) distribution: dbinom.
• Cauchy distribution: dcauchy.
• chi-squared distribution: dchisq.
• exponential distribution: dexp.
• F distribution: df.
• gamma distribution: dgamma.
• geometric distribution: dgeom.
• hypergeometric distribution: dhyper.
• log-normal distribution: dlnorm.
• multinomial distribution: dmultinom.
• negative binomial distribution: dnbinom.
• normal distribution: dnorm.
• Poisson distribution: dpois.
• Student’s t distribution: dt.
• uniform distribution: dunif.
• Weibull distribution: dweibull.

With some of these a bit of caution is needed. For example, the usual textbook definition of
the geometric random variable is the number of tries in a sequence of independent Bernoulli
trials until a success. This means that the density is defined as

P (X = x) = p(1− p)x−1, x = 1, 2, ..
R however defines it as the number of failures until the first success, and so it uses

P (X∗ = x) = dgeom(x, p) = p(1− p)x, x = 0, 1, 2, ..
Of course this is easy to fix. If you want to generate the “usual” geometric do
x <- rgeom(10, 0.4) + 1
x

[1] 2 1 1 9 1 2 11 1 12 3

24

if you want to find the probabilities or cdf:
round(dgeom(x-1, 0.4), 4)

[1] 0.2400 0.4000 0.4000 0.0067 0.4000 0.2400 0.0024 0.4000 0.0015 0.1440
round(0.4*(1-0.4)^(x-1), 4)

[1] 0.2400 0.4000 0.4000 0.0067 0.4000 0.2400 0.0024 0.4000 0.0015 0.1440

Another example is the Gamma random variable. Here most textbooks use the definition

f(x;α, β) = 1
Γ(α)βαx

α−1e−x/β

but R uses

f ∗(x;α, β) = βα

Γ(α)x
α−1e−βx

dgamma(1.2, 0.5, 2)

[1] 0.06607584
2^0.5/gamma(0.5)*1.2^(0.5-1)*exp(-2*1.2)

[1] 0.06607584

Again, it is easy to re-parametrize:
dgamma(1.2, 0.5, 1/(1/2))

[1] 0.06607584

Other Variates

if you need to generate random variates from a distribution that is not part of base R you
should first try to find a package that includes it.

Example multivariate normal

there are actually several packages, the most commonly used one is mvtnorm
library(mvtnorm)
x <- rmvnorm(1000,

mean = c(0, 1),
sigma = matrix(c(1, 0.8, 0.8, 2), 2, 2))

plot(x,
pch=20,
xlab = expression(x[1]),
ylab = expression(x[2]))

25

−3 −2 −1 0 1 2 3

−
4

−
2

0
2

4

x1

x 2

sigma is the variance-covariance matrix, so in the above we have

ρ = Cor(X, Y) =
Cov(X, Y)√

Var(X)Var(Y)
=

0.8√
1 ∗ 2

= 0.566

round(c(var(x[, 1]),
var(x[, 2]),
cor(x[, 1], x[, 2])), 3)

[1] 1.033 2.020 0.587

Simulation

In a simulation we attempt to generate data just like what we might see in a real-live
experiment, except that we control all the details. The we carry out some calculations on
that artificial data, and we repeat this many times. Here are some examples:

Example

When rolling a fair die 5 times, what is the probability of no sixes? Of no more than one six?
B <- 10000 # number of simulation runs
num.sixes <- rep(0, B) # to store results

26

for(i in 1:B) {
x <- sample(1:6, size=5, replace=TRUE) # roll 5 dice
num.sixes[i] <- length(x[x==6]) # how many sixes?

}
Probability of no sixes
length(num.sixes[num.sixes==0])/B

[1] 0.4015
Probability of no more than one sixes
length(num.sixes[num.sixes<=1])/B

[1] 0.8041

Of course one can do this also analytically:

P (no sixes) = P (no six on any die) =
P (no six on first die ∩ .. ∩ no six on fifth die) =

5∏
i=1

P (no six on ithdie) = (5
6)5 = 0.402

but already the second one is a bit harder to do analytically but not via simulation.

One issue we have with a simulation is the simulation error, namely that the simulation will
always yield a slightly different answer.

Example

Say we have X, Y, Z ∼ N(0, 1) and set M = max {|X|, |Y |, |Z|}. What is the mean and
standard deviation of M?
B <- 10000
x <- matrix(abs(rnorm(3*B)), ncol=3)
M <- apply(x, 1, max)
hist(M, 50, main="")

27

M

F
re

qu
en

cy

0 1 2 3 4

0
10

0
30

0
50

0
70

0

round(c(mean(M), sd(M)), 3)

[1] 1.329 0.587

Example Symmetric Random Walk in R

Let P (Zi = −1) = P (Zi = 1) = 1
2 and Xn = ∑n

i=1 Zi. Let A>0 some integer. Let’s write a
routine that finds the median number of steps the walk takes until it hits either -A or A.
One issue with simulations of stochastic processes is that in general they are very slow. Here
I will use a little trick: I will generate part of the process, and then check whether the event
of interest has already happened.
first.hit <- function(A) {

B <- 10000
num.steps <- rep(0, B)
for(i in 1:B) {

x <- 0
k <- 0
repeat {

z <- sample(c(-1, 1), size=1000, replace=TRUE)
x <- x + cumsum(z)
if(max(abs(x))>=A) break
x <- x[1000]
k <- k+1000

}
k <- k+seq_along(x)[abs(x)>=A][1]
num.steps[i] <- k

}

28

median(num.steps)
}
first.hit(100)

[1] 7668

Example

The following you find in any basic stats course: A 100(1− α)% confidence interval for the
success probability in a sequence of n Bernoulli trials is given by

p̂± zα/2
√
p̂(1− p̂)/n

where p̂ is the proportion of successes. This method is supposed to work if n is at least 50.
Let’s do a simulation to test this method.
ci.prop.sim <- function(p, n, conf.level=95, B=1e4) {

z <- qnorm(1-(1-conf.level/100)/2)
bad <- 0
for(i in 1:B) {

x <- sample(0:1, size=n, replace = TRUE, prob=c(1-p, p))
phat <- sum(x)/n
if(phat - z*sqrt(phat*(1-phat)/n)>p) bad<-bad+1
if(phat + z*sqrt(phat*(1-phat)/n)<p) bad<-bad+1

}
bad/B

}

ci.prop.sim(0.5, 100)

[1] 0.0557

and that is not so bad.
But
ci.prop.sim(0.1, 50)

[1] 0.1258

and that is very bad indeed!
Soon we will consider a method that is guaranteed to give intervals with correct coverage, no
matter what p and n are.

Example: Simultaneous Inference

There is a famous (infamous?) case of three psychiatrists who studied a sample of schizophrenic
persons and a sample of non schizophrenic persons. They measured 77 variables for each
subject - religion, family background, childhood experiences etc. Their goal was to discover

29

what distinguishes persons who later become schizophrenic. Using their data they ran 77
hypothesis tests of the significance of the differences between the two groups of subjects, and
found 2 significant at the 2% level.They immediately published their findings.
What’s wrong here? Remember, if you run a hypothesis test at the 2% level you expect to
reject the null hypothesis of no relationship 2% of the time, but 2% of 77 is about 1 or 2, so
just by random fluctuations they could (should?) have rejected that many null hypotheses!
This is not to say that the variables they found to be different between the two groups were
not really different, only that their method did not proof that.
In its general form this is known as the problem of simultaneous inference and is one of the
most difficult issues in Statistics today. One general solution of used is called Bonferroni’s
method. The idea is the following:
Let’s assume we carry out k hypothesis tests. All tests are done at α significance level and
all the tests are all independent. Then the probability that at least one test rejects the null
hypothesis although all null are true is given by

α∗ = P (at least one null rejected | all null true) =
1− P (none of the nulls rejected | all null true) =

1−
k∏
i=1

P (ith null is not rejected | ith null true) =

1−
k∏
i=1

[1− P (ith null is rejected | ith null true)] =

1− [1− α]k =

1−
[
1− kα +

(
k

2

)
α2 −+..

]
≈ kα

so if each individual test is done with α/k, the family-wise error rate is the desired one.
Let’s do a simulation to see how that would work in the case of our psychiatrists experiments.
There many details we don’t know, so we have to make them up a bit:
sim.shiz <- function(m, n=50, B=1e3) {

counter <- matrix(0, B, 2)
for(i in 1:B) {

for(j in 1:77) {
pval <- t.test(rnorm(n), rnorm(n))$p.value
if(pval<0.02) counter[i, 1]<-1
if(pval<0.05/m) counter[i, 2]<-1

}
}
apply(counter, 2, sum)/B

}
sim.shiz(77)

[1] 0.77 0.06

30

This works fine here. The main problem in real life is that it is rarely true that these test are
independent, and then all we can say is that the needed α is between α/k and α.

Graphics with ggplot2

A large part of this chapter is taken from various works of Hadley Wickham. Among others
The layered grammar of graphics and R for Data Science.

Why ggplot2?

Advantages of ggplot2
• consistent underlying grammar of graphics (Wilkinson, 2005)

• plot specification at a high level of abstraction

• very flexible

• theme system for polishing plot appearance

• mature and complete graphics system

• many users, active mailing list
but really, they are just so much nicer than base R graphs!

Grammar of Graphics

In 2005 Wilkinson, Anand, and Grossman published the book “The Grammar of Graphics”.
In it they laid out a systematic way to describe any graph in terms of basic building blocks.
ggplot2 is an implementation of their ideas.
The use of the word grammar seems a bit strange here. The general dictionary meaning of
the word grammar is:
the fundamental principles or rules of an art or science
so it is not only about language.
As our running example we will use the mtcars data set. It is part of base R and has
information on 32 cars:

31

http://byrneslab.net/classes/biol607/readings/wickham_layered-grammar.pdf
http://r4ds.had.co.nz/

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Say we want to study the relationship of hp and mpg. So we have two quantitative variables,
and therefore the obvious thing to do is a scatterplot. But there are a number of different
ways we can do this:
attach(mtcars)
par(mfrow=c(2, 2))
plot(hp, mpg, main="Basic Graph")
plot(hp, mpg, pch="x", main="Change Plotting Symbol")
plot(hp, mpg, cex=2, main="Change Size")
plot(hp, mpg, main="With Fit");abline(lm(mpg~hp))

50 100 200 300

10
20

30

Basic Graph

hp

m
pg xxx x xx

x

x x
xx xxx

xx
x

xx
x

x
xx x

x

x x
x

x
x

x
x

50 100 200 300

10
20

30

Change Plotting Symbol

hp

m
pg

50 100 200 300

10
20

30

Change Size

hp

m
pg

50 100 200 300

10
20

30

With Fit

hp

m
pg

The basic idea of the grammar of graphs is to separate out the parts of the graphs: there is
the basic layout, there is the data that goes into it, there is the way in which the data is
displayed. Finally there are annotations, here the titles, and other things added, such as a
fitted line. In ggplot2 you can always change one of these without worrying how that change
effects any of the others.
Take the graph on the lower left. Here I made the plotting symbol bigger (with cex=2). But
now the graph doesn’t look nice any more, the first and the last circle don’t fit into the graph.

32

The only way to fix this is to start all over again, by making the margins bigger:
plot(hp, mpg, cex=2, ylim=range(mpg)+c(-1, 1))

50 100 150 200 250 300

10
15

20
25

30
35

hp

m
pg

and that is a bit of work because I have to figure out how to change the margins. In ggplot2
that sort of thing is taken care of automatically!
Let’s start by recreating the first graph above.
ggplot(mtcars, aes(hp, mpg)) +

geom_point()

10

15

20

25

30

35

100 200 300

hp

m
pg

33

this has the following logic:
• ggplot sets up the graph

• it’s first argument is the data set (which has to be a dataframe)

• aes is the aestetic mapping. It connects the data to the graph by specifying which
variables go where

• geom is the geometric object (circle, square, line) to be used in the graph
Note ggplot2 also has the qplot command. This stands for qick plot
qplot(hp, mpg, data=mtcars)

10

15

20

25

30

35

100 200 300

hp

m
pg

This seems much easier at first (and it is) but the qplot command is also quite limited. Very
quickly you want to do things that aren’t possible with qplot, and so I won’t discuss it further
here.
Note consider the following variation:
ggplot(mtcars) +

geom_point(aes(hp, mpg))

34

10

15

20

25

30

35

100 200 300

hp

m
pg

again it seems to do the same thing, but there is a big difference:
• if aes(x, y) is part of ggplot, it applies to all the geom’s that come later (unless a

different one is specified)

• an aes(x, y) as part of a geom applies only to it.

How about the problem with the graph above, where we had to increase the y margin?
ggplot(mtcars, aes(hp, mpg)) +

geom_point(shape=1, size=5)

35

10

15

20

25

30

35

100 200 300

hp

m
pg

so we see that here this is done automatically.

Let’s say we want to identify the cars by the number of cylinders:
ggplot(mtcars, aes(hp, mpg, color=cyl)) +

geom_point()

10

15

20

25

30

35

100 200 300

hp

m
pg

4

5

6

7

8
cyl

Notice that the legend is a continuous color scale. This is because the variable cyl has values
4, 6, and 8, and so is identified by R as a numeric variable. In reality it is categorical (ever
seen a car with 1.7 cylinders?), and so we should change that:

36

mtcars$faccyl <- factor(cyl,
levels = c(4, 6, 8),
ordered = TRUE)

ggplot(mtcars, aes(hp, mpg, color=faccyl)) +
geom_point()

10

15

20

25

30

35

100 200 300

hp

m
pg

faccyl

4

6

8

we can also change the shape of the plotting symbols:
ggplot(mtcars, aes(hp, mpg, shape=faccyl)) +

geom_point()

10

15

20

25

30

35

100 200 300

hp

m
pg

faccyl

4

6

8

37

or both:
ggplot(mtcars, aes(hp, mpg, shape=faccyl, color=faccyl)) +

geom_point()

10

15

20

25

30

35

100 200 300

hp

m
pg

faccyl

4

6

8

let’s pretty up the graph a bit with some labels and a title. We will be playing around with
this graph for a while, so I will save some intermediate versions:
plt1 <- ggplot(mtcars, aes(hp, mpg, color=faccyl)) +

geom_point()
plt2 <- plt1 +

labs(x = "Horsepower",
y = "Miles per Gallon",
color = "Cylinders") +

labs(title = "Milage goes down as Horsepower goes up")
plt2

38

10

15

20

25

30

35

100 200 300

Horsepower

M
ile

s
pe

r
G

al
lo

n

Cylinders

4

6

8

Milage goes down as Horsepower goes up

Say we want to add the least squares regression lines for cars with the same number of
cylinders:
plt3 <- plt2 +

geom_smooth(method = "lm", se = FALSE)
plt3

10

15

20

25

30

35

100 200 300

Horsepower

M
ile

s
pe

r
G

al
lo

n

Cylinders

4

6

8

Milage goes down as Horsepower goes up

There is another way to include a categorical variable in a scatterplot. The idea is to do
several graphs, one for each value of the categorical variable. These are called facets:

39

plt3 +
facet_wrap(~cyl)

4 6 8

100 200 300 100 200 300 100 200 300

10

15

20

25

30

35

Horsepower

M
ile

s
pe

r
G

al
lo

n

Cylinders

4

6

8

Milage goes down as Horsepower goes up

The use of facets also allows us to include two categorical variables:
mtcars$facgear <-

factor(gear, levels = 3:5, ordered = TRUE)
plt4 <- ggplot(aes(hp, mpg, color=faccyl),

data = mtcars) +
geom_point(size = 1)

plt4 <- plt4 +
facet_wrap(~facgear)

plt4 <- plt4 +
labs(x = "Horsepower",

y = "Miles per Gallon",
color = "Cylinders") +

labs(title = "Milage goes down as Horsepower goes up")
plt4 <- plt4 +

geom_smooth(method = "lm", se = FALSE)
plt4

40

3 4 5

100 200 300 100 200 300 100 200 300

10

15

20

25

30

35

Horsepower

M
ile

s
pe

r
G

al
lo

n

Cylinders

4

6

8

Milage goes down as Horsepower goes up

This is almost a bit to much, with just 32 data points there is not really enough for such a
split.

Let’s see how to use ggplot do a number of basic graphs:

Histograms

x <- rnorm(1000, 100, 30)
df3 <- data.frame(x = x)
bw <- diff(range(x))/50 # use about 50 bins
ggplot(df3, aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x", y = "Counts")

41

0

20

40

0 50 100 150 200

x

C
ou

nt
s

Often we do histograms scaled to integrate to one. Then we can add the theoretical density
and/or a nonparametric density estimate:
x <- seq(0, 200, length=250)
df4 <- data.frame(x=x, y=dnorm(x, 100, 30))
ggplot(df3, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x", y = "Density") +
geom_line(data = df4, aes(x, y),

colour = "blue") +
geom_density(color = "red")

42

0.000

0.005

0.010

0 50 100 150 200

x

D
en

si
ty

Notice the red line on the bottom. This should not be there but seems almost impossible to
get rid of!
Here is another interesting case: say we have two data sets and we wish to draw the two
histograms, one overlaid on the other:
df5 <- data.frame(

x = c(rnorm(100, 10, 3), rnorm(80, 12, 3)),
y = c(rep(1, 100), rep(2, 80)))

ggplot(df5, aes(x=x)) +
geom_histogram(data = subset(df5, y == 1),

fill = "red", alpha = 0.2) +
geom_histogram(data = subset(df5, y == 2),

fill = "blue", alpha = 0.2)

43

0

3

6

9

0 5 10 15 20

x

co
un

t

Notice the use of alpha. In general this “lightens” the color so we can see “behind”.

Boxplots

y <- rnorm(120, 10, 3)
x <- rep(LETTERS[1:4], each=30)
y[x=="B"] <- y[x=="B"] + rnorm(30, 1)
y[x=="C"] <- y[x=="C"] + rnorm(30, 2)
y[x=="D"] <- y[x=="D"] + rnorm(30, 3)
df6 <- data.frame(x=x, y=y)
ggplot(df6, aes(x, y)) +

geom_boxplot()

44

4

8

12

16

A B C D

x

y

strangely enough doing a boxplot without groups takes a bit of a hack. We have to “invent”
a categorical variable:
ggplot(df6, aes(x="", y)) +

geom_boxplot() +
xlab("")

4

8

12

16

y

There is a modern version of this graph called a violin plot:
ggplot(df6, aes(x="", y)) +

geom_violin() +

45

xlab("")

4

8

12

16
y

Barcharts

x <- sample(LETTERS[1:5],
size = 1000,
replace = TRUE,
prob = 6:10)

df7 <- data.frame(x=x)
ggplot(df7, aes(x)) +

geom_bar(alpha=0.75, fill="lightblue") +
xlab("")

46

0

100

200

A B C D E

co
un

t

Say we want to draw the graph based on percentages. Of course we could just calculate them
and then do the graph. Here is another way:
ggplot(df7, aes(x=x)) +

geom_bar(aes(y=(..count..)/sum(..count..)),
alpha = 0.75,
fill = "lightblue") +

labs(x="", y="Percentages")

0.0

0.1

0.2

A B C D E

P
er

ce
nt

ag
es

Notice how this works: in geom_bar we use a new aes, but the values in it are calculated
from the old data frame.

47

Finally an example of a contingency table:
df7$y <- sample(c("X", "Y"),

size = 1000,
replace = TRUE,
prob = 2:3)

ggplot(df7, aes(x=x, fill = y)) +
geom_bar(position = "dodge") +

scale_y_continuous(labels=scales::percent) +
labs(x="", y="Percentages", fill="Y")

0%

5 000%

10 000%

15 000%

A B C D E

P
er

ce
nt

ag
es Y

X

Y

Axis Ticks and Legend Keys

Let’s return to the basic plot of mpg by hp. Let’s say we want to change the axis tick marks:
ggplot(mtcars, aes(hp, mpg)) +

geom_point() +
scale_x_continuous(breaks = seq(50, 350, by=25)) +
scale_y_continuous(breaks = seq(0, 50, by=10))

48

10

20

30

50 75 100 125 150 175 200 225 250 275 300 325

hp

m
pg

sometimes we want to do graphs without any tick labels. This is useful for example for maps
and also for confidential data, so the viewer sees the relationship but can’t tell the sizes:
ggplot(mtcars, aes(hp, mpg)) +

geom_point() +
scale_x_continuous(labels = NULL) +
scale_y_continuous(labels = NULL)

hp

m
pg

By default ggplot2 draws the legends on the right. We can however change that. We can
also change the appearance of the legend. Recall that the basic graph is in plt2. Then

49

plt2 +
theme(legend.position = "bottom") +
guides(color=guide_legend(nrow = 1,

override.aes = list(size=4)))

10

15

20

25

30

35

100 200 300

Horsepower

M
ile

s
pe

r
G

al
lo

n

Cylinders 4 6 8

Milage goes down as Horsepower goes up

Saving the graph

It is very easy to save a ggplot2 graph. Simply run
ggsave("myplot.pdf")

it will save the last graph to disc.
One issue is figure sizing. You need to do this so that a graph looks “good”. Unfortunately
this depends on where it ends up. A graph that looks good on a webpage might look ugly in
a pdf. So it is hard to give any general guidelines.
If you use R markdown, a good place to start is with the chunk arguments fig.with=6 and
out.width=“70%”. In fact on top of every R markdown file I have a chunk with
library(knitr)
opts_chunk$set(fig.width=6,

fig.align = "center",
out.width = "70%",
warning=FALSE,
message=FALSE)

so that automatically every graph is sized that way. I also change the default behavior of the
chunks to something I like better!

50

Important Commands

In the section I will list the most important commands in base R. The list is taken in large
part from Hadley Wickham’s book Advanced R. Most of them we already discussed. Those
we have not you can read up on yourself.

The first functions to learn

? str

Important operators and assignment

%in%, match
=, <-, <<-
$, [, [[, head, tail, subset
with
assign, get

Comparison

all.equal, identical
!=, ==, >, >=, <, <=
is.na, complete.cases
is.finite

Random variables

(q, p, d, r) * (beta, binom, cauchy, chisq, exp, f, gamma, geom, hyper, lnorm, logis, multinom,
nbinom, norm, pois, signrank, t, unif, weibull, wilcox, birthday, tukey)

Matrix algebra

crossprod, tcrossprod
eigen, qr, svd
%*%, %o%, outer
rcond
solve

Workspace

ls, exists, rm
getwd, setwd
q

51

source
install.packages, library, require

Help

help, ?
help.search
apropos
RSiteSearch
citation
demo
example
vignette

Debugging

traceback
browser
recover
options(error =)
stop, warning, message
tryCatch, try

Output

print, cat
message, warning
dput
format
sink, capture.output

Reading and writing data

data
count.fields
read.csv, write.csv
read.delim, write.delim
read.fwf
readLines, writeLines
readRDS, saveRDS
load, save
library

52

Files and directories

dir
basename, dirname, tools::file_ext
file.path
path.expand, normalizePath
file.choose
file.copy, file.create, file.remove, file.rename, dir.create
file.exists, file.info
tempdir, tempfile
download.file,

General Statistics

Descriptive Statistics

In general in Statistics we distinguish between quantitative (= numerical) and categorical (=
qualitative) data. The main difference is that for quantitative data doing arithmetic makes
sense, for example calculating the mean.
Note that just because a data set has digits, it is not necessarily quantitative. For example,
digits are often used as labels.
Sometimes a data set can be treated as either categorical or quantitative. Say we have a
variable “number of times a student failed a course”. Now for some purposes one can treat
this as quantitative, for example find the mean. For others we can treat it as categorical, for
example do a table or a boxplot.

Consider the upr admissions data. Here are some simple things to do when looking at this
kind of data:

Tables

Gender <- table(upr$Gender)
names(Gender) <- c("Female", "Male")
Percentage <- round(Gender/sum(Gender)*100, 1)
cbind(Gender, Percentage)

Gender Percentage
Female 11487 48.5
Male 12179 51.5

53

Contingency Tables

tbl <- table(upr$Gender, upr$Class.Facultad)
tbl

##
ADEM ARTES CIAG CIENCIAS INGE
F 1401 2570 1038 4127 2351
M 1091 1554 1288 2887 5359

In a contingency table percentages can be calculated in three ways:
overall total
ot <- sum(tbl)
ot

[1] 23666
row total
rt <- apply(tbl, 1, sum)
rt

F M
11487 12179
column total
ct <- apply(tbl, 2, sum)
ct

ADEM ARTES CIAG CIENCIAS INGE
2492 4124 2326 7014 7710

• by grand total
tmp <- cbind(tbl, Total=rt)
tmp <- rbind(tmp, Total=c(ct, sum(ct)))
round(tmp/ot*100, 1)

ADEM ARTES CIAG CIENCIAS INGE Total
F 5.9 10.9 4.4 17.4 9.9 48.5
M 4.6 6.6 5.4 12.2 22.6 51.5
Total 10.5 17.4 9.8 29.6 32.6 100.0

• by row total
round(tmp/c(rt, ot)*100, 1)

ADEM ARTES CIAG CIENCIAS INGE Total
F 12.2 22.4 9.0 35.9 20.5 100
M 9.0 12.8 10.6 23.7 44.0 100
Total 10.5 17.4 9.8 29.6 32.6 100

• by column total

54

t(round(t(tmp)/c(ct, ot)*100, 1))

ADEM ARTES CIAG CIENCIAS INGE Total
F 56.2 62.3 44.6 58.8 30.5 48.5
M 43.8 37.7 55.4 41.2 69.5 51.5
Total 100.0 100.0 100.0 100.0 100.0 100.0

Bar Charts

ggplot(upr, aes(Class.Facultad)) +
geom_bar(alpha=0.75, fill="lightblue") +
xlab("")

0

2000

4000

6000

8000

ADEM ARTES CIAG CIENCIAS INGE

co
un

t

ggplot(upr, aes(Class.Facultad, fill=Gender)) +
geom_bar(position="dodge", alpha=0.75)

55

0

2000

4000

ADEM ARTES CIAG CIENCIAS INGE

Class.Facultad

co
un

t Gender

F

M

as with the tables, graphs can be done based on percentages:
• grand total

ggplot(upr, aes(Class.Facultad, fill=Gender)) +
geom_bar(aes(y = (..count..)/sum(..count..)),

position="dodge",
alpha=0.75)

0.00

0.05

0.10

0.15

0.20

ADEM ARTES CIAG CIENCIAS INGE

Class.Facultad

(c
ou

nt
)/

su
m

(c
ou

nt
)

Gender

F

M

• row total
this one we have to work a bit:

56

tmp1 <- c(tmp[1, 1:5], tmp[2, 1:5])/c(rt, rt)*100
df <- data.frame(Percentage = tmp1,

Gender=rep(c("Female", "Male"), 5),
Class=names(tmp1))

ggplot(df, aes(x = Class,
y = Percentage,
fill = Gender)) +

geom_bar(position = "dodge",
stat = "identity")

0

10

20

30

40

ADEM ARTES CIAG CIENCIAS INGE

Class

P
er

ce
nt

ag
e Gender

Female

Male

Notice the use of stat=“identity” if the data is already in the form of a table.

Numerical Summaries

round(mean(upr$Freshmen.GPA), 3)

[1] NA

we get an error because there are missing values, so
round(mean(upr$Freshmen.GPA, na.rm=TRUE), 3)

[1] 2.733
round(median(upr$Freshmen.GPA, na.rm=TRUE), 3)

[1] 2.83
round(sd(upr$Freshmen.GPA, na.rm=TRUE), 3)

57

[1] 0.779
round(quantile(upr$Freshmen.GPA,

probs = c(0.1, 0.25, 0.75, 0.9),
na.rm=TRUE), 3)

10% 25% 75% 90%
1.71 2.32 3.28 3.65

Histogram and Boxplot

bw <- diff(range(upr$Freshmen.GPA, na.rm = TRUE))/50 # use about 50 bins
ggplot(upr, aes(Freshmen.GPA)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x = "Freshmen GPA", y = "Counts")

0

400

800

1200

0 1 2 3 4

Freshmen GPA

C
ou

nt
s

ggplot(upr, aes(x="", y=Freshmen.GPA)) +
geom_boxplot() +
xlab("")

58

0

1

2

3

4

F
re

sh
m

en
.G

PA

ggplot(upr, aes(factor(Year), Freshmen.GPA)) +
geom_boxplot()

0

1

2

3

4

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

factor(Year)

F
re

sh
m

en
.G

PA

Two Quantitative Variables

round(cor(upr$Year, upr$Freshmen.GPA,
use="complete.obs"), 3)

[1] 0.097

59

ggplot(upr, aes(Year, Freshmen.GPA)) +
geom_jitter(shape=".", width=0.1, height = 0) +
scale_x_continuous(breaks = 2003:2013) +
labs(x="Year", y="GPA after Freshmen Year")

0

1

2

3

4

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

G
PA

 a
fte

r
F

re
sh

m
en

 Y
ea

r

Normal Probability Plot

An important graph is the normal probability plot, which plots the sample quantiles vs the
population quantiles of a normal distribution:
x <- rnorm(20)
df <- data.frame(x=x)
y1 <- quantile(x, c(0.25, 0.75))
x1 <- qnorm(c(0.25, 0.75))
slope <- diff(y1)/diff(x1)
int <- y1[1L] - slope * x1[1L]
ggplot(df, aes(sample=x)) +

stat_qq() +
geom_abline(slope = slope, intercept = int, color="blue")

60

−1

0

1

−2 −1 0 1 2

theoretical

sa
m

pl
e

Notice that adding the customary line through the quartiles takes a bit of work.
Here an example where the normal assumption fails:
x <- rexp(20)
df <- data.frame(x=x)
y1 <- quantile(x, c(0.25, 0.75))
x1 <- qnorm(c(0.25, 0.75))
slope <- diff(y1)/diff(x1)
int <- y1[1L] - slope * x1[1L]
ggplot(df, aes(sample=x)) +

stat_qq() +
geom_abline(slope = slope, intercept = int, color="blue")

61

0.0

0.5

1.0

1.5

−2 −1 0 1 2

theoretical

sa
m

pl
e

Parameter Estimation

In this section we will study the problem of parameter estimation. In its most general form
this is as follows: we have a sample X1, .., Xn from some probability density f(x; θ). Here
both x and θ might be vectors. Also we will use the term density for both the discrete and
the continuous case.
The problem is to find an estimate of θ based on the data X1, .., Xn, that is a function (called
a statistic) T (X1, .., Xn) such that in some sense T (X1, .., Xn) ≈ θ.

Example: Binomial proportions

in a survey 567 people 235 said they prefer Coke over Pepsi. What is the percentage of people
who prefer Coke over Pepsi?
The answer seems obvious: 235/567. However, let’s work this out in detail. First, each person
is a Bernoulli trial (yes/no) with some success probability π. So we have the density

P (Xi = 1) = 1− P (Xi = 0) = π

which we can write as

f(x) = πx(1− π)1−x, x = 0, 1

the joint density is given by

62

f(x1, .., xn) =
n∏
i=1

πxi (1− π)1−xi =

π
∑

xi(1− π)
∑

(1−xi) =
πy(1− π)n−y

where y = ∑
xi is the number of successes.

In our case this becomes π235(1− π)332 and the task is to estimate π.

Likelihood function

say we have X1, .., Xn ∼ f(x; θ) and independent. Then the joint density of X = (X1, .., Xn)
is given by

f(x; θ) =
n∏
i=1

f(xi; θ)

The likelihood function L is defined by

L(θ; x) =
n∏
i=1

f(xi; θ)

this does not seem to be much: the right hand side is the same. However, it is a very different
expression: in f(x; θ) x is the variable and θ is an (unknown) constant. In L(θ; x) θ is the
variable and x is a (known) constant.
It is the essential difference of before the experiment, when one might ask questions of
probability, and after the experiment, when one asks questions of statistics.
Closely related is the log-likelihood function

l(θ; x) = logL(θ; x) =
n∑
i=1

log f(xi; θ)

The log-likelihood is often easier to work with, not the least because it turns a product into a
sum.
There is a principle in Statistics that suggests that any inference should always be based on
the likelihood function.

Example: Binomial proportions

We already found the joint density

πy(1− π)n−y

63

and so the log likelihood is

l(π; y, n) = y log π + (n− y) log(1− π)

Example: Normal mean

Say Xi ∼ N(µ, σ) so

l(µ; x, σ) =
n∑
i=1

log
[

1√
2πσ2

exp
{
− 1

2σ2 (xi − µ)2
}]

=

n

2 log(2πσ2)− 1
2σ2

n∑
i=1

(xi − µ)2

Now let x̄ = 1
n

∑
xi, then

n∑
i=1

(xi − µ)2 =

n∑
i=1

(xi − x̄+ x̄− µ)2 =

n∑
i=1

(xi − x̄)2 + 2
n∑
i=1

(xi − x̄)(x̄− µ) +
n∑
i=1

(x̄− µ)2 =

n∑
i=1

(xi − x̄)2 + 2(x̄− µ)
n∑
i=1

(xi − x̄) + n(x̄− µ)2 =

n∑
i=1

(xi − x̄)2 + 2(x̄− µ)(
n∑
i=1

xi − nx̄) + n(x̄− µ)2 =

n∑
i=1

(xi − x̄)2 + n(x̄− µ)2

and so

l(µ; x, σ) = const− 1
2σ2/n

(µ− x̄)2

so as a function of µ the log-likelihood is a quadratic function with vertex at x̄

Maximum Likelihood estimation

The idea of maximum likelihood estimation is to find that value of θ that maximizes the
likelihood function. In an obvious way, this is the value of the parameter that best “agrees”"
with the data.
Of course a function L has a maximum at x iff logL has a maximum at x, so we can also
(and easier!) maximize the log-likelihood function

64

Example: Normal mean

dl(µ; x, σ)
dµ

= − 1
σ2/n

(µ− x̄) = 0

so µ̂ = x̄

This is of course a maximum, and not a mimimum or an inflection point because − 1
σ2/n

< 0.

Example: Binomial proportion

dl

dπ
= y

π
− n− y

1− π = 0

π̂ = y

n

and for our numbers we find π̂ = 235/527 = 0.4459

Numerical Computation

The above calculations require some calculus. Sometimes we can let R take care of this for us:
ll <- function(pi, y, n)

log(dbinom(y, n, pi))
pi <- seq(0.4, 0.491, length=1000)
df <- data.frame(pi=pi, ll=ll(pi, 235, 527))
mle <- df$pi[df$ll==max(df$ll)]
mle

[1] 0.4459099
ggplot(df, aes(x=pi, y=ll)) +

geom_line() +
geom_vline(xintercept = mle)

65

−5

−4

0.400 0.425 0.450 0.475

pi

ll

notice that the log-likelihood curve looks a lot like a parabola. This is not an accident, and it
will come in handy soon!

Example: Beta distribution

A random variable is said to have a Beta density if

f(x;α, β) = Γ(α + β)
Γ(α)Γ(β)x

α−1(1− x)β−1

here Γ is the famous gamma function

Γ(x) =
∫ ∞

0
tx−1e−tdt

Let’s simulate a sample from a Beta distribution
set.seed(1111)
x <- sort(round(rbeta(500, 2, 4), 3))
beta.ex <- data.frame(x=x)

bw <- diff(range(x))/50
ggplot(beta.ex, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density")

66

0

1

2

3

0.00 0.25 0.50 0.75

x

D
en

si
ty

and we want to estimate α, β.
Now doing this with calculus is out because the log-likelihood function doesn’t exist in closed
form. Instead we will need to use a numerical method. Because the Beta distribution is a
standard one, there is an R routine to do it for us. It is part of the package
library(MASS)
fitdistr(x,

densfun="Beta",
start=list(shape1=1,shape2=1))

shape1 shape2
2.0716029 4.2045833
(0.1227766) (0.2646915)

Example: linear density

here are observations from a linear density f(x|a) = 2ax+ 1− a, 0 < x < 1 and −1 < a < 1:
0.005 0.011 0.025 0.03 0.031 0.031 0.05 0.059 0.061 0.064 0.067 0.068 0.072 0.075 0.082 0.083 0.084 0.101 0.102 0.104 0.106 0.112 0.114 0.117 0.125 0.136 0.137 0.143 0.145 0.146 0.17 0.174 0.175 0.186 0.197 0.198 0.209 0.209 0.209 0.229 0.234 0.234 0.242 0.256 0.269 0.275 0.279 0.281 0.283 0.293 0.306 0.311 0.311 0.313 0.328 0.338 0.347 0.358 0.362 0.371 0.381 0.384 0.392 0.406 0.409 0.429 0.431 0.44 0.447 0.447 0.45 0.455 0.456 0.458 0.485 0.492 0.494 0.498 0.503 0.506 0.507 0.535 0.55 0.559 0.561 0.577 0.584 0.586 0.587 0.594 0.597 0.598 0.599 0.604 0.608 0.616 0.623 0.625 0.638 0.641 0.644 0.665 0.667 0.676 0.704 0.722 0.73 0.731 0.731 0.731 0.733 0.735 0.738 0.742 0.742 0.743 0.746 0.75 0.751 0.755 0.766 0.768 0.792 0.795 0.796 0.804 0.812 0.821 0.834 0.837 0.837 0.861 0.865 0.873 0.878 0.88 0.886 0.897 0.916 0.923 0.928 0.94 0.944 0.948 0.959 0.961 0.962 0.969 0.972 0.974

We want to estimate a. So let’s see:

f(x|a) =
n∏
i=1

[2axi + 1− a] =

l(a) =
n∑
i=1

log [2axi + 1− a]

dl

da
=

n∑
i=1

2xi − 1
2axi + 1− a = 0

67

and this equation can not be solved analytically. Unfortunately this is not one of the
distributions included in fitdistr, so we need to find a numerical solution ourselves.
Here are several:
• Simple Grid Search

Let’s draw the curve of dl
da
. In what follows x is the data above.

f <- function(a) {
y <- a
for(i in seq_along(a))

y[i] <- sum((2*x-1)/(2*a[i]*x+1-a[i]))
y

}
curve(f, -0.5, 0.5)
abline(h=0)
a <- seq(-0.5, 0.5, length=1000)
y <- f(a)
find value of a where y is closest to 0
mle <- a[abs(y)==min(abs(y))]
abline(v=mle)

−0.4 −0.2 0.0 0.2 0.4

−
40

−
20

0
10

20

x

f(
x)

mle

[1] -0.1176176

• Bisection Algorithm
The idea is this: our function is positive for a=-0.5 and negative for a=0.5. It is also
continuous and decreasing. So we can find the zero by checking midpoints and adjusting the
upper or lower limit accordingly:

68

curve(f, -0.5, 0.5)
abline(h=0)
low <- (-0.5)
high <- 0.5
repeat {

mid <- (low+high)/2
y <- f(mid)
print(c(mid, y))
abline(v=mid)
if(y>0) low <- mid
else high <- mid
if(high-low<0.0001) break

}

−0.4 −0.2 0.0 0.2 0.4

−
40

−
20

0
10

20

x

f(
x)

[1] 0.000 -5.962
[1] -0.250000 6.946702
[1] -0.1250000 0.3969489
[1] -0.062500 -2.783515
[1] -0.093750 -1.196284
[1] -0.1093750 -0.4007672
[1] -0.117187500 -0.002228235
[1] -0.1210938 0.1972750
[1] -0.11914062 0.09750275
[1] -0.11816406 0.04763219
[1] -0.11767578 0.02270072
[1] -0.11743164 0.01023593
[1] -0.117309570 0.004003769
[1] -0.1172485352 0.0008877472

69

• Newton’s Method
Isaak Newton invented the following algorithm: we want to solve the equation f(x) = 0. Let
x0 be some starting point. Then find successive points with

xn+1 = xn − f(xn)/f ′(xn)

notice that if this sequence converges to x we have

x = x− f(x)/f ′(x)
and so f(x) = 0.
In our case we have f(a) = dl

da
and so we also need

f ′(a) = d2l

da2 = −
n∑
i=1

(2xi − 1
2axi + 1− a

)2

we find
f.prime<- function(a) {

y <- a
for(i in seq_along(a))

y[i] <- (-1)*sum(((2*x-1)/(2*a[i]*x+1-a[i]))^2)
y

}
curve(f, -0.5, 0.5)
abline(h=0)
x.old <- 0
abline(v=x.old)
repeat {

x.new <- x.old - f(x.old)/f.prime(x.old)
print(x.new)
abline(v=x.new)
if(abs(x.old-x.new)<0.0001) break
x.old <- x.new

}

70

−0.4 −0.2 0.0 0.2 0.4

−
40

−
20

0
10

20

x

f(
x)

[1] -0.1167333
[1] -0.1172312
[1] -0.1172311

Notice that his converges much faster, it only needed three “rounds”. This is typically true,
however Newton’s method also can fail badly if the starting point is not good enough.

Example Old Faithful guyser

Consider the waiting times of the famous Old Faithful data:
bw <- diff(range(faithful$Waiting.Time))/50
ggplot(faithful, aes(Waiting.Time)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x = "Waiting Times", y = "Counts")

71

0

5

10

15

50 60 70 80 90

Waiting Times

C
ou

nt
s

What would be a useful model for this data? We can try a normal mixture:

αN(µ1, σ1) + (1− α)N(µ2, σ2)

It seems that the two parts split at around 65, so we find
x <- faithful$Waiting.Time
round(c(mean(x[x<65]), mean(x[x>65])), 1)

[1] 54.1 80.0
round(c(sd(x[x<65]), sd(x[x>65])), 1)

[1] 5.4 5.9

How about α? Let’s find the mle:

φ(x, µ, σ) = 1√
2πσ2

exp−
1

2σ2 (x−µ)2

l(α) =
∑

log [αφ(xi, µ1, σ1) + (1− α)φ(xi, µ2, σ2)]
dl

dα
=
∑ φ(xi, µ1, σ1)− φ(xi, µ2, σ2)

αφ(xi, µ1, σ1) + (1− α)φ(xi, µ2, σ2)
d2l

dα2 = (−1)
∑(

φ(xi, µ1, σ1)− φ(xi, µ2, σ2)
αφ(xi, µ1, σ1) + (1− α)φ(xi, µ2, σ2)

)2

f <- function(alpha, mu1=54.1, sigma1=5.4,
mu2=80, sigma2=5.9,
x=faithful$Waiting.Time) {

u <- dnorm(x, mu1, sigma1)

72

v <- dnorm(x, mu2, sigma2)
y1 <- alpha
y2 <- alpha
for(i in 1:seq_along(alpha)) {

tmp <- (u-v)/(alpha[i]*u+(1-alpha[i])*v)
y1[i] <- sum(tmp)
y2[i] <- (-1)*sum(tmp^2)

}
list(y1, y2)

}
alpha.old <- 0.5
repeat {

tmp <- f(alpha.old)
alpha.new <- alpha.old - tmp[[1]]/tmp[[2]]
print(alpha.new)
if(abs(alpha.old-alpha.new)<0.0001) break
alpha.old <- alpha.new

}

[1] 0.3550228
[1] 0.3545702
[1] 0.3545704
alpha <- alpha.old
alpha

[1] 0.3545702

Let’s see what this looks like:
x <- seq(min(faithful$Waiting.Time),

max(faithful$Waiting.Time),
length=250)

y <- alpha*dnorm(x, 54.1, 5.4) +
(1-alpha)*dnorm(x, 80, 5.9)

df <- data.frame(x=x, y=y)
bw <- diff(range(faithful$Waiting.Time))/50
ggplot(faithful, aes(Waiting.Time)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +

labs(x = "Waiting Times", y = "Counts") +
geom_line(aes(x, y),

data=df,
inherit.aes = FALSE)

73

0.00

0.02

0.04

0.06

50 60 70 80 90

Waiting Times

C
ou

nt
s

How about the other parameters? Can we fit for them as well? What we need is a multivariate
version of Newton’s method:
Say we have the equation

f(x1, .., xn) = 0
Define the gradient ∆ and the Hessian matrix H by

∆i(x) = df

dxi
(x1, .., xn)Hi,j(x) = d2f

dxidxj
(x1, .., xn)

then the algorithm is

xnew = xold −H−1
i,j (xold)∆i(xold)

Let’s fix α = 0.355, σ1 = 5.4 and σ2 = 5.9 and fit for µ1 and µ2.

f(µ) = φ(x, µ, σ) = 1√
2πσ2

exp
(
− 1

2σ2 (x− µ)2
)

f ′(µ) = dφ

dµ
= 1√

2πσ2
exp

(
− 1

2σ2 (x− µ)2
)
x− µ
σ2 =

(x− µ)f/σ2

f ′′(µ) = −f/σ2 + (x− µ)2f/σ4 =[
(x− µ)2 − σ2

]
f/σ4

Let’s use the following definitions (short-hands):

74

fi,j = φ(xi, µj, σj), j = 1, 2
ψi = αfi,1 + (1− α)fi,2

so we have

l(µ1, µ2) =
∑

logψi

∆1 = dl

dµ1
= α

∑ f ′i,1
ψi

∆2 = (1− α)
∑ f ′i,2

ψi

H1,1 = α
∑ f ′′i,1 − αf ′2i,1

ψi

H1,2 = −(1− α)α
∑ f ′i,1f

′
i,2

ψi
H2,1 = H1,2

H2,2 = (1− α)
∑ f ′′i,2 − (1− α)f ′2i,2

ψi

Let’s implement this:
alpha <- 0.355
sigma <- c(5.4, 5.9)
mu.old <- c(50, 80)
grad <- rep(0, 2)
H <- diag(2)
k <- 0
x <- faithful$Waiting.Time
repeat {

k <- k+1
f1 <- dnorm(x, mu.old[1], sigma[1])
f1.prime <- (x-mu.old[1])*f1/sigma[1]^2
f1.doubleprime <-

((x-mu.old[1]^2-sigma[1]^2))*f1/sigma[1]^4
f2 <- dnorm(x, mu.old[2], sigma[2])
f2.prime <- (x-mu.old[2])*f2/sigma[2]^2
f2.doubleprime <-

((x-mu.old[2]^2-sigma[2]^2))*f2/sigma[2]^4
psi <- alpha*f1+(1-alpha)*f2
grad[1] <- alpha*sum(f1.prime/psi)
grad[2] <- (1-alpha)*sum(f2.prime/psi)
H[1, 1] <- alpha*sum((f1.doubleprime-alpha*f1.prime^2)/psi)
H[1, 2] <- (alpha-1)*alpha*sum((f1.prime*f2.prime)/psi)
H[2, 1] <- H[2, 1]

75

H[2, 2] <- (1-alpha)*sum((f2.doubleprime-(1-alpha)*f2.prime^2)/psi)
mu.new <- c(mu.old-solve(H)%*%cbind(grad))
print(c(mu.new, sum(log(psi))))
if(sum(abs(mu.old-mu.new))<0.001) break
if(k>10) break
mu.old <- mu.new

}

[1] 50.04450 79.99726 -1061.44499
[1] 50.08849 79.99457 -1060.91574
[1] 50.13196 79.99192 -1060.39760
[1] 50.17492 79.98931 -1059.89032
[1] 50.21739 79.98675 -1059.39364
[1] 50.25937 79.98423 -1058.90732
[1] 50.30086 79.98175 -1058.43113
[1] 50.34187 79.97931 -1057.96484
[1] 50.38242 79.97691 -1057.50821
[1] 50.42250 79.97456 -1057.06105
[1] 50.46213 79.97224 -1056.62312

Or we can make use of R:
x <- faithful$Waiting.Time
fun <- function(mu, alpha=0.355, sigma=c(5.4, 5.9)) {

f1 <- dnorm(x, mu[1], sigma[1])
f2 <- dnorm(x, mu[2], sigma[2])
psi <- alpha*f1+(1-alpha)*f2
-sum(log(psi))

}
optim(c(50,80), fun)

$par
[1] 54.44039 79.99045
##
$value
[1] 1034.465
##
$counts
function gradient
49 NA
##
$convergence
[1] 0
##
$message
NULL

In fact why not fit for all?

76

x <- faithful$Waiting.Time
fun <- function(par) {

f1 <- dnorm(x, par[2], par[3])
f2 <- dnorm(x, par[4], par[5])
psi <- par[1]*f1+(1-par[1])*f2
-sum(log(psi))

}
optim(c(0.5, 50, 5.4, 80, 5.9), fun)

$par
[1] 0.3610815 54.6234464 5.8871485 80.1082477 5.8562652
##
$value
[1] 1034.003
##
$counts
function gradient
211 NA
##
$convergence
[1] 0
##
$message
NULL

EM Algorithm

There is another way to find the mle’s in a problem of this kind called the EM or Expectation-
Maximization algorithm. The idea is as follows.
Say there were a second variable Zi which is 0 if the next waiting time is a short one and 1
otherwise. Now if we knew those Zi’s it would be easy to estimate the µ’s:

µ̂i = mean(X|Z = zi)σ̂i = sd(X|Z = zi)
On the other hand if we knew all the means and standard deviations it would also be easy to
estimate α:

wi = αfi,1
ψi

α̂ = mean(wi)

The wi are called the weights. These formulas can be verified easily using probability theory.
This suggests the following algorithm:
• choose a starting point for the parameters

77

• find the weights

• find the next estimates of the parameters

• iterate until convergence
alpha <- 0.355
mu <- c(50, 80)
sigma <- c(5.4, 5.9)
w <- rep(0, 40)
k <- 0
x <- faithful$Waiting.Time
repeat {

k <- k+1
psi <- (alpha*dnorm(x, mu[1], sigma[1]) +

(1-alpha)*dnorm(x, mu[2], sigma[2]))
w <- alpha*dnorm(x, mu[1], sigma[1])/psi
alpha <- mean(w)
mu[1] <- sum(w*x)/sum(w)
mu[2] <- sum((1-w)*x)/sum(1-w)
sigma[1] <- sqrt(sum(w*(x-mu[1])^2)/sum(w))
sigma[2] <- sqrt(sum((1-w)*(x-mu[2])^2)/sum(1-w))
psi1 <- (alpha*dnorm(x, mu[1], sigma[1]) +

(1-alpha)*dnorm(x, mu[2], sigma[2]))
cat(round(alpha,4), " ",

round(mu, 1), " ",
round(sigma, 2), " ",
round(sum(log(psi1)), 5), "\n")

if(sum(abs(psi-psi1))<0.001) break
if(k>100) break

}

0.3345 53.8 79.5 5.21 6.46 -1035.686
0.3422 54 79.7 5.42 6.31 -1034.87
0.348 54.2 79.8 5.55 6.17 -1034.425
0.3522 54.3 79.9 5.65 6.07 -1034.199
0.3551 54.4 80 5.72 6 -1034.091
0.357 54.5 80 5.77 5.95 -1034.041
0.3583 54.5 80 5.8 5.92 -1034.019
0.3592 54.6 80.1 5.82 5.9 -1034.009
0.3598 54.6 80.1 5.84 5.89 -1034.005
0.3602 54.6 80.1 5.85 5.88 -1034.003
0.3604 54.6 80.1 5.86 5.88 -1034.002
0.3606 54.6 80.1 5.86 5.87 -1034.002
0.3607 54.6 80.1 5.87 5.87 -1034.002
0.3607 54.6 80.1 5.87 5.87 -1034.002
0.3608 54.6 80.1 5.87 5.87 -1034.002

78

Notice one feature of the EM algorithm: it guarantees that each iteration moves the parameters
closer to the mle.

The EM algorithm was originally invented by Dempster and Laird in 1977 to deal with a
common problem in Statistics called censoring: say we are doing a study on survival of
patients after cancer surgery. Any such study will have a time limit after which we will have
to start with the data analysis, but hopefully there will still be some patients who are alive,
so we don’t know their survival times, but we do know that the survival times are greater
than the time that has past sofar. We say the data is censored at time T. The number of
patients with survival times >T is important information and should be used in the analysis.
If we order the observations into (x1, .., xn) the uncensored observations (the survival times
of those patients that are now dead) and (xn+1, .., xn+m) the censored data, the likelihood
function can be written as

L(θ|x) = [1− F (T |θ)]m
n∏
i=1

f(xi|θ)

where F is the distribution function of f .
Of course if we knew the survivial times of those m censored patients was (zn+1, .., zn+m) we
could write the complete data likelihood:

L(θ|x, z) =
n∏
i=1

f(xi|θ)
n+m∏
i=n+1

f(zi|θ)

This suggests the EM algorithm:
• in the M step assume you know the z’s and estimate θ

• in the E step assume you know θ and estimate the z’s

Example Censored exponential survival times

Say Xi ∼ Exp(θ), we have data X1, .., Xn and we know that m observations were censored at
T. Now one can find that

θ̂ = n+m∑
xi +∑

zi
zi = 1

θ
+ T

em.exp <- function(x, m, T) {
theta.old <- 1/mean(x)
repeat {

z <- rep(1/theta.old+T, m)
theta.new <- 1/mean(c(x, z))
print(theta.new, 5)
if(abs(theta.new-theta.old)<0.0001) break

79

theta.old <- theta.new
}

}

x <- rexp(1000, 0.1)
1/mean(x)

[1] 0.09817537
em.exp(x, 0, 0)

[1] 0.098175
x <- x[x<20]
m <- 1000 - length(x)
m

[1] 137
1/mean(x)

[1] 0.1435548
em.exp(x, m, 20)

[1] 0.10303
[1] 0.099193
[1] 0.09869
[1] 0.098621
x <- x[x<10]
m <- 1000 - length(x)
m

[1] 375
1/mean(x)

[1] 0.2318416
em.exp(x, m, 10)

[1] 0.12402
[1] 0.1056
[1] 0.10003
[1] 0.098091
[1] 0.097382
[1] 0.097119
[1] 0.097021

80

Confidence Intervals

In the last section we studied the problem of point estimation. Generally one also wants to
have some idea of the accuracy of this estimate, that is one wants to calculate the standard
error. Most commonly this is done by finding a confidence interval.
In essence this provides bounds for the likely values of the parameter. One can control the
level of “likely”.

Coverage

the defining property of a confidence interval is its coverage, that is the probability that over
many repeated experiments the true parameter lies inside the interval with the nominal level.
Sometime this can be shown analytically:

Example Mean of normal distribution

a (1 − α)100% confidence interval for the mean µ of a normal distribution with known
standard deviation σ is given by

X̄ ± zα/2σ/
√
n

here zα are the (1−α)100% quantiles of a standard normal distribution. They are found with
#alpha = 0.05
qnorm(1-0.05)

[1] 1.644854

Now let’s denote the density and the cumulative distribution function of a standard normal
random variable by φ and Φ, respectively. Then

P (µ ∈ I) =
P (X̄ − zα/2σ/

√
n < µ < X̄ + zα/2σ/

√
n) =

P (µ− zα/2σ/
√
n < X̄ < µ+ zα/2σ/

√
n) =

P (−zα/2σ/
√
n < X̄ − µ < zα/2σ/

√
n) =

P (−zα/2 <
X̄ − µ
σ/
√
n
< zα/2) =

1− 2Φ(zα/2) = 1− 2(α/2) = 1− α

Sometimes one has to use simulation to check coverage:

81

Example Binomial proportion

Let X1, .., Xn ∼ Ber(π) then a (1− α)100% confidence interval for π can be found with the
binom.test command. Let’s check that this method has correct coverage. (This is actually
not necessary here because this routine implements a method by Clopper and Pearson (1934),
which is exact and has coverage by the way it is constructed.)
B <- 10000
p <- 0.5; n <- 10
ci <- matrix(0, B, 2)
x <- rbinom(B, n, p)
for(i in 1:B) {

ci[i,] <- binom.test(x[i], n)$conf.int
}
sum(ci[, 1]<p & p<ci[, 2])/B

[1] 0.9778

Notice that 0.9768 > 0.95, so this method has over-coverage. This is not a good thing but it
is ok, and in fact as we will see soon in this case unavoidable.
Of course this should now be done for all (or at least many) values of n and π, and this can
take a while. In the case of a discrete random variable there is a quicker way, though. Notice
that in the case above (n=10), x can take at most 11 values:
table(x)

x
0 1 2 3 4 5 6 7 8 9 10
9 97 428 1172 2081 2386 2158 1100 453 104 12

and in fact we even know their probabilities:
round(dbinom(0:10, n, p), 4)

[1] 0.0010 0.0098 0.0439 0.1172 0.2051 0.2461 0.2051 0.1172 0.0439 0.0098
[11] 0.0010

so in the simulation the same 11 intervals are calculated 10000 times.
Now if we denote the interval by (L(x), U(x)) if x is observed we have

Cov(π, n) = P (L(X) < π < U(X)) =
n∑
x=0

I(L(x),U(x))(π)dbinom(x, n, π)

and so we have a much faster way to find the coverage:
cov.bernoulli <- function(n, p) {

tmp <- 0
for(i in 0:n) {

ci <- binom.test(i, n)$conf.int

82

if(ci[1]<p & p<ci[2]) tmp <- tmp + dbinom(i, n, p)
}
tmp

}
round(cov.bernoulli(10, 0.5), 3)

[1] 0.979

and this is in fact no longer a simulation but an exact calculation!
Often we draw a coverage graph:
p <- seq(0.1, 0.9, length=100)
y <- p
for(i in 1:100)

y[i] <- cov.bernoulli(10, p[i])

ggplot(data.frame(p=p, y=y), aes(p, y)) +
geom_line() +
geom_hline(yintercept = 0.95) +
ylim(0.9, 1)

0.900

0.925

0.950

0.975

1.000

0.25 0.50 0.75

p

y

Notice the ragged appearance of the graph, which is quite typical for coverage graphs of
discrete random variables.
Notice also that the actual coverage is always a bit higher than the nominal one. In fact it
is well known that the Clopper-Pearson limits are somewhat conservative (aka a bit large).
They are still generally a good choice because they don’t depend on any assumptions.

83

Finding Confidence Interval

There are many ways to approach this problem, we will here discuss confidence intervals
based on the method of maximum likelihood.
One major reason for the popularity of this method is the following celebrated theorem, due
to Sir R.A. Fisher: under some regularity conditions

√
n(θ̂ − θ) ∼ N(0,

√
I−1)

where N(µ, σ) is the normal distribution and I is the Fisher Information, given by

I(θ)ij = −E
[
∂i∂j

∂θi∂θj
log f(x; θ)

]

and so it is very easy to find a (1− α)100% confidence interval for (say) θi as

θ̂ ± zα/2
√
I−1
ii

Example: Mean of a normal distribution, σ known.

we have
f(x;µ) = 1√

2πσ2
exp

{
− 1

2σ2 (x− µ)2
}

Here we have only one parameter (µ), so the Fisher Information is given by

I(µ) = −E
[
d2 log f(X;µ)

dµ2

]

and so we find

d

dµ
log f(x;µ) = 1

σ2 (x− µ)

d2

dµ2 log f(x;µ) = − 1
σ2

− E
[
d2f(X;µ)

dµ2

]
= −E

[
− 1
σ2

]
= 1
σ2√

I(µ)−1 =
√

1
1/σ2 = σ

√
n(µ̂− µ) ∼ N(0, σ)

µ̂ ∼ N(µ, σ/
√
n)

and we find the (1− α)100% confidence interval to be

84

µ̂± zα/2σ/
√
n

this is of course the standard answer (for known σ).

Example: Binomial proportion

log f(x; π) = x log π + (1− x) log(1− π)
d log f
dπ

= x

π
− 1− x

1− π
d2 log f
dπ2 = − x

π2 −
1− x

(1− π)2

I(π) = −E
[
−X
π2 −

1−X
(1− π)2

]
=

EX

π2 + 1− EX
(1− π)2 =

π

π2 + 1− π
(1− π)2 =

1
π

+ 1
1− π =

1
π(1− π)√
I(π)−1 =

√
π(1− π)

π̂ ∼ N(π,
√
π(1− π)

n
)

and so a (1− α)100% confidence interval would be given by

π̂ ± zα/2

√
π(1− π)

n

But this does not help, we don’t know π! The usual solution is to use a plug-in estimate:

π̂ ± zα/2

√
π̂(1− π̂)

n

and this is the standard textbook interval. Recall that we previously mentioned that this is
NOT a good solution when n is small and π is either close to 0 or 1. This shows that this
method gives us a way to find an interval but it does not guarantee that this interval is good.
If we apply it to our previous example we find a 95% confidence interval of
phat <- 235/567
round(phat + c(-1, 1)*qnorm(0.975)*sqrt(phat*(1-phat)/567), 3)

[1] 0.374 0.455

85

Let’s say for the moment that we couldn’t do the math above, that is we have a case where
we can’t find the derivatives. We can however estimate it!
Notice that the Fisher Information is the (negative of the) expected value of the Hessian
matrix of the log-likelihood function, and by the theorem of large numbers

1
n

∑
H → I

Now if we just replace I with the observed information we get:
binom.ll <- function(pi, y, n) {-log(dbinom(y, n, pi))}
fit <- nlm(binom.ll, 0.5, hessian = TRUE,y=235, n=567)
fit

$minimum
[1] 3.381578
##
$estimate
[1] 0.4144616
##
$gradient
[1] -2.178258e-06
##
$hessian
[,1]
[1,] 2336.051
##
$code
[1] 1
##
$iterations
[1] 4

a 95% confidence interval is given by
round(fit$estimate +

c(-1, 1)*qnorm(1-0.05/2)/sqrt(fit$hessian[1, 1]), 3)

[1] 0.374 0.455

Let’s put all of this together and write a “find a confidence interval” routine:
ci.mle <-

function(f, # density
param, # starting value for nlm
dta, # data
alpha=0.05, # desired confidence level
rg, # range for plotting log-likelihood function
do.graph=FALSE # TRUE if we want to look at the

86

log-likelihood function
)

{
ll <- function(a, dta) { # log-likelihood function

-sum(log(f(dta, a)))
}
tmp <- nlm(ll, param, hessian = TRUE, dta=dta)
if(do.graph) { # if you want to see the loglikelihood curve

a <- seq(rg[1], rg[2], length=250)
y <- rep(0, 250)
for(i in seq_along(a))

y[i] <- (-ll(a[i], dta))
plot(a, y, type="l")
abline(v=tmp$estimate)

}
if(length(param)==1) {

ci <- tmp$estimate + c(-1, 1) *
qnorm(1-alpha/2)/sqrt(tmp$hessian[1, 1])

names(ci) <- c("Lower", "Upper")
}
else {

I.inv <- solve(tmp$hessian) # find matrix inverse
ci <- matrix(0, length(param), 2)
colnames(ci) <- c("Lower", "Upper")
if(!is.null(names(param)))

rownames(ci) <- names(param)
for(i in seq_along(param))

ci[i,] <- tmp$estimate[i] +
c(-1, 1)*qnorm(1-alpha/2)*sqrt(I.inv[i, i])

}
list(mle=tmp$estimate, ci=ci)

}

Example: Beta(α, α)

x <- rbeta(100, 2.5, 2.5)
ci.mle(f = function(dta, a) {dbeta(dta, a, a)},

param = 2.5,
dta = x,
rg = c(1, 5),
do.graph = TRUE)

87

1 2 3 4 5

−
10

−
5

0
5

10
15

a

y

$mle
[1] 2.191294
##
$ci
Lower Upper
1.640830 2.741758

Example: Normal mean

Here we know the correct answer, so we can compare them:
x <- rnorm(25, 10, 1)
round(mean(x) + c(-1, 1)*qnorm(0.975)/sqrt(25), 2)

[1] 9.47 10.26
tmp <- ci.mle(f = function(dta, a) {dnorm(dta, a)},

param = 10,
dta=x)

round(tmp$ci, 2)

Lower Upper
9.47 10.26

More than one parameter

how about the multi dimensional parameter case?

88

Example: Normal, mean and standard deviation

x <- rnorm(200, 5.5, 1.8)
param <- c(5.5, 1.8)
names(param) <- c("mu", "sigma")
ci.mle(function(dta, a) {dnorm(dta, a[1], a[2])},

param=param,
dta=x)

$mle
[1] 5.457199 1.878691
##
$ci
Lower Upper
mu 5.196831 5.717568
sigma 1.694537 2.062845

Example: Beta(α, β)

x <- rbeta(200, 2.5, 3.8)
param <- c(2.5, 3.8)
names(param) <- c("alpha", "beta")
ci.mle(function(dta, a) {dbeta(dta, a[1], a[2])},

param=param,
dta=x)

$mle
[1] 2.514582 3.854701
##
$ci
Lower Upper
alpha 2.046247 2.982916
beta 3.111813 4.597589

Example: Old Faithful guyser

f <- function(dta, a)
a[1]*dnorm(dta, a[2], a[3]) + (1-a[1])*dnorm(dta, a[4], a[5])

tmp <- ci.mle(f,
param=c(0.35, 54, 5.4, 80, 5.9),
dta=faithful$Waiting.Time)

tmp

$mle
[1] 0.360886 54.614854 5.871218 80.091067 5.867735
##
$ci
Lower Upper

89

[1,] 0.2997968 0.4219752
[2,] 53.2433113 55.9863960
[3,] 4.8175843 6.9248509
[4,] 79.1023581 81.0797757
[5,] 5.0818840 6.6535865

and here is what this looks like:
bw <- diff(range(faithful$Waiting.Time))/50
ggplot(faithful, aes(x=Waiting.Time)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

stat_function(fun = f,
colour = "blue",
args=list(a=tmp$mle))

0.00

0.02

0.04

0.06

50 60 70 80 90

x

D
en

si
ty

Now this sounds good, and it is, however this is based on having a large enough sample. In
order to be sure ours is large enough one usually has to do some kind of coverage study.

Example: Hurricane Maria

How many people died due to Hurricane Maria when it struck Puerto Rico on September 20,
2017? Dr. Roberto Rivera and I tried to answer this question. In late November 2017 we got
the following information from the Department of Health: during the time period September
1-19 there where 1582 deaths. During the period September 20 to October 31 there where
4319.

90

Now this means that during the time before the hurricane roughly 1587/19 = 83.5 people died
per day whereas in the 42 days after the storm it was 4319/42 = 102.8, or 102.8− 83.5 = 19.3
more per day. This would mean a total of 42× 19.3 = 810.6 deaths caused by Maria in this
time period.
Can we find a 95% confidence interval? To start, the number of people who die on any one
day is a Binomial random variable with n=3500000 (the population of Puerto Rico) and
success(!!!) parameter π. Apparently before the storm we had π = 83.5/3500000. If we
denote the probability to die due to Maria by µ, we find the probability model

f(x, y) = dbinom(1587, 19× 3500000, π)dbinom(4319, 42× 3500000, π + µ)

Let’s see:
N <- 3500000
f <- function(a) -log(dbinom(1582, 19*N, a[1])) -

log(dbinom(4319, 42*N, a[1]+a[2]))
nlm(f, c(1582/19/3500000, (4319/42-1582/19)/3350000), hessian = TRUE)

$minimum
[1] 9.862462
##
$estimate
[1] 2.378947e-05 5.841843e-06
##
$gradient
[1] 0 0
##
$hessian
[,1] [,2]
[1,] -Inf -Inf
[2,] -Inf -Inf
##
$code
[1] 1
##
$iterations
[1] 1

Oops, that didn’t work. The problem is that the numbers for calculating the Hessian matrix
become so small that it can not be done numerically.
What to do? First we can try to use the usual Poisson approximation to the Binomial:
f <- function(a)

-log(dpois(1582, 19*a[1])) - log(dpois(4319, 42*(a[1]+a[2])))
res <- nlm(f, c(80, 20), hessian = TRUE)
res

$minimum

91

[1] 9.706561
##
$estimate
[1] 83.26316 19.57017
##
$gradient
[1] -3.840165e-12 -7.261486e-12
##
$hessian
[,1] [,2]
[1,] 0.6365083 0.4083870
[2,] 0.4083870 0.4084123
##
$code
[1] 1
##
$iterations
[1] 10

and now
round(42*(res$estimate[2] +

c(-1, 1)*qnorm(1-0.05/2)*sqrt(solve(res$hessian)[2, 2])))

[1] 607 1037

An even better solution is to do a bit of math:

log {dpois(x, λ)} =

log
{
λx

x! e
−λ
}

=

x log(λ)− log(x!)− λ

f <- function(a)
-1582*log(19*a[1]) + 19*a[1] -
4319*log(42*(a[1]+a[2])) + 42*(a[1]+a[2])

res <- nlm(f, c(20, 80), hessian = TRUE)
round(42*(res$estimate[2] +

c(-1, 1)*qnorm(1-0.05/2)*sqrt(solve(res$hessian)[2, 2])))

[1] 607 1037

By the way, in the paper we used a somewhat different solution based on the profile likelihood.
In this case the answers are quite similar.
The paper is here

Notice the term π + µ above. This indicates that during the time after the storm there were

92

http://academic.uprm.edu/wrolke/research/Maria%20Deaths%20-%20Significance.pdf

two sources of deaths, the “usual” one and Maria, and that they were additive. One can often
consider different parametrizations for such problems. Maybe we should have used (1 + ε)π,
indicating an increase in the base mortality rate after the storm. What parametrization is
best is generally a question that should be answered by a subject expert.

UPDATE: After a long legal fight the Department of Health on June 1st 2018 finally updated
the numbers:

Notice how in general the number of deaths is much higher in the winter than in the summer.
So it may be best to just use the data from February to November:
deaths.before <- 2315+2494+2392+2390+2369+2367+2321+2928-1317
deaths.after <- 1317+3040+2671
deaths.before/231 # Daily Deaths before Maria

[1] 79.04329
deaths.after/72 # Daily Deaths after Maria

[1] 97.61111
round(72*(deaths.after/72 - deaths.before/231)) # point estimate for total deaths due to Maria

[1] 1337
f <- function(a)

-deaths.before*log(231*a[1]) + 231*a[1] -
deaths.after*log(72*(a[1]+a[2])) + 72*(a[1]+a[2])

res <- nlm(f, c(20, 80), hessian = TRUE)

93

round(72*(res$estimate[2] +
c(-1, 1)*qnorm(1-0.05/2)*sqrt(solve(res$hessian)[2, 2])))

[1] 1153 1521
Months <- factor(unique(draft$Month), ordered=TRUE)
Deaths <- c(2894, 2315, 2494, 2392, 2390, 2369, 2367,

2321, 2928, 3040, 2671, 2820)
ggplot(data=data.frame(x=1:12, y=Deaths), aes(x, y)) +

geom_point()

2300

2500

2700

2900

2.5 5.0 7.5 10.0 12.5

x

y

There are other more subtle factors that one should consider. Doing so the best guess today
is that around 1800± 200 people died in Puerto Rico during and after the Hurricane.

R Libraries

There are a number of packages available for maximum likelihood fitting:
library(maxLik)
x <- c(1582, 4319)
f <- function(param) {

x[1]*log(19*param[1]) - 19*param[1] +
x[2]*log(42*(param[1]+param[2])) - 42*(param[1]+param[2])

}
maxLik(logLik=f, start=c(20, 80))

Maximum Likelihood estimation
Newton-Raphson maximisation, 21 iterations
Return code 2: successive function values within tolerance limit

94

Log-Likelihood: 41906.11 (2 free parameter(s))
Estimate(s): 83.17854 19.65237

In general these just provide wrappers for the routines mentioned above.

Hypothesis Testing

First off, hypothesis testing is a rather complicate business. We will here discuss just one
method for developing a hypothesis tests. Also, there are many issues involved in testing that
are not of a mathematical nature. Unless you have previously taken a course on Statistics I
highly recommend that you read the discussion in ESMA 3101 - Hypothesis Testing.

General Problem Statement

As before we have the following general setup: we have data x1, .., xn from some density
f(x|θ). We want to test

H0 : θ ∈ Θ0 vs Ha : θ /∈ Θ0

for some subset of the parameter space Θ0.

Example: Coin Tossing

we flip a coin 1000 times and 549 heads. Is this a fair coin?
Here the parameter of interest θ is the probability of heads in one flip of this coin. Each flip
is a Bernoulli trial, so we have

f(x|θ) = θx(1− θ)1−x, x = 0, 1

A fair coin has θ = 0.5, so Θ0 = {0.5} and we can write the hypotheses as

H0 : θ = 0.5 vs Ha : θ 6= 0.5

Of course this is a standard statistics problem, with a standard solution. Let’s also consider
two examples where the correct method is not obvious:

Example: Two Poisson means

A medical researcher carries out the following experiment: each day he gives 60 fruit flies
either a poison type A or type B. In the evening he counts how many flies are dead. He finds:
kable.nice(poisons[c(1:5, 56:60),])

95

http://academic.uprm.edu/wrolke/esma3101/hyptest.html

Dead Poison
1 9 A
2 8 A
3 11 A
4 8 A
5 6 A
56 17 B
57 12 B
58 16 B
59 16 B
60 15 B

He wants to know whether the two poisons are equally effective.
Strictly speaking the number of dead flies follows a Binomial distribution with n trials and
success probability π, but because n is large and π is small it is OK to treat them as Poisson
rv’s with rates λA and λB. Then the hypotheses are

H0 : λA = λB vs Ha : λA 6= λB

so here Θ0 = {(x, y) : 0 ≤ x = y}

Example: Beta parameters

Below is a sample from the Beta(α, β) distribution and we wish to test

H0 : α ≤ β vs Ha : α > β

so here we have Θ0 = {(x, y) : 0 ≤ x ≤ y}
beta.sample[c(1:5, 196:200)]

[1] 0.03 0.05 0.07 0.08 0.09 0.90 0.93 0.93 0.93 0.93

Critical Region of a Test

this is the set of points (x1, .., xn) that if this were the observed data we would reject the null
hypothesis.

Example: Coin Tossing

we want to test

H0 : θ = 0.5 vs Ha : θ 6= 0.5

96

the mle of π is p̂ = x/n (here 549/1000 = 0.549). Under H0 p̂ should be close to 0.5, so a
sensible critical region would be of the form

|p̂− 0.5| > c

for some number c. c is often called a critical value.

Example: Poisson means

the mle of a Poisson rate λ is the sample mean, so a test could be based on

|X̄A − X̄B| > c

Example: Beta parameters

Let α̂, β̂ be the mle’s of α and β, the a critical region could be

α̂− β̂ > c

Type I error, level of test α

How do we find a CR? This is done by first choosing α, the probability of the type I error.
This in turn is the error to reject H0 although it is true.

Example: Coin Tossing

From probability theory we know that

√
n

p̂− 0.5√
p0(1− p0)

∼ N(0, 1)

so we find

97

α = Pπ=0.5(|p̂− 0.5| > c) =
1− Pπ=0.5(|p̂− 0.5| ≤ c) =
1− Pπ=0.5(−c ≤ p̂− 0.5 ≤ c) =

1− Pπ=0.5(−
√
nc√

p0(1− p0)
≤
√
n

p̂− 0.5√
p0(1− p0)

≤
√
nc√

p0(1− p0)
) =

1− (1− 2Φ(
√
nc√

p0(1− p0)
))

Φ(
√
nc√

p0(1− p0)
) = α/2

√
nc√

p0(1− p0)
= zα/2

c = zα/2
√
p0(1− p0)/n

If we use α = 0.05 we find
cc <- qnorm(1-0.05/2)*sqrt(0.5*(1-0.5)/1000)
cc

[1] 0.03098975

and so we would reject the null if

|p̂− 0.5| > 0.031
x/n < 0.5− 0.031 or x/n > 0.5 + 0.031
x < 469 or x > 531

we got x=549, so we would indeed reject the null.

Example: Poisson means

A CR could be constructed by noting that according to the central limit theorem the sample
means have approximate normal distributions.

Example: Beta parameters

we don’t even know how to find the mle’s analytically, so this won’t work.

The p value

The idea of the p value is as follows. Suppose we repeat the exact same experiment, how
likely is it to observe the same outcome, or something even less likely, as what we just saw,
assuming the null hypothesis is true?

98

If this probability is small (say < α), then we just observed something very rare. Alternatively
our assumption that the null hypothesis is true is false, and we should reject it!

Example: Coin Tossing

we got 549 heads in 1000 flips, so the p value would be the probability to flip a fair coin 1000
times and get 549 or more heads. Actually it would be |p̂− 0.5| ≥ 0.049 because under our
alternative to few heads would also result in a rejection of the null.
Note that

|p̂−0.5| ≥ 0.049⇔ p̂−0.5 < −0.049 or p̂−0.5 > 0.049⇔ x/n < 0.451 or x/n > 0.549⇔ x < 451 or x > 549

and so we can find the p value with
sum(dbinom(c(0:450, 550:1000), 1000, 0.5))

[1] 0.001730536

0.0017 < 0.05, and so we do reject the null

Power of a Test

the power of a test is the probability to reject the null when it is false.
Under the null we know what θ is, namely θ0. Under the alternative however there are many
possibilities. So the power of a test is actually a function of the possible parameter values
under the alternative hypothesis.

Example: Coin Tossing

our test is: reject H0 if x < 469 or x > 531. So the power of the test is to do so if p is any
value:
cr <- c(0:468, 532:1000)
p <- seq(0.4, 0.6, length=100)
power <- p
for(i in 1:100) {

power[i] <- sum(dbinom(cr, 1000, p[i]))
}
ggplot(data.frame(p=p, y=power),

aes(p, y)) +
geom_line() +
labs(x="p", y="Power")

99

0.00

0.25

0.50

0.75

1.00

0.40 0.45 0.50 0.55 0.60

p

P
ow

er

so we see that if the π differs from 0.5 by more than 0.05, we will almost certainly be able to
detect this with 1000 flips.

The power of a test has many uses:
• decide whether an experiment is worth doing. If it has a low power, it might be a waste

of time.

• find what sample size would be required to have a reasonably powerful test.

• decide which of several methods is best, aka has the highest power.

Next we will discuss a general method for deriving hypothesis tests called the

Likelihood Ratio test

The likelihood ratio test statistic is defined by

Λ(x) = maxΘ0 L(θ)
maxL(θ)

where L is the likelihood function.
From the definition it is clear that 0 ≤ Λ ≤ 1.
In denominator the maximum is taken over all values of θ, so this is just like finding the
maximum likelihood estimator!
Let’s find out what we have in the three examples:

100

Example: Coin Tossing

we have previously found

L(θ) = θy(1− θ)n−y

where y was the number of successes and n the number of trials. Also, here Θ0 = {0.5}, so in
the numerator the maximum is taken over just one value. The mle is y/n so

Λ(x) = 0.5y(1− 0.5)n−y
(y/n)y(1− (y/n))n−y =(

n

2y

)y (
n

2(n− y)

)n−y

Note that under the null π = 0.5, so y ∼ n/2, so n/(2y) ∼ 1, n/(2(n− y)) ∼ 1 and so Λ ∼ 1.

Example: Poisson rates

Here we find

f(x1, .., xn, y1, .., yn;λA, λB) =∏
i

λxiA
xi!

e−λA
∏
i

λyiB
yi!
e−λB

l(λA, λB) = log f =
log λA

∑
xi − nλA + log λB

∑
yi − nλB +K

dl

dλA
=
∑
xi

λA
− n = 0

and so λ̂A = X̄. Clearly also λ̂B = Ȳ . Now under H0 λA = λB =: λ, and we find

l(λ) = log λ
∑

(xi + yi)− 2nλ

and so the value that maximizes the numerator is ˆ̂
λ =

∑
(xi+yi)
2n

Example: Beta parameters

the beta density is given by

f(x;α, β) = Γ(α + β)
Γ(α)Γ(β)x

α−1(1− x)β−1

so the log likelihood function is given by

l(α, β) = n log Γ(α+ β)− n log Γ(α)− n log Γ(β) + (α− 1)
∑

log xi + (β − 1)
∑

log(1− xi)

101

now using calculus is certainly not going to work, so we need to use a numerical method:
beta.mle <- function(x) {

log.like <- function(par) {
-sum(log(dbeta(x, par[1], par[2])))

}
mle <- optim(c(1, 1), log.like)$par
log.like <- function(par) {

-sum(log(dbeta(x, par, par)))
}
mle.null <- optim(1, log.like)$par
c(mle, mle.null)

}
beta.mle(beta.sample)

[1] 1.974891 1.967810 1.971317

Wilks’ Theorem

The usefulness of the likelihood ratio test statistic comes from the following famous theorem
due to Wilks (1938):
Under some regularity conditions we find

−2 log Λ(X) ∼ χ2(p)

where p is the difference between the number of free parameters in the model and the number
of free parameters under the null hypothesis.
Therefore we reject the null at the α level of significance if

−2 log Λ(X) > qchisq(1− α, p)

Notice that it usually more convenient to calculate

− 2 log Λ(X) =

− 2 log

 l(
ˆ̂
θ)

l(θ̂)

 =

2
{

log l(θ̂)− log l(ˆ̂
θ)
}

We said before that 0 < Λ < 1, so −2 log Λ ≥ 0. Also under H0 Λ ∼ 1, so −2 log Λ ∼ 0

102

Example: Coin Tossing

− 2 log Λ(x) =

(−2) log

(
n

2y

)y (
n

2(n− y)

)n−y =

(−2)
{
y log n

2y + (n− y) log n

2(n− y)

}

n <- 1000
y <- 549
lrt <- (-2)*(y*log(n/2/y)+(n-y)*log(n/2/(n-y)))
lrt

[1] 9.619432
qchisq(1-0.05, 1)

[1] 3.841459

and so we reject the null hypothesis, this does not seem to be a fair coin.
We can also easily find the p value of the test:
1-pchisq(lrt, 1)

[1] 0.001925293

Example: Poisson rates

x <- poisons$Dead[poisons$Poison=="A"]
y <- poisons$Dead[poisons$Poison=="B"]
lrt <- 2*(sum(log(dpois(x, mean(x)))) +

sum(log(dpois(y, mean(y)))) -
sum(log(dpois(c(x, y), mean(c(x, y)))))

)
lrt

[1] 12.03145
1-pchisq(lrt, 1)

[1] 0.0005231045

Example: Beta parameters

p <- beta.mle(beta.sample)
lrt <- 2*(

sum(log(dbeta(beta.sample, p[1], p[2]))) -
sum(log(dbeta(beta.sample, p[3], p[3])))

103

)
lrt

[1] 0.003293289
1-pchisq(lrt, 1)

[1] 0.9542368

and here we have weak evidence that the null is false.

Bayesian Statistics

Our previous discussions focused on statistical methods that belong to the Frequentist School.
There is however an entirely different approach to Statistics called Bayesian.

Prior and Posterior Distribution

Say we have a sample x = (x1, .., xn), iid from some probability density f(.; θ), and we want
to do some inference on the parameter θ.
A Bayesian analysis begins by specifying a prior distribution π(θ). This prior is supposed to
encode our knowledge of the parameter before an experiment is done. Then one uses Bayes’
formula to calculate the posterior distribution:

f(θ;x) = f(x; θ)π(θ)/m(x)

where m(x) is the marginal distribution

m(x) =
∫
..
∫
f(x|θ)π(θ)dθ

Example: Binomial proportion, discrete prior

Let’s say that we have two coins. One is a fair coin with π = 0.5 and the other is a loaded
coin with π = 0.6. We randomly choose a coin and flip it 100 times. We get 58 heads. What
can we say?
Now we have X ∼ Bin(100, π), or

Pπ(X = 58) =
(

100
58

)
π58(1− π)100−58 = Kπ58(1− π)42

the marginal is found using the law of total probability

104

m(58) =
Pπ=0.5(X = 58)P (π = 0.5) + Pπ=0.6(X = 58)P (π = 0.6) =
1
2
{
K0.558(1− 0.5)42 +K0.658(1− 0.6)42

}
=

K/2
{

0.5100 + 0.6580.442
}

and the posterior distribution is given by

PX=58(π = 0.5) =
Pπ=0.5(X = 58)P (π = 0.5)

m(58) =

K0.558(1− 0.5)421/2
K/2 {0.5100 + 0.6580.442}

=

0.5100

0.5100 + 0.6580.442

and a similar calculation shows

Px=58(π = 0.6) =
0.6580.442

0.5100 + 0.6580.442

or
round(c(0.5^100, 0.6^58*0.4^42)/(0.5^100+ 0.6^58*0.4^42), 4)

[1] 0.231 0.769

and so the probability that this as the fair coin is 0.231.

Example: Binomial proportion, Uniform prior

Let’s assume we have no idea what π might be, then a uniform distribution might make good
sense as a prior:

X ∼ Bin(n, π), π ∼ U [0, 1]

now we find

m(x) =
∫ ∞
−∞

f(x|µ)π(µ)dµ =∫ 1

0

(
n

x

)
px(1− p)n−x1dp =

K1

∫ 1

0
p(x+1)−1(1− p)(n−x+1)−1dp = K2

105

because this is (up to a constant) a Beta density which will integrate to 1. So

f(θ;x) = f(x; θ)π(θ)/m(x) =
K3π

(x+1)−1(1− π)(n−x+1)−1

and we find

π|X = x ∼ Beta(x+ 1, n− x+ 1)

n <- 10
p <- runif(1e5)
x <- rbinom(1e5, n, p)
x0 <- 3
z <- p[x==x0]
hist(z, 50, freq=FALSE)
curve(dbeta(x, x0+1, n-x0+1), -2, 2, add=T)

Histogram of z

z

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Example: Normal mean, normal prior

X ∼ N(µ, σ) independent, σ known, µ ∼ N(a, b).
Now

m(x) =
∫ ∞
−∞

f(x|µ)π(µ)dµ =∫ ∞
−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2 1√
2πb2

e−
1

2b2
(µ−a)2

dµ

Note

106

(x− µ)2/σ2 + (µ− a)2/b2 =
x2/σ2 − 2xµ/σ2 + µ2/σ2 + µ2/b2 − 2aµ/b2 + a2/b2

(1/σ2 + 1/b2)µ2 − 2(x/σ2 + a/b2)µ+K1 =

(1/σ2 + 1/b2)
(
µ2 − 2x/σ

2 + a/b2

1/σ2 + 1/b2 µ

)
+K2 =

(µ− d)2

c2 +K3

where d = x/σ2+a/b2

1/σ2+1/b2 and c = 1/
√

1/σ2 + 1/b2

therefore

m(x) = K4

∫ ∞
−∞

e−
1

2c2 (µ−d)2
dµ = K5

because the integrand is a normal density with mean d and standard deviation c, so it will
integrate to 1 as long as the constants are correct.

f(θ|x) = f(x|θ)π(θ)/m(x) =
K6e

− 1
2c2 (µ−d)2

Notice that we don’t need to worry about what exactly K6 is, because the posterior will be a
proper probability density, so K6 will be what it has to be!
So we found

µ|X = x ∼ N

(
x/σ2 + a/b2

1/σ2 + 1/b2 , 1/
√

1/σ2 + 1/b2

)
Let’s so a little simulation to see whether we got this right:
a <- 0.2 # just as an example
b <- 2.3
sigma <- 0.5
mu <- rnorm(1e5, a, b)
x <- rnorm(1e5, mu, sigma)
x0 <- 0.1
cc <- 1/sqrt(1/sigma^2 + 1/b^2)
d <- (x0/sigma^2+a/b^2)/(1/sigma^2 + 1/b^2)
z <- mu[x>x0-0.05 & x<x0+0.05]
hist(z, 50, freq=FALSE)
curve(dnorm(x, d, cc), -2, 2, add=TRUE)

107

Histogram of z

z

D
en

si
ty

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

x0 <- (-1.1)
d <- (x0/sigma^2+a/b^2)/(1/sigma^2 + 1/b^2)
z <- mu[x>x0-0.05 & x<x0+0.05]
hist(z, 50, freq=FALSE)
curve(dnorm(x,d, cc), -3, 2, add=TRUE)

Histogram of z

z

D
en

si
ty

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
2

0.
4

0.
6

0.
8

Note that one thing a frequentist and a Bayesian analysis have in common is the likelihood
function.

108

Bayesian Inference

In a Bayesian analysis any inference is done from the posterior distribution. For example,
point estimates can be found as the mean, median, mode or any other measure of central
tendency.
Interval estimates (now called credible intervals) can be found using quantiles of the posterior
distribution.

Example: Binomial proportion, uniform prior

we found the posterior distribution to be

π|X = x ∼ Beta(x+ 1, n− x+ 1)
From probability theory we know that if Y ∼ Beta(α, β) we have EY = α

α+β , so here we find
π̂ = y+1

n+2 . Recall that the frequentist solution (the mle) was π̂ = y
n
.

Recall the survey of 567 people, 235 said they prefer Coke over Pepsi. A 95% credible interval
for the true proportion is given by
ci <- qbeta(c(0.025, 0.975), 235+1, 567-235+1)
round(ci, 3)

[1] 0.375 0.455

The frequentist confidence interval was
phat <- 235/567
round(phat + c(-1, 1)*qnorm(0.975)*sqrt(phat*(1-phat)/567), 3)

[1] 0.374 0.455

and we see the two are quite close. This tends to be true as long as there is enough data.

Example: Normal mean, normal prior

say the following is a sample x1, .., xn from a normal with standard deviation σ = 2.3:
dta.norm

[1] 2.2 2.5 2.6 2.7 3.9 4.1 4.5 4.5 4.6 4.8 5.1 5.1 5.2 6.7 6.9 7.6 7.6
[18] 7.6 7.9 8.5

if we decide to base our analysis on the sample mean we have X̄ ∼ N(µ, σ/
√
n). Now if we

use the posterior mean we find

E[µ|X = x] = x/σ2 + a/b2

1/σ2 + 1/b2

109

now we need to decide what a and b to use. If we have some prior information we can use
that. Say we expect a priori that µ = 5, and of course we know σ = 2.3, then we could use
a = 5 and b = 3:
d <- (mean(dta.norm)/(2.3^2/20) + 5/3^2)/(1/(2.3^2/20) + 1/3^2)
round(d, 2)

[1] 5.22

A 95% credible interval is:
cc <- 1/sqrt(1/(2.3^2/20) + 1/3^2)
round(qnorm(c(0.025, 0.975), d, cc), 2)

[1] 4.23 6.22

the standard frequentist solution would be
round(mean(dta.norm)+c(-1, 1)*qt(0.975, 12)*2.3/sqrt(20), 2)

[1] 4.11 6.35

Example: Normal mean, Gamma prior

let’s say that µ is a physical quantity, like the mean amount of money paid on sales. In that
case it makes more sense to use a prior that forces µ to be non-negative. For example we
could use µ ∼ Gamma(α, β). However, now we need to find

m(x) =
∫ ∞
−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2 1
Γ(α)βαµ

α−1e−µ/βdµ

and this integral does not exist. We will have to use numerical methods instead. Let’s again
find a point estimate based on the posterior mean. As prior we will use µ ∼ Gamma(5, 1)
fmu <- function(mu)

dnorm(mean(dta.norm), mu, 2.3/sqrt(20))*
dgamma(mu, 5, 1)

mx <- integrate(fmu, lower=0, upper=Inf)$value
posterior.density <- function(mu) fmu(mu)/mx
posterior.mean <-

integrate(
function(mu) {mu*posterior.density(mu)},
lower = 0,
upper = Inf)$value

round(posterior.mean, 2)

[1] 5.17

how about a 95% credible interval? This we need to solve the equations

F (µ) = 0.025, F (µ) = 0.975

110

where F is the posterior distribution function. Again we need to work numerically. We can
use a simple bisection algorithm:
pF <- function(t) integrate(posterior.density,

lower=3, upper=t)$value
cc <- (1-0.95)/2
l <- 3
h <- posterior.mean
repeat {

m <- (l+h)/2
if(pF(m)<cc) l <- m
else h <- m
if(h-l<m/1000) break

}
left.endpoint <- m
h <- 8
l <- posterior.mean
repeat {

m <- (l+h)/2
if(pF(m)<1-cc) l <- m
else h <- m
if(h-l<m/1000) break

}
right.endpoint <- m
round(c(left.endpoint, right.endpoint), 2)

[1] 4.19 6.16

Let’s generalize all this and write a routine that will find a point estimate and a (1− α)100%
credible interval for any problem with one parameter:
bayes.credint <- function(x, df, prior, conf.level=0.95, acc=0.001,

lower, upper, Show=TRUE) {
if(any(c(missing(lower), missing(upper))))

cat("Need to give lower and upper boundary\n")
posterior.density <- function(par, x) {

y <- 0*seq_along(par)
for(i in seq_along((par)))

y[i] <- df(x, par[i])*prior(par[i])/mx
y

}
mx <- 1
mx <- integrate(posterior.density,

lower=lower, upper=upper, x=x)$value
if(Show) {

par <- seq(lower, upper, length=250)
y <- posterior.density(par, x)
plot(par, y, type="l")

111

}
f.expectation <- function(par, x) par*posterior.density(par, x)
parhat <- integrate(f.expectation,

lower=lower, upper=upper, x=x)$value
if(Show) abline(v=parhat)
pF <- function(t, x) integrate(posterior.density,

lower=lower, upper=t, x=x)$value
cc <- (1-conf.level)/2
l <- lower
h <- parhat
repeat {

m <- (l+h)/2
if(pF(m, x)<cc) l <- m
else h <- m
if(h-l<acc*m) break

}
left.endpoint <- m
h <- upper
l <- parhat
repeat {

m <- (l+h)/2
if(pF(m, x)<1-cc) l <- m
else h <- m
if(h-l<acc*m) break

}
right.endpoint <- m
if(Show) abline(v=c(left.endpoint, right.endpoint))
c(parhat, left.endpoint, right.endpoint)

}

Example: Normal mean, normal prior

df <- function(x, par) dnorm(x, par, 2.3/sqrt(20))
prior <- function(par) dnorm(par, 5, 2.3)
round(bayes.credint(mean(dta.norm), df=df, prior=prior,

lower=3, upper=8, Show=T), 2)

112

3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

par

y

[1] 5.22 4.24 6.20

Example: Normal mean, Gamma prior

df <- function(x, par) dnorm(x, par, 2.3/sqrt(20))
prior <- function(par) dgamma(par, 5, 1)
round(bayes.credint(mean(dta.norm), df=df, prior=prior,

lower=4, upper=7, Show=TRUE), 2)

4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.
0

0.
2

0.
4

0.
6

0.
8

par

y

[1] 5.19 4.26 6.16

113

Example: Binomial proportion, Lincoln’s hat prior

Say we pick a coin from our pocket. We flip it 1000 time and get 578 heads. We want to find
a 95% credible interval for the proportion of heads.
What would be good prior here? We might reason as follows: on the one had we are quite
sure that indeed it is an “almost” fair coin. On the other hand if it is not a fair coin we really
don’t know how unfair it might be. We can encode this in the Lincoln’s hat prior:
prior <- function(x) dunif(x) + dunif(x, 0.45, 0.55)
curve(prior, 0, 1, ylim=c(0, 11))

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

x

pr
io

r(
x)

df <- function(x, par) dbinom(x, 1000, par)
round(bayes.credint(x=578, df=df, prior=prior, acc=0.0001,

lower=0.5, upper=0.65, Show=TRUE), 3)

114

0.50 0.55 0.60 0.65

0
10

20
30

40

par

y

[1] 0.567 0.535 0.607

So, have we just solved the Bayesian estimation problem for one parameter?

Example: Beta density, Gamma prior

consider the following sample:
dta.beta1 <- round(rbeta(100, 2, 2), 3)
hist(dta.beta1, 50)

Histogram of dta.beta1

dta.beta1

F
re

qu
en

cy

0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6

115

Let’s say we know that this is from a Beta(a, a) distribution and we want to estimate a. As
a prior we want to use Gamma(2, 1)
Now what is df? Because this is an independent sample we find

f(x, a) =
n∏
i=1

dbeta(xi, a, a)

so
df <- function(x, par) prod(dbeta(x, par, par))
prior <- function(par) dgamma(par, 2, 1)
round(bayes.credint(dta.beta1, df=df, prior=prior,

lower=1.5, upper=2.5, Show=TRUE), 2)

1.6 1.8 2.0 2.2 2.4

0.
0

0.
5

1.
0

1.
5

2.
0

par

y

[1] 1.81 1.52 2.23

so far, so good. But now
dta.beta2 <- round(rbeta(10000, 2, 2), 3)
bayes.credint(dta.beta2, df=df, prior=prior,

lower=1.5, upper=2.5, Show=FALSE)

Error in integrate(posterior.density, lower = lower, upper = upper, x = x): non-finite function value

Why does this not work? The problem is that the values is ∏n
i=1 dbeta(xi, a, a) get so small

that R can’t handle them anymore!
Occasionally one can avoid this problem by immediately choosing a statistic T(x), aka a
function of the data, so that T(X) has a distribution that avoids the product. That of course
is just what we did above by going to X̄ in the case of the normal! In fact, it is also what we
did in the case of the Binomial, because we replace the actual data (a sequence of Bernoulli

116

trials) with their sum. It is however not clear what one could use in the case of the Beta
distribution.

Can we generalize this to more than one parameter? In principle yes, but in practice no, at
least not if the number of parameters is much more than 3 or 4. The main problem is the
calculation of the marginal m(x), because numerical integration in higher-dimensional spaces
is very difficult. In that case a completely different approach is used, namely sampling from
the posterior distribution using so called MCMC (Markov Chain Monte Carlo) algorithms.
Another difficulty arises in the choice of priors. There are a number of different approaches
known for low-dimensional problems, however these can fail badly in higher dimensions.

There are a number of R packages that allow Bayesian analysis, such as JAGS, OpenBUGS,
WinBUGS and Stan. However, we don’t have enough time to discuss these.

Simulation

Basic Idea

We already used simulation in a couple of situations. In this section we will take a closer
look.

Example: Binomial proportion

Let’s start with a simple example: say we flip a coin 100 times and get 62 heads. Is this a
fair coin?
Of course we discussed this problem before and there is a standard solution: we want to test

H0 : π = 0.5 vs. Ha : π 6= 0.5
the test is done with
binom.test(62, 100)

##
Exact binomial test
##
data: 62 and 100
number of successes = 62, number of trials = 100, p-value =
0.02098
alternative hypothesis: true probability of success is not equal to 0.5
95 percent confidence interval:
0.5174607 0.7152325
sample estimates:
probability of success

117

0.62

and with a p value of 0.021 we would reject the null hypothesis at the 5% level.
But let’s assume for the moment we do not know this solution. What could we do?
we can simulate flipping a fair coin and counting the number of heads with
smpl <- sample(c("Heads", "Tails"), size=100, replace=TRUE)
x <- sum(smpl=="Heads")
x

[1] 45

Now we can do this many times:
B <- 1e4
x <- rep(0, B)
for(i in 1:B) {

smpl <- sample(c("Heads", "Tails"),
size=100, replace=TRUE)

x[i] <- sum(smpl=="Heads")
}
table(x)

x
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
3 5 10 17 29 39 80 101 166 231 319 410 509 548 669 720 802 797
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 68 69
797 735 665 535 468 407 310 211 149 97 67 49 27 11 6 7 2 2

and we can find the p-value with
(sum(x<=38)+sum(x>=62))/B

[1] 0.0207

So here we did the test via simulation, without any theory!

Simulation Error

Every time we run a simulation, the computer generates different data and so the answer
comes out a bit different as well. But how different?
At least in one case there is a simple way to estimate this simulation error. In the example
above, each simulation run is essentially a Bernoulli trial (x ≤ 38, x ≥ 62 or not). An $95%
confidence interval for the true proportion is given by

π̂ ± 2
√
π̂(1− π̂)/n

Example: Binomial proportion, continued

118

0.02 + c(-2, 2)*sqrt(0.02*0.98/1e4)

[1] 0.0172 0.0228

so the true p value is between 0.017 and 0.023, in either case < 0.05 and we would reject the
null.

Example Exponential rate

the sample below is assumed to come from an exponential distribution rate λ. We wish to
test

H0 : λ = 1 vs. Ha : λ > 1

exp.data

[1] 0.02 0.02 0.04 0.04 0.04 0.06 0.11 0.12 0.12 0.13 0.13 0.15 0.17 0.18
[15] 0.19 0.21 0.30 0.30 0.38 0.39 0.41 0.41 0.49 0.51 0.51 0.54 0.59 0.60
[29] 0.61 0.62 0.63 0.67 0.68 0.75 0.78 0.79 0.80 0.83 0.91 1.09 1.44 1.64
[43] 1.68 1.88 2.05 2.06 2.20 3.02 3.11 4.70

here is a solution via simulation. We know from theory that the mle of λ is 1/X̂, so
B <- 1e4
sim.data <- rep(0, B)
for(i in 1:B) {

sim.data[i] <-
1/mean(rexp(length(exp.data), 1))

}
sum(sim.data>1/mean(exp.data))/B

[1] 0.0733

Example Normal mean

below we have data from a normal distribution and we want to test

H0 : µ = 10 vs. Ha : µ > 10

norm.data

[1] 8.24 8.87 8.93 9.05 9.28 9.28 9.49 9.69 9.74 9.82 9.85
[12] 10.15 10.45 10.47 10.65 11.15 11.31 11.44 11.87 12.40

Again we want to use simulation and we can use the sample mean as our test statistic,
but here we have an additional problem: we will of course generate data from a normal
distribution with mean 10, but what should we use as the standard deviation? It is not
defined by the null hypothesis.

119

There is an obvious answer: use the sample standard deviation. It is not clear however if
that is indeed legitimate.
B <- 1e4
n <- length(norm.data)
p <- sd(norm.data)
sim.data <- rep(0, B)
for(i in 1:B) {

sim.data[i] <-
mean(rnorm(n, 10, p))

}
sum(sim.data>mean(norm.data))/B

[1] 0.3291

how does this compare to the standard answer?
t.test(norm.data, mu=10, alternative = "greater")$p.value

[1] 0.3348097

pretty close, certainly within simulation error.
sometimes one varies the standard deviation a bit in the simulation step. R does not have a
method for finding confidence intervals for variances, but here is how to find them:
v <- var(norm.data)
lower <- v*19/qchisq(0.05/2, 19,

lower.tail = FALSE)
upper <- v*19/qchisq(1-0.05/2, 19,

lower.tail = FALSE)
sqrt(c(lower = lower, upper = upper))

lower upper
0.835776 1.605162

and so we can run the simulation also this way:
B <- 1e4
n <- length(norm.data)
sim.data <- rep(0, B)
for(i in 1:B) {

sim.data[i] <-
mean(rnorm(n, 10, runif(1, 0.836, 1.605)))

}
sum(sim.data>mean(norm.data))/B

[1] 0.3475

In essence this has a bit of a Bayesian flavor, we just introduced a prior for σ!

120

Permutation Tests

There is a class of methods essentially built on simulation. Here is an

Example: Equal means

below are two data sets. Do they came from the same type of distribution but with different
means?
So there is a distribution F , and we can assume without loss of generality that E[XF = 0].
There are µ1 and µ2 such that

X1 − µ1, .., Xn − µ1 ∼ F

Y1 − µ2, .., Ym − µ2 ∼ F

and we have the hypotheses

H0 : µ1 = µ2 vs. Ha : µ1 6= µ2

norm1.data

[1] 16.3 16.5 16.6 17.3 17.6 17.9 19.5 19.5 19.9 20.2 20.6 20.9 21.1 22.1
[15] 22.4 22.8 22.8 23.3 24.1 25.7
norm2.data

[1] 15.2 16.2 17.1 17.2 17.4 17.7 18.4 19.0 19.1 19.2 19.2 19.3 19.8 20.7
[15] 20.7 20.9 21.0 21.1 21.5 21.5 21.8 21.9 22.7 22.9 23.2 24.8 24.9 25.1
[29] 25.3 25.8
df <- data.frame(

x=c(norm1.data, norm2.data),
y=rep(c("1", "2"), c(20, 30)))

ggplot(df, aes(y, x)) +
geom_boxplot()

121

15

18

21

24

1 2

y

x

a reasonable test statistics would be

T = X̄ − Ȳ√
[(n− 1)s2

X + (m− 1)s2
Y]/(n+m− 2)

because under the null E[X̄ − Ȳ] = 0 and the denominator is the usual estimator of the
standard deviation (called the pooled standard deviation).
x <- norm1.data
y <- norm2.data
T0 <- (mean(x)-mean(y))/sqrt((19*var(x)+29*var(y))/49)
T0

[1] -0.1198418

Now the idea is as follows: under the null hypothesis all the X’s and Y’s are an independent
sample from the same distribution. In this case the order is of no consequence, any reordering
should give an equally valid answer:
z <- sample(c(norm1.data, norm2.data)) #permutation
x <- z[1:20]
y <- z[21:50]
(mean(x)-mean(y))/sqrt((19*var(x)+29*var(y))/49)

[1] -0.3628009

This is a perfectly legitimate value of T IF the null hypothesis is true.
Let’s repeat this many times. In fact let’s write a function that does it:

122

perm.test <- function(x, y, B = 1e4, Show=FALSE) {
n <- length(x)
m <- length(y)
T0 <- (mean(x) - mean(y))/

sqrt(((n-1)*var(x)+(m-1)*var(y))/(n+m-2))
xy <- c(x, y)
T <- rep(0, B)
for(i in 1:B) {

z <- sample(xy)
x <- z[1:n]
y <- z[(n+1):(n+m)]
T[i] <- (mean(x) - mean(y))/

sqrt(((n-1)*var(x)+(m-1)*var(y))/(n+m-2))
}
if(Show) {

hist(T, 100, main="")
abline(v=T0, lwd=2, col="blue")

}
sum(abs(T)>abs(T0))/B

}
perm.test(norm1.data, norm2.data, Show=TRUE)

T

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
50

10
0

20
0

30
0

[1] 0.6822

and we see that the value of T for the real data is in no way unusual.
Let’s do this again for some data where the means are indeed different:

123

perm.test(x=rnorm(20, 10, 5),
y=rnorm(30, 15, 5),
Show = TRUE)

T

F
re

qu
en

cy

−1.0 −0.5 0.0 0.5 1.0

0
50

10
0

15
0

20
0

25
0

[1] 0.0023

In our case we also know that the F is a normal distribution. In this case there is of course a
classic solution, the so-called two-sample-t test:
t.test(norm1.data, norm2.data)$p.value

[1] 0.6807857

and notice that its p value is almost the same as the permutations tests!
How good a test is this? Let’s find out:
pwr.sim <- function(mu2, n=20, m=30, B = 2500) {

pvals <- matrix(0, B, 2)
colnames(pvals) <- c("Permutation", "t test")
for(i in 1:B) {

x <- rnorm(n)
y <- rnorm(m, mu2)
pvals[i, 1] <- perm.test(x, y, B=2500)
pvals[i, 2] <- t.test(x, y)$p.value

}
pvals

}

Let’s do a whole power curve! This takes a while to run, though, so the result is saved as
pwr.tbl

124

df <- data.frame(x=rep(pwr.tbl[, 1], 2),
y=c(pwr.tbl[, 2], pwr.tbl[, 3]),
Method=rep(c("Permutation", "t test"), each=100))

ggplot(data=df, aes(x, y, color=Method)) +
geom_line()

0.00

0.25

0.50

0.75

1.00

−1.0 −0.5 0.0 0.5 1.0

x

y

Method

Permutation

t test

Can’t tell the difference? In fact the two methods have just about the same power, even so
one depends strongly on the normal assumption, whereas the other one works without it.
This test was first discussed by Fisher in the 1930’s, but until fairly recently it was not doable.
Nowadays it should be considered the go-to test for this kind of situation.

The Bootstrap

In the previous section we used simulation from the true distribution to derive statistical
methods. But what do we do if we don’t know the distribution?
The idea of the Bootstrap is rather strange: say we have some data from some distribution and
we want to use it to estimate some parameter θ. We have a formula (a statistic) T (x1, .., xn).
What is the standard error in this estimate? That is, what is sd[T (X1, .., Xn)]?
Sometimes we can do this mathematically: Let’s assume that the Xi are iid (independent
and identically distributed) and we are interested in the mean. Let’s write X = (X1, .., Xn),
then

125

θ = E[X1]

TX = 1
n

n∑
i=1

Xi

E[TX] = E[1
n

n∑
i=1

Xi] = 1
n

n∑
i=1

E[Xi] = 1
n
nθ = θ

V ar[TX)] = E

(1
n

n∑
i=1

Xi − θ
)2
 =

1
n2E

(n∑
i=1

Xi − nθ
)2
 =

1
n2E

(n∑
i=1

(Xi − θ)
)2
 =

1
n2E

 n∑
i,j=1

(Xi − θ) (Xj − θ)
 =

1
n2

 n∑
i=1

E(Xi − θ)2 +
n∑

i,j=1,i 6=j
E(Xi − θ)(Xj − θ)

 =

1
n2

[
nE(X1 − θ)2 + 0

]
= 1
n
V ar[X1]

because

E(Xi − θ)2 = E(X1 − θ)2

(identically distributed) and

E(Xi − θ)(Xj − θ) = E(Xi − θ)E(Xj − θ) = 0
because of independence.
But let’s say that instead of the mean we want to estimate θ with the median. Now what
is the sd[median(X1, .., Xn)]? This can still be done analytically, but is already much more
complicated.
It would of course be easy if we could simulate from the distribution:
sim.theta <- function(B=1e4, n, mu=0, sig=1) {

x <- matrix(rnorm(B*n, mu, sig), B, n)
xbar <- apply(x, 1, mean)
med <- apply(x, 1, median)
round(c(sig/sqrt(n), sd(xbar), sd(med)), 3)

}
sim.theta(n=25)

[1] 0.200 0.198 0.247

126

But what do we do if didn’t know that the data comes from the normal distribution? Then
we can’t simulate from F . We can, however simulate from the next best thing, namely the
empirical distribution function edf F̂ . It is defined as:

F̂ (x) = 1
n

n∑
i=1

I(−∞,x](Xi) = #Xi ≤ x

n

Here are two examples:
x <- rnorm(25)
plot(ecdf(x))
curve(pnorm(x), -3, 3, add=T)

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(x)

x

F
n(

x)

x <- rnorm(250)
plot(ecdf(x))
curve(pnorm(x), -3, 3, add = TRUE)

127

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(x)

x

F
n(

x)

There is a famous theorem in probability theory (Glivenko-Cantelli) that says that the
empirical distribution function converges to the true distribution function uniformly.
How does one simulate from F̂? It means to resample from the data, that is randomly select
numbers from x with replacement such that each observation has an equal chance of getting
picked:
x <- sort(round(rnorm(10, 10, 3), 1))
x

[1] 1.2 9.7 10.3 11.9 12.0 13.4 13.5 13.9 14.0 14.2
sort(sample(x, size=10, replace=TRUE))

[1] 1.2 1.2 9.7 10.3 11.9 12.0 12.0 13.5 14.0 14.2
sort(sample(x, size=10, replace=TRUE))

[1] 1.2 1.2 9.7 9.7 11.9 11.9 12.0 13.4 14.0 14.2
sort(sample(x, size=10, replace=TRUE))

[1] 10.3 10.3 13.4 13.4 13.4 13.9 14.0 14.2 14.2 14.2

Now the Bootstrap estimate of standard error is simply the sample standard deviation of the
estimates of B such bootstrap samples:
x <- rnorm(250)
B <- 1000
z <- matrix(0, B, 2)
for(i in 1:B) {

x.boot <- sample(x, size=length(x), replace=TRUE)
z[i, 1]<- mean(x.boot)

128

z[i, 2]<- median(x.boot)
}
round(c(1/sqrt(length(x)), apply(z, 2, sd)), 3)

[1] 0.063 0.063 0.077

There is also a package that we can use:
library(bootstrap)
sd(bootstrap(x, 1000, mean)$thetastar)

[1] 0.06633883
sd(bootstrap(x, 1000, median)$thetastar)

[1] 0.08329715

Example: Skewness

the skewness of a distribution is a measure of it’s lack of symmetry. It is defined by

γ1 = E

[(
X − µ
σ

)3]

and for a symmetric distribution we should have γ1 = 0.
a standard estimator of γ1 is

γ̂1 =
1
n

∑(xi − x)3

[1
n−1

∑(xi − x)2]3/2 =
1
n

∑(xi − x)3

[sd(x)]3

What is the standard error in this estimate? Doing this analytically would be quite an
exercise, but:
curve(dnorm(x, 5, 2), 0, 15, col="blue", ylab="")
legend(8, 0.2, c("N(5, 2)", "Gamma(2.5, 1/2)"),

lty=c(1, 1), col=c("blue", "red"))
curve(dgamma(x, 2.5, 1/2), 0, 15, add=TRUE, col="red")

129

0 5 10 15

0.
00

0.
05

0.
10

0.
15

0.
20

x

N(5, 2)
Gamma(2.5, 1/2)

T.fun <- function(x) mean((x-mean(x))^3)/sd(x)^3
x <- rnorm(250, 5, 2)
x.boot <- bootstrap(x, 500, T.fun)$thetastar
round(c(mean(x.boot), sd(x.boot)), 3)

[1] -0.042 0.134
x <- rgamma(250, 2.5, 1/2)
x.boot <- bootstrap(x, 500, T.fun)$thetastar
round(c(mean(x.boot), sd(x.boot)), 3)

[1] 1.320 0.253

Bootstrap Confidence Intervals

There are two standard technics for using the Bootstrap to find confidence intervals:
• Normal Theory Intervals

Let’s continue the discussion of the skewness, and put a 95% confidence interval on the
estimates:
x.normal <- rnorm(250, 5, 2)
T.fun <- function(x) mean((x-mean(x))^3)/sd(x)^3
thetastar.normal <- bootstrap(x.normal, 2000, T.fun)$thetastar
df <- data.frame(x = thetastar.normal)
bw <- diff(range(thetastar.normal))/50
ggplot(df, aes(x)) +

geom_histogram(color = "black", fill = "white", binwidth = bw) +
labs(x="x", y="Counts")

130

0

30

60

90

120

−0.4 −0.2 0.0 0.2

x

C
ou

nt
s

x.gamma <- rgamma(250, 2.5, 1/2)
thetastar.gamma <- bootstrap(x.gamma, 2000, T.fun)$thetastar
df <- data.frame(x = thetastar.gamma)
bw <- diff(range(thetastar.gamma))/50
ggplot(df, aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x="x", y="Counts")

0

50

100

0.6 0.9 1.2

x

C
ou

nt
s

131

Note that I increased the number of Bootstrap samples to 2000, which is standard when
calculating confidence intervals.
We can see that the bootstrap estimates are reasonably normally distributed, so we can find
the confidence interval with
round(T.fun(x.normal) +

c(-1, 1)*qnorm(0.975)*sd(thetastar.normal), 2)

[1] -0.38 0.10
round(T.fun(x.gamma) +

c(-1, 1)*qnorm(0.975)*sd(thetastar.gamma), 2)

[1] 0.74 1.23

so in the normal case 0 is in the interval, indicating that this data set might well come from
a symmetric distribution, whereas in the gamma case this is ruled out.
Notice that there is no /

√
n, because sd(thetastar) is already the standard deviation of the

estimator, not of an individual observation.
• Percentile Intervals

An alternative way to find confidence intervals is by estimating the population quantiles of
the bootstrap sample with the sample quantiles:
2000*c(0.025, 0.975)

[1] 50 1950
round(sort(thetastar.normal)[2000*c(0.025, 0.975)], 2)

[1] -0.40 0.08
round(sort(thetastar.gamma)[2000*c(0.025, 0.975)], 2)

[1] 0.72 1.22

in our examples the two methods yield similar intervals.
• More Advanced Intervals

There are a number of ways to improve the performance of bootstrap based confidence
intervals. One of the more popular ones is called nonparametric bias-corrected and accelerated
(BCa) intervals. The package bootstrap has the routine bcanon. The intervals are the found
via the percentile method but the percentiles are found with

α1 = Φ
(
ẑ0 + ẑ0 + zα

1− â(ẑ0 + zα)

)

α2 = Φ
(
ẑ0 + ẑ0 + z1−α

1− â(ẑ0 + z1−α)

)
here

132

• Φ is the standard normal cdf

• α is the desired confidence level

• ẑ0 is a bias-correction factor

• â is called the acceleration
bcanon(x.normal, 2000, T.fun, alpha=c(0.025, 0.975))$conf

alpha bca point
[1,] 0.025 -0.39388296
[2,] 0.975 0.07641379
bcanon(x.gamma, 2000, T.fun, alpha=c(0.025, 0.975))$conf

alpha bca point
[1,] 0.025 0.7479726
[2,] 0.975 1.2434498

Basic Inferences

In this section we will discuss some of the standard (frequentist) methods in Statistics.

Inference for a Population Mean

The basic R command for inference for a population mean is t.test.
• Confidence Intervals

Example: Mothers Cocain Use and Babies Health

Chasnoff and others obtained several measures and responses for newborn babies whose
mothers were classified by degree of cocaine use.
The study was conducted in the Perinatal Center for Chemical Dependence at Northwestern
University Medical School. The measurement given here is the length of the newborn.
Source: Cocaine abuse during pregnancy: correlation between prenatal care and perinatal
outcome
Authors: SN MacGregor, LG Keith, JA Bachicha, and IJ Chasnoff
Obstetrics and Gynecology 1989;74:882-885
Let’s ignore the drug status for the moment and find a 90% confidence interval for the length
of a newborn baby
round(as.numeric(t.test(mothers$Length)$conf.int), 2)

[1] 48.86 50.24

133

The assumptions for this method are:
• data comes from a normal distribution

• or data set is large enough
Let’s check:
df <- data.frame(x=mothers$Length)
ggplot(df, aes(sample=x)) +

stat_qq() + stat_qq_line()

40

45

50

55

−2 −1 0 1 2

theoretical

sa
m

pl
e

This is fine.
• Hypothesis Testing

Example: Resting Period of Monarch Butterflies

Some Monarch butterflies fly early in the day, others somewhat later. After the flight they have
to rest for a short period. It has been theorized that the resting period (RIP) of butterflies
flying early in the morning is shorter because this is a thermoregulatory mechanism, and it is
cooler in the mornings. The mean RIP of all Monarch butterflies is 133 sec. Test the theory
at the 10% level.
Research by Anson Lui, Resting period of early and late flying Monarch butterflies Danaeus
plexippus, 1997
1. Parameter: mean µ

2. Method: 1-sample t

134

3. Assumptions: normal data or large sample

4. α = 0.1

5. H0 : µ = 133 (RIP is the same for early morning flying butterflies as all others)

6. H0 : µ < 133 (RIP is the shorter for early morning flying butterflies)

7.
t.test(butterflies$RIP.sec.,

mu=133,
alternative = "less")$p.value

[1] 0.05583963

8. p = 0.0558 < α = 0.1, so we reject the null hypothesis

9. It appears the resting time is somewhat shorter, but the conclusion is not a strong one.
Checking the assumption:
df <- data.frame(x=butterflies$RIP.sec.)
ggplot(df, aes(sample=x)) +

stat_qq() + stat_qq_line()

50

100

150

200

−2 −1 0 1 2

theoretical

sa
m

pl
e

looks good.
• Power Calculations

135

The power of a test is the probability to correctly reject the null if the null is false. The
power will always depend on an assumed value for the mean.
Let’s say the true mean resting period is 120.7 seconds. What was the probability that
Anson’s experiment would have detected this? That is, what is

Pµ=120.7(reject null)

First we need to find the critical region of this test, so we know what reject H0 actually means.
Now if the test is done at the 5% level we reject the null if the p value is less than 0.05. How
can we find out for what value of the sample mean this will happen? Let’s do the following:
• generate data from a normal distribution with mean µ, standard deviation as in our

data and the same number of observations
• find the p value and check whether it is < 0.05
• repeat many times and find average.
• use trial and error on µ until the probability is (about) 0.05:

mean.M <- function(M, true.mu=133) {
B <- 10000
pvals <- rep(0, B)
for(i in 1:B) {

x <- rnorm(length(butterflies$RIP.sec.), M,
sd(butterflies$RIP.sec.))

pvals[i] <- t.test(x, mu=true.mu,
alternative = "less")$p.value

}
1-sum(pvals<0.05)/B

}
mean.M(120)

[1] 0.2399
mean.M(110)

[1] 0.0066
mean.M(115)

[1] 0.0532

just about right! We now know that “reject H0” means X̄ < 115.
Now we turn this around: if the true mean where 120.5, what is the probability that we
would reject the null, that is get a sample mean of 115 or less? Actually, we can again use
the same routine:
mean.M(115, true.mu = 120.7)

[1] 0.724

136

Of course here this can also be done analytically:

Pµ=133(reject null) =
Pµ=133(X̄ < crit) = 0.05

Now X̄ ∼ N(133, s/
√

40), so
crit <- qnorm(0.05, 133, sd(butterflies$RIP.sec.)/sqrt(40))
crit

[1] 124.0558

(Actually the distribution is t, not a normal, but we will ignore this here)
and now

Pµ=120.7(reject null) =
Pµ=120.7P (X̄ < 124.06) =

pnorm(124.06, 120.7, sd(butterflies$RIP.sec.)/sqrt(40))

[1] 0.7316819

and of course we get the same answer.

There are also a number of packages that can be used to find the power of a test:
library(pwr)
pwr.t.test(40, d=(120.7-133)/sd(butterflies$RIP.sec.),

alternative = "less",
type = "one.sample")

##
One-sample t test power calculation
##
n = 40
d = -0.3576509
sig.level = 0.05
power = 0.7182354
alternative = less

Usually one wants to study the power for a whole range of values. This is done by drawing a
power curve:
x <- seq(110, 133, 0.1)
y <- x
for(i in seq_along(x))

y[i] <- pwr.t.test(40,
d=(x[i]-133)/sd(butterflies$RIP.sec.),
alternative = "less",

137

type = "one.sample")$power
df <- data.frame(Mean=x, Power=y)
ggplot(df, aes(Mean, Power)) +

geom_line(col="blue", size=1.2)

0.25

0.50

0.75

1.00

110 115 120 125 130

Mean

P
ow

er

• Sample Size
so, if the true mean resting period is 120.7 seconds the power is 72%. What sample size
would we need to have a power of 95%
round(pwr.t.test(power=0.95,

d=(120.7-133)/sd(butterflies$RIP.sec.),
alternative = "less",
type = "one.sample")$n)

[1] 86

The sample size issue also arises when we want to find a confidence interval. Here the number
that corresponds to the power is the error E, that is half the length of the interval.
Analytically we find

X̄ ± zα/2s/
√
n

E = zα/2s/
√
n

n = (zα/2s
E

)2

let’s see
I <- t.test(butterflies$RIP.sec.)$conf.int
diff(I)/2

138

[1] 10.9988

so a 95% confidence interval has an error of 11. If we wanted an error of 5 we would need a
sample size of
round((qnorm(0.975)*sd(butterflies$RIP.sec.)/5)^2)

[1] 182

Inference for a Population Proportion

The R routine for inference for a proportion (or a probability or a percentage) is binom.test.
This implements a method by Clopper and Pearson (1934). This method is exact and has no
assumptions.
Note The formula discussed in many introductory statistic courses for the confidence interval
is

p̂±
√
p̂(1− p̂)

n

where p̂ is the proportion of success. This leads to confidence intervals that are now known
to be quite wrong, and so this method should not be used anymore. The same is true for the
corresponding hypothesis test. This method (actually a slight improvement due to Wilson
(1927)) is implemented in R by prop.test.

Example: Jon Kerrichs Coin

The South African Jon Kerrich spent some time in a German prisoner of war camp during
world war I. He used his time to flip a coin 10000 times, resulting in 5067 heads.
Test at the 5% level of significance whether 5067 heads in 10000 flips are compatible with a
fair coin.
1. Parameter: proportion π

2. Method: exact binomial

3. Assumptions: None

4. α = 0.05

5. H0 : π = 0.5 (50% of flips result in “Heads”, coin is fair)

6. Ha : π 6= 0.5 (coin is not fair)

139

7.
binom.test(x = 5067, n = 10000)$p.value

[1] 0.1835155

8. p = 0.1835 > α = 0.05, so we fail to reject the null hypothesis.

9. it appears Jon Kerrich’s coin was indeed fair.

Example: Sample Size for Polling

Say some polling institute wants to conduct a poll for the next election for president. They
will then find a 95% confidence interval and they want this interval to have an error of 3
percentage points (aka ±0.03). What sample size do they need?
In American politics the two parties are always very close, so in a poll with n people about
n/2 will vote for one or the other party. Let’s do a little trial and error:
n <- 100
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.1016789

Now that is to large, so
n <- 200
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.07134157
n <- 400
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.05009211
n <- 800
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.03521797
n <- 1200
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.02867679
n <- 1100
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.02996843
n <- 1050
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

[1] 0.03068294

140

There is something quite remarkable about this result!

Correlation

Example UPR Admissions data

What are the correlations between the various variables?
head(upr, 2)

ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
1 00C2B4EF77 2005 M 502 3.97 647
2 00D66CF1BF 2003 M 502 3.80 597
Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
1 621 626 672 551 342 3.67
2 726 618 718 575 343 2.75
Graduated Year.Grad. Grad..GPA Class.Facultad
1 Si 2012 3.33 INGE
2 No NA NA INGE

Let’s take out the those variables that are either not numerical or not useful for prediction:
x <- upr[, -c(1, 2, 3, 4, 13, 14, 16)]
head(x, 2)

Highschool.GPA Aptitud.Verbal Aptitud.Matem Aprov.Ingles Aprov.Matem
1 3.97 647 621 626 672
2 3.80 597 726 618 718
Aprov.Espanol IGS Freshmen.GPA Grad..GPA
1 551 342 3.67 3.33
2 575 343 2.75 NA
round(cor(x, use = "complete.obs") ,3)

Highschool.GPA Aptitud.Verbal Aptitud.Matem Aprov.Ingles
Highschool.GPA 1.000 0.205 0.163 0.056
Aptitud.Verbal 0.205 1.000 0.497 0.519
Aptitud.Matem 0.163 0.497 1.000 0.474
Aprov.Ingles 0.056 0.519 0.474 1.000
Aprov.Matem 0.213 0.515 0.821 0.510
Aprov.Espanol 0.268 0.604 0.408 0.439
IGS 0.666 0.734 0.769 0.462
Freshmen.GPA 0.395 0.339 0.290 0.270
Grad..GPA 0.385 0.349 0.316 0.280
Aprov.Matem Aprov.Espanol IGS Freshmen.GPA Grad..GPA
Highschool.GPA 0.213 0.268 0.666 0.395 0.385
Aptitud.Verbal 0.515 0.604 0.734 0.339 0.349
Aptitud.Matem 0.821 0.408 0.769 0.290 0.316
Aprov.Ingles 0.510 0.439 0.462 0.270 0.280

141

Aprov.Matem 1.000 0.421 0.712 0.326 0.351
Aprov.Espanol 0.421 1.000 0.569 0.350 0.372
IGS 0.712 0.569 1.000 0.474 0.485
Freshmen.GPA 0.326 0.350 0.474 1.000 0.750
Grad..GPA 0.351 0.372 0.485 0.750 1.000

Example: The 1970’s Military Draft

In 1970, Congress instituted a random selection process for the military draft. All 366 possible
birth dates were placed in plastic capsules in a rotating drum and were selected one by one.
The first date drawn from the drum received draft number one and eligible men born on that
date were drafted first. In a truly random lottery there should be no relationship between
the date and the draft number.
Question: was the draft was really random?
Here we have two quantitative variables, so we start with the scatterplot:
plot(draft$Draft.Number, draft$Day.of.Year,

pch=20,
xlab="Day of Year",
ylab="Draft Number")

0 100 200 300

0
10

0
20

0
30

0

Day of Year

D
ra

ft
N

um
be

r

and this does not look like there is a problem with independence.
However:
1) Parameter: Pearson’s correlation coefficient ρ
2) Method: Test for Pearson’s correlation coefficient ρ
3) Assumptions: relationship is linear and that there are no outliers.

142

4) α = 0.05

5) H0 : ρ = 0 (no relationship between Day of Year and Draft Number)
6) Ha : ρ 6= 0 (some relationship between Day of Year and Draft Number)
7)

cor.test(draft$Draft.Number, draft$Day.of.Year)$p.value

[1] 1.263829e-05

8) p = 0.0000 < α = 0.05, so we reject the null hypothesis,
9) There is a statistically significant relationship between Day of Year and Draft Number.

Categorical Data Analysis - Tests for Independence

Example: Drownings in Los Angeles

Data is from O’Carroll PW, Alkon E, Weiss B. Drowning mortality in Los Angeles County,
1976 to 1984, JAMA, 1988 Jul 15;260(3):380-3.
Drowning is the fourth leading cause of unintentional injury death in Los Angeles County.
They examined data collected by the Los Angeles County Coroner’s Office on drownings that
occurred in the county from 1976 through 1984. There were 1587 drownings (1130 males and
457 females) during this nine-year period
kable.nice(drownings)

Male Female
Private Swimming Pool 488 219
Bathtub 115 132
Ocean 231 40
Freshwater bodies 155 19
Hottubs 16 15
Reservoirs 32 2
Other Pools 46 14
Pails, basins, toilets 7 4
Other 40 12

Here we have two categorical variables (Method of Drowning and Gender), both categorical.
We want to know whether the variables are independent. The most popular method of
analysis for this type of problem is Pearson’s chi square test of independence. It is
done with the command chisq.test and it has the assumption of no expected counts less than
5.

143

1. Parameters of interest: measure of association

2. Method of analysis: chi-square test of independence

3. Assumptions of Method: all expected counts greater than 5

4. Type I error probability α=0.05

5. H0: Classifications are independent = there is no difference in the method of drowning
between men and women.

6. Ha: Classifications are dependent = there is some difference in the method of drowning
between men and women.

7.
chisq.test(drownings)

##
Pearson's Chi-squared test
##
data: drownings
X-squared = 144.48, df = 8, p-value < 2.2e-16

8. p = 0.000 < α=0.05, we reject the null hypothesis, there is a statistically significant
difference between men and women and where they drown.

Let’s see whether there is a problem with the assumptions:
round(chisq.test(drownings)$expected, 1)

Male Female
Private Swimming Pool 503.4 203.6
Bathtub 175.9 71.1
Ocean 193.0 78.0
Freshwater bodies 123.9 50.1
Hottubs 22.1 8.9
Reservoirs 24.2 9.8
Other Pools 42.7 17.3
Pails, basins, toilets 7.8 3.2
Other 37.0 15.0

and we see that the expected counts of Pails, basins, toilets and Female is 3.2. In real life
this would be considered ok, but it would also be easy to fix:
newmale <- c(drownings[1:7, 1], 7+40)
newfemale <- c(drownings[1:7, 2], 4+12)

144

newdrown <- cbind(newmale, newfemale)
newdrown

newmale newfemale
Private Swimming Pool 488 219
Bathtub 115 132
Ocean 231 40
Freshwater bodies 155 19
Hottubs 16 15
Reservoirs 32 2
Other Pools 46 14
47 16
out <- chisq.test(newdrown)
round(out$expected, 1)

newmale newfemale
Private Swimming Pool 503.4 203.6
Bathtub 175.9 71.1
Ocean 193.0 78.0
Freshwater bodies 123.9 50.1
Hottubs 22.1 8.9
Reservoirs 24.2 9.8
Other Pools 42.7 17.3
44.9 18.1
round(out$p.value, 4)

[1] 0

Comparing the Means of Several Populations - ANOVA

Basic Test

Example: Mothers Cocain Use and Babies Health

Are the mean lengths of the babies different depending on the drug use of the mother?
ggplot(mothers, aes(Status, Length)) +

geom_boxplot()

145

40

45

50

55

Drug Free First Trimester Throughout

Status

Le
ng

th

out <- matrix(0, 3, 3)
colnames(out) <- c("Size", "Mean", "SD")
rownames(out) <- unique(mothers$Status)
out[, 1] <- tapply(mothers$Length,

mothers$Status, length)
out[, 2] <- round(tapply(mothers$Length,

mothers$Status, mean), 2)
out[, 3] <- round(tapply(mothers$Length,

mothers$Status, sd), 2)

Size Mean SD
Drug Free 39 51.1 2.9
First Trimester 19 49.3 2.5
Throughout 36 48.0 3.6

kable.nice(out)

The standard method for this problem is called ANOVA (Analysis of Variance) and is run
with the aov command.
fit <- aov(Length~Status, data=mothers)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Status 2 181.4 90.69 9.319 0.000208
Residuals 91 885.6 9.73

1. Parameters of interest: group means
2. Method of analysis: ANOVA
3. Assumptions of Method: residuals have a normal distribution, groups have equal variance

146

4. Type I error probability α=0.05

5. Null hypothesis H0: µ1 = µ2 = µ3 (groups have the same means)

6. Alternative hypothesis Ha: µi 6= µj (at least two groups have different means)

7. p=0.0002

8. 0.0002 < 0.05, there is some evidence that the group means are not the same, the babies
whose mothers used cocaine tend to be a little shorter (less healthy?)

In step 3 we have the assumptions
a. residuals have a normal distribution. W can check that with the normal plot. The

residuals are the simply the observations minus their group means and are part of the
aov object.

df <- data.frame(x=resid(fit))
ggplot(df, aes(sample=x)) +

stat_qq() + stat_qq_line()

−8

−4

0

4

−2 −1 0 1 2

theoretical

sa
m

pl
e

looks fine
b. groups have equal variance

Here one uses the rule of thumb: if the largest sample standard deviation is not more than
three times the smallest, it is ok.
Here: 3*2.5 = 7.5 > 3.6, ok

147

Multiple Comparison

Often if the null of no difference is rejected, one wants to go a step further and do a pairwise
comparison:
• is Drug Free different from First Trimester?

• is First Trimester different from Throughout?
There are a number of methods known for this problem, a popular one is by Tukey:
tuk <- TukeyHSD(fit)
plot(tuk)

−5 −4 −3 −2 −1 0 1

T
hr

ou
gh

ou
t−

F
irs

t T
rim

es
te

r
F

irs
t T

rim
es

te
r−

D
ru

g
F

re
e

95% family−wise confidence level

Differences in mean levels of Status

this draws confidence intervals for the difference in means of all pairs. If an interval does not
contain 0, the corresponding pair is statistically significantly different.
Here that is the case only for Drug Free - Throughout, so the other two pairs are not
statistically significantly different. Remember, however that failing to reject H0 is NOT the
same as accepting H0. The fact that those pairs are not statistically significantly different is
almost certainly due to a lack of sample size.

Example: Cuckoo Eggs

That cuckoo eggs were peculiar to the locality where found was already known in 1892. A
study by E.B. Chance in 1940 called The Truth About the Cuckoo demonstrated that cuckoos
return year after year to the same territory and lay their eggs in the nests of a particular host
species. Further, cuckoos appear to mate only within their territory. Therefore, geographical
sub-species are developed, each with a dominant foster-parent species, and natural selection
has ensured the survival of cuckoos most fitted to lay eggs that would be adopted by a

148

particular foster-parent species. The data has the lengths of cuckoo eggs found in the nests
of six other bird species (drawn from the work of O.M. Latter in 1902).
Cuckoo Birds
Basic question: is there a difference between the lengths of the cuckoo eggs of different Foster
species?
head(cuckoo)

Bird Length
1 Meadow Pipit 19.65
2 Meadow Pipit 20.05
3 Meadow Pipit 20.65
4 Meadow Pipit 20.85
5 Meadow Pipit 21.65
6 Meadow Pipit 21.65
table(cuckoo$Bird)

##
Hedge Sparrow Meadow Pipit Pied Wagtail Robin Tree Pipit
14 45 15 16 15
Wren
15

Here we have no obvious ordering of the groups. In this case the usual thing to do is to sort
by the group means:
mn <- sort(tapply(cuckoo$Length, cuckoo$Bird, mean))
cuckoo$Bird <- factor(cuckoo$Bird,

levels = unique(names(mn)),
ordered = TRUE)

ggplot(data=cuckoo, aes(Bird, Length)) +
geom_boxplot()

149

https://en.wikipedia.org/wiki/Cuckoo

20

21

22

23

24

25

Wren Meadow Pipit Robin Pied Wagtail Tree Pipit Hedge Sparrow

Bird

Le
ng

th

we have some outliers in the Meadow Pipit species, but not to bad and we will ignore that.
Let’s look at the table of summary statistics.
out <- matrix(0, 6, 3)
colnames(out) <- c("n", "Mean", "Sd")
rownames(out) <- as.character(levels(cuckoo$Bird))
out[, 1] <- tapply(cuckoo$Length,

cuckoo$Bird, length)
out[, 2] <- round(tapply(cuckoo$Length,

cuckoo$Bird, mean), 2)
out[, 3] <- round(tapply(cuckoo$Length,

cuckoo$Bird, sd), 2)

n Mean Sd
Wren 15 21.13 0.74
Meadow Pipit 45 22.30 0.92
Robin 16 22.57 0.68
Pied Wagtail 15 22.90 1.07
Tree Pipit 15 23.09 0.90
Hedge Sparrow 14 23.12 1.07

kable.nice(out)

Both the graph and the table make it clear that there are some differences in the length, so
the following is not really necessary:
fit <- aov(Length~Bird, data=cuckoo)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)

150

Bird 5 42.94 8.588 10.39 3.15e-08
Residuals 114 94.25 0.827

1) Parameters of interest: group means

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) α = 0.05

5) Null hypothesis H0: µ1 = ... = µ6 (groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (at least two groups have different means)

7) p value = 0.000

8) 0.000 < 0.05, there is some evidence that the group means are not the same, the length
are different for different foster species.

Assumptions of the method:
a) residuals have a normal distribution, plot looks (mostly) ok

df <- data.frame(Residuals=resid(fit),
Fits = fitted(fit))

ggplot(data=df, aes(sample=Residuals)) +
geom_qq() + geom_qq_line()

−2

−1

0

1

2

−2 −1 0 1 2

theoretical

sa
m

pl
e

b) groups have equal variance

151

smallest stdev=0.7, largest stdev=1.1, 3*0.7=2.1>1.1, ok
So, how exactly do they differ?
tuk <- TukeyHSD(fit)
print(tuk)

Tukey multiple comparisons of means
95% family-wise confidence level
##
Fit: aov(formula = Length ~ Bird, data = cuckoo)
##
$Bird
diff lwr upr p adj
Meadow Pipit-Wren 1.16888889 0.383069115 1.954709 0.0004861
Robin-Wren 1.44500000 0.497728567 2.392271 0.0003183
Pied Wagtail-Wren 1.77333333 0.810904595 2.735762 0.0000070
Tree Pipit-Wren 1.96000000 0.997571262 2.922429 0.0000006
Hedge Sparrow-Wren 1.99142857 1.011964373 2.970893 0.0000006
Robin-Meadow Pipit 0.27611111 -0.491069969 1.043292 0.9021876
Pied Wagtail-Meadow Pipit 0.60444444 -0.181375330 1.390264 0.2324603
Tree Pipit-Meadow Pipit 0.79111111 0.005291337 1.576931 0.0474619
Hedge Sparrow-Meadow Pipit 0.82253968 0.015945760 1.629134 0.0428621
Pied Wagtail-Robin 0.32833333 -0.618938100 1.275605 0.9155004
Tree Pipit-Robin 0.51500000 -0.432271433 1.462271 0.6159630
Hedge Sparrow-Robin 0.54642857 -0.418146053 1.511003 0.5726153
Tree Pipit-Pied Wagtail 0.18666667 -0.775762072 1.149095 0.9932186
Hedge Sparrow-Pied Wagtail 0.21809524 -0.761368960 1.197559 0.9872190
Hedge Sparrow-Tree Pipit 0.03142857 -0.948035627 1.010893 0.9999990

so the eggs of Wrens are the smallest, and they are stat. significantly smaller than the eggs
of all other birds.
Meadow Pipits are next, and they are stat. significantly smaller than the eggs of Tree Pipits
and Hedge Sparrows.
no other differences are stat. significant!
This can get a bit hard to read, and it might be better to concentrate on those pairs that are
stat. signif,. different at (say) the 5% level:
names(tuk[[1]][tuk[[1]][,4]<0.05, 4])

[1] "Meadow Pipit-Wren" "Robin-Wren"
[3] "Pied Wagtail-Wren" "Tree Pipit-Wren"
[5] "Hedge Sparrow-Wren" "Tree Pipit-Meadow Pipit"
[7] "Hedge Sparrow-Meadow Pipit"

152

Transformations and Nonparametric Methods

Many classic methods of analysis (t tests, F tests etc) have an assumption of data that comes
from a normal distribution. What can we do if we don’t have that? There are two ways to
proceed:

Transformations

A data transformation is any mathematical function applied to the data. Sometimes such a
transformation can be used to make distribution more normal:

Example: Body and Brain Weight

Consider the data set brainsize, which has the weights of the body (in kg) and of the brain
(in gram) of 62 mammals:
kable.nice(brainsize)

153

Animal body.wt.kg brain.wt.g
African elephant 6654.000 5712.00
African giant pouched rat 1.000 6.60
Arctic Fox 3.385 44.50
Arctic ground squirrel 0.920 5.70
Asian elephant 2547.000 4603.00
Baboon 10.550 179.50
Big brown bat 0.023 0.30
Brazilian tapir 160.000 169.00
Cat 3.300 25.60
Chimpanzee 52.160 440.00
Chinchilla 0.425 6.40
Cow 465.000 423.00
Desert hedgehog 0.550 2.40
Donkey 187.100 419.00
Eastern American mole 0.075 1.20
Echidna 3.000 25.00
European hedgehog 0.785 3.50
Galago 0.200 5.00
Genet 1.410 17.50
Giant armadillo 60.000 81.00
Giraffe 529.000 680.00
Goat 27.660 115.00
Golden hamster 0.120 1.00
Gorilla 207.000 406.00
Gray seal 85.000 325.00
Gray wolf 36.330 119.50
Ground squirrel 0.101 4.00
Guinea pig 1.040 5.50
Horse 521.000 655.00
Jaguar 100.000 157.00
Kangaroo 35.000 56.00
Lesser short-tailed shrew 0.005 0.14
Little brown bat 0.010 0.25
Man 62.000 1320.00
Mole rat 0.122 3.00
Mountain beaver 1.350 8.10
Mouse 0.023 0.40
Musk shrew 0.048 0.33
N. American opossum 1.700 6.30
Nine-banded armadillo 3.500 10.80
Okapi 250.000 490.00
Owl monkey 0.480 15.50
Patas monkey 10.000 115.00
Phanlanger 1.620 11.40
Pig 192.000 180.00
Rabbit 2.500 12.10
Raccoon 4.288 39.20
Rat 0.280 1.90
Red fox 4.235 50.40
Rhesus monkey 6.800 179.00
Rock hyrax (Hetero. b) 0.750 12.30
Rock hyrax (Procavia hab) 3.600 21.00
Roe deer 83.000 98.20
Sheep 55.500 175.00
Slow loris 1.400 12.50
Star nosed mole 0.060 1.00
Tenrec 0.900 2.60
Tree hyrax 2.000 12.30
Tree shrew 0.104 2.50
Vervet 4.190 58.00
Water opossum 3.500 3.90
Yellow-bellied marmot 4.050 17.00

154

Let’s say we want to find a 95% confidence interval for the mean body weight. If we want to
use the t.test method we need to check normality:
qplot(data=brainsize, sample=body.wt.kg) +

stat_qq() + stat_qq_line()

0

2000

4000

6000

−2 −1 0 1 2

and this is clearly non-normal. However
qplot(data=brainsize, sample=log(body.wt.kg)) +

stat_qq() + stat_qq_line()

−5

0

5

10

−2 −1 0 1 2

shows that log(body.wt.kg) is indeed normally distributed. So now

155

t.test(log(brainsize$body.wt.kg))$conf.int

[1] 0.5671413 2.1634911
attr(,"conf.level")
[1] 0.95

but this is confidence interval for log(body.wt.kg), we want one for body.wt.kg.

0.567 ≤ log µ ≤ 2.163 ⇔
exp(0.567) ≤ µ ≤ exp(2.163) ⇔
1.763 ≤ µ ≤ 8.697

Box-Cox Transforms

Above we used a log transform. In principle any function might work, and there is even a
way to pick the best from a list: In 1964 Box and Cox suggested a family of transformations
of the form

Tλ(x) =
{

xλ−1
λ

λ 6= 0
log x λ = 0

Notice that this is continuous in λ: limλ→0 Tλ(x) = T0(x) and it includes 1/x,
√
x, xk etc. To

pick the best use
library(MASS)
fit <- lm(brainsize$body.wt.kg~rep(1, 62))
boxcox(fit, lambda=seq(-0.25, 0.25, 0.01))

−0.2 −0.1 0.0 0.1 0.2

−
22

0
−

21
0

−
20

0

λ

lo
g−

Li
ke

lih
oo

d

 95%

156

the vertical lines give a confidence interval for λ, and any value inside the interval is acceptable.
It seems that for our data λ = 0 or the log transform is indeed appropriate.
Note that the boxcox command requires a fit object generated by lm or aov but can also be
used for single vectors as above.

A different way to proceed is to use a method that does not require a normal distribution.
These are so called nonparametric methods. A number of them have been developed over the
years as alternatives to the standard normal based methods.
In general nonparametric methods are based on the ranks of the observations and focus on
the median instead of the mean.

Alternative to 1 Sample t

Example: Euro Coins

The data were collected by Herman Callaert at Hasselt University in Belgium. The euro coins
were borrowed at a local bank. Two assistants, Sofie Bogaerts and Saskia Litiere weighted the
coins one by one, in laboratory conditions on a weighing scale of the type Sartorius BP 310.
Say we are told that a one euro coin is supposed to weigh 7.5 grams. Does the data in support
that claim?
head(euros)

Weight Roll
1 7.512 1
2 7.502 1
3 7.461 1
4 7.562 1
5 7.528 1
6 7.459 1
ggplot(euros, aes(y=Weight, x=rep("", 2000))) +

geom_boxplot() +
labs(x="")

157

7.2

7.4

7.6
W

ei
gh

t

The boxplot of Weight shows severe outliers, so the usual 1 sample t test won’t work.
Unfortunately the log transformation does not work here either. This is not a surprise, by
the way, because the outliers are on both sides of the box.
The name of the test that works here is Wilcoxon Signed Rank Test.
The details are
wilcox.test(euros$Weight, mu=7.5)

##
Wilcoxon signed rank test with continuity correction
##
data: euros$Weight
V = 1595000, p-value < 2.2e-16
alternative hypothesis: true location is not equal to 7.5

1) Parameter of interest: 1 median

2) Method of analysis: Wilcoxon Signed Rank test

3) Assumptions of Method: none

4) α = 0.05

5) Null hypothesis H0: M=7.5 (median weight is 7.5 grams)

6) Alternative hypothesis Ha: M 6= 7.5 (median weight is not 7.5 grams)

7) p value = 0.000

158

8) 0.000<0.05, so we reject H0, it seems the median weight is not 7.5 grams.
Actually, in this data set we could still have used the usual 1-sample t test (also with a p-value
of 0.000) because we have a very large sample (n=2000), but in general it is never clear
exactly how large a sample needs to be to “overcome” some outliers, so these non-parametric
tests are always a safe alternative.

Why not always use the non-parametric test?

If using the t test sometimes is wrong but the Wilcoxon Rank Sum test always works, why
not just always use this test and be safe? The answer is that the t test has a larger power:
mu <- seq(0, 1.5, length=100)
pw <- matrix(0, 100, 2)
colnames(pw) <- c("t test", "Wilcoxon")
B <- 10000
for(i in 1:100) {

for(j in 1:B) {
x <- rnorm(10, mu[i])
pval <- t.test(x, mu=0)$p.value
if(pval<0.05) pw[i, 1] <- pw[i, 1]+1
pval <- wilcox.test(x, mu=0)$p.value
if(pval<0.05) pw[i, 2] <- pw[i, 2]+1

}
}
pw <- 100*pw/B

df <- data.frame(
Mean=c(mu, mu),
Power=c(pw[, 1], pw[, 2]),
Method=rep(c("t test", "Wilcoxon"), each=100))

ggplot(df, aes(Mean, Power, color=Method)) +
geom_line()

159

25

50

75

100

0.0 0.5 1.0 1.5

Mean

P
ow

er

Method

t test

Wilcoxon

In real life the power of the nonparametric tests is often almost as high as the power of
the standard tests, so they should always be used if there is a question about the normal
assumption.
If we wanted a 90% confidence interval for median we could use
wilcox.test(euros$Weight,

conf.int=TRUE,
conf.level=0.9)$conf.int

[1] 7.519540 7.522448
attr(,"conf.level")
[1] 0.9

Alternative to two sample t

just as with the t.test command, the wilcox.test command can also be used to compare the
means of two populations:

Example: Euro Coins

Are the means of the weights of the coins in rolls 7 and 8 different?
x <- euros$Weight[euros$Roll==7]
y <- euros$Weight[euros$Roll==8]
wilcox.test(x, y)

##
Wilcoxon rank sum test with continuity correction
##

160

data: x and y
W = 35619, p-value = 0.00684
alternative hypothesis: true location shift is not equal to 0

Alternative to ANOVA

Example: Euro Coins

Say we want to know whether the coins in the 8 different rolls have the same average weight.
The non-parametric alternative to the oneway ANOVA is the Kruskal-Wallis test:
kruskal.test(Weight~factor(Roll), data=euros)

##
Kruskal-Wallis rank sum test
##
data: Weight by factor(Roll)
Kruskal-Wallis chi-squared = 97.5, df = 7, p-value < 2.2e-16

1) Parameters of interest: medians

2) Method of analysis: Kruskal-Wallis

3) Assumptions of Method: none

4) α = 0.05

5) Null hypothesis H0: M1=..=M8 (group medians are the same)

6) Alternative hypothesis Ha: Mi 6= Mj for some i, j(group medians are not the same)

7) p value = 0.00

8) 0.00 < 0.05, so we reject H0, it seems the group medians are not the same

Example: Cultural Differences in Equipment Use

A US company manufactures equipment that is used in the production of semiconductors. The
firm is considering a costly redesign that will improve the performance of its equipment. The
performance is characterized as mean time between failures (MTBF). Most of the companies
customers are in the USA, Europe and Japan, and there is anecdotal evidence that the
Japanese customers typically get better performance from the users in the USA and Europe.
head(culture)

Country MTBF
1 USA 120.5
2 USA 127.1
3 USA 128.1

161

4 USA 129.7
5 USA 130.8
6 USA 132.4
table(culture$Country)

##
Europe Japan USA
15 12 20
ggplot(culture, aes(Country, MTBF)) +

geom_boxplot()

150

200

250

300

Europe Japan USA

Country

M
T

B
F

There is a problem with the normal assumption. We can try to fix this with the log transform,
but again this does not work.
Because none of the transformations worked we will use the non-parametric Kruskall-Wallis
test:
kruskal.test(MTBF~factor(Country), data=culture)

##
Kruskal-Wallis rank sum test
##
data: MTBF by factor(Country)
Kruskal-Wallis chi-squared = 13.806, df = 2, p-value = 0.001005

1) Parameters of interest: medians

2) Method of analysis: Kruskal-Wallis

162

3) Assumptions of Method: none

4) α = 0.05

5) Null hypothesis H0: M1 = M2 = M3 (group medians are the same)

6) Alternative hypothesis Ha: Mi 6= Mj for some i, j (group medians are not the same)

7) p value = 0.001

8) 0.001 < 0.05, so we reject H0, it seems the group medians are not the same, the MTBF
is different in different countries

If we had just done the ANOVA Country would not have been stat. significant (p-value =
0.098) but if you remember to check the normal plot you will see that there is a problem
with this analysis.

Model Checking

Most discussions in Statistics start with a sentence like this:
we have observations x1, .., xn from a normal distribution. . .
and so everything that follows depends on the assumption. But how do we know that a data
set comes from a certain distribution in real life?

Graphical Checks

The most common checks we do are graphical.
• Histogram with Fit

we draw a histogram of the data, scaled to have total area 1, and overlay it with the theoretical
curve:
x <- rbeta(1000, 2, 5)

bw <- diff(range(x))/50
ggplot(data.frame(x=x), aes(x)) +
geom_histogram(aes(y = ..density..),

color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

stat_function(fun = dbeta, colour = "blue",
args=list(shape1=2, shape2=5))

163

0

1

2

0.00 0.25 0.50 0.75

x

D
en

si
ty

this works fine if we have sufficient data to do a histogram. If not we have
• Probability Plot

x <- rnorm(50)
ggplot(data=data.frame(x=x), aes(sample=x)) +

geom_qq() + geom_qq_line()

−3

−2

−1

0

1

2

3

−2 −1 0 1 2

theoretical

sa
m

pl
e

What is drawn here? As the axis say, it is sample vs theoretical. Specifically it is the quantiles
of the data set vs the quantiles of the distribution we are checking for:

164

df <- data.frame(x=qnorm(1:50/51), y=sort(x))
ggplot(data=df, aes(x, y)) +

geom_point()

−2

−1

0

1

−2 −1 0 1 2

x

y

and the line is drawn through the quartiles. It can be shown that if the data indeed comes
from this distribution the points should fall along a straight line.
Note that this graph is scale invariant:
x <- rnorm(50, 100, 30)
df <- data.frame(x=qnorm(1:50/51), y=sort(x))
ggplot(data=df, aes(x, y)) +

geom_point()

165

40

80

120

160

−2 −1 0 1 2

x

y

It works for other distributions as well:
x <- rexp(50, 1)
df <- data.frame(x=qexp(1:50/51), y=sort(x))
ggplot(data=df, aes(x, y)) +

geom_point()

0

1

2

3

0 1 2 3 4

x

y

here are some examples where the distribution is not normal:
df <- data.frame(x1=runif(100),

x2=rt(100, 2),

166

x3=rbeta(1000, 2, 3),
x4=rchisq(100, 2))

pushViewport(viewport(layout = grid.layout(2, 2)))
print(ggplot(data=df, aes(sample=x1)) +

geom_qq() + geom_qq_line() ,
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(sample=x2)) +
geom_qq() + geom_qq_line() ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggplot(data=df, aes(sample=x3)) +

geom_qq() + geom_qq_line() ,
vp=viewport(layout.pos.row=2, layout.pos.col=1))

print(ggplot(data=df, aes(sample=x4)) +
geom_qq() + geom_qq_line() ,

vp=viewport(layout.pos.row=2, layout.pos.col=2))

−0.5

0.0

0.5

1.0

1.5

−2 0 2

theoretical

sa
m

pl
e

0

5

10

−2 0 2

theoretical

sa
m

pl
e

−0.4

0.0

0.4

0.8

−2 0 2

theoretical

sa
m

pl
e

0

5

10

15

−2 0 2

theoretical

sa
m

pl
e

with some experience it is possible to tell from the shape of the graph in which way the true
distribution differs from the normal (maybe it has longer tails, is skewed etc.)

Formal Tests

There are a number of hypothesis tests one can use as well. The most important is the
• Chisquare Goodness of Fit Test

Example: Experiments in Plant Hybridization (1865)

167

by Gregor Mendel is one of the most famous papers in all of Science. His theory of genetics
predicted that the number of Smooth yellow, wrinkled yellow, smooth green and wrinkled
green peas would be in the proportions 9:3:3:1. In one of his experiments he observed 315,
101, 108 and 32. Does this agree with his theory?
How does this fit into our current discussion? Essentially his theory said that peas appear
according to a multinomial distribution with parameters m = 4, p = (9/16, 3/16, 3/16, 1/16).
One can show that the likelihood ratio test (together with some approximations) leads to the
famous chisquare statistic

χ2 =
∑ (O − E)2

E

where O are the observed counts and E are the expected counts. Under the null hypothesis
χ2 has a chisquare distribution with m-1 degrees of freedom.
For Mendels data we find
O <- c(315, 101, 108, 32)
p <- c(9/16, 3/16, 3/16, 1/16)
E <- sum(O)*p
chi <- sum((O-E)^2/E)
c(chi, 1-pchisq(chi, 3))

[1] 0.4700240 0.9254259

and so we fail to reject the null hypothesis, Mendels theory works.
This is a large-sample test (because of the approximations). The general requirement is that
E > 5.

The chisquare statistic was already known in the mid 19th century but its distribution was
derived by Karl Pearson in 1900. His argument was as follows: O is the sum of indicator
random variables (Xi is of type i or not), so O has a binomial distribution, and if n is large
enough

(O − E)/
√
E ∼ N(0, 1)

Therefore

(O − E)2/E ∼ χ2(1)

Finally

∑
(O − E)2/E ∼ χ2(m− 1)

because there is one “restriction”, namely ∑O = n.

168

Example: Death by kicks from a Horse

Number of deaths by horse kicks in the Prussian army from 1875-1894 for 14 Corps.
kable.nice(horsekicks)

Year Deaths
1875 3
1876 5
1877 7
1878 9
1879 10
1880 18
1881 6
1882 14
1883 11
1884 9
1885 5
1886 11
1887 15
1888 6
1889 11
1890 17
1891 12
1892 15
1893 8
1894 4

Some theoretical arguments make it a reasonable guess that this data should follow a Poisson
distribution, that is

P (X = k) = λk

k! e
−λ

we want to test this. That is we have

H0 : X ∼ Poisson

Notice though that this does not say what λ is.
The idea is the following: if the Poisson model works at all, it should work for the value of λ
that minimizes the chisquare statistic. So if we denote this number by λ̂, we should test

169

H0 : X ∼ Poisson(λ̂)

However, this estimation will cost us a degree of freedom, so the distribution of the statistic is
now chisquare with m-1-k degrees of freedom, where k is the number of parameters estimated.
Note that this requires an unusual estimation technic, called minimum chisquare. In practice
people just use maximum likelihood, but this is not always going to work.
We have another issue: in some years there were very few deaths, so the E would be small,
less than 5. We can deal with this by grouping the data:
df <- data.frame(Period=c("0-6", "7-9", "10-12", "Over 12"),

Counts=c(6, 4, 5, 5))
kable.nice(df)

Period Counts
0-6 6
7-9 4
10-12 5
Over 12 5

chi.fun <- function(lambda) {
p <- c(ppois(6, lambda), sum(dpois(7:9, lambda)),

sum(dpois(10:12, lambda)), 1-ppois(12, lambda))
E <- 20*p
sum((df$Counts-E)^2/E)

}
lambda <- seq(8, 11, length=100)
y <- lambda
for(i in 1:100) y[i] <- chi.fun(lambda[i])
df1 <- data.frame(lambda=lambda,

chi=y)
ggplot(data=df1, aes(lambda, chi)) +

geom_line()

170

6

8

10

12

8 9 10 11

lambda

ch
i

lambda[y==min(y)]

[1] 9.363636

Notice that in this case the minimum chisquare estimate is quite different from the mle,
which is
mean(horsekicks[, 2])

[1] 9.8

now
tmp <- chi.fun(9.36)
c(tmp, 1-pchisq(tmp, 2))

[1] 4.71293447 0.09475438

and so we find weak evidence for the Poisson distribution.
Notice that the binning we did of the data was completely arbitrary.
Notice that this test differs from those we discussed previously: it does not have an alternative
hypothesis. Of course we could just have used

Ha : X 6∼ Poisson

but that seems rather pointless. In fact, this is part of a larger discussion, the difference
between Fisherian and Neyman-Pearson hypothesis testing which would however lead us to
far away.

171

The adjustment of the degrees of freedom for the number of estimated parameters has an
interesting history. It does not appear in Pearson’s original derivation. In fact, following
Pearson’s logic there should be no need for this adjustment, because if the sample size is
large enough any parameter should be estimated with sufficiently high precision. The need
for the adjustment was recognized only 20 years after the original publication of Pearson by
none other than Egon Pearson (Karl’s son) and by Sir Ronald Fisher and is now sometimes
called the Fisher-Pearson statistic.

In the case of continuous distributions this becomes even more complicated because now
there are infinitely many ways to bin the data. The are two main strategies:
• equal size

• equal probability
in general the second one is recommended.

Example: Euro coins

Do the weights follow a normal distribution?
Let’s test this with k=10 (??) equal probability bins.
Again we need to estimate the parameters. Because this is a large sample we will use the
mle’s:
round(c(mean(euros$Weight), sd(euros$Weight)), 4)

[1] 7.5212 0.0344
bins <- c(7, quantile(euros$Weight, 1:9/10), 8)
pb <- sprintf("%.3f", bins)
O <- hist(euros$Weight, breaks = bins, plot=FALSE)$counts
E <- round(2000*diff(pnorm(bins, 7.5212, 0.0344)), 1)
df <- cbind(Bins=paste0(pb[-11],"-",pb[-1]),

O, E=sprintf("%.1f", E))
rownames(df) <- NULL
kable.nice(df)

172

Bins O E
7.000-7.480 204 231.0
7.480-7.492 200 164.9
7.492-7.503 210 200.8
7.503-7.512 206 192.4
7.512-7.520 190 183.0
7.520-7.529 202 207.2
7.529-7.538 192 195.3
7.538-7.551 220 238.9
7.551-7.566 179 193.5
7.566-8.000 197 192.8

chi <- sum((O-E)^2/E)
c(round(chi, 2), round(1-pchisq(chi, 10-1-2), 3))

[1] 15.140 0.034

and so we reject the null hypothesis at the 5% level, this data does not come from a normal
distribution.
It should be clear that there are many issues here:
• how to estimate the parameters

• how to bin

• how many bins
and all of these can lead to different results.

Tests based on the empirical distribution function

Recall the definition of the empirical distribution function:

F̂ (x) = 1
n

∑
I(−∞,x)(xi)

Example: Artificial example

set.seed(112)
df <- data.frame(x=rnorm(10))
x=seq(-3, 3, length=250)
df1 <- data.frame(x=x, y=pnorm(x))
ggplot(df, aes(x)) +

173

stat_ecdf(geom = "step") +
geom_line(data=df1, aes(x, y))

0.00

0.25

0.50

0.75

1.00

−2 0 2

x

y

There are a number of tests based on some measure of “distance” between these two curves.
• Kolmogorov-Smirnov

D = max
{
|F (x)− F̂ (x)|;x ∈ R

}
this is implemented in ks.test
ks.test(euros$Weight, "pnorm", mean=7.521, sd=0.0344)

##
One-sample Kolmogorov-Smirnov test
##
data: euros$Weight
D = 0.022955, p-value = 0.2426
alternative hypothesis: two-sided

notice however that this requires specific values of the parameters.
In the case of the normal distribution Lilliefors derived a test based on this statistic that
allows estimation of the parameters:
library(nortest)
lillie.test(euros$Weight)

##
Lilliefors (Kolmogorov-Smirnov) normality test
##

174

data: euros$Weight
D = 0.023354, p-value = 0.01311

and we see that this test correctly rejects the null.
An often better alternative to Kolmogorov-Smirnov is the
• Anderson-Darling test

it uses

D = n
∫ ∞
−∞

(F (x)− F̂ (x))2

F (x)(1− F (x))dx

essentially this gives greater weight to the tail of the distribution, where F(x) and 1-F(x) are
small.
The ad.test in R tests for composite normality:
ad.test(euros$Weight)

##
Anderson-Darling normality test
##
data: euros$Weight
A = 1.6213, p-value = 0.0003646

Null distribution via simulation

Let’s say we wish to test whether a data set comes from an exponential distribution, and we
want to use the Kolmogorov-Smirnov statistic. Now we need to estimate the rate, and so the
basic test won’t work. We can however do this:
• generate data from an exponential with the rate equal to the mle of the data.
• find the KS statistic

• repeat many time

• compare the results to the KS from the data
x1 <- rexp(20, 1)
x2 <- rgamma(20, 2, 1)
rt1 <- 1/mean(x1)
rt2 <- 1/mean(x2)
B <- 1000
ks.sim <- matrix(0, B, 2)
for(i in 1:B) {

ks.sim[i, 1] <- ks.test(rexp(20, rt1),
"pexp", rate=rt1)$statistic

ks.sim[i, 2] <- ks.test(rexp(20, rt2),
"pexp", rate=rt2)$statistic

175

}
ks.dat <- c(ks.test(x1, "pexp", rate=rt1)$statistic,

ks.test(x2, "pexp", rate=rt2)$statistic)

pushViewport(viewport(layout = grid.layout(1, 2)))
bw1 <- diff(range(ks.sim[, 1]))/50
bw2 <- diff(range(ks.sim[, 2]))/50
print(ggplot(data.frame(x=ks.sim[, 1]), aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw1) +

labs(x = "x", y = "") +
geom_vline(xintercept=ks.dat[1], color="blue"),

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggplot(data.frame(x=ks.sim[, 1]), aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw2) +

labs(x = "x", y = "") +
geom_vline(xintercept = ks.dat[2], color="blue"),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

0

20

40

60

0.1 0.2 0.3 0.4

x

0

20

40

60

0.1 0.2 0.3 0.4

x

sum(ks.sim[, 1]>ks.dat[1])/B

[1] 0.6
sum(ks.sim[, 2]>ks.dat[2])/B

[1] 0.049

176

and this test does not rely on any probability theory.

Simple Regression (One Predictor)

In this chapter we will discuss so called linear models. These are models of the form

Y = β0 + β1x1 + ..+ βkxk + ε

at first it seems rather restrictive to only consider linear models, but in fact these are quite
general. For one, the models are linear in the parameters, so for example

Y = aXb

log Y = log(axb) =
log a+ b log x

is also a linear model!
In this section we discuss simple regression, which means models with just one predictor.

Least Squares Regression

Example: Wine Consumption and Heart Desease

data on wine consumption per person per year and deaths from heart disease per 100000, by
country
kable.nice(wine)

177

Country Wine.Consumption Heart.Disease.Deaths
Australia 2.5 211
Austria 3.9 167
Belgium 2.9 131
Canada 2.4 191
Denmark 2.9 220
Finland 0.8 297
France 9.1 71
Iceland 0.8 211
Ireland 0.7 300
Italy 7.9 107
Netherlands 1.8 167
New Zealand 1.9 266
Norway 0.8 227
Spain 6.5 86
Sweden 1.6 207
Switzerland 5.8 115
United Kingdom 1.3 285
United States 1.2 199
Germany 2.7 172

ggplot(wine,
aes(Wine.Consumption, Heart.Disease.Deaths)) +

geom_point() +
labs(x="Wine Consumption", y="Deaths")

178

100

150

200

250

300

2.5 5.0 7.5

Wine Consumption

D
ea

th
s

We want to fit a linear model, that is a straight line. We will use the method of least
squares. The idea is as follows:
say the model is

heart disease = 260− 10× wine consumption

and we know that for a certain country (not in the data set) wine consumption is 3.7, then
according to our model the heart disease rate should be about

heart disease = 260− 10× 3.7 = 223

How do we find an equation? Well, to find some equation is easy:

179

100

150

200

250

300

2.5 5.0 7.5

Wine Consumption

D
ea

th
s

clearly the red line is not very good (to flat), the green one is better but still a bit to flat,
but how about the orange and blue ones? Both look reasonably good.
Is there a way to find a line that is “best” ? The answer is yes. In order to understand how
we need to following:
Let’s concentrate for a moment on the third line, which has the equation

heart disease = 270− 24 ∗ wine consumption

or short y = 270− 24x
The United States has a wine consumption of x = 1.2 liters and a heart disease rate of
y = 199. Now if we did not know the heart disease rate we could use the equation and find

y = 270− 24x = 270− 24 ∗ 1.2 = 241

Now we have 2 y’s:
• the one in the data (y = 199)

• the one from the equation (y = 241)
Let distinguish between them by calling the first the observed value and the second one
the fitted value.
Think of it in these terms: the fitted value is our guess, the observed value is the truth. So
the difference between them is the error in our guess. We call this the residual:

ε = fitted− observed = 241− 199 = 42

180

The line y = 270− 24x overestimates the heart disease rate in the US by 42.
If the line perfectly described the data, the residuals would all be 0:

2.5

5.0

7.5

10.0

2.5 5.0 7.5 10.0

x

x

This was done for the US, but of course we could do the same for all the countries in the
data set:

181

Country Consumption Deaths Fits Residuals
Australia 2.5 211 210.0 1.0
Austria 3.9 167 176.4 -9.4
Belgium 2.9 131 200.4 -69.4
Canada 2.4 191 212.4 -21.4
Denmark 2.9 220 200.4 19.6
Finland 0.8 297 250.8 46.2
France 9.1 71 51.6 19.4
Iceland 0.8 211 250.8 -39.8
Ireland 0.7 300 253.2 46.8
Italy 7.9 107 80.4 26.6
Netherlands 1.8 167 226.8 -59.8
New Zealand 1.9 266 224.4 41.6
Norway 0.8 227 250.8 -23.8
Spain 6.5 86 114.0 -28.0
Sweden 1.6 207 231.6 -24.6
Switzerland 5.8 115 130.8 -15.8
United Kingdom 1.3 285 238.8 46.2
United States 1.2 199 241.2 -42.2
Germany 2.7 172 205.2 -33.2

so for each country our line makes an error. What we need is a way to find an overall error.
The idea of least squares is to find the sum of squares of the residuals:

RSS =
∑

ε2

In the case of our line we find
RSS = (−1.0)2 + 9.42 + ..+ 33.22 = 25269.8

In the same way we can find an RSS for any line:
• y = 280-10x , RSS = 71893

• y = 260-20x , RSS = 40738

• y = 260-23x , RSS = 24399.7
notice that the first two, which we said were not so good, have a higher RSS. So it seems that
the lower the RSS, the better. Is there a line with the smallest RSS possible? The answer is
again yes, using the method of Least Squares for which we have the routine:
fit <- lm(Heart.Disease.Deaths~Wine.Consumption,

data=wine)
round(fit$coef, 2)

182

(Intercept) Wine.Consumption
260.56 -22.97

The least squares regression equation is:

heart disease = 260.56− 22.97 wine consumption

very close to the last of our equations.
What is its RSS? It is not part of the output, but I can tell you it is 24391.
A nice graph to visualize the model is the scatterplot with the least squares regression line,
called the fitted line plot
plt +

geom_smooth(method = "lm", se=FALSE)

100

200

300

2.5 5.0 7.5

Wine Consumption

D
ea

th
s

Alternatives to Least Squares

Instead of minimizing the sum of squares we could also have
• minimized the largest absolute residual

• minimized the sum of the absolute residuals

• some other figure of merit.
Historically least squares was use mostly because it could be done analytically:

183

d

dβ0

∑
(yi − β0 − β1xi)2 =

(−2)
∑

(yi − β0 − β1xi) =

(−2)
(∑

yi − nβ0 − β1
∑

xi
)

= 0

β̂0 = ȳ − β1x̄

and the same for β1. These days we can use pretty much any criterion we want:
fit.abs <- function(beta)

sum(abs(wine$Heart.Disease.Deaths
-beta[1]-beta[2]*wine$Wine.Consumption))

round(nlm(fit.abs, c(260, -23))$estimate, 2)

[1] 239.01 -18.46
plt +

geom_smooth(method = "lm", se=FALSE) +
geom_abline(slope = -18.46,

intercept = 239, color="red")

100

200

300

2.5 5.0 7.5

Wine Consumption

D
ea

th
s

This is often called the L1 regression. This also implemented in
library(robustbase)
X <- cbind(1, wine$Wine.Consumption)
lmrob.lar(X, wine$Heart.Disease.Deaths)$coefficients

[1] 239.00000 -18.46154

which uses a much better algorithm based on the simplex method.

184

One way to understand the difference between these two is the following: let’s use least
squares/absolute value to estimate the mean!
So we have the model

Y = β0 + ε

Using least square (now with β1 = 0) yields as above β̂0 = ȳ, the sample mean. What does
absolute error give? It can be shown that it leads to the median!
Just as the median is a robust (aka does not depend so much on outliers) estimator than the
mean, L1 estimation also is more robust.

Example: artificial example

x <- 1:20
y1 <- x + rnorm(20, 0, 1.5)
y2 <- y1 + rnorm(20, 0, 0.1)
y2[1] <- 20
df <- data.frame(x=c(x, x), y=c(y1, y2),

which=rep(c("with Outlier", "Without Outlier"), each=20))
lm1 <- coef(lm(y1~x))
lm2 <- coef(lm(y2~x))
l11 <- lmrob.lar(cbind(1, x), y1)$coefficients
l12 <- lmrob.lar(cbind(1, x), y2)$coefficients
print(lm1)

(Intercept) x
-0.9558222 1.0405002
ggplot(df, aes(x, y, color=which)) +

geom_point() +
geom_abline(intercept = lm1[1], slope = lm1[2], color="blue") +
geom_abline(intercept = lm2[1], slope = lm2[2], color="blue") +
geom_abline(intercept = l11[1], slope = l11[2], color="red") +
geom_abline(intercept = l12[1], slope = l12[2], color="red")

185

0

5

10

15

20

5 10 15 20

x

y

which

with Outlier

Without Outlier

and we see that the effect of the outlier is much larger on the least squares regression than
on the L1.

ANOVA

notice that ANOVA can also be viewed as a linear model, where the predictor variable is
categorical. The main difference is that the “model” there is found via the likelihood ratio
test rather than least squares and that the main interest is in hypothesis testing rather than
prediction.

Assumptions of Least Squares Regression

This page explains the assumptions behind the method of least squares regression and how
to check them.
Recall that we are fitting a model of the form

y = β0 + β1x

there are three assumptions:
1) The model is good (that is, the relationship is linear and not, say, quadratic, exponential

or something else)
2) The residuals have a normal distribution
3) The residuals have equal variance (are homoscadastic)

186

The second and third assumption we are already familiar with from ANOVA and correlation.
We can check these assumptions using two graphs:
• Residual vs. Fits plot: this is just what it says, a scatterplot of the residuals (on y-axis)

vs. the fitted values.
• Normal plot of residuals

1) Good Model
For this assumption draw the Residuals vs. Fits plot and check for any pattern
Example:
Linear model is good:
x <- 1:50
y <- 5 + 2*x + rnorm(50, 0, 5)
fit <- lm(y~x)
df <- data.frame(Fits=fitted(fit),

Residuals=residuals(fit))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)

−10

0

10

0 25 50 75 100

Fits

R
es

id
ua

ls

Linear model is bad:
x <- 1:50
y <- 0.1*x^2+rnorm(50, 0, 10)
fit <- lm(y~x)
df <- data.frame(Fits=fitted(fit),

Residuals=residuals(fit))

187

ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0)

−20

0

20

40

0 50 100 150 200

Fits

R
es

id
ua

ls

The U shaped pattern in the residual vs. fits plot is a very common one if the linear model is
bad.
2) Residuals have a Normal Distribution
For this assumption draw the normal probability plot and see whether the dots form a
straight line, just as we have done it many times by now.
3) Residuals have Equal Variance
Previously we could check the stdev within the groups and see whether they differed by
more than a factor of 3. Now, though we don’t have groups. Instead we will again draw the
Residuals vs. Fits plot and check whether the variance (or spread) of the dots changes as you
go along the x axis.

Example:

Equal Variance ok:

188

−10

−5

0

5

0.0 2.5 5.0 7.5 10.0

Fitted Values

R
es

id
ua

ls

Equal Variance not ok:

−10

0

10

0.0 2.5 5.0 7.5 10.0

Fitted Values

R
es

id
ua

ls

This can be a tricky one to decide, especially if there are few observations.

Example Case Study: Wine Consumption and Heart Disease

Let’s check the assumptions for the wine consumption data:
fit <- lm(Heart.Disease.Deaths~Wine.Consumption,

data=wine)
df <- data.frame(x=fitted(fit), y=resid(fit))

189

ggplot(df, aes(x, y)) +
geom_point() +
geom_hline(yintercept=0) +
labs(x="Fitted Values", y="Residuals")

−60

−30

0

30

60

50 100 150 200 250

Fitted Values

R
es

id
ua

ls

qplot(data=df, sample=y) +
stat_qq() + stat_qq_line()

−80

−40

0

40

80

−2 −1 0 1 2

the normal plot is fine, and the residual vs. fits plot is fine as far the linear model assumption
goes. There is, though, an appearance of unequal variance. This judgement is made more

190

difficult here, though, because there is very little data in the left half of the graph, and
naturally a few dots won’t have a large spread. It will take time for you to be able to judge
these graphs properly. In fact this one is ok. Not great, but ok.
Note a final decision on whether the assumptions are justified is ALWAYS made based on
the Residual vs. Fits Plot and the Normal plot of Residuals.

Prediction

Basic Concept

In this section we want to use a model to make predictions for y for some fixed x.

Example: Quality of Fish

A study was conducted to examine the quality of fish after several days in ice storage. Ten
raw fish of the same kind and quality were caught and prepared for storage. Two of the
fish were placed in ice storage immediately after being caught, two were placed there after 3
hours, and two each after 6, 9 and 12 hours. Then all the fish were left in storage for 7 days.
Finally they were examined and rated according to their “freshness”.
Use this data set to estimate the quality of a fish that was put into ice 4 hours after being
caught.
fish

Time Quality
1 0 8.5
2 0 8.4
3 3 7.9
4 3 8.1
5 6 7.8
6 6 7.6
7 9 7.3
8 9 7.0
9 12 6.8
10 12 6.7
plt <- ggplot(fish, aes(Time, Quality)) +

geom_point()
plt

191

7.0

7.5

8.0

8.5

0.0 2.5 5.0 7.5 10.0 12.5

Time

Q
ua

lit
y

fit <- lm(Quality ~ Time, data=fish)
round(fit$coef, 3)

(Intercept) Time
8.460 -0.142

so we have

Quality = 8.46− 0.142 ∗ 4 = 7.9
We can also let R do the calculation for us:
round(predict(fit, newdata=data.frame(Time=4)), 2)

1
7.89

Confidence vs. Prediction Intervals

Again we want an idea of the “error” in our estimate. Previously we used confidence intervals
to do this. Here we will again use confidence intervals, but in the context of regression there
are two types of intervals:
Confidence Interval - used to predict the mean response of many observations with the
desired x value.
Prediction Interval - used to predict the individual response of one observation with the
desired x value.
Warning

192

The terminology is a little confusing here, with the same term meaning different things:
Both confidence intervals and prediction intervals as found by the regression command are
confidence intervals in the sense discussed before, and both are used for prediction!
They differ in what they are trying to predict, on the one hand an individual response
(PI), on the other hand the mean of many responses (CI).

Example Fish

Use this data set to find a 95% interval estimate for the quality of a fish that was put into
storage after 4 hours.
We are talking about one fish, so we want a prediction interval:
round(predict(fit, newdata=data.frame(Time=4),

interval="prediction"), 2)

fit lwr upr
1 7.89 7.6 8.19

so a 95% prediction interval for the rating of fish after 4 hours is (7.60, 8.19)
Example Again consider the Quality of Fish data. Use this data set to find a 90% interval
estimate for the mean quality of fish that were put into storage after 4 hours.
Now we are interested in the mean rating of many fish, so we want a confidence interval.
Also we want a 90% interval instead of 95%:
round(predict(fit, newdata=data.frame(Time=4),

interval="confidence",
level = 0.90), 2)

fit lwr upr
1 7.89 7.81 7.97

so a 90% confidence interval for the mean rating of fish after 4 hours is (7.81, 7.97).
The two 90% intervals are shown in the next graph, the prediction interval in green and the
confidence interval in red:

193

7.0

7.5

8.0

8.5

0.0 2.5 5.0 7.5 10.0 12.5

Time

Q
ua

lit
y

Notice that the prediction intervals are always wider than the confidence intervals.
The predict command can also be used to find a number of fits and intervals simultaneously:
round(predict(fit, newdata=data.frame(Time=1:10),

interval="prediction",
level = 0.99), 2)

fit lwr upr
1 8.32 7.87 8.77
2 8.18 7.74 8.62
3 8.04 7.60 8.47
4 7.89 7.46 8.32
5 7.75 7.33 8.18
6 7.61 7.19 8.03
7 7.47 7.04 7.89
8 7.33 6.90 7.76
9 7.19 6.75 7.62
10 7.04 6.60 7.48

If the newdata argument is left off the prediction is done for the data itself:
round(predict(fit), 2)

1 2 3 4 5 6 7 8 9 10
8.46 8.46 8.04 8.04 7.61 7.61 7.19 7.19 6.76 6.76

194

Prediction vs. Extrapolation

There is a fundamental difference between predicting the response for an x value within the
range of observed x values (=Prediction) and for an x value outside the observed x values
(=Extrapolation). The problem here is that the model used for prediction is only known to
be good for the range of x values that were used to find it. Whether or not it is the same
outside these values is generally impossible to tell.
Note Another word for prediction is interpolation
Example: Quality of Fish data

Prediction Extrapolation

5

6

7

8

0 5 10 15 20

Time

Q
ua

lit
y

Nonlinear Models

Transformations and Polynomial Models

Example: Fabric Wear

Results from an experiment designed to determine how much the speed of a washing machine
effects the wear on a new fabric. The machine was run at 5 different speeds (measured in
rpm) and with six pieces of fabric each.
head(fabricwear)

Speed Wear
1 110 24.9
2 110 24.8
3 110 25.1
4 110 26.4
5 110 27.0

195

6 110 26.6

The scatterplot of wear by speed shows a strong but non-linear relationship:
ggplot(data=fabricwear, aes(Speed, Wear)) +

geom_point()+
geom_smooth(method = "lm", se=FALSE)

30

40

50

125 150 175

Speed

W
ea

r

How strong is a difficult question, because Pearson’s correlation coefficient won’t work here.
If we tried lm we would see in the residual vs fits plot that there is a problem with the
assumption of a linear model:
fit <- lm(Wear~Speed, data=fabricwear)
df <- data.frame(Fits=fitted(fit),

Residuals=resid(fit))
ggplot(df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)

196

−5.0

−2.5

0.0

2.5

5.0

25 30 35 40 45

Fits

R
es

id
ua

ls

So the question is: how do we fit models other than straight lines?
There are two basic things we can try. The first is something we have already done, namely
the log transformations

30

40

50

4.7 4.8 4.9 5.0 5.1 5.2

log(Speed)

W
ea

r

3.2

3.4

3.6

3.8

4.7 4.8 4.9 5.0 5.1 5.2

log(Speed)

lo
g(

W
ea

r)

3.2

3.4

3.6

3.8

125 150 175

Speed

lo
g(

W
ea

r)

unfortunately non of these looks very good
Some of these have names:
• log(y) vs. x is called an exponential model
• log(y) vs. log(x) is called a power model

197

The other solution to our problem is to fit a polynomial model:
Linear y = β0 + β1x

Quadratic y = β0 + β1x+ β2x
2

Cubic y = β0 + β1x+ β2x
2 + β3x

3

and so on
How do we fit such a model? We simply calculate the powers and use them in lm:
Speed2 <- Speed^2
quad.fit <- lm(Wear~Speed+Speed2, data=fabricwear)
quad.df <- data.frame(Fits=fitted(quad.fit),

Residuals=resid(quad.fit))
ggplot(quad.df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)

−4

−2

0

2

25 30 35 40 45

Fits

R
es

id
ua

ls

What does such a curve look like?
x <- seq(min(fabricwear$Speed),

max(fabricwear$Speed),
length=250)

y <- coef(quad.fit)[1] +
coef(quad.fit)[2]*x +
coef(quad.fit)[3]*x^2

df.tmp <- data.frame(x=x, y=y)
ggplot(data=fabricwear, aes(Speed, Wear)) +

geom_point() +
geom_line(data=df.tmp, aes(x, y),

198

inherit.aes = FALSE,
color="blue", size=1.2)

25

30

35

40

45

50

125 150 175

Speed

W
ea

r

There is however something not so good about this solution: our x values are of the size 100,
their square is of order 10000. Using variables with very different sizes can lead to troubles
in a regression. Also we have
cor(fabricwear$Speed, Speed2)

[1] 0.9969033

and again using highly correlated predictors is an issue. One way around these problems is
to use the poly command:
poly.fit <- lm(Wear~poly(Speed, 2), data=fabricwear)
coef(poly.fit)

(Intercept) poly(Speed, 2)1 poly(Speed, 2)2
34.10333 42.39626 13.20218

The poly command does two things: it scales all the variables so that their mean is 0 and
their standard deviation is 1, and it changes them in such a way that they are uncorrelated.
This makes the regression calculations much more stable.
If the goal is prediction, this is fine:
predict(quad.fit,

newdata=data.frame(Speed=150, Speed2=150^2))

1
31.22238

199

predict(poly.fit, newdata=data.frame(Speed=150))

1
31.22238

but when it comes to getting the actual model, we would have to “reverse” the calculations
done by poly, and we don’t even know what those were, exactly.
There is an intermediate solution that sometimes works well: scale the x variable first:
mn <- mean(fabricwear$Speed)
s <- sd(fabricwear$Speed)
x <- (fabricwear$Speed-mn)/s
x2 <- x^2
round(c(mn, s, cor(x, x2)), 2)

[1] 150.00 28.77 0.00
quad.scale.fit <- lm(fabricwear$Wear~x+x2)
coef(quad.scale.fit)

(Intercept) x x2
31.222381 7.872787 2.980296

so first we also got uncorrelated predictors (that is just here, but in general the correlations
will be low). Also:

x = Speed− 150
28.77

y = 31.2 + 7.87x+ 2.98x2

y = 31.2 + 7.87 Speed− 150
28.77 + 2.98

(
Speed− 150

28.77

)2

=

31.2 + 0.2735 Speed− 41.03+
0.0036 Speed2 − 1.08 Speed + 81 =
71.17− 0.806 Speed + 0.0036 Speed2

and that is the same as
coef(quad.fit)

(Intercept) Speed Speed2
71.19916667 -0.80669048 0.00360119

Prediction

Again we can use the predict command to do prediction, but there are some things we need
to be careful with:

200

predict(quad.fit,
newdata=data.frame(Speed=150,

Speed2=150^2))

1
31.22238
lwear <- log(Wear)
lspeed <- log(Speed)
log.fit <- lm(lwear~lspeed)
exp(predict(log.fit,

newdata=data.frame(lspeed=log(150))))

1
33.87835

How about interval estimation? Let’s do a simple simulation: consider the model y = x2. It
is both a quadratic model and linear in log-log, so we should be able to fit it either way:
B <- 1000
x <- 1:100/100
out <- matrix(0, 1000, 6)
lx <- log(x)
x2 <- x^2
for(i in 1:B) {

y <- x^2 + rnorm(100,0, 0.07)
pf <- lm(y~x+x2)
out[i, 1:3] <- predict(pf,

newdata=data.frame(x=0.5, x2=0.25),
interval="confidence")

ly <- log(y)
lf <- lm(ly~lx)
out[i, 4:6] <- exp(predict(lf,

newdata=data.frame(lx=log(0.5)),
interval="confidence"))

}

#quadratic model
sum(out[, 2]<0.5^2 & 0.5^2<out[, 3])/B

[1] 0.949
#log transform
sum(out[, 5]<0.5^2 & 0.5^2<out[, 6])/B

[1] 0.794

so this works fine for quadratic model but fails miserably for the log transform.
Why is that? Part of the problem is the error term. Note that what we really have is

201

y = x2 + ε

so taking logs leads to

log y = log(x2 + ε)
and not to what we are fitting, namely

log y = log(x2) + ε

Finding the best model - Overfitting

Example: Predicting the Usage of Electricity

In Westchester County, north of New York City, Consolidated Edison bills residential cus-
tomers for electricity on a monthly basis. The company wants to predict residential usage,
in order to plan purchases of fuel and budget revenue flow. The data includes information
on usage (in kilowatt-hours per day) and average monthly temperature for 55 consecutive
months for an all-electric home. Data on consumption of electricity and the temperature in
Westchester County, NY.
kable.nice(elusage[1:10,])

Month Year Usage Temperature
8 1989 24.828 73
9 1989 24.688 67

10 1989 19.310 57
11 1989 59.706 43
12 1989 99.667 26
1 1990 49.333 41
2 1990 59.375 38
3 1990 55.172 46
4 1990 55.517 54
5 1990 25.938 60

ggplot(aes(Temperature, Usage), data=elusage) +
geom_point()

202

25

50

75

100

40 60 80

Temperature

U
sa

ge

Let’s find the least squares model:
fit <- lm(Usage~Temperature, data=elusage)
round(fit$coef, 2)

(Intercept) Temperature
116.72 -1.36

gives the model as

Usage = 116.72− 1.36 Temperature + ε

but
ggplot(data=data.frame(Fits=fitted(fit),

Residuals=residuals(fit)),
aes(Fits, Residuals)) +

geom_point() +
geom_abline(slope = 0)

203

−20

−10

0

10

20

30

20 40 60 80

Fits

R
es

id
ua

ls

shows that this is a bad model.
So now we try the
• quadratic model

quad.fit <- lm(Usage~poly(Temperature, 2),
data=elusage)

the residual vs fits plot for this model is
ggplot(aes(Fits, Residuals),

data=data.frame(Fits=fitted(quad.fit),
Residuals=residuals(quad.fit))) +

geom_point() +
geom_abline(slope = 0)

204

−10

0

10

20

20 40 60 80 100

Fits

R
es

id
ua

ls

and that is much better.
• Transformations

log.usage <- log(Usage)
log.temp <- log(Temperature)
log.fit <- lm(log.usage~log.temp)

ggplot(aes(Fits, Residuals),
data=data.frame(Fits=fitted(log.fit),

Residuals=residuals(log.fit))) +
geom_point() +
geom_abline(slope = 0)

205

−0.75

−0.50

−0.25

0.00

0.25

0.50

3.0 3.5 4.0 4.5

Fits

R
es

id
ua

ls

Now we have to models with good residual vs fits plots. How do we choose among these
models? A standard measure of the quality of the fit is the Coefficient of Determination.
It is defined as

R2 = cor(Observed Values, Predicted Values)2100%

the better a model is, the more correlated it’s fitted values and the observed values should
be, so if we have a choice of two model, the one with the higher R2 is better.
Here we find
Quadratic Model
round(100*summary(quad.fit)$r.squared, 2)

[1] 84.69
Log Transfrom Model
round(100*summary(log.fit)$r.squared, 2)

[1] 81.12

Now the R2 of the quadratic model is 84.69% and that of the log transform model is 81.12%,
so the quadratic one is better.
Let’s have a look what those models look like:
x <- seq(min(Temperature), max(Temperature), length=100)
y.quad <- predict(quad.fit,

newdata=data.frame(Temperature=x))
y.log <- exp(predict(log.fit,

206

newdata=data.frame(log.temp=log(x))))
dta <- data.frame(x=c(x, x),

y=c(y.quad, y.log),
Model=rep(c("Quadratic", "Log"),

each=100))
ggplot(data=elusage, aes(Temperature, Usage)) +

geom_point() +
geom_line(data=dta, aes(x, y, color=Model), size=1.2) +
xlab("Temperature") +
ylab("Usage")

25

50

75

100

125

40 60 80

Temperature

U
sa

ge

Model

Log

Quadratic

Could we do even better? Let’s check the cubic model:
cube.fit <- lm(Usage~poly(Temperature,3),

data=elusage)
round(100*summary(cube.fit)$r.squared, 2)

[1] 84.72

and yes, it’s R2 = 84.72 > 84.69!
but we need to be careful here: the quadratic model is a special case of the cubic model, and
so it’s R2 can never be smaller.
The reason for this is simple: Say we find the best quadratic model, which is

Usage = β̂02 − β̂12 T + β̂22 T2

Now we add the cubic term T3 as a predictor. One (of many) cubic models is

207

Usage = β̂02 − β̂12 T + β̂22 T2 + 0.0 T3

this is of course the same as the quadratic model above, so it has R2 = 84.69%. Only the
least squares cubic model is the best cubic model, so it’s R2 cannot be smaller (and because
of statistical fluctuation usually will be even a bit higher, even if the cubic term is not useful).

Question: which of these polynomial models should you use?

Linear Model

−5.0

−2.5

0.0

2.5

5.0

0 10 20

Fitted Values

R
es

id
ua

ls

−5.0

−2.5

0.0

2.5

5.0

−1 0 1

theoretical

sa
m

pl
e

0

10

20

30

0.00 0.25 0.50 0.75 1.00

x

y

208

Quadratic Model

−1

0

1

2

0 10 20 30

Fitted Values

R
es

id
ua

ls

−1

0

1

2

−1 0 1

theoretical

sa
m

pl
e

0

10

20

30

0.00 0.25 0.50 0.75 1.00

x

y

Cubic Model

209

−1

0

1

2

0 10 20 30

Fitted Values

R
es

id
ua

ls

−1

0

1

2

−1 0 1

theoretical
sa

m
pl

e

0

10

20

30

0.00 0.25 0.50 0.75 1.00

x

y

Power 11 Model

210

0

10

20

30

0.00 0.25 0.50 0.75 1.00

x

y

and this one is perfect, it has R2 = 100%.
Actually, it is always possible to find a polynomial model which fits the data set perfectly,
that is it has R2 = 100%! (Hint: look up Legendre polynomials)
But: we want our models to fit the relationship, not the random fluctuations in the data set.
A model should be parsimoneous, that is as simple as possible.
This is in agreement with one of the fundamental principles of science:
Ockham’s razor, named after William of Ockham
Ockham’s razor is the principle that “entities must not be multiplied beyond necessity” (entia
non sunt multiplicanda praeter necessitatem). The popular interpretation of this principle is
that the simplest explanation is usually the correct one.
For our problem this means: Use the polynomial model of lowest degree that can’t be
improved statistically significantly by adding another power.
Let’s consider again the quadratic and the cubic models: the cubic model is better than the
quadratic one (in terms of R2), but is it statistically significantly better?
It turns out we can actually test this:
anova(cube.fit, quad.fit)

Analysis of Variance Table
##
Model 1: Usage ~ poly(Temperature, 3)
Model 2: Usage ~ poly(Temperature, 2)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 51 4756.9
2 52 4766.4 -1 -9.4466 0.1013 0.7516

211

http://en.wikipedia.org/wiki/William_of_Ockham

and so the answer is no, the cubic is not better. So we should use the quadratic one!

Warning as always a GOOD MODEL is one with a good residual vs. fits plot. It can happen
that both the quadratic and the cubic are bad models and this test fails to reject the null
because they are equally bad!

Note: if we have two models, one of which is a special case of the other, we say we have
nested models.
Example: quadratic and cubic
Example: y vs x and y vs x, z
In all of those cases the model with more predictors will NEVER have a smaller R2, so using
R2 would always lead to the model with all the terms, which may not be best.

Choosing between good Models

In choosing the best model (from our short list) proceed as follows: Model is “good” = no
pattern in the Residual vs. Fits plot
1. If a linear model is good, use it, you are done

If the linear model is not good, proceed as follows
2. check the transformation models and see which of these (if any) are good.
3. find the best polynomial model using method described above.
4. Choose as the best of the good models in 2) and 3) the one which has the highest R2.

Back to Electricity usage. We have found:
• best transformation model is y vs log of x with R2 = 82.9%
• best polynomial model is the quadratic with R2 = 84.7%
• so best overall is quadratic.

An important comment
Having a high R2 is desirable, but neither necessary for a model to be good, nor an indication
that a model is good:
Example 1970’s draft data:

212

−200

−100

0

100

200

140 160 180 200 220

Fits

R
es

id
ua

ls

[1] 5.1

the linear model is a good one, even though it has a very low R2 = 5.1%
Example fabric wear data:

−5.0

−2.5

0.0

2.5

5.0

25 30 35 40 45

Fits

R
es

id
ua

ls

[1] 88.6

the linear model is bad, even though it has a fairly high R2 = 88.6%.

Example: Lunatics in Massachusettes

213

The data are from an 1854 survey conducted by the Massachusetts Commission on Lunacy
(Mental disorder) under the leadership of Edward Jarvis. Dr. Jarvis was President of the
American Statistical Association from 1852 to 1882.
lunatics

County Number Distance Percent.at.Home
1 BERKSHIRE 119 97 77
2 FRANKLIN 84 62 81
3 HAMPSHIRE 94 54 75
4 HAMPDEN 105 52 69
5 WORCESTER 351 20 64
6 MIDDLESEX 357 14 47
7 ESSEX 377 10 47
8 SUFFOLK 458 4 6
9 NORFOLK 241 14 49
10 BRISTOL 158 14 60
11 PLYMOUTH 139 16 68
12 BARNSTABLE 78 44 76
13 NANTUCKET 12 77 25
14 DUKES 19 52 79

We want to find a model to predict the percentage of lunatics kept at home by the distance
to the nearest insane asylum.
ggplot(data=lunatics, aes(Distance, Percent.at.Home)) +

geom_point() +
labs(x= "Percentage")

20

40

60

80

0 25 50 75 100

Percentage

P
er

ce
nt

.a
t.H

om
e

First we have a serious outlier. This turns out to be Nantucket, which is not a surprise
because it is an island and people had to take a boat to get to the nearest asylum. We will

214

therefore take Nantucket out of the data set:
df <- data.frame(

Distance=lunatics$Distance[-13],
Percentage=lunatics$Percent.at.Home[-13])

df <- df[order(df$Distance),]

ggplot(data=df, aes(Distance, Percentage)) +
geom_point()

20

40

60

80

0 25 50 75 100

Distance

P
er

ce
nt

ag
e

fits <- as.list(1:5)
for(i in 1:5) {

fits[[i]] <- lm(Percentage~poly(Distance, i),
data=df)

print(ggplot(data=data.frame(Fits=fitted(fits[[i]]),
Residuals=residuals(fits[[i]])),

aes(Fits, Residuals)) +
geom_point() +
geom_abline(slope = 0))

cat("Degree =", i, "\n")
cat("R^2 =",

round(100*summary(fits[[i]])$r.squared, 1), "\n")
if(i>1)

cat("p value =",
round(anova(fits[[i]], fits[[i-1]])[[6]][2], 3))

}

215

−40

−20

0

50 60 70 80 90

Fits

R
es

id
ua

ls

Degree = 1
R^2 = 50.3

−30

−20

−10

0

10

40 50 60 70 80

Fits

R
es

id
ua

ls

Degree = 2
R^2 = 70.7
p value = 0.025

216

−5

0

5

10

20 40 60 80

Fits

R
es

id
ua

ls

Degree = 3
R^2 = 88.7
p value = 0.004

−5

0

5

20 40 60 80

Fits

R
es

id
ua

ls

Degree = 4
R^2 = 94.1
p value = 0.027

217

−5

0

5

20 40 60 80

Fits

R
es

id
ua

ls

Degree = 5
R^2 = 94.2
p value = 0.782

so we find that the polynomial of degree 4 is statistically significantly better than the cubic
on (p=0.027) but the degree 5 is not stat. signif. better than the degree 4 one (p=0.782). So
we will use degree 4.
What does this model look like?
fit <- lm(Percentage~poly(Distance, 4), data=df)
x <- seq(1, 99, length=100)
df1 <- data.frame(x=x,

y=predict(fit, newdata=data.frame(Distance=x)))
ggplot(data=df, aes(Distance, Percentage)) +

geom_point() +
geom_line(data=df1, aes(x, y),

color="blue", size=1.2)

218

0

25

50

75

100

0 25 50 75 100

Distance

P
er

ce
nt

ag
e

and this is not all that good either, the curve on the right of x=75 is basically determined by
one observation and the bump at x=85 is an artifact of a power 4 model.

Nonparametric Regression, Smoothing

Consider the following graph:
ggplot(wine,

aes(Wine.Consumption, Heart.Disease.Deaths)) +
geom_point() +
geom_smooth(se=FALSE)

219

100

150

200

250

300

2.5 5.0 7.5

Wine.Consumption

H
ea

rt
.D

is
ea

se
.D

ea
th

s

Notice that this is the default of geom_smoooth, if you want the least squares line you need
to use the argument method=“lm”.
What is this curve?
A completely different approach to fitting non-linear problems is via local and non-parametric
regression. Say we have a model of the form y = f(x) for some function f , and we want to
estimate y0 = f(x0). In this type of fitting procedure y0 is estimated using only x values close
to x0, or at least the contribution of x values close to x0 is weighted more heavily than others.
One popular method for smoothing is the function loess. It works as follows:
1) Find the k nearest neighbors of x0, which constitute a neighborhood N(x0). The number

of neighbors k is specified as a percentage of the total number of points in the data set.
This percentage is called the span and is a tuning parameter of the method.

2) Calculate the largest distance D(x0) between x0 and another point in the neighborhood.
3) Assign weights to each point in N(x0) using the tri-cube weight function:

W (x0 − x1

∆(x0))

where

W (u) = (1− u3)3I[0,1](u)
4) Calculate the weighted least squares fit of x0 on the neighborhood N(x0).
As we saw above, when it is supposed to be added to a ggplot it is easily done with the
geom_smooth() command. The span can be changed with

220

ggplot(wine,
aes(Wine.Consumption, Heart.Disease.Deaths)) +

geom_point() +
geom_smooth(se=FALSE, span=0.3, color="green") +
geom_smooth(se=FALSE) +
geom_smooth(se=FALSE, span=1.3, color="red")

100

150

200

250

300

2.5 5.0 7.5

Wine.Consumption

H
ea

rt
.D

is
ea

se
.D

ea
th

s

so a larger value of span leads to a smoother curve. The default is 0.75.
To get actual predictions do this:
fit <- loess(Heart.Disease.Deaths~Wine.Consumption,

data=wine)
predict(fit, data.frame(Wine.Consumption=5))

1
130.7324

There are a number of nonparametric regression methods implemented in R:
• ksmooth finds the Nadaraya-Watson kernel regression estimate, which is of the form

ŷi =
∑n
j=1 yiK(xi−xj

h
)∑n

j=1K(xi−xj
h

)

here K is the kernel function, usually one of the following:
• Normal density: K(x) = 1√

2π exp(−1
2x

2)

• Tukey’s Biweight: K(x) = 15
16(1− x2)2I[0,1](x)

• Epanechnikov: K(x) = 3
4(1− x2)I[0,1](x)

221

and h is the equivalent to span in loess, a tuning parameter.
• smooth.spline fits a cubic smoothing spline.

Splines are smooth piecewise polynomial functions often used in numerical analysis. Cubic
splines specifically use polynomials up to degree 3. The cubic functions change at points
called knots and are chosen such that the whole function is continuous.
Let’s consider the following artificial example: we generate some data, using the model

y = 5− 2x+ 0.35x2 − 0.01x3, x < 5
y = 2.5, x > 5

x <- sort(runif(100, 0, 10))
df <- data.frame(x=x,

y=ifelse(x<5, 5-2*x+0.35*x^2-0.01*x^3, 2.5)+
rnorm(100, 0, 0.25))

plt <- ggplot(df, aes(x, y)) + geom_point()
newx <- seq(0, 10, length=100)
df.true <- data.frame(x=newx,

y=ifelse(newx<5,
5-2*newx+0.35*newx^2-0.01*newx^3, 2.5))

plt + geom_line(data=df.true, aes(x, y))

2

3

4

5

0.0 2.5 5.0 7.5 10.0

x

y

we wish to fit cubic splines to the data set. That is we fit a model of the form

y = α0j + α1jx+ α2jx
2 + α3jx

3

if xj−1 < x < xj (with x0 = −∞ and xk+1 =∞). Here the xj are the knots. Sometimes these
are also estimated from the data, but for now we keep it simple and assume we know k = 1
and x1 = 5.

222

We want to estimate the αij via least squares but with the condition that the resulting
function be continuous, which results in the condition

α0j + α1jxj + α2jx
2
j + α3jx

3
j = α0j+1 + α1j+1xj + α2j+1x

2
j + α3j+1x

3
j

In general such conditional optimization problems can be solved with methods such as
Lagrange Multipliers, but we don’t need to worry about that, the routine smooth.spline takes
care of it for us:
fit <- smooth.spline(dfx, dfy, spar = 0.8)
df1 <- data.frame(predict(fit,

data.frame(x = seq(0, 10, length = 100))))
colnames(df1)[2] <- "y"
df1 <- rbind(df1, df.true)
df1$Which <- rep(c("Spline", "True"), each=100)
plt + geom_line(data=df1, aes(x, y, color=Which),

size=1.2)

2

3

4

5

0.0 2.5 5.0 7.5 10.0

x

y

Which

Spline

True

There is one drawback of this solution: it does not allow us to specify the exact location of
the knot. Here is how to do this: first we introduce a new variable: z = x− 5 if x > 5 and 0
otherwise. Next we use lm to fit the model

y = γ0 + γ1x+ γ2x
2 + γ3x

3 + γ4z + γ5z
2 + γ6z

3

it is easy to see how to recover the α′s from this fit.
x <- df$x
z <- ifelse(x < 5, 0, x - 5)
x2 <- x^2

223

x3 <- x^3
z2 <- z^2
z3 <- z^3
fit <- lm(df$y ~ x + x2 + x3 + z + z2 + z3)
g <- coef(fit)
a <- g[1:4]
b <- c(g[1] - g[5] * 5 + g[6] * 5^2 - g[7] * 5^3, g[2] +

g[5] - 2 * g[6] * 5 + 3 * g[7] * 5^2, g[3] +
g[6] - 3 * g[7] * 5, g[4] + g[7])

print(rbind(a, b))

(Intercept) x x2 x3
a 4.966620 -1.846639 0.3156114 -0.009369247
b -7.468325 4.345847 -0.6125869 0.028050529
y <- rep(0, 100)
y[x <= 5] <- a[1] + a[2] * x[x <= 5] +

a[3] * x[x <= 5]^2 + a[4] * x[x <= 5]^3
y[x > 5] <- b[1] + b[2] * x[x > 5] + b[3] *

x[x > 5]^2 + b[4] * x[x > 5]^3
df.tmp <- data.frame(x=x, y=y, Which=rep("lm", 100))
df1 <- rbind(df1, df.tmp)
plt + geom_line(data=df1, aes(x, y, color=Which),

size=1.1)

2

3

4

5

0.0 2.5 5.0 7.5 10.0

x

y

Which

lm

Spline

True

Finally, let’s add the loess and the ksmooth solutions as well:
x <- seq(0, 10, length = 100)
fit <- loess(y~x, data=df)

224

df.loess <- data.frame(x=x,
y=predict(fit, data.frame(x = x)),
Which=rep("loess", 100))

df.ksmooth <- data.frame(x=x,
y=ksmooth(dfx, dfy, bandwidth = 2)$y,
Which=rep("ksmooth", 100))

df1 <- rbind(df1, df.loess, df.ksmooth)
plt + geom_line(data=df1, aes(x, y, color=Which))

2

3

4

5

0.0 2.5 5.0 7.5 10.0

x

y

Which

ksmooth

lm

loess

Spline

True

Notice the different ways theses methods are called, mostly due to history of how and by
whom they were added to R.
In general the choice of method is less important than the choice of:

Bandwidth (Smoothing Parameter)

One of the most active research areas in Statistics in the last 20 years has been the search for
a method to find the “optimal” bandwidth for a smooother. There are now a great number
of methods to do this, unfortunately non of them is fully satisfactory. We will briefly look at
one method which is one of the main contenders: cross-validation.
In order to find an “optimal” solution we need to first decide what “optimal” means. Here
we will consider the MISE (mean integrated square error):

MISE = E
[
]
∫
||f̂(x; b)− f(x; b)||2

]
dx

Of course the MISE depends on the unknown function f, and so we need to estimate it
from the data. This is done via cross-validation, that is using the observations (x1, y1), ..,

225

(xi−1, yi−1), (xi+1, yi+1), .., (xn, yn) to fit the curve at xi and get an estimate of yi. Then you
do this for all i and average over the error.
This specific description is often called leave-one-out cross-validation, for obvious reasons.
One problem of this method is that for large data sets it is very computationally demanding.
cross-validation is already implemented in R for one of the smoothers, namely smooth.spline.
If we do not specify a bandwidth (spar or df) the routine will invoke the cross-validation
procedure and choose the bandwidth automatically.
fit <- smooth.spline(dfx, dfy)
df2 <- data.frame(predict(fit,

data.frame(x = seq(0, 10, length = 100))))
colnames(df2)[2] <- "y"
plt + geom_line(data=df2, aes(x, y),

color="blue", size=1.2)

2

3

4

5

0.0 2.5 5.0 7.5 10.0

x

y

Example: Lunatics

Let’s implement leave-one-out cross-validation for the loess method and apply it to the
lunatics data:
cr <- function(df, span) {

n <- dim(df)[1]
x <- df[[1]]
y <- df[[2]]
eps <- rep(0, n)
for(i in 1:n) {

fit <- loess(y[-i]~x[-i], span=span, surface="direct")
yhat <- predict(fit, x[i])

226

eps[i] <- (y[i]-yhat)^2
}
mean(eps)

}

span <- seq(0.6, 2, length=25)
eps <- span
for(i in 1:25) {

eps[i] <- cr(lunatics[, 3:4], span[i])
}

ggplot(data=data.frame(span=span, epsilon=eps),
aes(span, epsilon)) +

geom_line()

1500

2000

2500

1.0 1.5 2.0

span

ep
si

lo
n

span.cr <- span[eps==min(eps)]
span.cr

[1] 1.183333
fit <- loess(Percent.at.Home~Distance, span=span.cr,

data = lunatics[-13,],
surface="direct")

fit1 <- loess(Percent.at.Home~Distance, span=0.75,
data = lunatics[-13,],
surface="direct")

x <- 0:100
y <- c(predict(fit, x), predict(fit1, x))
df <- data.frame(x=c(x, x), y,

227

span=rep(c("cr", "default"), each=101))
ggplot(data=lunatics,

aes(Distance, Percent.at.Home)) +
geom_point() +
geom_line(data=df, aes(x, y, color=span),

inherit.aes = FALSE)

0

20

40

60

80

0 25 50 75 100

Distance

P
er

ce
nt

.a
t.H

om
e

span

cr

default

and we see that the smoother curve looks better.

Interval Estimation

How do we do interval estimation when using loess? As with the predict method for lm we
can again get an estimate of the standard error by including se=TRUE. However, the predict
command for loess does not have an *interval“* argument. So how do we know whether these
are confidence or prediction intervals?
Let’s find out. For this we do a little simulation study. We generate 100 x uniform on [0,10]
and then 100 y=10+3x+N(0,3). We fit the loess model (using span=0.75) and predict yhat
at x=5.0, then we do the same using lm.
B <- 1000
se.loess = rep(0, B)
se.lm = rep(0, B)
for (i in 1:B) {

x <- runif(100, 0, 10)
y <- 10 + 3 * x + rnorm(100, 0, 3)
se.loess[i] <- predict(loess(y ~ x),

newdata = data.frame(x = 5),
se = TRUE)$se.fit

228

se.lm[i] <- predict(lm(y ~ x),
newdata = data.frame(x = 5),
se = TRUE)$se.fit

}
cat("loess error: ", sd(se.loess), "\n")

loess error: 0.05266052
cat("lm error: ", sd(se.lm), "\n")

lm error: 0.02182876

We see that the errors in loess are larger (with a larger standard deviation) than those of lm.
This to be expected, after all we are using a lot more information in lm, namely the exact
model for the data and the exact distribution of the residuals.
Notice also that
out <- predict(lm(y ~ x), newdata = data.frame(x = 5),

se = TRUE, interval="confidence")
round(out$fit[2:3], 1)

[1] 24.3 25.6
round(out$fit[1]+c(-1, 1)*qnorm(0.975)*out$se.fit, 1)

[1] 24.3 25.6

so we see that these errors give us confidence intervals. But what if we want prediction
intervals?
We have the following equations for the errors:

sefit = σ̂

√
1
n

+ (x− x̄)2

sxx

sepred = σ̂

√
1 + 1

n
+ (x− x̄)2

sxx

where sxx is the sum of squares and σ̂ is an estimate of the standard deviation. It is part of
the fit object with as.numeric(fit[5]). So

1
n

+ (x− x̄)2

sxx
= sefit

σ̂2

sepred = σ̂

√
1 +

se2
fit

σ̂
=
√
σ̂2 + se2

fit

and so we can find prediction intervals with
fit <- loess(y ~ x)
yhat <- predict(fit)
sighat <- as.numeric(fit[5])

229

out <- predict(fit,
newdata = data.frame(x = 5),
se = TRUE)

se.pred <- sqrt(sighat^2 + out$se.fit^2)
round(out$fit[1]+c(-1, 1)*qnorm(0.975)*se.pred, 1)

[1] 19.4 31.6

Example: Lunatics

Find a 90% prediction interval for the Percent.at.Home if the distance is 25miles, using the
optimal span.
fit <- loess(Percent.at.Home~Distance, span=span.cr,

data = lunatics[-13,],
surface="direct")

sighat <- as.numeric(fit[5])
out <- predict(fit,

newdata = data.frame(Distance = 25),
se = TRUE)

se.pred <- sqrt(sighat^2 + out$se.fit^2)
round(out$fit[1]+c(-1, 1)*qnorm(0.95)*se.pred, 1)

[1] 53.1 85.7

Confidence Bands

Let’s have another look at geom_smooth:
ggplot(data=lunatics[-13,],

aes(Distance, Percent.at.Home)) +
geom_point() +
geom_smooth(span=span.cr)

230

25

50

75

100

0 25 50 75 100

Distance

P
er

ce
nt

.a
t.H

om
e

what is this gray band? It is a shaded area between the lower and the upper 95% confidence
intervals. We can recreate it ourselves:
fit <- loess(Percent.at.Home~Distance, span=span.cr,

data = lunatics[-13,],
surface="direct")

x <- 1:99
out <- predict(fit,

newdata = data.frame(Distance = x),
se = TRUE)

low <- out$fit-qnorm(0.975)*out$se.fit
high <- out$fit+qnorm(0.975)*out$se.fit
df.low <- data.frame(x=x, y=low)
df.high <- data.frame(x=x, y=high)
ggplot(data=lunatics[-13,],

aes(Distance, Percent.at.Home)) +
geom_point() +
geom_smooth(method="loess", span=span.cr) +
geom_line(data=df.low, aes(x, y), color="red")+
geom_line(data=df.high, aes(x, y), color="red")

231

0

25

50

75

100

0 25 50 75 100

Distance

P
er

ce
nt

.a
t.H

om
e

almost, except that geom_smooth does some additional adjustments. We won’t worry about
that for now.
How about if we want the bands to show prediction intervals?
sighat <- as.numeric(fit[5])
se.pred <- sqrt(sighat^2 + out$se.fit^2)
low <- out$fit-qnorm(0.975)*se.pred
low[low<0] <- 0
high <- out$fit+qnorm(0.975)*se.pred
high[high>100] <- 100
df.low <- data.frame(x=x, y=low)
df.high <- data.frame(x=x, y=high)
ggplot(data=lunatics[-13,],

aes(Distance, Percent.at.Home)) +
geom_point() +
geom_line(data=df.low, aes(x, y), color="red")+
geom_line(data=df.high, aes(x, y), color="red")

232

0

25

50

75

100

0 25 50 75 100

Distance

P
er

ce
nt

.a
t.H

om
e

or a bit nicer:
df1 <- data.frame(x, ymin=low, ymax=high)
ggplot(data=lunatics[-13,],

aes(Distance, Percent.at.Home)) +
geom_point() +
geom_ribbon(data=df1,

aes(x=x, ymin=ymin, ymax=ymax),
alpha=0.2,
inherit.aes = FALSE)

0

25

50

75

100

0 25 50 75 100

Distance

P
er

ce
nt

.a
t.H

om
e

233

There is however an issue with these bands. From our recreation it is clear that they are
pointwise confidence intervals, that is each is a 95% confidence interval for each x value.
However, psychologically most people will look at them and interpret them as simultaneous
confidence bands. That is, the 95% applies to the collection of intervals, not each interval
alone.
Say we have n data points, and we find a (1− α)100% confidence interval at each. If they
are all independent we find

P (at least one interval is wrong) =
1− P (no interval is wrong) =
1− P (∩nk=1Ik is right) =

1−
n∏
k=1

P (Ik is right) =

1−
n∏
k=1

(1− α) = 1− (1− α)n

and this goes to 1 as n grows larger.
To make matters worse, in a regression case intervals at neighboring points are clearly not
independent, so we don’t even know what the true simultaneous coverage might be.
Personally I am very reluctant to add such bands to graphs, but they are quite popular in
many fields.

Nonlinear Parametric Models

Sometimes the model we wish to fit is known, up to parameters. Generally that is the
case if there is a scientific theory that predicts the shape of the relationship. For example,
radioactive decay is known to be exponential: y = αe−βt

Example: Growth of Lobsters

Data from an experiment to raise Florida lobster in a controlled environment. The data
shows the overall length and the age of a certain species of lobster.
kable.nice(lobster[1:10,])

234

Time Length
14 59
22 92
28 131
35 175
40 215
50 275
56 289
63 269
71 395
77 434

ggplot(data=lobster, aes(Time, Length)) +
geom_point()

100

200

300

400

40 80 120 160

Time

Le
ng

th

Now biology suggests that the relationship should be of the form

y = β2

1 + (β2 − β0)/β0 exp(β1t)
+ ε

where
• β0 is the expected value of y at time t=0

• β1 is a measure of the growth rate

235

• β2 is the expected limit of y as t→∞
This is often called the logistic or autocatalytic model
How do we fit such a model, that is find “optimal” values of β0, β1 and β2? Sometimes
it is possible use transformations to “linearize” the model, for example we have of course
log(y) = log(α)− βt for the radioactive decay model. This is not possible, though, for the
logistic model, so we have to find a different solution.
Previously we have always used the method of least squares to estimate the parameters in
our models, that is we minimized the “figure of merit”

RSS =
∑

(yi − β0 − β1xi)2

the natural extension of this is to use

RSS =
∑

(yi − f(xi;β))2

now for a linear model minimizing this expression could be done with lm. This however is
still a minimization problem, and we can do it with
fit <- nls(Length ~ beta[3]/(1 + ((beta[3] -

beta[1])/beta[1]) * exp(beta[2] * Time)),
start = list(beta = c(10, -0.1, 500)),
data = lobster)

summary(fit)

##
Formula: Length ~ beta[3]/(1 + ((beta[3] - beta[1])/beta[1]) * exp(beta[2] *
Time))
##
Parameters:
Estimate Std. Error t value Pr(>|t|)
beta1 32.008757 6.755720 4.738 0.000164
beta2 -0.057557 0.004957 -11.612 8.55e-10
beta3 465.884778 8.340739 55.857 < 2e-16
##
Residual standard error: 21.63 on 18 degrees of freedom
##
Number of iterations to convergence: 7
Achieved convergence tolerance: 7.722e-06
x <- seq(10, 160, 1)
df <- data.frame(x=x,

y = predict(fit,
newdata = data.frame(Time = x)))

ggplot(data=lobster, aes(Time, Length)) +
geom_point() +
geom_line(data=df, aes(x, y), color="blue")

236

100

200

300

400

40 80 120 160

Time

Le
ng

th

Example: Prime Number Theorem

That there were infinitely many prime numbers was first proven by the Greek mathematician
Euclid at around 300BC. A serious study of how fast they grow was first begun by Adrienne-
Marie Legendre. He studied the function N(k), which gives the number of primes less or
equal to k. We can do the same. The primes up to 1,000,000 are available at
primes <- scan("C://Users//Wolfgang//dropbox//teaching//Computing-with-R//primes.txt")
primes <- as.integer(primes)
kable.nice(matrix(primes[1:100], ncol=10, byrow = TRUE))

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541

A detailed study of these primes led Legendre in 1798 to propose the function

N(k) = k/(log k − α)

237

https://www.britannica.com/biography/Adrien-Marie-Legendre
https://www.britannica.com/biography/Adrien-Marie-Legendre

Here is what that looks like for several values of α:
N <- function(k, alpha) {

k/(log(k)-alpha)
}
k <- seq(1000, 1e6, length=250)
exact.counts <- k
for(i in 1:250)

exact.counts[i] <- sum(primes<k[i])
df <- data.frame(N=c(k, k, k, k),

Counts=c(exact.counts, N(k, 0), N(k, 1), N(k, 2)),
Method=rep(c("Counts", "a=0", "a=1", "a=2"),

each=250))
ggplot(df, aes(N, Counts, color=Method)) +

geom_line()

0

20000

40000

60000

80000

0 250000 500000 750000 1000000

N

C
ou

nt
s

Method

a=0

a=1

a=2

Counts

and so it seems a value of α = 1 is good.
Legendre however was not satisfied with that, he wanted to find the optimal answer. So he
found the least squares solution!
fit <- nls(exact.counts ~ k/(log(k) - alpha),

start = list(alpha = 0))
coef(fit)

alpha
1.082001

and so he claimed that

N(k) = k/(log k − 1.08)

238

Around the same time German mathematician Carl Friedrich Gauss also looked at this
problem, and he made a different conjecture. He said

N(k) = k/ log k
That was a rather strange guess, because it looks like this:
N <- function(k, alpha) {

k/(log(k)-alpha)
}
k <- seq(1000, 1e6, length=250)
exact.counts <- k
for(i in 1:250)

exact.counts[i] <- sum(primes<k[i])
df <- data.frame(N=c(k, k),

Counts=c(exact.counts, N(k, 0)),
Method=rep(c("Counts", "Gauss"), each=250))

ggplot(df, aes(N, Counts, color=Method)) +
geom_line()

0

20000

40000

60000

80000

0 250000 500000 750000 1000000

N

C
ou

nt
s Method

Counts

Gauss

and it surely looks like the two curves are growing further apart. However, almost 100 years
later in 1896 the French mathematicians Jacques-Salomon Hadamard and Charles de la Valée
Poussin independently showed that Gauss was right!
From our modern point of view we might say Legendre was guilty of over-fitting!

239

https://www.britannica.com/biography/Carl-Friedrich-Gauss

Logistic Regression - General Linear Models

In all the examples so far we always had a quantitative response. In this section we will study
the case of a categorical response.

Example: Challenger shuttle disaster

We begin with a very famous dataset from the Challenger shuttle disaster. On Jan 28, 1986,
at 11.38 am EST, the space shuttle challenger was launched from Cape Canaveral, Florida.
The mission ended 73 seconds later when the Challenger exploded. All 7 crew members were
killed.
Challenger Disaster Movie
What happened?
Hot propellant gases flew past the aft joint of the right solid rocket booster, burning through
two rubber O-rings. An investigation ensued into the reliability of the shuttle’s propulsion
system. The explosion was eventually traced to the failure of one of the three field joints
on one of the two solid booster rockets. Each of these six field joints includes two O-rings,
designated as primary and secondary, which fail when phenomena called erosion and blowby
both occur.
The night before the launch a decision had to be made regarding launch safety. The discussion
among engineers and managers leading to this decision included concern that the probability
of failure of the O-rings depended on the temperature t at launch, which was forecase to be
31 degrees F. There are strong engineering reasons based on the composition of O-rings to
support the judgment that failure probability may rise monotonically as temperature drops.
The discussion centered on the following data from the previous 23 shuttle launches:
kable.nice(head(shuttle))

Temp NumFail Failure
66 0 0
70 1 1
69 0 0
68 0 0
67 0 0
72 0 0

ggplot(data=shuttle, aes(Temp, NumFail)) +
geom_point()

240

http://academic.uprm.edu/wrolke/esma6665/challenger.lg.mp4

0.0

0.5

1.0

1.5

2.0

60 70 80

Temp

N
um

Fa
il

there seems to be a tendency for failures at lower temperatures.
The variable Failure is an indicator of failure or not:
plt <- ggplot(data=shuttle, aes(Temp, Failure)) +

geom_jitter(height = 0)
plt

0.00

0.25

0.50

0.75

1.00

60 70 80

Temp

Fa
ilu

re

Again we want to use regression to study the relationship between temperature and failure.
But now failure is categorical, and so the x and the y variable are no longer measured in the
same way.

241

The way to connect them is to predict the probability of failure, which again is a quantitative
variable. This is done as follows: we have responses y1, .., yn which can be modeled as
Yi ∼ Ber(πi). The π are related to the predictor variable x via the link function

log
(

p

1− p

)
= α + βx

this is called the logit link function. There are others as well.
We can invert the logit function:

π(x) = eα+βx

1 + eα+βx

notice that this rules out π(x) = 0 or 1. There are other link functions that don’t do that.
How do fit such a model, that is find α and β? For linear regression we used the method of
least squares, which was possible because we could directly compare x and y. This is not
the case here because p and x have different forms, which is why we needed a link function.
Instead one uses maximum likelihood for the estimation. In R this is done using the command
glm with the argument family=binomial:
fit <- glm(Failure~Temp,

family=binomial,
data=shuttle)

fit

##
Call: glm(formula = Failure ~ Temp, family = binomial, data = shuttle)
##
Coefficients:
(Intercept) Temp
15.0429 -0.2322
##
Degrees of Freedom: 22 Total (i.e. Null); 21 Residual
Null Deviance: 28.27
Residual Deviance: 20.32 AIC: 24.32

Let’s see what this looks like
x <- seq(30, 80, 1)
df <- data.frame(x=x,

y=predict(fit, data.frame(Temp=x),
type="response"))

plt +
geom_line(data=df, aes(x, y),

color="blue", size=1.2)

242

0.00

0.25

0.50

0.75

1.00

30 40 50 60 70 80

Temp

Fa
ilu

re

we see that at the expected launch temperature of 32F the failure probability is 1.
What would be a 95% confidence interval for the probability at 32F?
tmp <- predict(fit, data.frame(Temp=32),

type="response", se.fit=TRUE)
round(tmp$fit +c(-1, 1)*qnorm(0.975)*tmp$se.fit, 3)

[1] 0.996 1.003

but there is something silly about this interval: it goes beyond 1! This is a consequence of
using normal theory intervals. Here is a better solution:
tmp <- predict(fit, data.frame(Temp=32),

type="link", se.fit=TRUE)
e <- tmp$fit
r <- tmp$se.fit
e

1
7.613694
r

[1] 3.933421
cr <- qnorm(0.975)
round(c(exp(e-cr*r)/(1+exp(e-cr*r)),

exp(e+cr*r)/(1+exp(e+cr*r))), 3)

1 1
0.476 1.000

243

but this has a much lower (likely to low) lower limit.

Warp Breaks

The data set gives the results of an experiment to determine the effect of wool type (A or
B) and tension (low, medium or high) on the number of warp breaks per loom. Data was
collected for nine looms for each combination of settings.
kable.nice(head(warpbreaks))

breaks wool tension
26 A L
30 A L
54 A L
25 A L
70 A L
52 A L

we want to build a model relating the wool type and tension to the number of breaks.
What distribution might be appropriate for breaks? First, let’s have a look at them:
bw <- diff(range(warpbreaks$breaks))/20
ggplot(warpbreaks, aes(x=breaks)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Breaks")

0

2

4

6

8

20 40 60

x

B
re

ak
s

244

our data is counts with a bit of skew to the right. This is typical for data from a Poisson
distribution.
Here is another argument in favor of a Poisson: Each loom could be considered as a series of
small intervals. We then would have a large number of such intervals, each of which has a
small probability of a break. The total number of breaks would be the sum of the breaks in
each interval, and therefore would be Binomial. But in this case the Poisson approximation
to the Binomial would be very good.
Again we want to use regression to relate type and tension to breaks. In the case of a Poisson
response variable the link function is given by the logarithm.
fit <- glm(breaks~wool*tension,

data=warpbreaks,
family=poisson)

summary(fit)

##
Call:
glm(formula = breaks ~ wool * tension, family = poisson, data = warpbreaks)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-3.3383 -1.4844 -0.1291 1.1725 3.5153
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.79674 0.04994 76.030 < 2e-16
woolB -0.45663 0.08019 -5.694 1.24e-08
tensionM -0.61868 0.08440 -7.330 2.30e-13
tensionH -0.59580 0.08378 -7.112 1.15e-12
woolB:tensionM 0.63818 0.12215 5.224 1.75e-07
woolB:tensionH 0.18836 0.12990 1.450 0.147
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 297.37 on 53 degrees of freedom
Residual deviance: 182.31 on 48 degrees of freedom
AIC: 468.97
##
Number of Fisher Scoring iterations: 4

and we see that all terms except one interaction term are stat. significant.

Let’s do our own little study of Poisson regression. First we generate some data:
x <- 1:100/50
df <- data.frame(x=x, y=rpois(100, 10*x))

245

plt <- ggplot(data=df, aes(x, y)) +
geom_point()

plt

0

10

20

0.0 0.5 1.0 1.5 2.0

x

y

fit <- glm(y~x,
data=df,
family=poisson)

summary(fit)

##
Call:
glm(formula = y ~ x, family = poisson, data = df)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.8140 -0.7965 0.1136 0.5186 4.3300
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.00420 0.08665 11.59 <2e-16
x 1.15719 0.05946 19.46 <2e-16
##
(Dispersion parameter for poisson family taken to be 1)
##
Null deviance: 585.14 on 99 degrees of freedom
Residual deviance: 156.51 on 98 degrees of freedom
AIC: 539.39
##

246

Number of Fisher Scoring iterations: 5
df1 <- df
df1$y <- predict(fit, type="response")
plt +

geom_line(data=df1, aes(x, y), color="blue", size=1.2)

0

10

20

0.0 0.5 1.0 1.5 2.0

x

y

and that looks quite good!

Models with more than one predictor

ANOVA with more than one factor

ANOVA can be viewed as a linear model in the following way: Say we have a quantitative
response variable y and a categorical predictor x. Then

yij = µ+ αi + εij

so the ijth observation comes from an overall mean µ, a contribution αi due to the fact that
this observation comes from the ith group and an error term.
With this formalism the null hypothesis is

H0 : α1 = .. = αk = 0
Now this extends naturally to more than one predictor. Say there are two, then

yijk = µ+ αi + βj + γij + εijk

247

Notice the new term γij. It is meant to measure interaction, that is a possible relationship
(association) between the factors.
If there is no such relationship, the model simplifies to an additive model:

yijk = µ+ αi + βj + εijk

Example: Testing Hearing Aids

Reference: Loven, Faith. (1981). A Study of the Interlist Equivalency of the CID W-22 Word
List Presented in Quiet and in Noise. Unpublished MS Thesis, University of Iowa.
Description: Percent of a Standard 50-word list heard correctly in the presence of background
noise. 24 subjects with normal hearing listened to standard audiology tapes of English words
at low volume with a noisy background. They repeated the words and were scored correct or
incorrect in their perception of the words. The order of list presentation was randomized.
The word lists are standard audiology tools for assessing hearing. They are calibrated to be
equally difficult to perceive. However, the original calibration was performed with normal-
hearing subjects and no noise background. The experimenter wished to determine whether
the lists were still equally difficult to understand in the presence of a noisy background.
kable.nice(head(hearingaid))

Subject List Score
1 1 28
2 1 24
3 1 32
4 1 30
5 1 34
6 1 30

Notice that the values in both Subject and List are NOT numbers but labels, so both of
them are categorical!
Because there are two factors this is called a twoway ANOVA. More specifically, this is
a Randomized Block design with List as the factor and Subject as a blocking variable
because the factor Subject is not of interest in itself.
Let’s start by looking at the boxplots. Because neither List nor Subject has an obvious
ordering we use size:
tmp <- tapply(hearingaid$Score, hearingaid$List, mean)
hearingaid$List <- factor(hearingaid$List,

levels=order(tmp),
ordered = TRUE)

tmp <- tapply(hearingaid$Score, hearingaid$Subject, mean)

248

hearingaid$Subject <- factor(hearingaid$Subject,
levels=order(tmp),
ordered = TRUE)

pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(data=hearingaid, aes(List, Score)) +

geom_boxplot(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=hearingaid, aes(Subject, Score)) +
geom_boxplot() ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))

20

30

40

3 4 2 1

List

S
co

re

20

30

40

2118420222 1 716233 6118171051213151491924

Subject

S
co

re

this shows why we should include Subject in the analysis: it has a large variation.
The summary statistics are:
sum.tbl <-

data.frame(
List=c(3, 4, 2, 1),
n=as.integer(tapply(hearingaid$Score,

hearingaid$List,length)),
Mean=round(tapply(hearingaid$Score,

hearingaid$List, mean), 1),
Sd=round(tapply(hearingaid$Score,

hearingaid$List, sd), 2)
)
rownames(sum.tbl) <- NULL

249

List n Mean Sd
3 24 25.2 8.32
4 24 25.6 7.78
2 24 29.7 8.06
1 24 32.8 7.41

kable.nice(sum.tbl)

Because Subject is the blocking variable one would normally not include a table of summary
statistics.
Now for the test, or better tests, because we can in general test for either Subject or List.
The routine we will use is again aov:
fit <- aov(Score~., data=hearingaid)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Subject 23 3232 140.51 3.868 6.96e-06
List 3 920 306.82 8.446 7.41e-05
Residuals 69 2507 36.33

So we have two tests, one for List and one for Subject. However, only the one for List is of
interest:
1) Parameters of interest: List group means

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0: µ1 = .. = µ4 (List groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (at least two List groups have different means)

7) p value=0.00

8) 0.000<0.05, there is some evidence that the group means are not the same, that List
means are different)

As always we need to check the assumptions:
• normal residuals

The normal plot of residuals looks fine.
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
ggplot(data=df, aes(sample=Residuals)) +

geom_qq() +geom_qq_line()

250

−10

0

10

−2 −1 0 1 2

theoretical

sa
m

pl
e

• equal variance
In a oneway ANOVA we could just find the group standard deviations and compare them.
Now (and in general if there is more than one factor) this is no longer a good idea, mainly
because there are to many factor level combinations (4*24 here) and not enough observations
for each (one here). Instead we will do the same as in the regression case, namely check the
residual vs. fits plot for a change in spread from left to right.
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)

−10

0

10

20 30 40

Fits

R
es

id
ua

ls

251

again, everything looks fine.
Notice that the ANOVA table also has the test for the Subject means. This is not very
interesting, the boxplot already makes it clear that different subjects have very different
hearing abilities. If that were not so, we would eliminate Subject and run a oneway ANOVA.
Because we now have two factors, we need to worry about an additional problem, namely
whether or not there is a relationship between the two factors. This is called interaction.
To check we can draw the interaction plot.

12.0

12.5

13.0

13.5

14.0

1 2 3

B

y

A

1

2

What is drawn here? First we find the mean response for each factor-level combination. Then
plot those points vs. one of the factors and finally connect the dots that belong to the other
factor.
Here the line segments are almost parallel. This implies that for any value of the factor A
going from one value of B to the next adds the same amount to the response. So if we go
from B=1 to B=2 both lines move up by about 2.0, and if we go from B=2 to B=3 both
lines move down by 0.75.
Because of this we call such a model additive
Now consider the following interactions plot:

252

12

13

14

15

16

17

1 2 3

B

y

A

1

2

Here as we go from B=2 to B=3 the line goes up by 4 if A=1 but it goes down by 0.5 if
A=1.
Deciding from the graph whether or not there is interaction is not always easy. Here are four
interaction plots from a simulated data set, all guaranteed NOT to have any interaction:

12.5

13.0

13.5

14.0

14.5

15.0

1 2 3

B

y

A

1

2

12

13

14

15

1 2 3

B

y

A

1

2

13.0

13.5

14.0

14.5

15.0

1 2 3

B

y

A

1

2

11

12

13

14

15

16

1 2 3

B

y

A

1

2

This is even worse because in ANOVA problems we often have very small data sets, so there
is a great amount of variation in these graphs from sample to sample.
So it would be nice if we could actually test for interaction, but that requires repeated
measurements.

253

In the hearing aid data we only have one observation for each combination of Subject and
List, so we need to decide on the basis of the interaction plot:
ggplot(data = hearingaid,

aes(Subject , Score,
colour = List, group=List)) +

stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")

20

30

40

21 18 4 20 22 2 1 7 16 23 3 6 11 8 17 10 5 12 13 15 14 9 19 24

Subject

S
co

re

List

3

4

2

1

There seems to be interaction between Lists and Subjects
Finally, it would of course be interesting to study just which lists are different, that is we
could do a multiple comparison:
TukeyHSD(fit)$List

diff lwr upr p adj
4-3 0.3333333 -4.2473895 4.914056 0.9974833454
2-3 4.4166667 -0.1640562 8.997390 0.0628040720
1-3 7.5000000 2.9192771 12.080723 0.0003038968
2-4 4.0833333 -0.4973895 8.664056 0.0974569856
1-4 7.1666667 2.5859438 11.747390 0.0005910298
1-2 3.0833333 -1.4973895 7.664056 0.2954408670

so List 1 is statistically significantly different from Lists 3 and 4.
No other differences are statistically significant.
Because Subject is only a blocking variable we won’t a multiple comparison for it.

Example: Gasoline Type and Milage

254

In an experiment to study gas mileage four different blends of gasoline are tested in each of
three makes of automobiles. The cars are driven a fixed distance to determine the mpg (miles
per gallon) The experiment is repeated three times for each blend-automobile combination.
(Taken from Lyman Ott)
Note that the interest here is indifferent gasoline blends, automobile is a blocking variable, so
this is a randomized block design.
Gasoline is numbers, but these are just codes for different blends, so it is a categorical variable
or factor.
kable.nice(head(gasoline))

MPG Gasoline Automobile
22.7 1 A
22.4 1 A
22.9 1 A
21.5 2 A
21.8 2 A
21.6 2 A

Here is an interesting calculation:
table(gasoline$Gasoline, gasoline$Automobile)

##
A B C
1 3 3 3
2 3 3 3
3 3 3 3
4 3 3 3

This shows us two things:
1. we have repeated measurements (several observations per factor-level combination)
2. we have a balanced design (the same number of repetitions in each factor-level combina-

tion)
This second feature used to be quite important because the calculations in a balanced design
are much simpler. Nowadays with fast computers this is not important anymore. There
are still good reasons why you want to design your experiment to have a balanced design if
possible, though!
tmp <- tapply(gasoline$MPG, gasoline$Gasoline, mean)
gasoline$Gasoline <- factor(gasoline$Gasoline,

levels=order(tmp),
ordered = TRUE)

255

pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(data=gasoline, aes(Gasoline, MPG)) +

geom_boxplot() ,
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=gasoline, aes(Automobile, MPG)) +
geom_boxplot() ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))

20

21

22

23

4 2 3 1

Gasoline

M
P

G

20

21

22

23

A B C

Automobile

M
P

G

the boxplots suggest a difference between blends but not between automobiles.
The summary statistics are
sum.tbl <-

data.frame(
Gasoline=c(4, 2, 3, 1),
n=as.integer(tapply(gasoline$MPG,

gasoline$Gasoline,length)),
Mean=round(tapply(gasoline$MPG,

gasoline$Gasoline, mean), 1),
Sd=round(tapply(gasoline$MPG,

gasoline$Gasoline, sd), 2)
)
rownames(sum.tbl) <- NULL

Gasoline n Mean Sd
4 9 20.5 0.36
2 9 21.2 0.37
3 9 21.9 0.25
1 9 22.8 0.36

256

kable.nice(sum.tbl)

Interaction:
ggplot(data = gasoline,

aes(Automobile , MPG,
colour = Gasoline, group=Gasoline)) +

stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")

21

22

23

A B C

Automobile

M
P

G

Gasoline

4

2

3

1

Lines are (almost) parallel, so there is no indication of interaction. We have repeated
measurements (3 per factor-level combination), so we can test for this:
fit <- aov(MPG~Gasoline*Automobile, data=gasoline)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Gasoline 3 25.405 8.468 90.464 3.21e-13
Automobile 2 0.527 0.263 2.813 0.0799
Gasoline:Automobile 6 0.909 0.151 1.618 0.1854
Residuals 24 2.247 0.094

1) Parameters of interest: Interaction

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α=0.05

257

5) Null hypothesis H0 : no interaction

6) Alternative hypothesis Ha: some interaction

7) p value = 0.1854
8) 0.1854 > 0.05, there is no evidence of interaction.

So we will now proceed without the interaction term:
fit <- aov(MPG~., data=gasoline)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Gasoline 3 25.405 8.468 80.510 1.89e-14
Automobile 2 0.527 0.263 2.504 0.0987
Residuals 30 3.156 0.105

let’s check the assumptions:
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(data=df, aes(sample=Residuals)) +

geom_qq() +geom_qq_line(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0),
vp=viewport(layout.pos.row=1, layout.pos.col=2))

−0.4

0.0

0.4

−2 −1 0 1 2

theoretical

sa
m

pl
e

−0.4

0.0

0.4

21 22 23

Fits

R
es

id
ua

ls

the plots look fine, so no problem with the assumptions.

258

Now let’s test for the factors:
Test for Factor Gasoline:
1) Parameters of interest: means of gasoline groups

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = .. = µ4 (Gasoline groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (Gasoline groups have different means)

7) p value=0.000

8) 0.000<0.05, there is some evidence of differences in gasoline blends
Test for Factor Automobile is not really needed because this is a blocking variable.
Notice that if we included the interaction the p-value for Automobile was 0.08, without the
interaction it is 0.1. One advantage of being able to fit an additive model is that often it
makes the conclusions stronger.
TukeyHSD(fit)$Gasoline

diff lwr upr p adj
2-4 0.6888889 0.2731720 1.104606 5.176968e-04
3-4 1.3888889 0.9731720 1.804606 2.402867e-09
1-4 2.2666667 1.8509497 2.682384 6.139533e-14
3-2 0.7000000 0.2842831 1.115717 4.235469e-04
1-2 1.5777778 1.1620609 1.993495 1.293686e-10
1-3 0.8777778 0.4620609 1.293495 1.650229e-05

so all blends are stat. significantly different, with blend 1 having the highest miles per gallon.

Example: Film Thickness in Semiconductor Production

Chemical vapor deposition is a process used in the semiconductor industry to deposit thin
films of silicon dioxide and photoresit on substrates of wafers as they are manufactured. The
films must be as thin as possible and have a uniform thickness, which is measured by a process
called infrared interference. A process engineer wants to evaluate a low-pressure chemical
vapor deposition process that reduces costs and increases productivity. The engineer has set
up an experiment to study the effect of chamber temperature and pressure on film thickness.
kable.nice(head(filmcoatings))

259

Thickness Temperature Pressure
42 Low Low
43 Low Low
39 Low Low
45 Low Mid
43 Low Mid
45 Low Mid

table(Temperature, Pressure)

Pressure
Temperature High Low Mid
High 3 3 3
Low 3 3 3
Mid 3 3 3

so again we have balanced design with repeated measurements
filmcoatings$Temperature <-

factor(filmcoatings$Temperature,
levels=unique(filmcoatings$Temperature),
ordered=TRUE)

filmcoatings$Pressure <-
factor(filmcoatings$Pressure,
levels=unique(filmcoatings$Pressure),
ordered=TRUE)

pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(data=filmcoatings,

aes(Temperature, Thickness)) +
geom_boxplot(),

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggplot(data=filmcoatings,

aes(Pressure, Thickness)) +
geom_boxplot(),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

260

36

40

44

Low Mid High

Temperature

T
hi

ck
ne

ss

36

40

44

Low Mid High

Pressure
T

hi
ck

ne
ss

Unlike in the hearing aid or gasoline experiments, here we equally interested in both factors.
This type of experiment is called a factorial design problem.
For us there is no practical difference between a randomized block design and a factorial
design but the distinction can be important in other analyses.
sum.tbl <-

data.frame(
Temperature=unique(filmcoatings$Temperature),
n=as.integer(tapply(filmcoatings$Thickness,

filmcoatings$Temperature,length)),
Mean=round(tapply(filmcoatings$Thickness,

filmcoatings$Temperature, mean), 1),
Sd=round(tapply(filmcoatings$Thickness,

filmcoatings$Temperature, sd), 2)
)
rownames(sum.tbl) <- NULL

Temperature n Mean Sd
Low 9 43.7 2.29
Mid 9 38.0 2.35
High 9 37.7 2.92

kable.nice(sum.tbl)

sum.tbl <-
data.frame(

Pressure=unique(filmcoatings$Pressure),
n=as.integer(tapply(filmcoatings$Thickness,

filmcoatings$Pressure,length)),
Mean=round(tapply(filmcoatings$Thickness,

261

filmcoatings$Pressure, mean), 1),
Sd=round(tapply(filmcoatings$Thickness,

filmcoatings$Pressure, sd), 2)
)
rownames(sum.tbl) <- NULL

Pressure n Mean Sd
Low 9 38.1 2.85
Mid 9 39.1 4.37
High 9 42.1 2.80

kable.nice(sum.tbl)

Interaction
ggplot(data = filmcoatings,

aes(Temperature, Thickness ,
colour = Pressure, group=Pressure)) +

stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")

35.0

37.5

40.0

42.5

45.0

Low Mid High

Temperature

T
hi

ck
ne

ss

Pressure

Low

Mid

High

The lines are not all parallel, so there is likely some interaction. Again we have repeated
measurements (3 per factor-level combination), so we can actually test for this:
fit <- aov(Thickness~Temperature*Pressure,

data=filmcoatings)

pushViewport(viewport(layout = grid.layout(1, 2)))
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
print(ggplot(data=df, aes(sample=Residuals)) +

262

geom_qq() + geom_qq_line(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

−3

−2

−1

0

1

2

−2 −1 0 1 2

theoretical

sa
m

pl
e

−2

−1

0

1

2

35.0 37.5 40.0 42.5 45.0

Fits

R
es

id
ua

ls

the graphs show that there are no problems with the assumptions.
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Temperature 2 204.67 102.33 47.638 6.46e-08
Pressure 2 78.00 39.00 18.155 4.83e-05
Temperature:Pressure 4 37.33 9.33 4.345 0.0124
Residuals 18 38.67 2.15

Test for Interaction:
1) Parameters of interest: Interaction

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : no interaction

6) Alternative hypothesis Ha: some interaction

263

7) p value = 0.0124

8) 0.0124<0.05, there is some evidence of interaction
Test for Factor Temperature:
1) Parameters of interest: means of temperature groups

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = µ2 = µ3 (Temperature groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (Temperature groups have different means)

7) p value = 0.000

8) 0.000 < 0.05, there is some evidence of differences in temperature
Test for Factor Pressure:
1) Parameters of interest: means of pressure groups

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = µ2 = µ3 (Pressure groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (Pressure groups have different means)

7) p value = 0.000

8) 0.000<0.05, there is some evidence of differences in pressure
Finally, what we need is to find the best combination of pressure and temperature. So what
we want is a multiple comparison for Temperature and Pressure (not either of them alone!).
Easily done:
out <- TukeyHSD(fit)[[3]]
out

diff lwr upr p adj
Mid:Low-Low:Low -5.6666667 -9.8597499 -1.4735834 4.056833e-03

264

High:Low-Low:Low -4.0000000 -8.1930833 0.1930833 6.829422e-02
Low:Mid-Low:Low 3.0000000 -1.1930833 7.1930833 2.908226e-01
Mid:Mid-Low:Low -3.0000000 -7.1930833 1.1930833 2.908226e-01
High:Mid-Low:Low -6.6666667 -10.8597499 -2.4735834 7.270485e-04
Low:High-Low:Low 4.0000000 -0.1930833 8.1930833 6.829422e-02
Mid:High-Low:Low -1.3333333 -5.5264166 2.8597499 9.642909e-01
High:High-Low:Low -0.3333333 -4.5264166 3.8597499 9.999982e-01
High:Low-Mid:Low 1.6666667 -2.5264166 5.8597499 8.866164e-01
Low:Mid-Mid:Low 8.6666667 4.4735834 12.8597499 2.811245e-05
Mid:Mid-Mid:Low 2.6666667 -1.5264166 6.8597499 4.291123e-01
High:Mid-Mid:Low -1.0000000 -5.1930833 3.1930833 9.938696e-01
Low:High-Mid:Low 9.6666667 5.4735834 13.8597499 6.251132e-06
Mid:High-Mid:Low 4.3333333 0.1402501 8.5264166 3.970300e-02
High:High-Mid:Low 5.3333333 1.1402501 9.5264166 7.227536e-03
Low:Mid-High:Low 7.0000000 2.8069167 11.1930833 4.142532e-04
Mid:Mid-High:Low 1.0000000 -3.1930833 5.1930833 9.938696e-01
High:Mid-High:Low -2.6666667 -6.8597499 1.5264166 4.291123e-01
Low:High-High:Low 8.0000000 3.8069167 12.1930833 8.029539e-05
Mid:High-High:Low 2.6666667 -1.5264166 6.8597499 4.291123e-01
High:High-High:Low 3.6666667 -0.5264166 7.8597499 1.147340e-01
Mid:Mid-Low:Mid -6.0000000 -10.1930833 -1.8069167 2.278849e-03
High:Mid-Low:Mid -9.6666667 -13.8597499 -5.4735834 6.251132e-06
Low:High-Low:Mid 1.0000000 -3.1930833 5.1930833 9.938696e-01
Mid:High-Low:Mid -4.3333333 -8.5264166 -0.1402501 3.970300e-02
High:High-Low:Mid -3.3333333 -7.5264166 0.8597499 1.866153e-01
High:Mid-Mid:Mid -3.6666667 -7.8597499 0.5264166 1.147340e-01
Low:High-Mid:Mid 7.0000000 2.8069167 11.1930833 4.142532e-04
Mid:High-Mid:Mid 1.6666667 -2.5264166 5.8597499 8.866164e-01
High:High-Mid:Mid 2.6666667 -1.5264166 6.8597499 4.291123e-01
Low:High-High:Mid 10.6666667 6.4735834 14.8597499 1.512789e-06
Mid:High-High:Mid 5.3333333 1.1402501 9.5264166 7.227536e-03
High:High-High:Mid 6.3333333 2.1402501 10.5264166 1.284046e-03
Mid:High-Low:High -5.3333333 -9.5264166 -1.1402501 7.227536e-03
High:High-Low:High -4.3333333 -8.5264166 -0.1402501 3.970300e-02
High:High-Mid:High 1.0000000 -3.1930833 5.1930833 9.938696e-01

This is bit hard to read. Recall that we are only interested in small values of Thickness. Let’s
redo the interaction plot:
ggplot(data = filmcoatings,

aes(Temperature, Thickness ,
colour = Pressure, group=Pressure)) +

stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")

265

35.0

37.5

40.0

42.5

45.0

Low Mid High

Temperature

T
hi

ck
ne

ss

Pressure

Low

Mid

High

so we see that that the best combination is Temperature=High, Pressure=Mid.
The next-best is Temperature=Mid, Pressure=Low. What does Tukey say about the com-
parison of these?
out["High:Mid-Mid:Low",]

diff lwr upr p adj
-1.0000000 -5.1930833 3.1930833 0.9938696

so they are NOT statistically significant.
Let’s check the next couple of combinations:
out["High:Mid-High:Low",]

diff lwr upr p adj
-2.6666667 -6.8597499 1.5264166 0.4291123
out["High:Mid-Mid:Mid",]

diff lwr upr p adj
-3.6666667 -7.8597499 0.5264166 0.1147340
out["Mid:High-High:Mid",]

diff lwr upr p adj
5.333333333 1.140250075 9.526416591 0.007227536

and now we have a stat. significant difference.
Notice that in the last one we have to change the order, because Tukey did as well.
So either of the four combinations (High Mid, Mid Low, High Low or Mid Mid), at least not
at these sample sizes.

266

A simple idea for solving this problem seems to be this one:
1. find the best temperature:

sort(round(tapply(Thickness, Temperature, mean), 1))

High Mid Low
37.7 38.0 43.7

so Temperature=High is best
2. find the best pressure:

sort(round(tapply(Thickness, Pressure, mean), 1))

Low Mid High
38.1 39.1 42.1

so Pressure=Low is best
3. take the combination: Pressure=Low, Temperature=High is best! Except it is not: we

saw before that Pressure=Mid, Temperature=High is best.
This simple idea does not work because of the presence of interaction.

Example: Water Quality and Mining

The effects of mining and rock type on water quality.
kable.nice(head(mines))

Rock Mine Iron
Sandstone Unmined 0.20
Sandstone Unmined 0.25
Sandstone Unmined 0.04
Sandstone Unmined 0.06
Sandstone Unmined 1.20
Sandstone Unmined 0.30

table(Rock, Mine)

Mine
Rock Abandoned Reclaimed Unmined
Limestone 13 13 13
Sandstone 13 13 13
mines$Mine <- factor(mines$Mine,

levels = c("Unmined", "Reclaimed", "Abandoned"),
ordered = TRUE)

267

pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(data=mines, aes(Rock, Iron)) +

geom_boxplot(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggplot(mines, aes(Mine, Iron)) +

geom_boxplot(),
vp=viewport(layout.pos.row=1, layout.pos.col=2))

0

200

400

600

Limestone Sandstone

Rock

Ir
on

0

200

400

600

Unmined Reclaimed Abandoned

Mine

Ir
on

We have a clear problem with outliers (aka the normal assumption), so we try the log
transform:
mines$log.iron <- log(mines$Iron)
pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(data=mines, aes(Rock, log.iron)) +

geom_boxplot(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggplot(mines, aes(Mine, log.iron)) +

geom_boxplot(),
vp=viewport(layout.pos.row=1, layout.pos.col=2))

268

−2.5

0.0

2.5

5.0

Limestone Sandstone

Rock

lo
g.

iro
n

−2.5

0.0

2.5

5.0

Unmined Reclaimed Abandoned

Mine
lo

g.
iro

n

This has solved the problem, so the analysis will be based on log.iron.
Summary Statistics
Because we use a transformation we will base the tables on Median and IQR
sum.tbl <-

data.frame(
Mine=levels(mines$Mine),
n=as.integer(tapply(mines$Iron,

mines$Mine,length)),
Median=round(tapply(mines$Iron,

mines$Mine, median), 1),
IQR=round(tapply(mines$Iron,

mines$Mine, IQR), 2)
)
rownames(sum.tbl) <- NULL

Mine n Median IQR
Unmined 26 0.5 2.72
Reclaimed 26 0.7 0.83
Abandoned 26 1.6 10.24

kable.nice(sum.tbl)

Note that the IQR’s are very different. This is because this data set has a lot of outliers
which still effect the IQR.
Interaction
ggplot(data = mines,

aes(Rock , log.iron,

269

colour = Mine, group=Mine)) +
stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")

−1

0

1

Limestone Sandstone

Rock

lo
g.

iro
n

Mine

Unmined

Reclaimed

Abandoned

There seems to be some interaction. To confirm this test for it:
fit <- aov(log.iron~Rock*Mine, data=mines)

pushViewport(viewport(layout = grid.layout(1, 2)))
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
print(ggplot(data=df, aes(sample=Residuals)) +

geom_qq() + geom_qq_line(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

270

−2

0

2

4

−2 −1 0 1 2

theoretical

sa
m

pl
e

−2.5

0.0

2.5

5.0

−1 0 1

Fits
R

es
id

ua
ls

assumptions are ok (after log transform!)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Rock 1 10.15 10.154 4.629 0.034794
Mine 2 45.13 22.566 10.287 0.000118
Rock:Mine 2 43.45 21.727 9.904 0.000159
Residuals 72 157.95 2.194

Test for Interaction:
1) Parameters of interest: Interaction

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : no interaction

6) Alternative hypothesis Ha: some interaction

7) p value = 0.000

8) 0.000<0.05, there is some evidence of interaction
Check the assumptions of ANOVA: both plots look ok

Test for Factor Rock:

271

1) Parameters of interest: means of pressure groups

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = µ2 (Rock groups have the same means)

6) Alternative hypothesis Ha: µ1 6= µ2 (Rock groups have different means)

7) p value = 0.035

8) 0.035<0.05, there is some evidence of differences in Rock types.
Test for Factor Mine:
1) Parameters of interest: means of pressure groups

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = µ2 = µ3 (Mine groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (Mine groups have different means)

7) p value = 0.000

8) 0.000<0.05, there is some evidence of differences in Mine types
Multiple Comparison The main interest is in mines, so
TukeyHSD(fit)$Mine

diff lwr upr p adj
Reclaimed-Unmined -0.07955136 -1.0626180 0.9035152 0.9795435606
Abandoned-Unmined 1.57238141 0.5893148 2.5554480 0.0007902888
Abandoned-Reclaimed 1.65193277 0.6688662 2.6349994 0.0004103178

Interpretation: There is a stat. signif. difference between the mean iron content of abandoned
mines and the others. The difference between unmined and reclaimed mines is not stat. sign,
at least not at these sample sizes.

Example: Air Filters and Noise

272

The data are from a statement by Texaco, Inc. to the Air and Water Pollution Subcommittee
of the Senate Public Works Committee on June 26, 1973. Mr. John McKinley, President
of Texaco, cited the Octel filter, developed by Associated Octel Company as effective in
reducing pollution. However, questions had been raised about the effects of pollution filters
on aspects of vehicle performance, including noise levels. He referred to data presented in the
datafile associated with this story as evidence that the Octel filter was was at least as good
as a standard silencer in controlling vehicle noise levels.
kable.nice(head(airfilters))

Noise Size Filter Side
810 Small Standard Right
820 Small Standard Right
820 Small Standard Right
840 Medium Standard Right
840 Medium Standard Right
845 Medium Standard Right

airfilters$Size <- factor(airfilters$Size,
levels = unique(airfilters$Size),
ordered = TRUE)

plt1 <- ggplot(data=airfilters, aes(Size, Noise)) +
geom_boxplot()

plt2 <- ggplot(data=airfilters, aes(Filter, Noise)) +
geom_boxplot()

plt3 <- ggplot(data=airfilters, aes(Side, Noise)) +
geom_boxplot()

pushViewport(viewport(layout = grid.layout(2, 2)))
print(plt1,

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(plt2,

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(plt3,

vp=viewport(layout.pos.row=2, layout.pos.col=1))

273

760

780

800

820

840

Small Medium Large

Size

N
oi

se

760

780

800

820

840

Octel Standard

Filter

N
oi

se

760

780

800

820

840

Left Right

Side

N
oi

se

it seems large cars are more quiet. Not much of an effect due to either side or filter.
plt1 <- ggplot(data = airfilters,

aes(Size , Noise,
colour = Filter, group=Filter)) +

stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")

plt2 <- ggplot(data = airfilters,
aes(Size , Noise,

colour = Side, group=Side)) +
stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")

plt3 <- ggplot(data = airfilters,
aes(Side , Noise,

colour = Filter, group=Filter)) +
stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")

pushViewport(viewport(layout = grid.layout(2, 2)))
print(plt1,

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(plt2,

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(plt3,

vp=viewport(layout.pos.row=2, layout.pos.col=1))

274

770

790

810

830

SmallMediumLarge

Size

N
oi

se

Filter

Octel

Standard

780

800

820

Small Medium Large

Size

N
oi

se

Side

Left

Right

804

808

812

816

Left Right

Side

N
oi

se

Filter

Octel

Standard

a possible interaction between Filter and Side
fit <- aov(Noise~.^3, data=airfilters)
summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
Size 2 26051 13026 893.190 < 2e-16
Filter 1 1056 1056 72.429 1.04e-08
Side 1 1 1 0.048 0.829104
Size:Filter 2 804 402 27.571 6.05e-07
Size:Side 2 1293 647 44.333 8.73e-09
Filter:Side 1 17 17 1.190 0.286067
Size:Filter:Side 2 301 151 10.333 0.000579
Residuals 24 350 15

the three-way interaction is significant (p=0.000579), so we can not simplify this model.
The main question here is whether there is a difference between the filters, and the answer is
yeas (p=0.000). Because Filter has only two values a multiple comparison is not necessary.

Multiple Linear Regression

Example: House Prices

Prices of residencies located 30 miles south of a large metropolitan area with several possible
predictor variables.
Notice the 1.7 baths!
kable.nice(houseprice)

275

Price Sqfeet Floors Bedrooms Baths
1 69.0 1500.000 1 2 1.0
3 118.5 1880.952 1 2 2.0
4 104.0 1976.190 1 3 2.0
5 116.5 1880.952 1 3 2.0
6 121.5 1880.952 1 3 2.0
7 125.0 1976.190 1 3 2.0
8 128.0 2357.143 2 3 2.5
9 129.9 2166.667 1 3 1.7
10 133.0 2166.667 2 3 2.5
11 135.0 2166.667 2 3 2.5
12 137.5 2357.143 2 3 2.5
13 139.9 2166.667 1 3 2.0
14 143.9 2261.905 2 3 2.5
15 147.9 2547.619 2 3 2.5
16 154.9 2357.143 2 3 2.5
17 160.0 2738.095 2 3 2.0
18 169.0 2357.143 1 3 2.0
19 169.9 2642.857 1 3 2.0
20 125.0 2166.667 1 4 2.0
21 134.9 2166.667 1 4 2.0
22 139.9 2547.619 1 4 2.0
23 147.0 2642.857 1 4 2.0
24 159.0 2261.905 1 4 2.0
25 169.9 2547.619 2 4 3.0
26 178.9 2738.095 1 4 2.0
27 194.5 2833.333 2 4 3.0
28 219.9 2928.571 1 4 2.5
29 269.0 3309.524 2 4 3.0

Let’s go through the list of predictors one by one:
pushViewport(viewport(layout = grid.layout(2, 2)))
pos <- expand.grid(1:2, 1:2)
for(i in 1:4) {

plt <-
ggplot(data=houseprice,

aes_(x = as.name(names(houseprice)[i+1]),
y = as.name(names(houseprice)[1]))) +

276

geom_point() +
geom_smooth(method = "lm", se=FALSE)

print(plt,
vp=viewport(layout.pos.row=pos[i, 1],

layout.pos.col=pos[i, 2]))
cat("Price and ", colnames(houseprice)[i+1],

" ", round(cor(houseprice$Price, houseprice[, i+1]), 3), "\n")
}

100

150

200

250

1500 2000 2500 3000

Sqfeet

P
ric

e

100

150

200

250

1.00 1.25 1.50 1.75 2.00

Floors

P
ric

e

100

150

200

250

2.0 2.5 3.0 3.5 4.0

Bedrooms
P

ric
e

100

150

200

250

1.0 1.5 2.0 2.5 3.0

Baths

P
ric

e

Price and Sqfeet 0.915
Price and Floors 0.291
Price and Bedrooms 0.605
Price and Baths 0.653
fit <- lm(Price~., data=houseprice)
summary(fit)

##
Call:
lm(formula = Price ~ ., data = houseprice)
##
Residuals:
Min 1Q Median 3Q Max
-23.018 -5.943 1.860 5.947 30.955
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -67.61984 17.70818 -3.819 0.000882
Sqfeet 0.08571 0.01076 7.966 4.62e-08

277

Floors -26.49306 9.48952 -2.792 0.010363
Bedrooms -9.28622 6.82985 -1.360 0.187121
Baths 37.38067 12.26436 3.048 0.005709
##
Residual standard error: 13.71 on 23 degrees of freedom
Multiple R-squared: 0.8862, Adjusted R-squared: 0.8665
F-statistic: 44.8 on 4 and 23 DF, p-value: 1.558e-10

For the assumptions there is nothing new, as before we need to check the residual vs. fits
plot and the normal plot of residuals:
pushViewport(viewport(layout = grid.layout(1, 2)))
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
print(ggplot(data=df, aes(sample=Residuals)) +

geom_qq() + geom_qq_line(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

−20

−10

0

10

20

30

−2 −1 0 1 2

theoretical

sa
m

pl
e

−20

−10

0

10

20

30

50 100 150 200

Fits

R
es

id
ua

ls

This appears to be a good model and the assumptions of normally distributed residuals with
equal variance appears to be o.k.
Except,
Notice that there is something very strange about this model!
Let’s have a look at the correlations between the predictors:

278

round(cor(houseprice[, -1]), 3)

Sqfeet Floors Bedrooms Baths
Sqfeet 1.000 0.370 0.652 0.628
Floors 0.370 1.000 -0.018 0.743
Bedrooms 0.652 -0.018 1.000 0.415
Baths 0.628 0.743 0.415 1.000

The highest correlation between predictors is r=0.743 (Floors-Baths)
As in the case of polynomial regression, highly correlated predictors are a potential problem.
We will look at a solution called principle components at some point. Here we are ok.

Variable Selection

We have previously talked about the fact that we want our models to be as simple as possible.
Often that means a model with as few predictors as possible. So the question becomes:
Can we eliminate any of our predictors without making the model (stat. signif.)
worse?
There are several things one can think of:
Choose based on R2

but we already know this will always lead to the model with all predictors, for the same
reason that a cubic model always has an R2 at least as high as the quadratic model.
Note:
Price by Sqfeet, Floors and Bedrooms: R2=80.1%
Price by Floors, Bedrooms and Baths: R2=68.4%
Price by Sqfeet, Bedrooms and Baths: R2=83.5%
Price by Sqfeet, Floors, Bedrooms and Baths: R2=88.2%
so model with all 4 has a higher R2 than any of the models with just 3, but this will always
be so, even if one of the predictors is completely useless.
Choose based on Hypothesis Tests
in the summary(fit) above we see that p_value of Bedrooms = 0.187121 > 0.05, so eliminate
Bedrooms.
This sounds like a good idea AND IT IS WIDELY USED IN REAL LIFE, but it turns out
to be a bad one ! The reason why is bit hard to explain, though.
Use nested models test
fit.without.bedrooms <- lm(Price~.-Bedrooms,

data=houseprice)
anova(fit, fit.without.bedrooms)

Analysis of Variance Table
##

279

Model 1: Price ~ Sqfeet + Floors + Bedrooms + Baths
Model 2: Price ~ (Sqfeet + Floors + Bedrooms + Baths) - Bedrooms
Res.Df RSS Df Sum of Sq F Pr(>F)
1 23 4321.9
2 24 4669.2 -1 -347.38 1.8487 0.1871

Again, this sounds like a good idea AND AGAIN IT IS WIDELY USED IN REAL LIFE,
but it turns out to be a dangerous one! To start, if we have several predictors we might want
to eliminate, we immediately face the issue of simultaneous inference.
There are several methods in wide use that are essentially based on this idea, such as forward
selection, backward selection and stepwise regression. These are sometimes unavoidable but
need to be done with great care!

What we need is new idea:

Best Subset Regression and Mallow’s Cp

We will find ALL possible models and calculate Mallow’s Cp statistic for each. The model
with the lowest Cp is best.
library(leaps)
out <- leaps(houseprice[, -1], houseprice$Price,

method = "Cp", nbest=1)
out

$which
1 2 3 4
1 TRUE FALSE FALSE FALSE
2 TRUE FALSE FALSE TRUE
3 TRUE TRUE FALSE TRUE
4 TRUE TRUE TRUE TRUE
##
$label
[1] "(Intercept)" "1" "2" "3" "4"
##
$size
[1] 2 3 4 5
##
$Cp
[1] 8.834171 8.812489 4.848657 5.000000
colnames(houseprice)[2:5][out$which[seq_along(out$Cp)[out$Cp==min(out$Cp)],]]

[1] "Sqfeet" "Floors" "Baths"

so the best model uses Sqfeet, Floors and Baths.
To find the model we rerun lm, now without Bedrooms:

280

summary(fit)

##
Call:
lm(formula = Price ~ ., data = houseprice)
##
Residuals:
Min 1Q Median 3Q Max
-23.018 -5.943 1.860 5.947 30.955
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -67.61984 17.70818 -3.819 0.000882
Sqfeet 0.08571 0.01076 7.966 4.62e-08
Floors -26.49306 9.48952 -2.792 0.010363
Bedrooms -9.28622 6.82985 -1.360 0.187121
Baths 37.38067 12.26436 3.048 0.005709
##
Residual standard error: 13.71 on 23 degrees of freedom
Multiple R-squared: 0.8862, Adjusted R-squared: 0.8665
F-statistic: 44.8 on 4 and 23 DF, p-value: 1.558e-10

Note that the model with all four predictors has Cp=5.0. But Cp is a statistic, its exact
value depends on the sample. So is the model with Sqfeet, Floors and Baths statistically
significantly better than the model with all four predictors? We would need a hypothesis
test to answer this question but this is not part of our course.

Prediction

Prediction works just as it did for simple regression. Say we want to find a 90% interval
estimate for a house that has 2000 sqfeet, one floor and two baths. Then
predict(fit.without.bedrooms,

newdata=data.frame(Sqfeet=2000,
Floors=1,
Bedrooms=0,
Baths=2),

interval="prediction", level=0.9)

fit lwr upr
1 122.9797 98.07234 147.887

Example: Air Pollution and Mortality

The dependent variable for analysis is age adjusted mortality (called “Mortality”). The data
include variables measuring demographic characteristics of the cities, variables measuring

281

climate characteristics, and variables recording the pollution potential of three different air
pollutants.
x <- airpollution
rownames(x) <- NULL
kable.nice(head(airpollution[, 1:5], 3))

Mortality JanTemp JulyTemp RelHum Rain
AkronOH 921.87 27 71 59 36
Albany-Schenectady-TroyNY 997.87 23 72 57 35
AllentownBethlehemPA-NJ 962.35 29 74 54 44

kable.nice(head(x[, 6:10], 3))

Education PopDensity NonWhite WhiteCollar Pop
11.4 3243 8.8 42.6 660328
11.0 4281 3.5 50.7 835880
9.8 4260 0.8 39.4 635481

kable.nice(head(x[, 11:16], 3))

Pop.House Income HCPot NOxPot SO2Pot NOx
3.34 29560 21 15 59 15
3.14 31458 8 10 39 10
3.21 31856 6 6 33 6

we want to look at the scatterplots and the correlations. There are 15 predictors, so there
are 15 graphs and correlations.
pos <- expand.grid(1:2, 1:2)
pushViewport(viewport(layout = grid.layout(2, 2)))
for(i in 1:4) {

plt <-
ggplot(data=airpollution,

aes_(x = as.name(names(airpollution)[i+1]),
y = as.name(names(airpollution)[1]))) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)
print(plt,
vp=viewport(layout.pos.row=pos[i, 1],

layout.pos.col=pos[i, 2]))
cat("Mortality and ", colnames(airpollution)[i+1],

" ", round(cor(airpollution$Mortality,

282

airpollution[, i+1]), 3), "\n")
}

800

900

1000

1100

10 20 30 40 50 60

JanTemp

M
or

ta
lit

y

800

900

1000

1100

65 70 75 80 85

JulyTemp

M
or

ta
lit

y

800

900

1000

1100

40 50 60 70

RelHum

M
or

ta
lit

y

800

900

1000

1100

20 40 60

Rain

M
or

ta
lit

y

Mortality and JanTemp -0.016
Mortality and JulyTemp 0.322
Mortality and RelHum -0.101
Mortality and Rain 0.433
pushViewport(viewport(layout = grid.layout(2, 2)))
for(i in 5:8) {

plt <-
ggplot(data=airpollution,

aes_(x = as.name(names(airpollution)[i+1]),
y = as.name(names(airpollution)[1]))) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)
print(plt,
vp=viewport(layout.pos.row=pos[i-4, 1],

layout.pos.col=pos[i-4, 2]))
cat("Mortality and ", colnames(airpollution)[i+1],

" ", round(cor(airpollution$Mortality,
airpollution[, i+1]), 3), "\n")

}

283

800

900

1000

1100

9 10 11 12

Education

M
or

ta
lit

y

800

900

1000

1100

2500 5000 7500 10000

PopDensity

M
or

ta
lit

y

800

900

1000

1100

0 10 20 30 40

NonWhite

M
or

ta
lit

y

800

900

1000

1100

40 50 60

WhiteCollar
M

or
ta

lit
y

Mortality and Education -0.508
Mortality and PopDensity 0.252
Mortality and NonWhite 0.647
Mortality and WhiteCollar -0.289
pushViewport(viewport(layout = grid.layout(2, 2)))
for(i in 9:11) {

plt <-
ggplot(data=airpollution,

aes_(x = as.name(names(airpollution)[i+1]),
y = as.name(names(airpollution)[1]))) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)
print(plt,
vp=viewport(layout.pos.row=pos[i-8, 1],

layout.pos.col=pos[i-8, 2]))
cat("Mortality and ", colnames(airpollution)[i+1],

" ", round(cor(airpollution$Mortality,
airpollution[, i+1]), 3), "\n")

}

284

800

900

1000

1100

0e+00 2e+06 4e+06 6e+06 8e+06

Pop

M
or

ta
lit

y

800

900

1000

1100

2.8 3.0 3.2 3.4

Pop.House

M
or

ta
lit

y

800

900

1000

1100

25000 30000 35000 40000 45000

Income

M
or

ta
lit

y

Mortality and Pop 0.059
Mortality and Pop.House 0.368
Mortality and Income -0.283
pushViewport(viewport(layout = grid.layout(2, 2)))
for(i in 12:15) {

plt <-
ggplot(data=airpollution,

aes_(x = as.name(names(airpollution)[i+1]),
y = as.name(names(airpollution)[1]))) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)
print(plt,
vp=viewport(layout.pos.row=pos[i-11, 1],

layout.pos.col=pos[i-11, 2]))
cat("Mortality and ", colnames(airpollution)[i+1],

" ", round(cor(airpollution$Mortality,
airpollution[, i+1]), 3), "\n")

}

285

800

900

1000

1100

0 200 400 600

HCPot

M
or

ta
lit

y

800

900

1000

1100

0 100 200 300

NOxPot

M
or

ta
lit

y

800

900

1000

1100

0 100 200

SO2Pot

M
or

ta
lit

y

800

900

1000

1100

0 100 200 300

NOx
M

or
ta

lit
y

Mortality and HCPot -0.185
Mortality and NOxPot -0.085
Mortality and SO2Pot 0.419
Mortality and NOx -0.085

There are problems with four predictors (Pop, HCPot, NOx, and NOxPot). Let’s try the log
transform and check again for those predictors:
The easiest way to do this is to make a new matrix:
newair <- airpollution
newair[,c("Pop", "HCPot", "NOx", "NOxPot")] <-

log(newair[, c("Pop", "HCPot", "NOx", "NOxPot")])
colnames(newair)[c(10, 13, 14, 16)] <- c("log(Pop)", "log(HCPot)", "log(NOx)", "log(NOxPot)")
pushViewport(viewport(layout = grid.layout(2, 2)))
k <- 0
for(i in c(10, 13, 14, 16)) {

k <- k+1
plt <-

ggplot(data=newair,
aes_(x = as.name(names(newair)[i]),

y = as.name(names(newair)[1]))) +
geom_point() +
geom_smooth(method = "lm", se=FALSE)
print(plt,
vp=viewport(layout.pos.row=pos[k, 1],

layout.pos.col=pos[k, 2]))
cat("Mortality and ", colnames(newair)[i],

" ", round(cor(newair$Mortality,
newair[, i]), 3), "\n")

286

}

800

900

1000

1100

12 13 14 15 16

log(Pop)

M
or

ta
lit

y

800

900

1000

1100

0 2 4 6

log(HCPot)

M
or

ta
lit

y

800

900

1000

1100

0 2 4 6

log(NOx)

M
or

ta
lit

y
800

900

1000

1100

0 2 4 6

log(NOxPot)

M
or

ta
lit

y

Mortality and log(Pop) 0.085
Mortality and log(HCPot) 0.125
Mortality and log(NOx) 0.28
Mortality and log(NOxPot) 0.28

so in all cases the log transform worked, and we will use newair from now on.
Let’s find the correlations in absolute value of the predictors with the response, in order:
cors <- round(cor(newair), 2)
sort(abs(cors[,"Mortality"]), decreasing = TRUE)[-1]

NonWhite Education Rain SO2Pot Pop.House JulyTemp
0.65 0.51 0.43 0.42 0.37 0.32
WhiteCollar Income log(NOx) log(NOxPot) PopDensity log(HCPot)
0.29 0.28 0.28 0.28 0.25 0.13
RelHum log(Pop) JanTemp
0.10 0.09 0.02

Next we look at the correlations between the predictors.
cors[-1, -1]

JanTemp JulyTemp RelHum Rain Education PopDensity NonWhite
JanTemp 1.00 0.32 0.09 0.06 0.11 -0.08 0.46
JulyTemp 0.32 1.00 -0.44 0.47 -0.27 -0.01 0.60
RelHum 0.09 -0.44 1.00 -0.12 0.19 -0.15 -0.12
Rain 0.06 0.47 -0.12 1.00 -0.47 0.08 0.30
Education 0.11 -0.27 0.19 -0.47 1.00 -0.24 -0.21

287

PopDensity -0.08 -0.01 -0.15 0.08 -0.24 1.00 -0.01
NonWhite 0.46 0.60 -0.12 0.30 -0.21 -0.01 1.00
WhiteCollar 0.21 -0.01 0.01 -0.11 0.49 0.25 -0.06
log(Pop) 0.32 0.04 -0.02 -0.28 0.27 0.21 0.22
Pop.House -0.33 0.26 -0.14 0.20 -0.39 -0.17 0.35
Income 0.20 -0.19 0.13 -0.36 0.51 0.00 -0.10
log(HCPot) 0.23 -0.41 0.18 -0.48 0.18 0.26 0.15
log(NOx) 0.18 -0.30 0.10 -0.39 0.03 0.34 0.21
SO2Pot -0.09 -0.07 -0.12 -0.13 -0.23 0.42 0.16
log(NOxPot) 0.18 -0.30 0.10 -0.39 0.03 0.34 0.21
WhiteCollar log(Pop) Pop.House Income log(HCPot) log(NOx)
JanTemp 0.21 0.32 -0.33 0.20 0.23 0.18
JulyTemp -0.01 0.04 0.26 -0.19 -0.41 -0.30
RelHum 0.01 -0.02 -0.14 0.13 0.18 0.10
Rain -0.11 -0.28 0.20 -0.36 -0.48 -0.39
Education 0.49 0.27 -0.39 0.51 0.18 0.03
PopDensity 0.25 0.21 -0.17 0.00 0.26 0.34
NonWhite -0.06 0.22 0.35 -0.10 0.15 0.21
WhiteCollar 1.00 0.28 -0.35 0.37 0.16 0.11
log(Pop) 0.28 1.00 -0.26 0.41 0.48 0.50
Pop.House -0.35 -0.26 1.00 -0.30 -0.22 -0.12
Income 0.37 0.41 -0.30 1.00 0.29 0.25
log(HCPot) 0.16 0.48 -0.22 0.29 1.00 0.94
log(NOx) 0.11 0.50 -0.12 0.25 0.94 1.00
SO2Pot -0.06 0.37 -0.01 0.07 0.57 0.68
log(NOxPot) 0.11 0.50 -0.12 0.25 0.94 1.00
SO2Pot log(NOxPot)
JanTemp -0.09 0.18
JulyTemp -0.07 -0.30
RelHum -0.12 0.10
Rain -0.13 -0.39
Education -0.23 0.03
PopDensity 0.42 0.34
NonWhite 0.16 0.21
WhiteCollar -0.06 0.11
log(Pop) 0.37 0.50
Pop.House -0.01 -0.12
Income 0.07 0.25
log(HCPot) 0.57 0.94
log(NOx) 0.68 1.00
SO2Pot 1.00 0.68
log(NOxPot) 0.68 1.00

We find:
a) there are sizable correlations (for example cor(NonWhite,JulyTemp)=0.60).

Because of this interpreting (understanding) the final model will be difficult.

288

b) LOGT(NOxPot) and LOGT(NOx) are perfectly correlated.
Using perfectly correlated predictors is not possible so we eliminate one of them, say log(NOx):
newair <- newair[, -16]

Next we fit a model with all the predictors and check the assumptions:
fit <- lm(Mortality~., data=newair)

pushViewport(viewport(layout = grid.layout(1, 2)))
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
print(ggplot(data=df, aes(sample=Residuals)) +

geom_qq() + geom_qq_line(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

−50

0

50

−2 −1 0 1 2

theoretical

sa
m

pl
e

−50

0

50

800 900 1000 1100

Fits

R
es

id
ua

ls

The residual vs fits plot looks fine, so there is no problem with the model.
The normal plot is ok, so no problem with the normal assumption. The residual vs fits plot
looks fine, so there is no problem with the equal variance assumption.
Next we use the best subset regression to see whether we can find a model with fewer
predictors.
out <- leaps(newair[, -1], newair$Mortality,

method = "Cp", nbest=1)
colnames(newair)[-1][out$which[seq_along(out$Cp)[out$Cp==min(out$Cp)],]]

289

[1] "JanTemp" "Rain" "PopDensity" "NonWhite" "WhiteCollar"
[6] "log(NOx)"

It suggests a model based on JanTemp, Rain, PopDensity, NonWhite, WhiteCollar and
LOGT(NOx) with Mallow’s Cp=4.32
df <- newair[, c("Mortality",

"JanTemp",
"Rain",
"PopDensity",
"NonWhite",
"WhiteCollar",
"log(NOx)")]

fit <- lm(Mortality~., data=df)
summary(fit)

##
Call:
lm(formula = Mortality ~ ., data = df)
##
Residuals:
Min 1Q Median 3Q Max
-67.749 -24.087 3.249 19.473 93.474
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 944.274572 47.170880 20.018 < 2e-16
JanTemp -1.941998 0.516119 -3.763 0.000428
Rain 1.924283 0.484198 3.974 0.000219
PopDensity 0.006437 0.003608 1.784 0.080282
NonWhite 4.194072 0.620038 6.764 1.18e-08
WhiteCollar -2.723255 0.947170 -2.875 0.005839
`log(NOx)` 17.000178 4.879795 3.484 0.001012
##
Residual standard error: 33.46 on 52 degrees of freedom
Multiple R-squared: 0.7425, Adjusted R-squared: 0.7127
F-statistic: 24.98 on 6 and 52 DF, p-value: 1.028e-13

Because the best model does still include one of the pollution variables, we can conclude that
pollution adds to the mortality rate.
And we are done!

Example: US Temperatures

The data gives the normal average January minimum temperature in degrees Fahrenheit
with the latitude and longitude of 56 U.S. cities. (For each year from 1931 to 1960, the
daily minimum temperatures in January were added together and divided by 31. Then, the
averages for each year were averaged over the 30 years.)

290

Variables:
City: City
State: State postal abbreviation
JanTemp: Average January minimum temperature in degrees F.
Latitude: Latitude in degrees north of the equator
Longitude: Longitude in degrees west of the prime meridian
kable.nice(head(ustemperature))

City State JanTemp Latitude Longitude
Mobile AL 44 31.2 88.5
Montgomery AL 38 32.9 86.8
Phoenix AZ 35 33.6 112.5
LittleRock AR 31 35.4 92.8
LosAngeles CA 47 34.3 118.7
SanFrancisco CA 42 38.4 123.0

we want to develop a model that predicts the temperature from the longitude and latitude.
Let’s begin by considering the predictors:
ggplot(data=ustemperature, aes(Longitude, Latitude)) +

geom_point()

25

30

35

40

45

70 80 90 100 110 120

Longitude

La
tit

ud
e

this however looks wrong, it is switched left to right. That is because every Longitude comes
with East and West, and all of the US is in West. So we need to

291

ustemperature$Longitude <- -ustemperature$Longitude

we can do even better than just the scatterplot:
library(maps)
usa <- map_data("usa")
ggplot() +

geom_polygon(data = usa,
aes(x=long, y = lat, group = group),
alpha=0.1) +

coord_fixed(1.3) +
geom_point(data=ustemperature,

aes(Longitude, Latitude)) +
labs(x="Longitude", y="Latitude") +
scale_x_continuous(breaks = c(-120, -100, -80),

labels = c("120W", "100W", "80W"))

25

30

35

40

45

50

120W 100W 80W

Longitude

La
tit

ud
e

Now the relationship of Latitude to Temperature
ggplot(data=ustemperature, aes(Latitude, JanTemp)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)

292

0

20

40

60

25 30 35 40 45

Latitude

Ja
nT

em
p

seems fairly linear.
ggplot(data=ustemperature, aes(Longitude, JanTemp)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)

0

20

40

60

−120 −110 −100 −90 −80 −70

Longitude

Ja
nT

em
p

this does not. Let’s fit a polynomial model in Longitude:
fit.quad <- lm(JanTemp~poly(Longitude, 2),

data=ustemperature)

293

df <- data.frame(Residuals=resid(fit.quad),
Fits = fitted(fit.quad))

ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0)

−20

0

20

40

26.5 27.0 27.5

Fits

R
es

id
ua

ls

not so good yet, so
fit.cube <- lm(JanTemp~poly(Longitude, 3),

data=ustemperature)
df <- data.frame(Residuals=resid(fit.cube),

Fits = fitted(fit.cube))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)

294

−20

0

20

20 30 40

Fits

R
es

id
ua

ls

and that is fine.
Now we put it together:
fit <- lm(JanTemp~Latitude + poly(Longitude, 3),

data=ustemperature)
summary(fit)

##
Call:
lm(formula = JanTemp ~ Latitude + poly(Longitude, 3), data = ustemperature)
##
Residuals:
Min 1Q Median 3Q Max
-8.569 -1.624 0.218 1.472 7.039
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 118.39739 3.53301 33.512 < 2e-16
Latitude -2.35772 0.08998 -26.202 < 2e-16
poly(Longitude, 3)1 -15.99052 3.26685 -4.895 1.03e-05
poly(Longitude, 3)2 36.26524 3.47734 10.429 3.02e-14
poly(Longitude, 3)3 -27.59874 3.30506 -8.350 4.13e-11
##
Residual standard error: 3.225 on 51 degrees of freedom
Multiple R-squared: 0.9461, Adjusted R-squared: 0.9419
F-statistic: 223.9 on 4 and 51 DF, p-value: < 2.2e-16
pushViewport(viewport(layout = grid.layout(1, 2)))
df <- data.frame(Residuals=resid(fit),

295

Fits = fitted(fit))
print(ggplot(data=df, aes(sample=Residuals)) +

geom_qq() + geom_qq_line(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

−5

0

5

−2 −1 0 1 2

theoretical

sa
m

pl
e

−5

0

5

0 20 40 60

Fits

R
es

id
ua

ls

shows that this indeed a good model.
How can we visualize this model? Let’s do the following:
• find a fine grid of points in the US

• for each such point use the model to predict the temperature - draw the map with these
predictions

x <- seq(-130, -70, length=50)
y <- seq(25, 50, length=50)
xy <- expand.grid(x, y)
df <- data.frame(Longitude=xy[, 1],

Latitude=xy[, 2])
df$Temp <- predict(fit, df)

ggplot() +
geom_polygon(data = usa,

aes(x=long, y = lat, group = group),
alpha=0.1) +

coord_fixed(1.3) +

296

geom_point(data=df, aes(Longitude, Latitude, color=Temp)) +
scale_colour_gradient(low="blue", high="red") +
labs(x="Longitude", y="Latitude", color="Temperature") +
scale_x_continuous(breaks = c(-120, -100, -80),

labels = c("120W", "100W", "80W"))

25

30

35

40

45

50

120W 100W 80W

Longitude

La
tit

ud
e

0

30

60

90

Temperature

It would be nicer, though, if we had points only in the US. We can use the data set us.cities
in the map library to get coordinates:
df <- us.cities[, 5:4]
df <- df[df[, 2]<50,] #not Alaska
df <- df[df[, 2]>25,] #not Hawaii
colnames(df) <- c("Longitude", "Latitude")
df$Temp <- predict(fit, df)

ggplot() +
geom_polygon(data = usa,

aes(x=long, y = lat, group = group),
alpha=0.1) +

coord_fixed(1.3) +
geom_point(data=df, aes(Longitude, Latitude, color=Temp)) +
scale_colour_gradient(low="blue", high="red") +
labs(x="Longitude", y="Latitude", color="Temperature") +
scale_x_continuous(breaks = c(-120, -100, -80),

labels = c("120W", "100W", "80W"))

297

25

30

35

40

45

50

120W 100W 80W

Longitude

La
tit

ud
e

0

20

40

Temperature

How about Puerto Rico?
df <- data.frame(Longitude=-65.1, Latitude=18.1)
predict(fit, df)

1
66.26492

Clearly this is an extrapolation!
Here is another way to understand this model: image we take a trip from New York
(Long=73.94, Lat=40.67) to San Francisco (Long-122.45, Lat=37.77). How does our model
say the temperature changes?
df <- data.frame(Longitude=seq(-122, -70, length=250),

Latitude=rep(40, 250))
df$Temp <- predict(fit, df)
ggplot(df, aes(Longitude, Temp)) +

geom_line()

298

15

20

25

30

35

40

−120 −110 −100 −90 −80 −70

Longitude

Te
m

p

How about a nonparametric fit?
fit.loess <- loess(JanTemp~Longitude+Latitude,

data=ustemperature)
df$Temp <- predict(fit.loess, df)
ggplot(df, aes(Longitude, Temp)) +

geom_line()

20

25

30

35

−120 −110 −100 −90 −80 −70

Longitude

Te
m

p

which looks fairly similar.

299

Models with Categorical Predictors

Example: Environmental, Safety and Health Attitudes

Environment, Safety and Health Attitudes of employees of a laboratory. Employees are given
a questionnaire, which is then collated into an average score from 1(bad) to 10(good). We
also have available the length of service of the employee and their gender.
kable.nice(head(esh))

ES.H Yrs.Serv Sex
7.6 5 Female
9.0 30 Female
8.0 12 Female
6.8 7 Female
7.4 7 Female
9.8 27 Female

One of the predictor variables (Sex) is actually categorical. A categorical variable used in a
regression model is often referred to as a dummy variable.
Let’s start by looking at each predictor separately.
• Years is quantitative, so do the scatterplot:

attach(esh)

ggplot(data=esh, aes(Yrs.Serv, ES.H)) +
geom_point() +

geom_smooth(method = "lm", se=FALSE)

300

4

6

8

10

0 10 20 30

Yrs.Serv

E
S

.H

• Sex is categorical, so do the boxplot:
ggplot(data=esh, aes(Sex, ES.H)) +

geom_boxplot()

4

6

8

10

Female Male

Sex

E
S

.H

The values in Sex (Male, Female) are text but in a regression we need everything to be
numeric, so in order to use Sex in a regression model we first have to code the variable as
numbers, for example Female=0 and Male=1. Then
SexCode <- rep(0, length(Sex))
SexCode[Sex=="Male"] <- 1

301

esh1 <- data.frame(ESH=esh$ES.H,
YrsServ=esh$Yrs.Serv,
SexCode=SexCode)

fit <- lm(ESH~., data=esh1)
summary(fit)

##
Call:
lm(formula = ESH ~ ., data = esh1)
##
Residuals:
Min 1Q Median 3Q Max
-1.23832 -0.49061 -0.05023 0.49141 1.49221
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.03542 0.35862 19.618 4.10e-13
YrsServ 0.09695 0.02228 4.351 0.000435
SexCode -2.59099 0.36058 -7.186 1.52e-06
##
Residual standard error: 0.7861 on 17 degrees of freedom
Multiple R-squared: 0.8394, Adjusted R-squared: 0.8205
F-statistic: 44.44 on 2 and 17 DF, p-value: 1.771e-07

pushViewport(viewport(layout = grid.layout(1, 2)))
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
print(ggplot(data=df, aes(sample=Residuals)) +

geom_qq() + geom_qq_line(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

302

−1

0

1

−2 −1 0 1 2

theoretical

sa
m

pl
e

−1.0

−0.5

0.0

0.5

1.0

1.5

6 8 10

Fits
R

es
id

ua
ls

The residual vs. fits and normal plot look good, so this is a good model.

Or is it?
Let’s do the following: what would the equation look like if we knew the person was female?
(or male). Well:

Female ES.H =
7.035 + 0.097Yrs.Serv− 2.591 · 0 =
7.035 + 0.097Yrs.Serv

Male ES.H =
7.035 + 0.097Yrs.Serv− 2.591 · 1 =
4.444 + 0.097Yrs.Serv

Notice that both equations have the same slope, so we have parallel lines.
Note such a model is also often called an additive model, similar to an ANOVA without
interaction!
What does this look like? Here it is:
ggplot(data=esh, aes(Yrs.Serv, ES.H, color=Sex)) +

geom_point() +
scale_color_manual(values=c("red", "blue")) +
geom_abline(intercept = c(7.035, 4.444),

slope = c(0.097, 0.097),
color=c("red", "blue"))

303

4

6

8

10

0 10 20 30

Yrs.Serv

E
S

.H

Sex

Female

Male

Now a model with parallel line may or may not make sense for our data, but it does not have
to. Except that no matter what, the way we used the categorical variable (simply code it
and use it) we will always result in parallel lines!
Is there a way to see whether this is ok here? Yes, what we need is a version of the residual
vs fits plot that identifies the plotting symbols by Sex. If the model is good, this residual vs
fits plot should also show no pattern.
ggplot(data=df, aes(Fits, Residuals, color=Sex)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE) +
geom_hline(yintercept = 0)

304

−1.0

−0.5

0.0

0.5

1.0

1.5

6 8 10

Fits

R
es

id
ua

ls Sex

Female

Male

and as we can see there is a definite pattern in the colors.

So, how do we get away from parallel lines? This can be done by adding a variable
Yrs.Serv*SexCode.
esh1$prod <- esh1$YrsServ*esh1$SexCode
fit.prod <- lm(ESH~., data=esh1)
summary(fit.prod)

##
Call:
lm(formula = ESH ~ ., data = esh1)
##
Residuals:
Min 1Q Median 3Q Max
-1.0280 -0.4430 -0.1206 0.3965 1.3300
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.32289 0.39824 18.388 3.48e-12
YrsServ 0.07216 0.02736 2.637 0.0179
SexCode -3.20289 0.54300 -5.898 2.25e-05
prod 0.06534 0.04443 1.470 0.1608
##
Residual standard error: 0.7605 on 16 degrees of freedom
Multiple R-squared: 0.8585, Adjusted R-squared: 0.832
F-statistic: 32.37 on 3 and 16 DF, p-value: 5.004e-07

305

and now:

Female ES.H =
7.323 + 0.072Yrs.Serv− 3.203 · 0 + 0.065 · Yrs.Serv*0 =
7.323 + 0.072Yrs.Serv

Male ES.H =
7.323 + 0.072Yrs.Serv− 3.203 · 1 + 0.065 · Yrs.Serv*1 =
4.120 + 0.138Yrs.Serv

and so this fits two separate lines.
ggplot(data=esh, aes(Yrs.Serv, ES.H, color=Sex)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)

4

6

8

10

0 10 20 30

Yrs.Serv

E
S

.H

Sex

Female

Male

Now the residual vs. fits plot looks like this:
df <- data.frame(Residuals=resid(fit.prod),

Fits = fitted(fit.prod))
ggplot(data=df, aes(Fits, Residuals, color=Sex)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE) +
geom_hline(yintercept = 0)

306

−1.0

−0.5

0.0

0.5

1.0

4 5 6 7 8 9

Fits

R
es

id
ua

ls Sex

Female

Male

Note you can get the same two equations by splitting up the data set into two parts, the
score and years of the Females and the score and years of the Males, and then doing a simple
regression for both:
round(coef(lm(ES.H[Sex=="Female"]~Yrs.Serv[Sex=="Female"])), 3)

(Intercept) Yrs.Serv[Sex == "Female"]
7.323 0.072
round(coef(lm(ES.H[Sex=="Male"]~Yrs.Serv[Sex=="Male"])), 3)

(Intercept) Yrs.Serv[Sex == "Male"]
4.120 0.137

Doing one multiple regression has some advantages, though. For example you get one R2

for the whole problem, not two for each part. Moreover, usually this R2 will be higher than
either of the other two.
Above we fitted the independent lines model by explicitly calculating the product term. A
better way is to do this:
esh2 <- esh
esh2$Sex <- SexCode
fit.prod <- lm(ES.H~.^2, data=esh2)
round(coef(fit.prod), 3)

(Intercept) Yrs.Serv Sex Yrs.Serv:Sex
7.323 0.072 -3.203 0.065

So now we have two models:

307

• parallel lines: ES.H = 7.035 + 0.097 Yrs.Serv - 2.591 Sex
R2 = 83.9%
• separate lines: ES.H = 7.323 + 0.072 Yrs.Serv - 3.203 SexCode + 0.065 Yrs.Serv*SexCode

R2=85.85%
Clearly the second one has a higher R2, but then the first one is a special case of the second
(nested models) and so the model with parallel lines will never have an R2 higher than the
model with separate lines, and usually always has an R2 a bit lower.
Of course the parallel lines model has two terms while the other one has three, and the third
one is more complicated, so we would prefer the parallel lines model, if possible.
What we want to know is whether the model with two separate lines is statistically
significantly better than the model with parallel lines. So we need a hypothesis test with:
H0: the two separate lines model is NOT statistically significantly better than the parallel
lines model.
Ha: the two separate lines model is statistically significantly better than the parallel lines
model.
Notice that the parallel lines model is a special case of the two independent lines model, and
so we can again use the anova to decide which is better:
anova(fit.prod, fit)

Analysis of Variance Table
##
Response: ES.H
Df Sum Sq Mean Sq F value Pr(>F)
Yrs.Serv 1 23.009 23.009 39.7826 1.043e-05
Sex 1 31.905 31.905 55.1642 1.434e-06
Yrs.Serv:Sex 1 1.251 1.251 2.1623 0.1608
Residuals 16 9.254 0.578

gives a p-value of 0.1608 > 0.05, so the parallel lines model is just as good as the model with
separate lines.

Prediction

Let’s find 95% interval estimates for female employees with 0, 1, 2,..,10 years of service, using
the parallel lines model:
fit <- lm(ES.H~., data=esh2)
nw <- data.frame(Yrs.Serv=0:10, Sex=rep(0, 11))
round(predict(fit, nw, interval="prediction"), 2)

fit lwr upr
1 7.04 5.21 8.86
2 7.13 5.32 8.94

308

3 7.23 5.43 9.03
4 7.33 5.54 9.11
5 7.42 5.65 9.20
6 7.52 5.75 9.29
7 7.62 5.86 9.38
8 7.71 5.96 9.47
9 7.81 6.06 9.56
10 7.91 6.16 9.65
11 8.00 6.26 9.75

Lines and Interaction

Above we explained the problem of using categorical predictors in a regression model in terms
of parallel lines vs. two independent lines. But in fact this another example of the issue of
interaction, or more generally of a relationship between the predictors. Parallel lines are ok if
the categorical and the continuous predictors are essentially independent. Often terms such
as Yrs Serv*SexCode are also called interaction terms.
For your purposes in this class (and later when doing work such as this) simply remember to
include product terms when you have categorical predictors. Then you can test if that term
is really needed, and drop it if it is not.

Example: Sales of Shoes

The number of shoes sold by year and type.
kable.nice(head(shoesales))

Sales Year Type
1539 1 Mens

12984 1 Kids
25809 1 Ladies
5742 2 Mens

30058 2 Kids
34764 2 Ladies

Let’s have a look at the data:
ggplot(data=shoesales, aes(Year, Sales, color=Type)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)

309

0

20000

40000

60000

80000

0 5 10 15 20

Year

S
al

es

Type

Kids

Ladies

Mens

We want to find a model for predicting Sales from Year and Type. Again Type is a categorical
variable and so we need to code it. The most obvious thing to do would be to code:
• Mens= 0

• Kids= 1

• Ladies = 2
but that is dangerous. Unlike a categorical variable numbers always have an order and a size.
So by coding in this way we are saying that Mens comes before Kids. Worse , we are saying
that the “distance” from Mens to Kids is the same as the “distance” from Kids to Ladies!
Whether this matters or not depends on the specific problem. There is however a way to
include such a variable without introducing order or size:
d1 <- rep(0, length(Type))
d1[Type=="Kids"] <- 1
d2 <- rep(0, length(Type))
d2[Type=="Ladies"] <- 1

Notice that by knowing d1 and d2 we now exactly what the type is:
• d1=0, d2=0 → Mens

• d1=1, d2=0 → Kids

• d1=0, d2=1 → Ladies
so we have not lost any information, but we have also not introduced any order or size!
Now

310

df <- shoesales[, 1:2]
df$d1 <- d1
df$d2 <- d2
fit <- lm(Sales~., data=df)
summary(fit)

##
Call:
lm(formula = Sales ~ ., data = df)
##
Residuals:
Min 1Q Median 3Q Max
-12963.7 -3433.5 -469.7 3349.1 22146.6
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1429.1 1917.8 0.745 0.459
Year 1551.6 115.4 13.440 < 2e-16
d1 12774.5 1875.7 6.811 3.74e-09
d2 26986.9 1875.7 14.388 < 2e-16
##
Residual standard error: 6361 on 65 degrees of freedom
Multiple R-squared: 0.8565, Adjusted R-squared: 0.8498
F-statistic: 129.3 on 3 and 65 DF, p-value: < 2.2e-16

This is of course an additive model, again we should worry about interaction. But now we
have two categorical predictors, so we need to add two product terms:
fit.prod <- lm(Sales~.^2-d1:d2, data=df)
summary(fit.prod)

##
Call:
lm(formula = Sales ~ .^2 - d1:d2, data = df)
##
Residuals:
Min 1Q Median 3Q Max
-11588.7 -3433.0 -256.7 2947.3 16121.3
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 7000.5 2443.6 2.865 0.005662
Year 1087.3 178.2 6.101 7.14e-08
d1 8862.2 3455.7 2.565 0.012728
d2 14185.1 3455.7 4.105 0.000119
Year:d1 326.0 252.0 1.294 0.200541
Year:d2 1066.8 252.0 4.233 7.64e-05

311

##
Residual standard error: 5669 on 63 degrees of freedom
Multiple R-squared: 0.8895, Adjusted R-squared: 0.8807
F-statistic: 101.4 on 5 and 63 DF, p-value: < 2.2e-16

And again we can test whether the product terms are needed:
anova(fit.prod, fit)

Analysis of Variance Table
##
Model 1: Sales ~ (Year + d1 + d2)^2 - d1:d2
Model 2: Sales ~ Year + d1 + d2
Res.Df RSS Df Sum of Sq F Pr(>F)
1 63 2024940688
2 65 2629827256 -2 -604886567 9.4096 0.0002656

and we find that here the interaction is needed (p = 0.0003).

Example: Headache and Pain Reliever

A pharmaceutical company set up an experiment in which patients with a common type
of headache were treated with a new analgesic or pain reliever. The analgesic was given to
each patient in one of four dosage levels: 2, 5, 7 or 10 grams. Then the time until noticeable
relieve was recorded in minutes. In addition the sex (coded as Female=0 and Male=1) and
the blood pressure of each patient was recorded. The blood pressure groups where formed by
comparing each patients diastolic and systolic pressure reading with historical data. Based
on this comparison the patients are assigned to one of three types: low (0.25), medium (0.5),
high (0.75) according to the respective quantiles of the historic data.
head(headache)

Time Dose Sex BP.Quan
1 35 2 0 0.25
2 43 2 0 0.50
3 55 2 0 0.75
4 47 2 1 0.25
5 43 2 1 0.50
6 57 2 1 0.75

here Sex and BP.Quan are already coded. BP.Quan is an interesting case because although
it is categorical, it does have ordering and even a little bit of “size”.
we want to determine the optimal dosage for each patient, possibly depending on sex and
blood pressure.
pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(data=headache,

aes(Dose, Time, color=factor(Sex))) +
geom_point() +
geom_smooth(method = "lm", se=FALSE) +

312

theme(legend.position="none") +
labs(title="Sex"),

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggplot(data=headache,

aes(Dose, Time, color=factor(BP.Quan))) +
geom_point() +
geom_smooth(method = "lm", se=FALSE) +
theme(legend.position="none") +
labs(title="BP.Quan"),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

10

20

30

40

50

2 4 6 8 10

Dose

T
im

e

Sex

0

20

40

2 4 6 8 10

Dose

T
im

e

BP.Quan

Let’s start by fitting a linear model on Dose alone:
fit <- lm(Time~Dose, data=headache)
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)

313

−10

0

10

10 20 30 40

Fits

R
es

id
ua

ls

There is a bit of a pattern here, so let’s try a quadratic model. In this example we will
eventually need the actual equations, so we won’t use poly:
headache$Dose2 <- headache$Dose^2
fit <- lm(Time~Dose+Dose2, data=headache)
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)

−10

−5

0

5

10

20 30 40

Fits

R
es

id
ua

ls

314

and that looks better.
Now we will include the other two variables. One interesting question is whether BP.Quan is
quantitative or categorical (in which case we should turn it into two dummy variables). The
answer is not clear, and we will leave it alone. So
fit <- lm(Time~(Dose+Sex+BP.Quan)^3+Dose2, data=headache)
pushViewport(viewport(layout = grid.layout(1, 2)))
df <- data.frame(Residuals=resid(fit),

Fits = fitted(fit))
print(ggplot(data=df, aes(sample=Residuals)) +

geom_qq() + geom_qq_line(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(Fits, Residuals)) +
geom_point() +
geom_hline(yintercept = 0),

vp=viewport(layout.pos.row=1, layout.pos.col=2))

−5

0

5

−2 −1 0 1 2

theoretical

sa
m

pl
e

−4

0

4

8

0 10 20 30 40 50

Fits

R
es

id
ua

ls

summary(fit)

##
Call:
lm(formula = Time ~ (Dose + Sex + BP.Quan)^3 + Dose2, data = headache)
##
Residuals:
Min 1Q Median 3Q Max
-6.9706 -2.4191 -0.1397 2.7665 7.5490
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)

315

(Intercept) 41.2173 8.2720 4.983 0.000164
Dose -7.0353 1.8218 -3.862 0.001536
Sex 4.3137 10.7536 0.401 0.693972
BP.Quan 48.3235 14.0798 3.432 0.003705
Dose2 0.5111 0.1184 4.316 0.000612
Dose:Sex 1.0588 1.6120 0.657 0.521244
Dose:BP.Quan -7.4706 2.1106 -3.539 0.002973
Sex:BP.Quan -9.2941 19.9118 -0.467 0.647376
Dose:Sex:BP.Quan -0.1176 2.9849 -0.039 0.969080
##
Residual standard error: 4.351 on 15 degrees of freedom
Multiple R-squared: 0.9418, Adjusted R-squared: 0.9108
F-statistic: 30.35 on 8 and 15 DF, p-value: 6.567e-08

we see that the three-way interaction Dose:Sex:BP.Quan is not stat. significant (p=0.969), so
we drop it:
fit <- lm(Time~(Dose+Sex+BP.Quan)^2+Dose2, data=headache)
summary(fit)

##
Call:
lm(formula = Time ~ (Dose + Sex + BP.Quan)^2 + Dose2, data = headache)
##
Residuals:
Min 1Q Median 3Q Max
-6.971 -2.449 -0.125 2.763 7.549
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.0408 6.7350 6.094 1.55e-05
Dose -7.0059 1.6092 -4.354 0.000493
Sex 4.6667 5.7655 0.809 0.430149
BP.Quan 48.6765 10.5207 4.627 0.000280
Dose2 0.5111 0.1147 4.457 0.000397
Dose:Sex 1.0000 0.5900 1.695 0.109448
Dose:BP.Quan -7.5294 1.4451 -5.210 8.59e-05
Sex:BP.Quan -10.0000 8.4265 -1.187 0.252656
##
Residual standard error: 4.213 on 16 degrees of freedom
Multiple R-squared: 0.9418, Adjusted R-squared: 0.9164
F-statistic: 37 on 7 and 16 DF, p-value: 1.022e-08

again, two interactions are not significant, so
fit <- lm(Time~.+ Dose:BP.Quan, data=headache)
summary(fit)

##

316

Call:
lm(formula = Time ~ . + Dose:BP.Quan, data = headache)
##
Residuals:
Min 1Q Median 3Q Max
-7.4706 -2.1795 0.2083 2.7819 9.5490
##
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 40.5408 6.5253 6.213 7.31e-06
Dose -6.5059 1.6792 -3.874 0.001111
Sex 5.6667 1.8258 3.104 0.006130
BP.Quan 43.6765 10.2329 4.268 0.000463
Dose2 0.5111 0.1217 4.199 0.000539
Dose:BP.Quan -7.5294 1.5340 -4.908 0.000113
##
Residual standard error: 4.472 on 18 degrees of freedom
Multiple R-squared: 0.9262, Adjusted R-squared: 0.9058
F-statistic: 45.21 on 5 and 18 DF, p-value: 1.437e-09

and now all terms are significant.
What does all of this look like?
x <- seq(2, 12, length=100)
y <- 0:1
z <- c(0.25, 0.5, 0.75)
xy <- expand.grid(x, y, z)
df <- data.frame(Dose=xy[, 1], Dose2=xy[, 1]^2,

Sex=xy[, 2], BP.Quan=xy[, 3])
df$Time <- predict(fit, df)

ggplot(data=df, aes(Dose, Time, color=factor(Sex))) +
geom_line() +
facet_wrap(~factor(BP.Quan)) +
labs(color="Gender")

317

0.25 0.5 0.75

2.5 5.0 7.5 10.0 12.52.5 5.0 7.5 10.0 12.52.5 5.0 7.5 10.0 12.5

0

20

40

Dose

T
im

e

Gender

0

1

and so we can give the following advice:
• the same dosage will work for men and women

• for people with low blood pressure give 7.5mg

• for people with medium blood pressure give 11mg

• for people with high blood pressure give 9mg

Generalized Additive Models

For a linear regression we have a dependent variable Y and a set of predictors x1, .., xn and a
model of the form

Y = α +
∑

βjxj + ε

Generalized additive models extend this in two ways: first we replace the linear terms βjxj
by non-linear functions, to get

Y = α +
∑

f(xj; βj) + ε

Second we can take the same step as before in going from linear models to general linear
models to fit problems where Y is a categorical variable.
A special case we have already discussed is where the functions are polynomials.
We can also “mix” linear and generalized additive models. Consider

Y = α + β1x1 + f(x2; β2) + ε

here we have a model linear in X1 and additive in X2. Such a model is called “semiparametric”.

318

Example: Oil in Rocks

We have measurements on four cross-sections of each of 12 oil-bearing rocks. The measure-
ments are the end product of a complex image-analysis and represent the total area, total
perimeter and a measure of ‘roundness’ of the pores in the rock cross-section.
kable.nice(head(rock.oil))

area peri shape perm
4990 2791.90 0.0903296 6.3
7002 3892.60 0.1486220 6.3
7558 3930.66 0.1833120 6.3
7352 3869.32 0.1170630 6.3
7943 3948.54 0.1224170 17.1
7979 4010.15 0.1670450 17.1

ggplot(data=rock.oil, aes("", perm)) +
geom_boxplot()

0

500

1000

x

pe
rm

this looks a bit skewed, so we should try a log transform:
ggplot(data=rock.oil, aes("", log(perm))) +

geom_boxplot()

319

2

3

4

5

6

7

x

lo
g(

pe
rm

)

and that looks better, so
rock.oil$perm <- log(rock.oil$perm)
colnames(rock.oil)[4] <- "log.perm"

Next the predictors:
pushViewport(viewport(layout = grid.layout(2, 2)))
print(ggplot(data=rock.oil, aes(area, log.perm)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE),

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggplot(data=rock.oil, aes(peri, log.perm)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE),

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggplot(data=rock.oil, aes(shape, log.perm)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE),

vp=viewport(layout.pos.row=2, layout.pos.col=1))

320

2

3

4

5

6

7

2500 5000 7500 10000 12500

area

lo
g.

pe
rm

2

3

4

5

6

7

1000 2000 3000 4000 5000

peri

lo
g.

pe
rm

2

4

6

0.1 0.2 0.3 0.4

shape

lo
g.

pe
rm

we begin with a linear model:
fit.lin <- lm(log.perm~., data=rock.oil)
df <- data.frame(Residuals=resid(fit.lin),

Fits = fitted(fit.lin))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)

−1

0

1

3 4 5 6 7 8

Fits

R
es

id
ua

ls

and that is not so bad.

321

Next let’s fit the generalized additive model:
library(mgcv)
fit.gam <- gam(log.perm ~ s(area) + s(peri) + s(shape),

data=rock.oil)

Notice the terms s() which means we are using splines.
Is this model better than the simple linear one? We can compare the two using ANOVA,
done in
anova(fit.lin, fit.gam)

Analysis of Variance Table
##
Model 1: log.perm ~ area + peri + shape
Model 2: log.perm ~ s(area) + s(peri) + s(shape)
Res.Df RSS Df Sum of Sq F Pr(>F)
1 44.000 31.949
2 43.598 31.230 0.40237 0.71914 2.4951 0.125

It appears the more complicated model is not actually better than the old one (p=0.125).
What is this new model? In
par(mfrow=c(2, 2))
plot(fit.gam, se = TRUE)

2000 6000 10000

−
4

0
4

area

s(
ar

ea
,1

)

1000 3000 5000

−
4

0
4

peri

s(
pe

ri,
1)

0.1 0.2 0.3 0.4

−
4

0
4

shape

s(
sh

ap
e,

1.
4)

we see the fitted line plots, which do look fairly linear.

Example: Kyphosis

322

This data set is about Kyphosis, a spinal deformity in children that occurs after certain
surgeries on the spine.
The variables are:
1) Kyphosis: 1 if kyphosis is present, 0 otherwise.

2) Age: age of the child in month.

3) Number: the number of vertebrae involved in the spinal operation.

4) Start: the beginning of the range of the vertebrae involved in the spinal operation.
kable.nice(head(kyphosis))

Kyphosis Age Number Start
absent 71 3 5
absent 158 3 14
present 128 4 5
absent 2 5 1
absent 1 4 15
absent 1 2 16

the goal is to predict whether a child will develop kyphosis. So this is a binary outcome, and
we will use logistic regression.
Let’s begin with some box plots:
pushViewport(viewport(layout = grid.layout(2, 2)))
print(ggplot(data=kyphosis, aes(Kyphosis, Age)) +

geom_boxplot(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=kyphosis, aes(Kyphosis, Number)) +
geom_boxplot(),

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggplot(data=kyphosis, aes(Kyphosis, Start)) +

geom_boxplot(),
vp=viewport(layout.pos.row=2, layout.pos.col=1))

323

0

50

100

150

200

absent present

Kyphosis

A
ge

2

4

6

8

10

absent present

Kyphosis

N
um

be
r

5

10

15

absent present

Kyphosis

S
ta

rt

so it seems all predictors are useful.
fit.glm <- glm(Kyphosis ~ ., family = binomial,

data = kyphosis)
summary(fit.glm)

##
Call:
glm(formula = Kyphosis ~ ., family = binomial, data = kyphosis)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.3124 -0.5484 -0.3632 -0.1659 2.1613
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.036934 1.449575 -1.405 0.15996
Age 0.010930 0.006446 1.696 0.08996
Number 0.410601 0.224861 1.826 0.06785
Start -0.206510 0.067699 -3.050 0.00229
##
(Dispersion parameter for binomial family taken to be 1)
##
Null deviance: 83.234 on 80 degrees of freedom
Residual deviance: 61.380 on 77 degrees of freedom
AIC: 69.38
##
Number of Fisher Scoring iterations: 5

324

which suggests that only Start is strongly predictive.
It is possible to show that Number is not very useful here (using anova), and we will continue
with Age and Start:
fit.sa.gam <- gam(Kyphosis ~ s(Age) + s(Start),

family = binomial, data = kyphosis)
par(mfrow = c(1, 2))
plot(fit.sa.gam, se = TRUE)

0 50 100 200

−
6

−
4

−
2

0
2

Age

s(
A

ge
,2

.1
8)

5 10 15

−
6

−
4

−
2

0
2

Start

s(
S

ta
rt

,2
.2

)

From this it seems a model quadratic in Age might work. For Start we see that its spline
appears piecewise linear, flat up to about 12 and then with a negative slope. This also makes
sense from the background of the data, because values of Start up to 12 correspond to the
thoracic region of the spine and values greater than 12 belong to the lumbar region. We will
therefore try and fit a model of the form

f(x) = a+ b(x− 12)I[12,∞)(x)
Notice that this model fits a continuous function. In R we can do this by including a term
I((Start-12)*(Start>12)). The ‘I’ is needed so R does not interpret the ’*’ as meaning
interaction. Comparing this with the gam model we see that this model is as good as the
generalized additive one.
fit.sa.glm <- glm(Kyphosis ~ poly(Age, 2) +

I((Start - 12) * (Start > 12)),
family = binomial, data = kyphosis)

anova(fit.sa.gam, fit.sa.glm)

Analysis of Deviance Table
##
Model 1: Kyphosis ~ s(Age) + s(Start)

325

Model 2: Kyphosis ~ poly(Age, 2) + I((Start - 12) * (Start > 12))
Resid. Df Resid. Dev Df Deviance
1 74.498 52.383
2 81.000 51.953 -6.5018 0.4301

What does this new model look like?
x <- seq(1, 200, length = 100)
y <- c(5, 10, 13, 14)
xy <- expand.grid(x, y)
df <- data.frame(Age=xy[, 1], Start=xy[, 2])
df$Prob <- predict(fit.sa.glm, df, type = "response")
ggplot(df, aes(Age, Prob)) +

geom_line() +
facet_wrap(~Start)

13 14

5 10

0 50 100 150 200 0 50 100 150 200

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

Age

P
ro

b

where we can see that the highest risk of kyphosis is for children around age 100 month (aka
8 years) but it diminishes the higher up the Start is.

Subset Selection and Ridge Regression

Subset Selection

We have previously discussed the issue of subset selection. There we use Mallow’s Cp Statistic
to find the best model. This calculates all possible models, and if there are k predictors
there are 2k such models. Although there are very fast algorithms available for this, it is not
feasible to do it for much more than 30 predictors. So what do we do if we have more than
that?
• Forward/Backward Selection

326

One idea is as follows:
1. Fit the model with no predictors.
2. Find which predictor improves the model the most (somehow)

3. If this predictor improves the fit statistically significantly, add it and go back to 2.
4. Stop

There are routines in R to do these steps.

Example: Pollution and Mortality

First we need to fix the non-normal predictors:
newair <- airpollution[, -16] #take out NOxPot
newair[, c(10, 13, 14)] <- log(newair[, c(10, 13, 14)])
colnames(newair)[c(10, 13, 14)] <-

c("log.Pop", "log.HCPot", "log.NOx")

Next we fit the model with no predictor. Of course that just finds the mean of Mortality, but
we need the corresponding lm object.
fit <- lm(Mortality~1, data=newair)

How do we decide which predictor (if any) to add to the model? We can use the add1
command and the so called F statistic:
add1(fit, formula(newair), test="F")

Single term additions
##
Model:
Mortality ~ 1
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 225993 488.79
JanTemp 1 58 225935 490.78 0.0145 0.9045520
JulyTemp 1 23407 202586 484.34 6.5858 0.0129321
RelHum 1 2309 223684 490.19 0.5883 0.4462331
Rain 1 42393 183599 478.54 13.1614 0.0006117
Education 1 58340 167652 473.17 19.8352 3.991e-05
PopDensity 1 14365 211627 486.92 3.8691 0.0540559
NonWhite 1 94473 131520 458.85 40.9440 3.172e-08
WhiteCollar 1 18920 207072 485.63 5.2081 0.0262337
log.Pop 1 1646 224347 490.36 0.4182 0.5204471
Pop.House 1 30608 195385 482.21 8.9292 0.0041348
Income 1 18138 207855 485.86 4.9739 0.0296867
log.HCPot 1 3553 222440 489.86 0.9103 0.3440525
log.NOx 1 17696 208296 485.98 4.8425 0.0318330
SO2Pot 1 39698 186295 479.40 12.1462 0.0009533

327

so the predictor with the highest F statistics (40.9) is NonWhite and it is statistically
significant (p=0.000), so we add it to the list of predictors:
fit <- update(fit, .~.+NonWhite)
coef(fit)

(Intercept) NonWhite
887.901783 4.485521

Here and in what follows I use the F statistic as a criterion. There are others, some included
in the add1 routine such as AIC or Akaike’s information criterion. Which criterion to use is
a rather tricky question.
Next:
tmp <- add1(fit, formula(newair), test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==max(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

Education , F = 18.66899 , p value = 6.428038e-05
fit <- update(fit, .~.+Education)
tmp <- add1(fit, formula(newair), test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==max(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

JanTemp , F = 11.04183 , p value = 0.001588636
fit <- update(fit, .~.+JanTemp)
tmp <- add1(fit, formula(newair), test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==max(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

SO2Pot , F = 7.428167 , p value = 0.008637386
fit <- update(fit, .~.+SO2Pot)
tmp <- add1(fit, formula(newair), test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==max(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

Rain , F = 5.21367 , p value = 0.02644668
fit <- update(fit, .~.+Rain)
tmp <- add1(fit, formula(newair), test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==max(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

log.NOx , F = 4.872501 , p value = 0.03172464
fit <- update(fit, .~.+log.NOx)
tmp <- add1(fit, formula(newair), test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==max(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

328

WhiteCollar , F = 1.959068 , p value = 0.1676667

and the next predictor is not stat. significant, so we stop.
Notice that this is not the same model that we found using Mallow’s Cp, which used JanTemp,
Rain, PopDensity, NonWhite, WhiteCollar and LOGT(NOx).
An alternative to forward selection is its reverse, backward selection. Here we start with the
full model and remove predictors until there are only significant predictors left:
Here is the backward solution:
fit <- lm(Mortality~., data=newair)
drop1(fit, test="F")

Single term deletions
##
Model:
Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Education +
PopDensity + NonWhite + WhiteCollar + log.Pop + Pop.House +
Income + log.HCPot + log.NOx + SO2Pot
Df Sum of Sq RSS AIC F value Pr(>F)
<none> 51920 430.02
JanTemp 1 7767 59687 436.24 6.5821 0.01379
JulyTemp 1 946 52867 429.08 0.8018 0.37542
RelHum 1 325 52246 428.38 0.2757 0.60215
Rain 1 7070 58990 435.55 5.9912 0.01844
Education 1 853 52773 428.98 0.7228 0.39984
PopDensity 1 1112 53032 429.27 0.9422 0.33701
NonWhite 1 31909 83830 456.28 27.0417 4.965e-06
WhiteCollar 1 2637 54558 430.94 2.2348 0.14207
log.Pop 1 162 52082 428.20 0.1369 0.71313
Pop.House 1 991 52911 429.13 0.8394 0.36456
Income 1 245 52165 428.29 0.2076 0.65087
log.HCPot 1 2636 54557 430.94 2.2342 0.14213
log.NOx 1 4750 56670 433.18 4.0253 0.05099
SO2Pot 1 690 52611 428.80 0.5850 0.44843

now the predictor with the smallest F value is log.Pop, so we drop it:
fit <- update(fit, .~.-log.Pop)
tmp <- drop1(fit, test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

Income , F = 0.1531485 , p value = 0.6973914
fit <- update(fit, .~.-Income)
tmp <- drop1(fit, test="F")

329

k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

RelHum , F = 0.272645 , p value = 0.6040685
fit <- update(fit, .~.-RelHum)
tmp <- drop1(fit, test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

SO2Pot , F = 0.6219361 , p value = 0.4342887
fit <- update(fit, .~.-SO2Pot)
tmp <- drop1(fit, test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

JulyTemp , F = 1.110323 , p value = 0.2972872
fit <- update(fit, .~.-JulyTemp)
tmp <- drop1(fit, test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

PopDensity , F = 0.9241217 , p value = 0.3411151
fit <- update(fit, .~.-PopDensity)
tmp <- drop1(fit, test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

log.HCPot , F = 1.562185 , p value = 0.2171643
fit <- update(fit, .~.-log.HCPot)
tmp <- drop1(fit, test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

Pop.House , F = 1.678198 , p value = 0.2009972
fit <- update(fit, .~.-Pop.House)
tmp <- drop1(fit, test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

WhiteCollar , F = 1.928731 , p value = 0.1708173
fit <- update(fit, .~.-WhiteCollar)
tmp <- drop1(fit, test="F")
k <- seq_along(tmp[[5]][-1])[tmp[[5]][-1] ==min(tmp[[5]][-1])]
cat(rownames(tmp)[k+1], ", F = ", tmp[[5]][k+1], ", p value = ", tmp[[6]][k+1],"\n")

330

Education , F = 6.21418 , p value = 0.01583229

and now the p value is less than 0.05, so we stop.
This results in a model with predictors
rownames(tmp)[-1]

[1] "JanTemp" "Rain" "Education" "NonWhite" "log.NOx"

which is not the same as either best subset or forward selection.
• stepwise selection

Here in each step we either add or drop a variable. The step command does it for us. Notice
that it uses AIC by default.
fit <- lm(Mortality~., data=newair)
step(fit)

Start: AIC=430.02
Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Education +
PopDensity + NonWhite + WhiteCollar + log.Pop + Pop.House +
Income + log.HCPot + log.NOx + SO2Pot
##
Df Sum of Sq RSS AIC
- log.Pop 1 162 52082 428.20
- Income 1 245 52165 428.29
- RelHum 1 325 52246 428.38
- SO2Pot 1 690 52611 428.80
- Education 1 853 52773 428.98
- JulyTemp 1 946 52867 429.08
- Pop.House 1 991 52911 429.13
- PopDensity 1 1112 53032 429.27
<none> 51920 430.02
- log.HCPot 1 2636 54557 430.94
- WhiteCollar 1 2637 54558 430.94
- log.NOx 1 4750 56670 433.18
- Rain 1 7070 58990 435.55
- JanTemp 1 7767 59687 436.24
- NonWhite 1 31909 83830 456.28
##
Step: AIC=428.2
Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Education +
PopDensity + NonWhite + WhiteCollar + Pop.House + Income +
log.HCPot + log.NOx + SO2Pot
##
Df Sum of Sq RSS AIC
- Income 1 177 52259 426.40
- RelHum 1 324 52406 426.57
- Education 1 755 52837 427.05

331

- SO2Pot 1 810 52892 427.11
- JulyTemp 1 865 52947 427.17
- Pop.House 1 1098 53180 427.43
- PopDensity 1 1206 53288 427.55
<none> 52082 428.20
- WhiteCollar 1 2622 54704 429.10
- log.HCPot 1 2731 54813 429.21
- log.NOx 1 5135 57217 431.75
- Rain 1 6912 58994 433.55
- JanTemp 1 7637 59719 434.27
- NonWhite 1 32637 84719 454.90
##
Step: AIC=426.4
Mortality ~ JanTemp + JulyTemp + RelHum + Rain + Education +
PopDensity + NonWhite + WhiteCollar + Pop.House + log.HCPot +
log.NOx + SO2Pot
##
Df Sum of Sq RSS AIC
- RelHum 1 310 52569 424.75
- SO2Pot 1 740 52999 425.23
- JulyTemp 1 848 53107 425.35
- Education 1 1110 53370 425.64
- Pop.House 1 1128 53387 425.66
- PopDensity 1 1198 53457 425.74
<none> 52259 426.40
- log.HCPot 1 2631 54890 427.30
- WhiteCollar 1 2825 55084 427.51
- log.NOx 1 4995 57254 429.79
- Rain 1 7196 59455 432.01
- JanTemp 1 8281 60540 433.08
- NonWhite 1 33147 85406 453.38
##
Step: AIC=424.75
Mortality ~ JanTemp + JulyTemp + Rain + Education + PopDensity +
NonWhite + WhiteCollar + Pop.House + log.HCPot + log.NOx +
SO2Pot
##
Df Sum of Sq RSS AIC
- SO2Pot 1 696 53265 423.52
- Education 1 1066 53635 423.93
- PopDensity 1 1116 53685 423.99
- Pop.House 1 1128 53697 424.00
- JulyTemp 1 1635 54204 424.55
<none> 52569 424.75
- log.HCPot 1 2631 55200 425.63
- WhiteCollar 1 2844 55413 425.86

332

- log.NOx 1 4934 57503 428.04
- Rain 1 7628 60197 430.74
- JanTemp 1 7983 60552 431.09
- NonWhite 1 34608 87177 452.59
##
Step: AIC=423.52
Mortality ~ JanTemp + JulyTemp + Rain + Education + PopDensity +
NonWhite + WhiteCollar + Pop.House + log.HCPot + log.NOx
##
Df Sum of Sq RSS AIC
- JulyTemp 1 1232 54497 422.87
- PopDensity 1 1331 54595 422.98
- Education 1 1350 54615 423.00
- Pop.House 1 1540 54804 423.21
<none> 53265 423.52
- log.HCPot 1 2651 55916 424.39
- WhiteCollar 1 3186 56451 424.95
- log.NOx 1 7406 60671 429.21
- Rain 1 7719 60984 429.51
- JanTemp 1 11176 64441 432.76
- NonWhite 1 34745 88009 451.15
##
Step: AIC=422.87
Mortality ~ JanTemp + Rain + Education + PopDensity + NonWhite +
WhiteCollar + Pop.House + log.HCPot + log.NOx
##
Df Sum of Sq RSS AIC
- PopDensity 1 1028 55525 421.98
- Education 1 1146 55643 422.10
- Pop.House 1 1442 55939 422.41
- log.HCPot 1 1609 56106 422.59
<none> 54497 422.87
- WhiteCollar 1 3737 58234 424.79
- log.NOx 1 6565 61062 427.58
- Rain 1 8311 62808 429.25
- JanTemp 1 13524 68021 433.95
- NonWhite 1 41036 95533 453.99
##
Step: AIC=421.98
Mortality ~ JanTemp + Rain + Education + NonWhite + WhiteCollar +
Pop.House + log.HCPot + log.NOx
##
Df Sum of Sq RSS AIC
- log.HCPot 1 1735 57259 421.79
<none> 55525 421.98
- Pop.House 1 2373 57898 422.44

333

- Education 1 2558 58082 422.63
- WhiteCollar 1 2763 58288 422.84
- log.NOx 1 7827 63351 427.76
- Rain 1 8886 64410 428.73
- JanTemp 1 16942 72466 435.69
- NonWhite 1 41873 97398 453.13
##
Step: AIC=421.79
Mortality ~ JanTemp + Rain + Education + NonWhite + WhiteCollar +
Pop.House + log.NOx
##
Df Sum of Sq RSS AIC
- Pop.House 1 1884 59143 421.70
<none> 57259 421.79
- WhiteCollar 1 2609 59868 422.42
- Education 1 3574 60834 423.36
- Rain 1 11398 68658 430.50
- log.NOx 1 16778 74037 434.95
- JanTemp 1 18282 75541 436.14
- NonWhite 1 41479 98739 451.94
##
Step: AIC=421.7
Mortality ~ JanTemp + Rain + Education + NonWhite + WhiteCollar +
log.NOx
##
Df Sum of Sq RSS AIC
<none> 59143 421.70
- WhiteCollar 1 2194 61337 421.85
- Education 1 2621 61764 422.26
- Rain 1 13263 72406 431.64
- JanTemp 1 17593 76736 435.07
- log.NOx 1 20607 79750 437.34
- NonWhite 1 48049 107192 454.79

##
Call:
lm(formula = Mortality ~ JanTemp + Rain + Education + NonWhite +
WhiteCollar + log.NOx, data = newair)
##
Coefficients:
(Intercept) JanTemp Rain Education NonWhite
1031.949 -2.023 1.812 -10.746 4.040
WhiteCollar log.NOx
-1.451 19.248

this seems the easiest to use (certainly in terms of what we have to type into R) but it is
important to understand that none of these methods works all the time. For each of them

334

there are examples were they lead to quite bad final models.
There has been a lot of research on the relative merits of these methods. There are in fact
many Statisticians who advise against their use. As an alternative we can consider

Ridge Regression

One problem with the above methods is that they are all or nothing: a predictor either is in
the final model or is not. Ridge regression takes a different approach: each variable gets a
“weight” in how much it contributes to the final model.
Recall the least squares regression method: we minimize the least squares criterion

n∑
i=1

yi − β0 −
k∑
j−1

βjxij

2

in ridge regression we use the criterion

n∑
i=1

yi − β0 −
p∑
j−1

βjxij

2

+ λ
p∑
j−1

β2
j

What does this do? The term ∑p
j−1 β

2
j will depend mainly on the largest β’s. Because this

term is added in and we are minimizing this expression we essentially penalize large β’s.
Overall these coefficients will be shrunk towards 0. For this reason ridge regression is a
shrinkage method. Such method have become quite popular in many areas of Statistics.
In the literature such methods are also refereed to as penalized likelihood methods.
λ is a parameter that controls the amount of shrinkage. If λ = 0 we are back at OLS.
How do we fit such a model?
library(ridge)
fit <- linearRidge(Mortality~., data=newair)
summary(fit)

##
Call:
linearRidge(formula = Mortality ~ ., data = newair)
##
##
Coefficients:
Estimate Scaled estimate Std. Error (scaled)
(Intercept) 8.750e+02 NA NA
JanTemp -9.412e-02 -7.277e+00 1.082e+01
JulyTemp 6.604e-01 2.314e+01 9.865e+00
RelHum -4.164e-02 -1.706e+00 1.161e+01
Rain 4.772e-01 4.206e+01 1.056e+01

335

Education -6.277e+00 -4.067e+01 1.023e+01
PopDensity 2.059e-03 2.261e+01 1.121e+01
NonWhite 9.271e-01 6.353e+01 1.025e+01
WhiteCollar -6.699e-01 -2.586e+01 1.113e+01
log.Pop 1.466e+00 9.127e+00 1.057e+01
Pop.House 2.177e+01 3.032e+01 1.094e+01
Income -6.439e-04 -2.194e+01 1.096e+01
log.HCPot 1.458e+00 1.253e+01 8.524e+00
log.NOx 3.090e+00 2.796e+01 8.551e+00
SO2Pot 7.871e-02 3.810e+01 1.024e+01
t value (scaled) Pr(>|t|)
(Intercept) NA NA
JanTemp 0.672 0.501310
JulyTemp 2.346 0.018970
RelHum 0.147 0.883210
Rain 3.982 6.84e-05
Education 3.976 7.01e-05
PopDensity 2.016 0.043760
NonWhite 6.198 5.73e-10
WhiteCollar 2.325 0.020082
log.Pop 0.864 0.387804
Pop.House 2.770 0.005599
Income 2.001 0.045437
log.HCPot 1.470 0.141584
log.NOx 3.270 0.001077
SO2Pot 3.720 0.000199
##
Ridge parameter: 2.861264, chosen automatically, computed using 1 PCs
##
Degrees of freedom: model 2.995 , variance 1.031 , residual 4.959

Lasso

This is similar to ridge regression but it uses

n∑
i=1

yi − β0 −
p∑
j−1

βjxij

2

+ λ
p∑
j−1
|βj|

In modern terminology, the Lasso uses an L1 penalty whereas ridge regression uses L2.
The Lasso can be fit with
library(glmnet)
X <- data.matrix(newair[, -1])
y <- newair$Mortality
fit <- cv.glmnet(X, y, standardize=TRUE,

336

type.measure="mse", nfolds = 5, alpha=1)
plot(fit)

−3 −2 −1 0 1 2 3

15
00

25
00

35
00

45
00

log(Lambda)

M
ea

n−
S

qu
ar

ed
 E

rr
or

14 14 14 14 14 14 11 10 8 8 6 4 4 2 1

cf <- as.numeric(coef(fit, s=fit$lambda.1se))
names(cf) <- c("Intercept", colnames(X))
cf

Intercept JanTemp JulyTemp RelHum Rain
1032.9753025 0.0000000 0.0000000 0.0000000 0.3963679
Education PopDensity NonWhite WhiteCollar log.Pop
-13.3991939 0.0000000 2.6816158 0.0000000 0.0000000
Pop.House Income log.HCPot log.NOx SO2Pot
0.0000000 0.0000000 0.0000000 0.0000000 0.1467875

One advantage of the lasso is that it can yield coefficients that are 0, and clearly any predictor
whose coefficient is 0 can be dropped:
cf[abs(cf)>0]

Intercept Rain Education NonWhite SO2Pot
1032.9753025 0.3963679 -13.3991939 2.6816158 0.1467875

As a very general guideline, if the goal is subset selection use the lasso. If the goal is prediction
use ridge regression.

Regression Trees

Tree-based methods partition the feature space into a set of rectangles, and then fit a simple
model (for example a constant) in each one. They are conceptually simple yet powerful. They

337

have been in use in many fields in the past, for example in Biology. (Animal or Vegetable?)
In Statistics they became popular with the work of Breiman et al. in the 1980’s
As an illustration consider a continuous response variable y and two continuous predictors
X1 and X2, each with values in [0,1]. A partition of the feature space is given in

X1

X
2

and the idea is to assign the same label to all the observations whose (x1, x2) falls into the
same rectangle.
This is a perfectly legitimate partition but it has the problem that it is very difficult to
describe. Instead we will restrict ourselves to the use of recursive binary partitions like the
on shown in

X1

X
2

R1

t1

t2

R2

R3

t3

R4

R5

t4

338

Such a tree is very easy to describe using a tree diagram:
|x< 0.3

y< 0.5

x< 0.1

y< 0.9

0 1
2

3 4

In this diagram each split is called a node. If it does not have a further split it is called a
terminal node. The corresponding regression model predicts Y with a constant cm in Region
Rm, that is

f̂(x) =
5∑
i=1

cmIRm(x)

How to grow a tree

Say our data consists of p “inputs” and a response for each of n observations, that is (xi, yi)
for i=1,..,n, with xi = (xi1, .., xip).
The algorithm needs to automatically decide on the splitting variables and split points, and
also what topology (or shape) the tree should have. Suppose that first we partition into m
regions R1, .., Rm, and we model the response as a constant in each region.
If we adopt as our criterion minimization of the sum of squares

∑
(yi − f(xi))2

it is easy to show that the best constants cm are just the mean values of y’s with corresponding
x’s in Rm:

ĉm = E[Y |x ∈ Rm]
Now finding the best binary partition in terms of minimum sum of squares is generally not
possible for computational reasons, so we proceed as follows: Starting with all the data,
consider a splitting variable j and split point s, and define the pair of half-planes

R1(j, s) = {x|xj ≤ s}
R2(j, s) = {x|xj > s}

339

Then we seek the splitting variable j and split point s which are optimal.
Having found the best split we partition the data into the two resulting regions and repeat
the splitting process on each of the two regions. Then this process is repeated.
How large should a tree grow? Clearly without any “stopping rule” the tree will grow until
each observation has its own region, which would amount to overfitting. The size of the tree
is in fact a tuning parameter such as span for loess, governing the bias-variance trade-off.
The most common strategy is to grow a large tree T0, stopping only when some minimum node
size (say 5) is reached. Then this large tree is pruned (made smaller) using cost-complexity
pruning:
Say T1 is a sub-tree of T0, that is T1 can be obtained by pruning branches off T0. Let |T| be
the number of terminal nodes in T and index the terminal nodes by 1,..,m. Let

ĉm = 1
nm

∑
xi∈Rm

yi

Qm(T) = 1
nm

∑
xi∈Rm

(yi − ĉm)2

then we define the cost-complexity criterion

Cα(T) =
|T |∑
m=1

nmQm(T) + α|T

the idea is to find, for each α, the sub-tree Tα to minimize Cα(T). The tuning parameter
α governs the trade-off between the size of the tree and the goodness-of-fit to the data. If
α = 0 the solution is the full tree T0, and for larger values of α the tree becomes smaller.
Methods to choose an “optimal” α automatically are known, for example cross-validation.

Example: Simulated data

we will use the tree shown above
x <- runif(1000)
y <- runif(1000)
z <- rep(0, 1000)
for (i in 1:1000) {

if (x[i] < 0.3) {
if (y[i] < 0.5) {

z[i]<- ifelse(x[i]<0.1, rnorm(1), rnorm(1, 1))
}
else {

z[i]<- rnorm(1, 2)
}

}
else {

340

z[i]<- ifelse(y[i]<0.9, rnorm(1, 3), rnorm(1, 4))
}

}
fit <- rpart(z ~ x + y)
par(mar=c(1, 0, 0, 0))
plot(fit)
text(fit)

|x< 0.2989

y< 0.4941

x< 0.1008

y< 0.9049

−0.09438 0.8347
1.976

2.931 4.109

pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(data=data.frame(x=x, y=z), aes(x, y)) +

geom_point() ,
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=data.frame(x=y, y=z), aes(x, y)) +
geom_point() ,
vp=viewport(layout.pos.row=1, layout.pos.col=2))

341

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00

x

y

−2.5

0.0

2.5

5.0

0.00 0.25 0.50 0.75 1.00

x

y

Looking at these graphs it is not clear how one would fit a standard model to this data set.

Example: Kyphosis

fit <- rpart(Kyphosis ~ Age + Number + Start,
data = kyphosis)

par(mar=c(1, 0, 0, 0))
plot(fit)
text(fit)

|Start>=8.5

Start>=14.5

Age< 55

Age>=111absent

absent

absent present

present

notice that the method easily accepts a binary categorical response!

Example: US Temperature

342

ustemperature$Longitude <- (-ustemperature$Longitude)
fit <- rpart(JanTemp~Longitude+Latitude,

data = ustemperature)
par(mar=c(1, 0, 0, 0))
plot(fit)
text(fit)

|Latitude>=34.7

Latitude>=41

Longitude>=−103 Latitude>=38.7

13.2 21 24.67 29.9

45.42

here is the corresponding fitted line plot:
library(maps)
df <- us.cities[, 5:4]
df <- df[df[, 2]<50,] #not Alaska
df <- df[df[, 2]>25,] #not Hawaii
colnames(df) <- c("Longitude", "Latitude")
df$Temp <- predict(fit, df)

ggplot() +
geom_polygon(data = usa,

aes(x=long, y = lat, group = group),
alpha=0.1) +

coord_fixed(1.3) +
geom_point(data=df, aes(Longitude, Latitude, color=Temp)) +
scale_colour_gradient(low="blue", high="red") +
labs(x="Longitude", y="Latitude", color="Temperature") +
scale_x_continuous(breaks = c(-120, -100, -80),

labels = c("120W", "100W", "80W"))

343

25

30

35

40

45

50

120W 100W 80W

Longitude

La
tit

ud
e

20

30

40

Temperature

Example: Air Pollution and Mortality

newair <- airpollution[, -16] #take out NOxPot
newair[, c(10, 13, 14)] <- log(newair[, c(10, 13, 14)])
colnames(newair)[c(10, 13, 14)] <-

c("log.Pop", "log.HCPot", "log.NOx")

fit <- rpart(Mortality~., data = newair)
par(mar=c(1, 0, 0, 0))
plot(fit)
text(fit)

344

|NonWhite< 7.95

Rain< 33.5 Education>=11.35

NonWhite< 21.6
857.7 918.2

925.9

977.6 1027

and we see that the only predictors used are NonWhite, Rain and Education

Principle Components Analysis

As we saw before, highly correlated predictors can cause difficulties in a regression analysis.
We will now study a way to deal with this.
The idea of principle components is this: find a few linear combinations of x1, .., xk that
explain the variation in y. That is, find

z1 =
∑

αi1xi...zm =
∑

αikxi

and do a regression of y on z1, .., zm instead of x1, .., xk.
This is a useful idea if the following happens:
• m is much smaller than k

• zi and zj are uncorrelated

• zj = ∑
αijxi can be interpreted in some way, that is we can understand the meaning of

zj

Using matrix notation we can write Z = XA where X is the data matrix and A is the m by
n matrix of α’s.
How should we choose A? The idea of principle components is as follows: Choose A such that
• the variables z1, .., zm are uncorrelated (Z’Z is a diagonal matrix)

• z1 has the largest possible variance, then z2 has the second largest (subject to cor(z1,
z2)=0), and so on.

345

So we want to find a matrix A such that Z’Z = (XA)‘XA = A’(X’X)A = D
Now X’X is a symmetric k by k matrix. It could be singular but let’s assume for the moment
that it is not. Then using Linear Algebra it can be shown that the columns of A are the the
eigenvectors of the matrix X’X.
Let’s see how this works on an artificial example. We have a sample of 100 observations from
a bivariate normal distribution with means (0,0), variances (1, 1) and correlation 0.9. First
we plot x2 vs x1, then we find the matrix X’X and its eigenvectors (using the R function
eigen). Next we find the new variables z1 and z2 as linear combinations of the eigenvectors
and X.
library(mvtnorm)
x <- rmvnorm(100, mean = c(0, 0),

sigma = matrix(c(1, 0.9, 0.9, 1), 2, 2))
xyr<- range(x)
plot(x, xlab = "X1", ylab = "X2", xlim = xyr, ylim = xyr)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X1

X
2

y <- t(x) %*% x
print(y)

[,1] [,2]
[1,] 113.9399 101.5266
[2,] 101.5266 108.3705
E <- eigen(y)
print(E)

eigen() decomposition
$values
[1] 212.720001 9.590372

346

##
$vectors
[,1] [,2]
[1,] -0.7167349 0.6973458
[2,] -0.6973458 -0.7167349
z1 <- E$vector[1, 1] * x[, 1] + E$vector[1, 2] * x[, 2]
z2 <- E$vector[2, 1] * x[, 1] + E$vector[2, 2] * x[, 2]
plot(z1, z2, xlab = "z1", ylab = "z2", ylim = range(z1))

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

z1

z2

Notice
• z1 and z2 are uncorrelated (here, they are of course independent)

• the variance of z1 is much large than the variance of z2.
There is another, geometric way to see what principle components are: again we draw the
scatterplot of x2 vs. x1, but without the axes. The first principle component transformation
is y=e1,1x1+e1,2x2. In the x2 vs. x1 plot this describes a line with slope -e1,1/e1,2 and going
through the origin, which we add to the plot. We do the same with the second principle
component transformation.
plot(x, xlab = "x1", ylab = "x2",

xlim = xyr, ylim = xyr, axes = F)
abline(0, -E$vector[1, 1]/E$vector[1, 2])
abline(0, -E$vector[2, 1]/E$vector[2, 2])

347

x1

x2

Now we can see that the transformation is really a change of coordinate system, from x1, x2
to z1, z2.
In practice we can use the R function princomp to carry out the calculations for us.
pc <- princomp(x)
print(summary(pc))

Importance of components:
Comp.1 Comp.2
Standard deviation 1.4529260 0.30876903
Proportion of Variance 0.9567888 0.04321123
Cumulative Proportion 0.9567888 1.00000000

we see that the first principle component explains about 95% of the variation in (x1, x2).
One of the components of the pc object is called “loadings”
pc$loadings

##
Loadings:
Comp.1 Comp.2
[1,] 0.718 0.696
[2,] 0.696 -0.718
##
Comp.1 Comp.2
SS loadings 1.0 1.0
Proportion Var 0.5 0.5
Cumulative Var 0.5 1.0

and we see that these are just the eigenvectors.

348

Example: Scores on math tests

consider the data in testscores. This is artificial data supposed to be the test scores of 25
mathematics graduate students in their qualifying exams. The differential geometry and
complex analysis exams were closed book whereas the others were open book.
kable.nice(testscores)

diffgeom complex algebra reals statistics
36 58 43 36 37
62 54 50 46 52
31 42 41 40 29
76 78 69 66 81
46 56 52 56 40
12 42 38 38 28
39 46 51 54 41
30 51 54 52 32
22 32 43 28 22
9 40 47 30 24

32 49 54 37 52
40 62 51 40 49
64 75 70 66 63
36 38 58 62 62
24 46 44 55 49
50 50 54 52 51
42 42 52 38 50
2 35 32 22 16

56 53 42 40 32
59 72 70 66 62
28 50 50 42 63
19 46 49 40 30
36 56 56 54 52
54 57 59 62 58
14 35 38 29 20

test.pc <- princomp(testscores)
summary(test.pc, loadings = TRUE)

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 28.4896795 9.03547104 6.60095491 6.13358179

349

Proportion of Variance 0.8212222 0.08260135 0.04408584 0.03806395
Cumulative Proportion 0.8212222 0.90382353 0.94790936 0.98597332
Comp.5
Standard deviation 3.72335754
Proportion of Variance 0.01402668
Cumulative Proportion 1.00000000
##
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
diffgeom 0.598 0.675 0.185 0.386
complex 0.361 0.245 -0.249 -0.829 -0.247
algebra 0.302 -0.214 -0.211 -0.135 0.894
reals 0.389 -0.338 -0.700 0.375 -0.321
statistics 0.519 -0.570 0.607 -0.179

Looking at the summary we see that the first pc accounts for 82% of the variation in the
data, and the first two account for 90%.
Let’s have a look at the loadings: the first one is (0.6, 0.36, 0.3, 0.39, 0.52) and amounts to
an average over all the exams. The second one is (-0.67, -0.25, 0.21, 0.34, 0.57). Notice that
here the first two are negative and the others are positive. But the first two were the closed
book exams and the others were open book!

Example: States

The data set state.x77 has info of the 50 states of the United States of America.
‘Population’: population estimate as of July 1, 1975
‘Income’: per capita income (1974)
‘Illiteracy’: illiteracy (1970, percent of population)
‘Life Exp’: life expectancy in years (1969-71)
‘Murder’: murder and non-negligent manslaughter rate per 100,000 population (1976)
‘HS Grad’: percent high-school graduates (1970)
‘Frost’: mean number of days with minimum temperature below freezing (1931-1960) in
capital or large city
‘Area’: land area in square miles
Source: U.S. Department of Commerce, Bureau of the Census (1977) Statistical Abstract of
the United States.
kable.nice(head(state.x77))

350

Population Income Illiteracy Life Exp Murder HS Grad Frost Area
Alabama 3615 3624 2.1 69.05 15.1 41.3 20 50708
Alaska 365 6315 1.5 69.31 11.3 66.7 152 566432
Arizona 2212 4530 1.8 70.55 7.8 58.1 15 113417
Arkansas 2110 3378 1.9 70.66 10.1 39.9 65 51945
California 21198 5114 1.1 71.71 10.3 62.6 20 156361
Colorado 2541 4884 0.7 72.06 6.8 63.9 166 103766

state.pc <- princomp(state.x77, cor = T)
summary(state.pc, loading = TRUE)

Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5
Standard deviation 1.8970755 1.2774659 1.0544862 0.84113269 0.62019488
Proportion of Variance 0.4498619 0.2039899 0.1389926 0.08843803 0.04808021
Cumulative Proportion 0.4498619 0.6538519 0.7928445 0.88128252 0.92936273
Comp.6 Comp.7 Comp.8
Standard deviation 0.55449226 0.3800642 0.33643379
Proportion of Variance 0.03843271 0.0180561 0.01414846
Cumulative Proportion 0.96779544 0.9858515 1.00000000
##
Loadings:
Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8
Population 0.126 0.411 0.656 0.409 0.406 0.219
Income -0.299 0.519 0.100 -0.638 -0.462
Illiteracy 0.468 -0.353 -0.387 0.620 0.339
Life Exp -0.412 0.360 -0.443 0.327 -0.219 0.256 -0.527
Murder 0.444 0.307 -0.108 0.166 -0.128 0.325 0.295 -0.678
HS Grad -0.425 0.299 -0.232 0.645 0.393 0.307
Frost -0.357 -0.154 -0.387 0.619 0.217 -0.213 0.472
Area 0.588 -0.510 -0.201 0.499 -0.148 -0.286

It appears that the first PC contrasts “good” variables such as income and life expectancy
with bad ones such as murder and illiteracy. This explains about 45% of the variation. The
second PC contrasts ‘Frost’ with all the other variables. It accounts for an additional 20%
but it seems difficult to understand exactly what that means.
One important question is how many PCs are needed to “reasonably” explain the data? One
useful graph here is the screeplot, given in
plot(state.pc)

351

Comp.1 Comp.3 Comp.5 Comp.7

state.pc

V
ar

ia
nc

es

0.
0

1.
0

2.
0

3.
0

It is a simple barchart of the the variation explained by each PC. One popular method is to
include enough PCs to cover at least 90% of the variation. In the states data this means 5,
which seems a bit much.

Classification

Introduction to Classification

In general classification is concerned with the following problem: our population consists
of several distinct groups. We have a set of data points from each group with associated
measurements. We want to derive a procedure that tells us which group a new observation
might belong to.

Example: Fisher’s Iris Data

One of the most famous data sets in Statistics was first studied by Fisher, his iris data.
For each of three types of iris flowers (Iris setosa, Iris virginica and Iris versicolor) we have
four measurements: the lengths and the widths of the Petal and the Sepal. The goal is to
determine from these measurements the type of flower.
kable.nice(head(iris))

352

https://en.wikipedia.org/wiki/Iris_flower_data_set

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

pushViewport(viewport(layout = grid.layout(3, 3)))
print(ggplot(data=iris,

aes(Sepal.Length, Sepal.Width, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggplot(data=iris,

aes(Sepal.Length, Petal.Length, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggplot(data=iris,

aes(Sepal.Length, Petal.Width, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=1, layout.pos.col=3))
print(ggplot(data=iris,

aes(Sepal.Width, Petal.Length, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=2, layout.pos.col=2))
print(ggplot(data=iris,

aes(Sepal.Width, Petal.Width, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=2, layout.pos.col=3))
print(ggplot(data=iris,

aes(Petal.Length, Petal.Width, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=3, layout.pos.col=3))

353

2.0

2.5

3.0

3.5

4.0

4.5

5 6 7 8

Sepal.Length
S

ep
al

.W
id

th

2

4

6

5 6 7 8

Sepal.Length

P
et

al
.L

en
gt

h

0.0

0.5

1.0

1.5

2.0

2.5

5 6 7 8

Sepal.Length

P
et

al
.W

id
th

2

4

6

2.0 2.5 3.0 3.5 4.0 4.5

Sepal.Width

P
et

al
.L

en
gt

h

0.0

0.5

1.0

1.5

2.0

2.5

2.0 2.5 3.0 3.5 4.0 4.5

Sepal.Width

P
et

al
.W

id
th

0.0

0.5

1.0

1.5

2.0

2.5

2 4 6

Petal.Length

P
et

al
.W

id
th

Example:

Consider the following artificial examples:
• two types, fairly simple separation

library(mvtnorm)
ex1 <- function(mu=2, n=50) {

x1 <- rmvnorm(n, mean=c(0,0), sigma=diag(2))
x2 <- rmvnorm(n, mean=c(mu,mu), sigma=diag(2))
data.frame(x=c(x1[, 1], x2[, 1]),

y=c(x1[, 2], x2[, 2]),
group=rep(c("A", "B"), each=n))

}

ggplot(data=ex1(n=150), aes(x, y,color=group)) +
geom_point() +
theme(legend.position="none")

354

−2

0

2

4

−2 0 2 4

x

y

• two types, more complicated separation
ex2 <- function(mu=2, n=50) {

x <- cbind(runif(10000), runif(10000, -1, 1))
x <- x[x[, 1]^2 + x[, 2]^2<1,]
x <- x[1:n,]
y <- cbind(runif(10000, 0, 2), runif(10000, -2, 2))
y <- y[y[, 1]^2 + y[, 2]^2>0.9,]
y <- y[1:n,]
data.frame(x=c(x[, 1], y[, 1]),

y=c(x[, 2], y[, 2]),
group=rep(c("A", "B"), each=n))

}

ggplot(data=ex2(n=150), aes(x, y,color=group)) +
geom_point() +
theme(legend.position="none")

355

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

• three types
ex3 <- function(mu=2, n=33) {

x1 <- rmvnorm(n, mean=c(0, 0), sigma=diag(2))
x2 <- rmvnorm(n, mean=c(mu, mu), sigma=diag(2))
x3 <- rmvnorm(n, mean=2*c(mu, mu), sigma=diag(2))
data.frame(x=c(x1[, 1], x2[, 1], x3[, 1]),

y=c(x1[, 2], x2[, 2], x3[, 2]),
group=rep(c("A", "B", "C"), each=n))

}

ggplot(data=ex3(n=150), aes(x, y,color=group)) +
geom_point() +
theme(legend.position="none")

356

−2.5

0.0

2.5

5.0

−2.5 0.0 2.5 5.0

x

y

In one sense this is not a new problem, it is simply a regression problem where the response
variable is discrete.
For this we could code a response variable y as 0 if “green” and 1 if “red” if there are two
groups (models 1 and 2) or with 0, 1 and 2 if there are three groups (model 3). Then we run
the linear regression of y on x1 and x2.
Finally we assign a point (x1, x2) to “green” if its predicted response is <0.5, and to “red”
otherwise for models 1 and 2, and depending on whether its predicted response is <2/3 or
>4/3 for model 3.
Of course in the case of two groups we could also use logistic regression, but we won’t pursue
this idea here.
To see what this looks like we find an even spaced grid and predict the color for each point.
Then we overlay that grid onto the graph. This is done in
make.grid <- function(df) {

x <- seq(min(df$x), max(df$x), length=100)
y <- seq(min(df$y), max(df$y), length=100)
expand.grid(x=x, y=y)

}
do.graph <- function(df, df1) {

print(ggplot(data=df, aes(x, y, color=group)) +
geom_point(size=2) +
theme(legend.position="none") +
geom_point(data=df1,

aes(x,y, color=group, alpha=0.1),
inherits.aes=FALSE))

357

}

Here our three examples:
df <- ex1()
df$Code <- ifelse(df$group=="A", 0, 1)
fit <- lm(Code~x+y, data=df)
df1 <- make.grid(df)
df1$group <- ifelse(predict(fit, df1)<0.5, "A", "B")
do.graph(df, df1)

0

2

4

0 2 4

x

y

df <- ex2()
df$Code <- ifelse(df$group=="A", 0, 1)
fit <- lm(Code~x+y, data=df)
df1 <- make.grid(df)
df1$group <- ifelse(predict(fit, df1)<0.5, "A", "B")
do.graph(df, df1)

358

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

df <- ex3()
df$Code <- ifelse(df$group=="A", 0, 1)
df$Code[df$group=="C"] <- 2
fit <- lm(Code~x+y, data=df)
df1 <- make.grid(df)
tmp <- predict(fit, df1)
df1$group <- ifelse(tmp<2/3, "A", "B")
df1$group[tmp>4/3] <-"C"
do.graph(df, df1)

0.0

2.5

5.0

−2 0 2 4

x

y

359

this seems to work ok for examples 1 and 3, not so much for 2.
we will use these examples quite a bit, so lets write a routine that generates data from any of
them:
gen.ex <- function(which, n=50) {

if(which==1)
df <- ex1(n=n)

if(which==2)
df <- ex2(n=n)

if(which==3)
df <- ex3(n=n)

df$Code <- ifelse(df$group=="A", 0, 1)
if(which==3)

df$Code[df$group=="C"] <- 2
df

}

Let’s have a closer look at example 1:
df <- gen.ex(1)
fit <- lm(Code~x+y, data=df)
coef(fit)

(Intercept) x y
0.1612369 0.1797628 0.1622197

we assign the group depending if the fitted value is < or > than 0.5. What do we get if it is
equal to 0.5?

0.5 = β0 + β1x+ β2y

y = (0.5− β0 − β1x)/β2

y = 0.5− β1

β2
− β1

β2
x

Let’s add that line to the graph:
ggplot(data=df, aes(x, y, color=group)) +

geom_point(size=2) +
theme(legend.position="none") +
geom_abline(intercept = (0.5-coef(fit)[2])/coef(fit)[3],

slope=-coef(fit)[2]/coef(fit)[3])

360

−2

0

2

4

−2 0 2 4

x

y

and this is called the decision boundary.
It is easy to see that in example 3 it works like this:
df <- gen.ex(3)
fit <- lm(Code~x+y, data=df)
ggplot(data=df, aes(x, y, color=group)) +

geom_point(size=2) +
theme(legend.position="none") +
geom_abline(intercept = (2/3-coef(fit)[2])/coef(fit)[3],

slope=-coef(fit)[2]/coef(fit)[3]) +
geom_abline(intercept = (4/3-coef(fit)[2])/coef(fit)[3],

slope=-coef(fit)[2]/coef(fit)[3])

361

−2.5

0.0

2.5

5.0

−2 0 2 4

x

y

Misclassification Rate

One thing that sets a classification problem apart from regression is that here we have an
obvious way to judge how good a method is, namely the miss-classification rate: What
percentage of the observations are given the wrong label?
Let’s see:
msr <- function(x, y) {

z <- table(x, y)
round((sum(z)-sum(diag(z)))/sum(z)*100, 1)

}

df <- gen.ex(1, n=1000)
fit <- lm(Code~x+y, data=df)
pred <- ifelse(predict(fit)<0.5, "A", "B")
table(df$group, pred)

pred
A B
A 912 88
B 83 917
msr(df$group, pred)

[1] 8.6
df <- gen.ex(2, n=1000)
fit <- lm(Code~x+y, data=df)

362

pred <- ifelse(predict(fit)<0.5, "A", "B")
msr(df$group, pred)

[1] 20
df <- gen.ex(3, n=1000)
fit <- lm(Code~x+y, data=df)
tmp <- predict(fit)
pred <- ifelse(tmp<2/3, "A", "B")
pred[tmp>4/3] <- "C"
msr(df$group, pred)

[1] 11.8

Overfitting and Cross-validation

Of course these misclassification rates are to optimistic: we calculated it on the same data
set that we fit on. We should always train and test on different data sets, maybe using
cross-validation:
df <- gen.ex(1, n=1000)
out <- rep(0, 10)
for(i in 1:10) {

I <- sample(1:2000, size=400)
fit <- lm(Code~x+y, data=df[-I,])
pred <- ifelse(predict(fit, df[I, 1:2])<0.5, "A", "B")
out[i] <- msr(df$group[I], pred)

}
mean(out)

[1] 8.69

Here we split the data into 80% for training and 20% for evaluation. Is this a good split?
Actually, nobody knows!

Our method works quite well for examples 1 and 3, but not so much for example 2.
df <- gen.ex(2)
df$Code <- ifelse(df$group=="A", 0, 1)
fit <- lm(Code~x+y, data=df)
df1 <- make.grid(df)
df1$group <- ifelse(predict(fit, df1)<0.5, "A", "B")
do.graph(df, df1)

363

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

shows us why: here a linear decision boundary clearly won’t work. So how about a quadratic
one?
df$x2 <- df$x^2
df$y2 <- df$y^2
df$xy <- df$x*df$y
fit <- lm(Code~x+y+x2+y2+xy, data=df)
df1 <- make.grid(df)
df1$x2 <- df1$x^2
df1$y2 <- df1$y^2
df1$xy <- df1$x*df1$y
df1$group <- ifelse(predict(fit, df1)<0.5, "A", "B")
do.graph(df, df1)

364

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

and that looks much better!
Here is the mcr based on cross-validation:
df <- df[, c(4, 1:2, 5:7)]
out <- rep(0, 10)
for(i in 1:10) {

I <- sample(1:2000, size=400)
fit <- lm(Code~x+y+x2+y2+xy, data=df[-I,])
pred <- ifelse(predict(fit, df[I, -1])<0.5, "A", "B")
out[i] <- msr(df$Code[I], pred)

}
mean(out)

[1] 16.4

Classification Methods

The two solutions we have discussed in the last section, linear and quadratic regression, are
(slight variations of) what Fisher came up with back when he introduced the Iris data set.
They are now called

Linear and Quadratic discriminants

and are implemented in R with
library(MASS)
df <- gen.ex(1)
fit <- lda(df$group~x+y, data=df)

365

df1 <- make.grid(df)
df1$group <- predict(fit, df1)$class
do.graph(df, df1)

−2

0

2

4

−2 0 2 4

x

y

df <- gen.ex(3)
fit <- lda(group~x+y, data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)$class
do.graph(df, df1)

−2.5

0.0

2.5

5.0

7.5

−2.5 0.0 2.5 5.0

x

y

366

for example 2 we should use
df <- gen.ex(2)
fit <- qda(group~x+y, data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)$class
do.graph(df, df1)

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

Notice a couple of differences between the lm and lda/qda solutions:
• in lda/qda we don’t have to do any coding, they accept categorical variables as response.
• there is a difference between the lm and the lda/qda solutions of examples 2 and 3. Do

you see what it is, and why?

Loess

Instead of using lm we could of course also have used loess:
df <- gen.ex(2)
fit <- loess(Code~x+y, data=df,

control = loess.control(surface = "direct"))
df1$group <- c(ifelse(predict(fit, df1)<0.5, "A", "B"))
do.graph(df, df1)

367

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

and in fact that looks quite a bit like the qda solution.

k-nearest neighbor

Here is an entirely different idea: we define a distance function, that is a function that
calculates the distance between two points. In our examples we can just find Euclidean
distance, but in other cases other distance functions can be useful. For a point x where we
want to do prediction we find its k nearest neighbors and assign the label by majority rule.
So if k=3 and if at least 2 of the three nearest neighbors are type “A”, then we assign type
“A” to x.
library(class)
df1$group <- factor(

knn(df[, 1:2], df1[, 1:2], cl=df$group, k=1))
do.graph(df, df1)

368

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

df1$group <- factor(
knn(df[, 1:2], df1[, 1:2], cl=df$group, k=3))

do.graph(df, df1)

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

df1$group <- factor(
knn(df[, 1:2], df1[, 1:2], cl=df$group, k=11))

do.graph(df, df1)

369

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

clearly the choice of k determines the bias variance trade-off.
Here is the knn solution for the other two cases:
df <- gen.ex(1)
df1 <- make.grid(df)
df1$group <- factor(

knn(df[, 1:2], df1, cl=factor(df$group), k=5))
do.graph(df, df1)

−2

0

2

4

−2 0 2 4

x

y

370

df <- gen.ex(3)
df1 <- make.grid(df)
df1$group <- factor(

knn(df[, 1:2], df1, cl=factor(df$group), k=5))
do.graph(df, df1)

−2.5

0.0

2.5

5.0

0.0 2.5 5.0

x

y

Our ability to apply this method clearly depends on how fast we can find the nearest
neighbors. This issue has been studied extensively in Statistics and in Computer Science, and
highly sophisticated algorithms are known that can handle millions of cases and hundreds of
variables.

Classification Trees

regression trees work very well for classification problems as well:

Basic Trees

library(rpart)
df <- gen.ex(1)
df1 <- make.grid(df)
fit <- rpart(group~., data=df[, 1:3], method = "class")
df1$group <- predict(fit, df1[, 1:2], type="class")
do.graph(df, df1)

371

−2

0

2

4

−2 0 2 4

x

y

df <- gen.ex(2)
fit <-rpart(group~., data=df[, 1:3], method = "class")
df1 <- make.grid(df)
df1$group <- predict(fit, df1[, 1:2], type="class")
do.graph(df, df1)

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

df <- gen.ex(3)
fit <- rpart(group~., data=df[, 1:3], method = "class")
df1 <- make.grid(df)
df1$group <- predict(fit, df1[, 1:2], type="class")

372

do.graph(df, df1)

−2.5

0.0

2.5

5.0

7.5

−2.5 0.0 2.5 5.0 7.5

x

y

There are a number of ways to improve the performance of tree based methods. These are
• bagging (bootstrap aggregation)
• random forests

Both start with the same idea: take a random part of the data, fit a tree to it and use that
for prediction. Then repeat this a number of times. Finally do the prediction by averaging.

Bagging

As the name suggests, here we apply the tree method to bootstap samples.
df <- gen.ex(1, n=50)[, 1:3]
n <- dim(df)[1]
L_tree <- list(1:100)
for(i in 1:100){

I <- sample(1:n, size=n, replace=TRUE)
L_tree[[i]] <- rpart(factor(group)~., data=df[I,])

}

the aggregation is done by averaging:
df1 <- make.grid(df)
tmp <- predict(L_tree[[1]], df1)
df1$group <- ifelse(tmp[, 1]<0.5, "B", "A")
do.graph(df, df1)

373

−2.5

0.0

2.5

−2 0 2 4

x

y

for(i in 2:100)
tmp <- tmp + predict(L_tree[[i]], df1)

df1$group <- ifelse(tmp[, 1]<50, "A", "B")
do.graph(df, df1)

−2.5

0.0

2.5

−2 0 2 4

x

y

alternatively we can predict the class directly and use majority rule:
df <- gen.ex(2, n=50)[, 1:3]
n <- dim(df)[1]
L_tree <- list(1:100)

374

for(i in 1:100){
I <- sample(1:n, size=n, replace=TRUE)
L_tree[[i]] <- rpart(factor(group)~., data=df[I,],

method = "class")
}
df1 <- make.grid(df)
tmp <- matrix(nrow=10000, ncol=100)
for(i in 1:100)

tmp[, i] <- predict(L_tree[[i]], df1, type="class")
df1$group <- ifelse(

apply(tmp, 1, function(x) {sum(x==2)<50}),
"A", "B")

do.graph(df, df1)

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

Random Forests

The major idea of random forests is that we only consider a random subset of predictors
m each time we do a split on training examples. Whereas usually in trees we find all the
predictors while doing a split and choose the best amongst them. Typically m = √p where p
are the number of predictors.
Now it seems crazy to throw away lots of predictors, but it makes sense because the effect of
doing so is that each tree uses different predictors to split data at various times. This means
that two trees generated on the same training data will have randomly different variables
selected at each split, hence this is how the trees will get de-correlated and will be independent
of each other.

375

Another great thing about random forests and bagging is that we can keep on adding more
and more big bushy trees and that won’t hurt us because at the end we are just going to
average them out which will reduce the variance by the factor of the number of Trees T itself.
So by doing this trick of throwing away predictors, we have de-correlated the Trees and the
resulting average seems a little better.
Here is how it works in R
library(randomForest)
df <- gen.ex(1)[, 1:3]
fit <- randomForest(factor(group)~., data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)
do.graph(df, df1)

−2

0

2

4

−2 0 2 4

x

y

df <- gen.ex(2)[, 1:3]
fit <- randomForest(factor(group)~., data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)
do.graph(df, df1)

376

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

df <- gen.ex(3)[, 1:3]
fit <- randomForest(factor(group)~., data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)
do.graph(df, df1)

−2

0

2

4

0.0 2.5 5.0

x

y

377

Neural Networks and Support Vector Machines

Neural Networks

A neural network is a computer algorithm for fitting that is mostly a black box, that is
understanding what it exactly does is not easy and beyond our level. For an explanation see
Artifical Neural Networks.
library(nnet)
df <- gen.ex(1)[,1:3]
fit <- nnet(factor(group)~., data=df, size=2)

weights: 9
initial value 75.481044
iter 10 value 19.018153
iter 20 value 18.850673
iter 30 value 18.802697
iter 40 value 18.703196
iter 50 value 18.635669
iter 60 value 18.593504
iter 70 value 18.560864
iter 80 value 18.549314
iter 90 value 18.538397
iter 100 value 18.525050
final value 18.525050
stopped after 100 iterations

notice the use of class.ind because nnet requires a special format for the response variable.
to visualize a network we can use
library(NeuralNetTools)
par(mar=c(1, 1, 0, 1))
plotnet(fit)

378

https://en.wikipedia.org/wiki/Artificial_neural_network

I1

I2

x

y

H1

H2

O1 factor(group)

B1 B2

so the network has 2 input layers I1-I4, one for each predictor. It has two hidden layers
because we chose size=2. It has two layers for backward propagation and finally it has
two output layers.
df1 <- make.grid(df)
df1$group <- predict(fit, df1, type="class")
do.graph(df, df1)

−2

0

2

4

−2 0 2 4

x

y

df <- gen.ex(2)[, 1:3]
fit <- nnet(factor(group)~., data=df, size=2)

379

weights: 9
initial value 77.164676
iter 10 value 24.961422
iter 20 value 21.508817
iter 30 value 21.108154
iter 40 value 20.558973
iter 50 value 20.319070
iter 60 value 20.287271
iter 70 value 20.144824
iter 80 value 20.111715
iter 90 value 20.105023
iter 100 value 19.964474
final value 19.964474
stopped after 100 iterations
df1 <- make.grid(df)
df1$group <- predict(fit, df1, type="class", trace=0)
do.graph(df, df1)

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

df <- gen.ex(3)[, 1:3]
fit <- nnet(factor(group)~., data=df, size=2, trace=0)
df1 <- make.grid(df)
df1$group <- predict(fit, df1, type="class")
do.graph(df, df1)

380

−2

0

2

4

6

0.0 2.5 5.0

x

y

Regression problems

A neural network (also called a perceptron) is a general function fitter, and so can be used for
regression as well. Here is an example

Example: House Prices

fit <- nnet(data.matrix(houseprice[, -1]),
houseprice$Price, size=2, linout = 1)

weights: 13
initial value 653163.432931
final value 37992.517316
converged
par(mar=c(1, 1, 0, 1))
plotnet(fit)

381

I1

I2

I3

I4

Sqfeet

Floors

Bedrooms

Baths

H1

H2

O1

B1 B2

Example: Artificial Examples

Let’s study this method using a few artificial examples:
x <- 1:100/100
y <- 10 + 5*x + rnorm(100, 0, 0.5)
df <- data.frame(x=x, y=y)
df$lm <- predict(lm(y~x))
df$nnet1 <- predict(nnet(x, y, size=1, linout = 1, trace = 0))
df$nnet2 <- predict(nnet(x, y, size=2, linout = 1, trace = 0))
df$nnet3 <- predict(nnet(x, y, size=3, linout = 1, trace = 0))
ggplot(data=df, aes(x, y)) +

geom_point() +
geom_line(data=data.frame(x=x, y= df$lm), aes(x, y),

inherit.aes = FALSE) +
geom_line(data=data.frame(x=x, y= df$nnet1), aes(x, y),

inherit.aes = FALSE, color="red") +
geom_line(data=data.frame(x=x, y= df$nnet2), aes(x, y),

inherit.aes = FALSE,color="green") +
geom_line(data=data.frame(x=x, y= df$nnet3), aes(x, y),

inherit.aes = FALSE, color="blue")

382

11

13

15

0.00 0.25 0.50 0.75 1.00

x

y

y <- x + 3*(x-0.5)^2 + rnorm(100, 0, 0.25)
df <- data.frame(x=x, y=y)
df$lm <- predict(lm(y~x))
df$nnet1 <- predict(nnet(x, y, size=1, linout = 1, trace = 0))
df$nnet2 <- predict(nnet(x, y, size=2, linout = 1, trace = 0))
df$nnet3 <- predict(nnet(x, y, size=3, linout = 1, trace = 0))
ggplot(data=df, aes(x, y)) +

geom_point() +
geom_line(data=data.frame(x=x, y= df$lm), aes(x, y),

inherit.aes = FALSE) +
geom_line(data=data.frame(x=x, y= df$nnet1), aes(x, y),

inherit.aes = FALSE, color="red") +
geom_line(data=data.frame(x=x, y= df$nnet2), aes(x, y),

inherit.aes = FALSE,color="green") +
geom_line(data=data.frame(x=x, y= df$nnet3), aes(x, y),

inherit.aes = FALSE, color="blue")

383

0.0

0.5

1.0

1.5

2.0

0.00 0.25 0.50 0.75 1.00

x

y

so higher number of hidden layers leads to a more complicated fit.
It is often tricky to know how many layers to use, and it is easy to overfit. Generally something
like cross-validation is needed.

Support Vector Machines

This is another modern method for classification. Its idea is at first very strange. Let’s have
another look at example 2:
df <- gen.ex(2, 200)
ggplot(data=df, aes(x, y, color=group)) +

geom_point(size=2) +
theme(legend.position="none")

384

−2

−1

0

1

2

0.0 0.5 1.0 1.5 2.0

x

y

Let’s say we defined a new variable z by

z = x2 + y2

then
df$z <- df$x^2+df$y^2
ggplot(data=df, aes(x, z, color=group)) +

geom_point() +
geom_hline(yintercept = 1, size=1.2)+
theme(legend.position="none")

385

0

2

4

6

0.0 0.5 1.0 1.5 2.0

x

z

and so suddenly we would have a very simple decision rule: declare red is z < 1!
Adding a variable z is like adding an additional dimension. If we could display the data in (x,
y, z) space there would a separating hyperplane. It can be shown that by adding sufficient
dimensions there will eventually always be a hyperplane that perfectly separates the groups.
SVM tries to find such a hyperplane without us having to specify a function, like above. It is
implemented in R in the package
library(e1071)
df <- gen.ex(1)[, 1:3]
fit <- svm(factor(group)~., data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)
do.graph(df, df1)

386

−2

0

2

−2 0 2 4

x

y

df <- gen.ex(3)[, 1:3]
fit <- svm(factor(group)~., data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)
do.graph(df, df1)

0.0

2.5

5.0

−2 0 2 4 6

x

y

df <- gen.ex(3)[, 1:3]
fit <- svm(factor(group)~., data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)

387

do.graph(df, df1)

−2

0

2

4

6

−2 0 2 4 6

x

y

library(MASS)
library(rpart)
library(class)
library(nnet)
library(e1071)

Classification Examples

In this section we will study the performance of the classification methods discussed earlier.
We will use the miss-classification rate and cross-validation.
As we saw, each of the methods has a slightly different list of arguments. It will therefore be
worthwhile to write a single routine that does them all.
do.class <- function(df, I, B=100, which=1:6) {

miss.rate <- matrix(0, B, 7)
n <- dim(df)[1]
colnames(miss.rate) <- c("LDA", "QDA", "Tree", "NN",

"SVM", "knn 3", "knn 9")
for(i in 1:B) {

I <- sample(1:n, size=floor(n/2))
train <- df[I,]
colnames(train)[1] <- "group"
if(1 %in% which) {

fit <- lda(group~., data=train)
pred <- predict(fit, df[-I, -1])$class

388

miss.rate[i, "LDA"] <- msr(factor(df[-I, 1]), pred)
}
if(2 %in% which) {

fit <- qda(group~., data=train)
pred <- predict(fit, df[-I, -1])$class
miss.rate[i, "QDA"] <- msr(factor(df[-I, 1]), pred)

}
if(3 %in% which) {

fit <-rpart(group~., data=train, method = "class")
pred <- predict(fit, df[-I, -1], type="class")
miss.rate[i, "Tree"] <- msr(factor(df[-I, 1]), pred)

}
if(4 %in% which) {

fit <- nnet(factor(group)~., data=train, size=2,
rang = 0.1, trace=0,

decay = 5e-4, maxit = 200)
pred <- predict(fit, df[-I, -1], type="class")
miss.rate[i, "NN"] <- msr(df[-I, 1], pred)

}
if(5 %in% which) {

fit <- svm(factor(group)~., data=train)
pred <- predict(fit, df[-I, -1])
miss.rate[i, "SVM"] <- msr(df[-I, 1], pred)

}
if(6 %in% which) {

pred <- factor(
knn(df[I, -1], df[-I, -1], cl=df[I, 1], k=3))

miss.rate[i, "knn 3"] <- msr(factor(df[-I, 1]), pred)
}
if(7 %in% which) {

pred <- factor(
knn(df[I, -1], df[-I, -1], cl=df[I, 1], k=9))

miss.rate[i, "knn 9"] <- msr(factor(df[-I, 1]), pred)
}

}
apply(miss.rate[, which], 2, mean)

}

df <- gen.ex(1)
sort(do.class(df[, c(3, 1, 2)]))

LDA QDA SVM NN knn 3 Tree
7.90 8.04 8.34 10.36 11.62 16.52
df <- gen.ex(2)
sort(do.class(df[, c(3, 1, 2)]))

389

SVM knn 3 NN QDA LDA Tree
6.92 8.02 10.10 11.56 18.64 19.68
df <- gen.ex(3)
sort(do.class(df[, c(3, 1, 2)]))

LDA QDA SVM NN knn 3 Tree
14.123 14.468 15.131 15.774 15.963 21.921

Example: Fisher’s Iris

sort(do.class(iris[, c(5, 1:4)]))

LDA QDA NN knn 3 SVM Tree
2.640 2.788 4.425 4.547 4.859 6.184

Example: Kypthosis

sort(do.class(kyphosis))

LDA SVM QDA NN Tree knn 3
19.400 19.712 20.326 23.200 23.424 23.883

QDA does not work here. Essentially there is not enough data to fit a quadratic model. So
sort(do.class(kyphosis, which=c(1, 3:7)))

LDA SVM knn 9 NN Tree knn 3
21.091 21.376 23.134 24.183 24.206 24.979

Example: Painters

The subjective assessment, on a 0 to 20 integer scale, of 54 classical painters. The painters
were assessed on four characteristics: composition, drawing, colour and expression. They
were also grouped in 8 “Schools”. The data is due to the Eighteenth century art critic, de
Piles.
kable.nice(head(painters))

Composition Drawing Colour Expression School
Da Udine 10 8 16 3 A
Da Vinci 15 16 4 14 A
Del Piombo 8 13 16 7 A
Del Sarto 12 16 9 8 A
Fr. Penni 0 15 8 0 A
Guilio Romano 15 16 4 14 A

390

pushViewport(viewport(layout = grid.layout(2, 2)))
print(ggplot(data=painters, aes(School, Composition)) +

geom_boxplot(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=painters, aes(School, Drawing)) +
geom_boxplot(),

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggplot(data=painters, aes(School, Colour)) +

geom_boxplot(),
vp=viewport(layout.pos.row=2, layout.pos.col=1))

print(ggplot(data=painters, aes(School, Expression)) +
geom_boxplot(),

vp=viewport(layout.pos.row=2, layout.pos.col=2))

0

5

10

15

A B C D E F G H

School

C
om

po
si

tio
n

10

15

A B C D E F G H

School

D
ra

w
in

g

0

5

10

15

A B C D E F G H

School

C
ol

ou
r

0

5

10

15

A B C D E F G H

School

E
xp

re
ss

io
n

sort(do.class(painters[, c(5, 1:4)]))

Error in qda.default(x, grouping, ...): some group is too small for 'qda'

Again QDA does not work here. So
sort(do.class(painters[, c(5, 1:4)], which=c(1, 3:7)))

LDA SVM knn 3 Tree knn 9 NN
71.620 76.838 77.430 79.095 80.723 83.572

and this is clearly a very difficult classification problem, none of the methods does well.
It should also be pointed out that we have used all these methods essentially with their defaults.
In real life one would play around with the tuning parameters to get better performance.

391

Special Topics

Survival Analysis

Survival Analysis is concerned with the distributions of lifetimes, often human as in Medical
Sciences but also of components and machines.

Example: Life Table USA

Here is a life table, for the USA in 2016. Numbers are per 100,000 population:
life.us <- read.csv("us.life.table.csv")
kable.nice(life.us)

Age Male Female
<1 year 100000.00 100000.00
1-4 years 99378.94 99454.61
5-9 years 99281.21 99372.41
10-14 years 99216.42 99317.51
15-19 years 99133.12 99255.05
20-24 years 98772.20 99105.56
25-29 years 98039.19 98849.90
30-34 years 97148.16 98491.30
35-39 years 96152.90 98007.48
40-44 years 95006.17 97365.09
45-49 years 93692.59 96542.95
50-54 years 91897.80 95333.41
55-59 years 89193.00 93486.77
60-64 years 85086.59 90760.06
65-69 years 79496.85 87075.37
70-74 years 72184.16 81854.51
75-79 years 62329.23 74259.41
80-84 years 50291.00 63544.39
85+ years 35033.57 48766.34

so this tells us that of any 100,000 men 97148.16 survived to age 30, or about
$2850/100000*100% = 2.8% had died, compared to 1.5% of the women.
Tables like this are very important to insurance companies when trying to figure out what
premiums to charge for a life insurance, or for a company to find out how much their employees
need to pay into a retirement plan, etc.
Let’s draw a curve that for each gender and age shows the proportion of the population alive.

392

First we need to reorganize the data as a data frame with numeric columns:
dim(life.us)

[1] 19 3
life.us.1 <-

data.frame(Age=rep(c(0, 2.5+5*0:16, 87), 2),
Alive=c(life.us$Male, life.us$Female)/1e5,
Gender=rep(c("Male", "Female"), each=19))

and now
ggplot(data=life.us.1, aes(Age, Alive, color=Gender)) +

geom_line()

0.4

0.6

0.8

1.0

0 25 50 75

Age

A
liv

e

Gender

Female

Male

What does this say how many newborn male babies we might have in a certain population?
How may 1 year olds and so on? Let’s assume our population consists of 100000 individuals,
half male and female. Then the numbers in the table tell us the relative probabilities. For
example for any 200 babies there should be about 98.8 20-24 year old males and 63.5 80-84
year old females. So we can generate a simulated population with
sim.pop <- list(Male=sample(c(0, 2.5+5*0:16, 87),

size=50000, replace = TRUE, prob=life.us$Male),
Female=sample(c(0, 2.5+5*0:16, 87),

size=50000, replace = TRUE, prob=life.us$Female))
df <- data.frame(x=c(sim.pop$Male, sim.pop$Female),

Gender=rep(c("Male", "Female"), each=50000))
ggplot(df, aes(x=x)) +

geom_histogram(data = subset(df, Gender == "Male"),
fill = "red", alpha = 0.2) +

393

geom_histogram(data = subset(df, Gender == "Female"),
fill = "blue", alpha = 0.2)

0

1000

2000

3000

0 25 50 75

x

co
un

t

Let T denote a random variable describing a lifetime. Then we know that T takes values x>0
and T has a continuous distribution F with density f. In survival analysis several functions
are of common interest:
• survivor function:

S(t) = 1− F (t) = P (X > t)
which is the probability to survive past time t.

• hazard function:

h(t) = lim
t→∞

P (t < T < t+ h)
h

which is the probability to survive until time t, and then die.
• cumulative hazard function:

H(t) =
∫ ∞

0
h(t)dt

it is easy to check that
• h(t) = f(t)/S(t)

• H(t) = − logS(t)

394

Here are some standard survival distributions and their associated functions:
• Exponential

– f(t) = λ exp(−λt)

– S(t) = exp(−λt)

– h(t) = λ

– H(t) = λt
λ is called rate parameter

• Weibull
– f(t) = α

λ
(t
λ
)α−1 exp

(
−(t

λ
)α
)

– S(t) = exp
(
−(t

λ
)α
)

– h(t) = α
λ
(t
λ
)α−1

– H(t) = (t
λ
)α

α is called the shape parameter and λ the scale parameter
• Log-Logistic

– f(t) = λτ(λt)τ−1

(1+(λt)τ)2

– S(t) = 1
1+(λt)τ

– h(t) = λτ(λt)τ−1

1+(λt)τ

– H(t) = log(1 + (λt)τ)
also often used are the log-normal and the gamma distributions.

Example: Life table USA

Let’s see whether we can fit a Weibull distribution to our data:
y <- life.us.1$Alive[life.us.1$Gender=="Male"]
x <- life.us.1$Age[life.us.1$Gender=="Male"]
fit.male <- coef(nls(y~exp(-(x/l)^a),

start=list(l=100, a=4)))
y <- life.us.1$Alive[life.us.1$Gender=="Female"]
x <- life.us.1$Age[life.us.1$Gender=="Female"]
fit.female <- coef(nls(y~exp(-(x/l)^a),

start=list(l=100, a=4)))
x <- seq(0, 85, length=250)
df.male <- data.frame(x=x,

y=exp(-(x/fit.male[1])^fit.male[2]))
df.female <- data.frame(x=x,

y=exp(-(x/fit.female[1])^fit.female[2]))

395

ggplot(data=life.us.1, aes(Age, Alive)) +
geom_point() +

geom_line(data=df.male, aes(x, y)) +
geom_line(data=df.female, aes(x, y))

0.4

0.6

0.8

1.0

0 25 50 75

Age

A
liv

e

and these fits are ok but not great.
How about a gamma distribution?
y <- life.us.1$Alive[life.us.1$Gender=="Male"]
x <- life.us.1$Age[life.us.1$Gender=="Male"]
fit.male <- coef(nls(y~(1-pgamma(x, a, b)),

start=list(a=10, b=0.1)))
y <- life.us.1$Alive[life.us.1$Gender=="Female"]
x <- life.us.1$Age[life.us.1$Gender=="Female"]
fit.female <- coef(nls(y~(1-pgamma(x, a, b)),

start=list(a=10, b=0.1)))
x <- seq(0, 85, length=250)
df.male <- data.frame(x=x,

y=1-pgamma(x, fit.male[1], fit.male[2]))
df.female <- data.frame(x=x,

y=1-pgamma(x, fit.female[1], fit.female[2]))
ggplot(data=life.us.1, aes(Age, Alive)) +

geom_point() +
geom_line(data=df.male, aes(x, y)) +
geom_line(data=df.female, aes(x, y))

396

0.4

0.6

0.8

1.0

0 25 50 75

Age

A
liv

e

and that looks a bit worse.

Example: Leukemia

This is survival times for leukemia, with covariates wbc, the white blood cell count and ag, a
test result with values “present” or “absent”.
kable.nice(head(leukemia))

wbc ag time
2300 present 65
750 present 156

4300 present 100
2600 present 134
6000 present 16
10500 present 108

empdist <- function (data, npoints)
{

a <- hist(data, breaks = npoints, plot = F)
x <- a$mids
y <- cumsum(a$counts)/length(data)
list(x = x, y = y)

}
zp <- empdist(leukemia$time[leukemia$ag == "present"], 10)
za <- empdist(leukemia$time[leukemia$ag == "absent"], 10)

397

df <- data.frame(Time=c(zax, zpx),
Survival=1-c(zay, zpy),
Status=rep(c("Present", "Absent"),

c(length(za$x), length(zp$x))))
df

Time Survival Status
1 2.5 0.5625000 Present
2 7.5 0.4375000 Present
3 12.5 0.4375000 Present
4 17.5 0.3125000 Present
5 22.5 0.2500000 Present
6 27.5 0.1875000 Present
7 32.5 0.1875000 Present
8 37.5 0.1875000 Present
9 42.5 0.1250000 Present
10 47.5 0.1250000 Present
11 52.5 0.1250000 Present
12 57.5 0.0625000 Present
13 62.5 0.0000000 Present
14 10.0 0.7058824 Absent
15 30.0 0.5294118 Absent
16 50.0 0.4705882 Absent
17 70.0 0.3529412 Absent
18 90.0 0.2941176 Absent
19 110.0 0.2352941 Absent
20 130.0 0.1176471 Absent
21 150.0 0.0000000 Absent
ggplot(data=df, aes(Time, Survival, color=Status)) +

geom_line()

398

0.0

0.2

0.4

0.6

0 50 100 150

Time

S
ur

vi
va

l Status

Absent

Present

Censored Data

The most distinctive feature of survival analysis is censoring. Say we are testing a new
treatment for late-stage stomach cancer. At the beginning of the study we select 100 cancer
patients and begin treatment. After 1 year we wish to study the effectiveness of the new
treatment. At that time 47 of the patients have died, and for them we know the number of
days until death. For the other 53 patients we know that they have survived 365 days but we
don’t know how much longer they will live. How do we use all the available information?
Censoring comes in a number of different forms:
• right censoring: here “case i” leaves the trial at time Ci, and we either know Ti if Ti ≤ Ci,

or that Ti > Ci.
• we have random censoring if Ti and Ci are independent.
• type I censoring is when the censoring times are fixed in advance, for example by the

end of the clinical trial.
• type II censoring is when the the experiment is terminated after a fixed number of

failures.
In R we code the data as a pair (ti, di) where ti is the observed survival time and di = 0 if
the observation is censored, 1 if a “death” is observed.
Survival data is often presented using a + for the censored observations, for example 35, 67+,
85+, 93, 101, etc.
Let t1 < t2 < .. < tm be the m distinct survival times. Let Yi(s) be an indicator function,
which is 1 if person i is still at risk (that is alive) at time s and 0 otherwise, that is
Yi(s) = I(0,ti)(s).

399

Then the number of patients at risk at time s is r(s) = ∑
Yi(s). We can similarly define d(s)

as the number of deaths occurring at time s.
There is also a modern approach to survival data based on stochastic processes, especially
martingales and counting processes. In this setup one considers the counting process Ni(t)
associated with the ith subject, so Ni(t) changes by 1 at each observed event (for example, a
visit to the doctor, a heart attack, a death etc).
How can we estimate the survivor curve in the presence of censoring? One of the most
commonly used estimators is the Kaplan-Meier estimator:

Ŝ(x) =
∏
ti<t

r(ti)− d(ti)
r(ti)

In R this is calculated by the routine survfit. It uses as its argument a “survival” object
which in turn is generated using the Surv function.

Example: Leukemia

This data does not have censoring, bit let’s see what Kaplan Meier looks like anyway:
kable.nice(head(leukemia))

wbc ag time
2300 present 65
750 present 156

4300 present 100
2600 present 134
6000 present 16
10500 present 108

library(survival)
fit <- survfit(Surv(time) ~ ag, data = leukemia)
plot(fit)

400

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Example: Gehan data

A data frame from a trial of 42 leukaemia patients. Some were treated with the drug
6-mercaptopurine and the rest are controls. The trial was designed as matched pairs, both
withdrawn from the trial when either came out of remission.
kable.nice(head(gehan))

pair time cens treat
1 1 1 control
1 10 1 6-MP
2 22 1 control
2 7 1 6-MP
3 3 1 control
3 32 0 6-MP

fit <- survfit(Surv(time, cens) ~ treat, data = gehan)
plot(fit, xlab = "Time", ylab = "Est. Remission",

col = c("blue", "red"))
legend(1, 0.2, c("Control", "6-MP"),

col = c("red", "blue"), lty = c(1, 1))

401

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

E
st

. R
em

is
si

on

Control
6−MP

The obvious question is whether there are differences between the remission times of the two
groups:
survdiff(Surv(time, cens) ~ treat, data = gehan)

Call:
survdiff(formula = Surv(time, cens) ~ treat, data = gehan)
##
N Observed Expected (O-E)^2/E (O-E)^2/V
treat=6-MP 21 9 19.3 5.46 16.8
treat=control 21 21 10.7 9.77 16.8
##
Chisq= 16.8 on 1 degrees of freedom, p= 4e-05

and we see that there is.
Confidence intervals for the survival curve are automatically computed by the survfit function.
By default it finds intervals of the form S ± 1.96se(S). Other options are:
• conf.type=“log”: exp(log(S)± 1.96se(H))

• conf.type=“log-log”: exp(− exp(log(− log(S)± 1.96se(log(H)))
One advantage of log-log is that the limits are always in (0,1).
Let’s find 90% confidence intervals based on these three methods for t=10 in the 6-MP group.
A <- matrix(0, 3, 2)
dimnames(A) <- list(c("plain", "log", "log-log"),

c("Lower", "Upper"))
fit <- survfit(Surv(time, cens) ~ treat, data = gehan,

conf.type = "plain", conf.int = 0.9)

402

A[1, 1] <- fit$lower[fit$time == "10"]
A[1, 2] <- fit$upper[fit$time == "10"]
fit <- survfit(Surv(time, cens) ~ treat, data = gehan,

conf.type = "log", conf.int = 0.9)
A[2, 1] <- fit$lower[fit$time == "10"]
A[2, 2] <- fit$upper[fit$time == "10"]
fit <- survfit(Surv(time, cens) ~ treat, data = gehan,

conf.type = "log-log", conf.int = 0.9)
A[3, 1] <- fit$lower[fit$time == "10"]
A[3, 2] <- fit$upper[fit$time == "10"]
round(A, 2)

Lower Upper
plain 0.59 0.91
log 0.61 0.93
log-log 0.55 0.87

An important question for new patients is of course the average survival time. As always
“average” can be computed in different ways. R uses the median and the estimate is part of
the output for a survfit object
survfit(Surv(time, cens) ~ treat, data = gehan)

Call: survfit(formula = Surv(time, cens) ~ treat, data = gehan)
##
n events median 0.95LCL 0.95UCL
treat=6-MP 21 9 23 16 NA
treat=control 21 21 8 4 12

Sometimes it is possible to fit a parametric curve via generalized linear models to the survival
curve. Say we wish to fit an exponential model, and suppose we have a covariate vector x for
each case. Say λi is the rate of the exponential for case i. Then we can connect the rate to
the covariates via the model λi = βTx. This might on occasion be negative, and it is often
better to use log(λi) = βTx.

Example: Leukemia

Let’s see whether the Leukemia data can be modeled in this way. First we have a look at the
relationship of time and its covariates:
pushViewport(viewport(layout = grid.layout(2, 2)))
print(ggplot(data=leukemia, aes(time, wbc)) +

geom_point(),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=leukemia, aes(ag, time)) +
geom_boxplot(),

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggplot(data=leukemia, aes(log(time), log(wbc))) +

403

geom_point(),
vp=viewport(layout.pos.row=2, layout.pos.col=1))

0

25000

50000

75000

100000

0 50 100 150

time

w
bc

0

50

100

150

absent present

ag

tim
e

7

8

9

10

11

0 1 2 3 4 5

log(time)

lo
g(

w
bc

)

The relationships do not appear to be linear, and we fix this by using a log transform on
time and wbc.
What model might be appropriate for this data set? For the exponential model we have
− logS(t) = H(t) = λt, so if we plot − logS(t) vs t we should see a linear relationship:
fit <- survfit(Surv(time, rep(1, 33)) ~ ag, data = leukemia)
df <- data.frame(Time=fit$time,

y=-log(fit$surv),
Status=rep(c("present", "absent"), c(12, 15)))

ggplot(data=df, aes(Time, y, color=Status)) +
geom_point() +
geom_smooth(method="lm", se=FALSE) +
labs(y= "-logS")

404

0

1

2

0 50 100 150

Time

−
lo

gS

Status

absent

present

we fit this model via glm:
options(contrasts = c("contr.treatment", "contr.poly"))
fit <- glm(time ~ ag + log(wbc), family = Gamma(log),

data=leukemia)
summary(fit, dispersion = 1)

##
Call:
glm(formula = time ~ ag + log(wbc), family = Gamma(log), data = leukemia)
##
Deviance Residuals:
Min 1Q Median 3Q Max
-2.1746 -1.2663 -0.4251 0.4962 1.9048
##
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.8154 1.2932 4.497 6.89e-06
agpresent 1.0176 0.3492 2.914 0.00357
log(wbc) -0.3044 0.1319 -2.308 0.02097
##
(Dispersion parameter for Gamma family taken to be 1)
##
Null deviance: 58.138 on 32 degrees of freedom
Residual deviance: 40.319 on 30 degrees of freedom
AIC: 301.49
##
Number of Fisher Scoring iterations: 8

405

Cox Proportional Hazard Model

A nonparametric approach to survival data was first introduced by Cox in 1972. Here we
model the hazard function h as follows: there is a baseline hazard h0(t) which is modified by
covariates, so the hazard function for any individual case is

h(t) = h0(t) exp(βTx)

and the interest is mainly in β.
The vector β is estimated via partial likelihood.
Suppose a death occurs at time tj. Then conditionally on this event the probability that case
i died is

h0(t) exp(βTxi)∑
j I[Tj ≥ t]h0(t) exp(βTxi)

= exp(βTxi)∑
j I[Tj ≥ t] exp(βTxi)

which does not depend on the baseline hazard.

Example: Leukemia

fit <- coxph(Surv(time) ~ ag + log(wbc), data=leukemia)
summary(fit)

Call:
coxph(formula = Surv(time) ~ ag + log(wbc), data = leukemia)
##
n= 33, number of events= 33
##
coef exp(coef) se(coef) z Pr(>|z|)
agpresent -1.0691 0.3433 0.4293 -2.490 0.01276
log(wbc) 0.3677 1.4444 0.1360 2.703 0.00687
##
exp(coef) exp(-coef) lower .95 upper .95
agpresent 0.3433 2.9126 0.148 0.7964
log(wbc) 1.4444 0.6923 1.106 1.8857
##
Concordance= 0.726 (se = 0.065)
Rsquare= 0.377 (max possible= 0.994)
Likelihood ratio test= 15.64 on 2 df, p=4e-04
Wald test = 15.06 on 2 df, p=5e-04
Score (logrank) test = 16.49 on 2 df, p=3e-04

Example: Lung Cancer

Survival in patients with lung cancer at Mayo Clinic. Performance scores rate how well the
patient can perform usual daily activities.

406

Variables:
inst: Institution code time: Survival time in days status: censoring status 1=censored,
2=dead
age: Age in years
sex: Male=1 Female=2
ph.ecog: ECOG performance score (0=good 5=dead) ph.karno: Karnofsky performance score
(bad=0-good=100) rated by physician
pat.karno: Karnofsky performance score rated by patient
meal.cal: Calories consumed at meals
wt.loss: Weight loss in last six months
Source: Terry Therneau
kable.nice(head(lung.cancer))

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss
3 306 2 74 1 1 90 100 1175 NA
3 455 2 68 1 0 90 90 1225 15
3 1010 1 56 1 0 90 90 NA 15
5 210 2 57 1 1 90 60 1150 11
1 883 2 60 1 0 100 90 NA 0

12 1022 1 74 1 1 50 80 513 0

library(GGally)
ggpairs(lung.cancer)

Corr:

−0.0159

Corr:

−0.151
Corr:

−0.171

Corr:

0.000624
Corr:

−0.078
Corr:

0.15

Corr:

0.0783
Corr:

0.13
Corr:

−0.243
Corr:

−0.122

Corr:

0.107
Corr:

−0.201
Corr:

0.233
Corr:
0.193
Corr:

−0.0206

Corr:

−0.0355
Corr:

0.133
Corr:

−0.182
Corr:

−0.203
Corr:

0.0114
Corr:

−0.807

Corr:

0.0338
Corr:

0.184
Corr:

−0.172
Corr:

−0.126
Corr:

0.0461
Corr:

−0.511
Corr:

0.52

Corr:

0.105
Corr:

0.0744
Corr:

0.0236
Corr:

−0.231
Corr:

−0.168
Corr:

−0.0985
Corr:

0.0422
Corr:

0.166

Corr:

−0.132
Corr:

0.00895
Corr:

0.035
Corr:

0.0381
Corr:

−0.129
Corr:

0.188
Corr:

−0.175
Corr:

−0.172
Corr:

−0.103

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss

inst
tim

e
status

age
sex

ph.ecogph.karnopat.karnom
eal.calw

t.loss

0 102030 025050075010001.001.251.501.752.0040506070801.001.251.501.752.000 1 2 35060708090100406080100010002000−2502550

0.000.010.020.030.040.05

02505007501000

1.00
1.25
1.50
1.75
2.00

4050607080

1.00
1.25
1.50
1.75
2.00

0
1
2
3

5060708090100

40
60
80

100

0
1000
2000

−25
0

25
50

Next we want to fit the Cox proportional hazards model, but there are two issues we need to

407

deal with:
• what to do with the missing values? we remove them from the data set using

na.action=na.omit
• in this experiment sex was a stratification variable. We can include this fact in our

model by using strata(sex) instead of just sex. This allows for non proportional hazards.
fit <- coxph(Surv(time, status) ~ strata(sex) + age +

ph.ecog + ph.karno + pat.karno + meal.cal + wt.loss,
na.action = na.omit,

data=lung.cancer)
summary(fit)

Call:
coxph(formula = Surv(time, status) ~ strata(sex) + age + ph.ecog +
ph.karno + pat.karno + meal.cal + wt.loss, data = lung.cancer,
na.action = na.omit)
##
n= 168, number of events= 121
(60 observations deleted due to missingness)
##
coef exp(coef) se(coef) z Pr(>|z|)
age 9.054e-03 1.009e+00 1.160e-02 0.780 0.4352
ph.ecog 7.073e-01 2.029e+00 2.228e-01 3.175 0.0015
ph.karno 2.072e-02 1.021e+00 1.128e-02 1.836 0.0663
pat.karno -1.330e-02 9.868e-01 8.050e-03 -1.652 0.0985
meal.cal -5.268e-06 1.000e+00 2.629e-04 -0.020 0.9840
wt.loss -1.520e-02 9.849e-01 7.890e-03 -1.927 0.0540
##
exp(coef) exp(-coef) lower .95 upper .95
age 1.0091 0.9910 0.9864 1.032
ph.ecog 2.0285 0.4930 1.3108 3.139
ph.karno 1.0209 0.9795 0.9986 1.044
pat.karno 0.9868 1.0134 0.9713 1.002
meal.cal 1.0000 1.0000 0.9995 1.001
wt.loss 0.9849 1.0153 0.9698 1.000
##
Concordance= 0.638 (se = 0.041)
Rsquare= 0.121 (max possible= 0.994)
Likelihood ratio test= 21.58 on 6 df, p=0.001
Wald test = 21.9 on 6 df, p=0.001
Score (logrank) test = 22.49 on 6 df, p=0.001

Notice the three hypothesis tests at the bottom. They do the job of the F-test in regression,
namely testing whether all the variables together are useful for predicting time. Hear clearly
they are.
Checking the individual covariates we see that age and meal.cal are not significant. Let’s

408

remove them
fit <- coxph(Surv(time, status) ~ strata(sex) + ph.ecog +

ph.karno + pat.karno + wt.loss,
na.action = na.omit, data=lung.cancer)

summary(fit)

Call:
coxph(formula = Surv(time, status) ~ strata(sex) + ph.ecog +
ph.karno + pat.karno + wt.loss, data = lung.cancer, na.action = na.omit)
##
n= 210, number of events= 148
(18 observations deleted due to missingness)
##
coef exp(coef) se(coef) z Pr(>|z|)
ph.ecog 0.649467 1.914520 0.200699 3.236 0.00121
ph.karno 0.017304 1.017454 0.010314 1.678 0.09342
pat.karno -0.016679 0.983459 0.007255 -2.299 0.02151
wt.loss -0.013729 0.986365 0.006906 -1.988 0.04681
##
exp(coef) exp(-coef) lower .95 upper .95
ph.ecog 1.9145 0.5223 1.2919 2.8372
ph.karno 1.0175 0.9828 0.9971 1.0382
pat.karno 0.9835 1.0168 0.9696 0.9975
wt.loss 0.9864 1.0138 0.9731 0.9998
##
Concordance= 0.633 (se = 0.038)
Rsquare= 0.115 (max possible= 0.995)
Likelihood ratio test= 25.71 on 4 df, p=4e-05
Wald test = 26.57 on 4 df, p=2e-05
Score (logrank) test = 27.16 on 4 df, p=2e-05

Next we want to try and assess whether this model is appropriate. In regression we use the
residual vs. fits plot for this purpose. Here we have something similar. There are actually
several kinds of residuals in a survival analysis, we will use what are called the martingale
residuals. The plots are the residuals with the variable of interest vs. the residuals without
the variable of interest. Again we need to deal with the missing values, and we remove them
from the data set. Finally we add a loess curve to the graphs. All of this is done in
lung1 <- na.omit(lung.cancer[, -c(1, 4, 9)])
fit <- coxph(Surv(time, status) ~ strata(sex) + ph.karno +

pat.karno + wt.loss, data=lung1)
df <- data.frame(ph.ecog=lung1$ph.ecog,

pat.karno=lung1$pat.karno,
ph.karno=lung1$ph.karno,
wt.loss=lung1$wt.loss,
Residuals=resid(fit))

409

pushViewport(viewport(layout = grid.layout(2, 2)))
print(ggplot(data=df, aes(ph.ecog, Residuals)) +

geom_point() + geom_smooth(se=FALSE),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(data=df, aes(ph.karno, Residuals)) +
geom_point() + geom_smooth(se=FALSE),

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggplot(data=df, aes(pat.karno, Residuals)) +

geom_point() + geom_smooth(se=FALSE),
vp=viewport(layout.pos.row=2, layout.pos.col=1))

print(ggplot(data=df, aes(wt.loss, Residuals)) +
geom_point() + geom_smooth(se=FALSE),

vp=viewport(layout.pos.row=2, layout.pos.col=2))

−4

−3

−2

−1

0

1

0 1 2 3

ph.ecog

R
es

id
ua

ls

−4

−3

−2

−1

0

1

50 60 70 80 90 100

ph.karno

R
es

id
ua

ls

−4

−3

−2

−1

0

1

40 60 80 100

pat.karno

R
es

id
ua

ls

−4

−3

−2

−1

0

1

−25 0 25 50

wt.loss

R
es

id
ua

ls

All of the relationships look reasonably linear.
Finally we can have a look whether the assumption of proportional hazards is justified. For
this we use the cox.zph function. This plots the rescaled Shoenfeld residuals. A flat appearance
indicates that the assumption is ok. The corresponding object carries out hypothesis tests
for a significant slope in the scatterplots, which support our assessment.
fit.zph <- cox.zph(fit)
plot(fit.zph)

410

Time

B
et

a(
t)

 fo
r

ph
.k

ar
no

59 150 200 280 350 450 580 730

−
0.

15
−

0.
05

0.
05

0.
15

Time

B
et

a(
t)

 fo
r

pa
t.k

ar
no

59 150 200 280 350 450 580 730

−
0.

3
−

0.
1

0.
0

0.
1

0.
2

411

Time

B
et

a(
t)

 fo
r

w
t.l

os
s

59 150 200 280 350 450 580 730

−
0.

2
0.

0
0.

1
0.

2
0.

3

print(fit.zph)

rho chisq p
ph.karno 0.1573 3.116 0.0775
pat.karno 0.0540 0.472 0.4921
wt.loss 0.0453 0.341 0.5591
GLOBAL NA 5.923 0.1154

Nonparametric Density Estimation

Example: Old Faithful Guyser

Let’s have a look at the waiting times:
bw <- diff(range(faithful$Waiting.Time))/50
ggplot(faithful, aes(Waiting.Time)) +
geom_histogram(color = "black",

fill = "white",
binwidth = bw) +
labs(x = "x", y = "Counts")

412

0

5

10

15

50 60 70 80 90

x

C
ou

nt
s

clearly the distribution of this data is non standard. We previously fit a mixture of normal
densities to the data. In this section we will consider several non parametric methods. The
basic problem is to estimate the density f(x) by f̂(x) for each x.

Kernel Density Estimation.

The most commonly used method is called kernel density estimation. The idea is to average
over the data points, giving greater weight to points near x. In general we have

f̂(x) = 1
n

∑
K(x−Xi

h
)

here K is kernel function and h is a tuning parameter.
This is implemented in
fit <- density(faithful$Waiting.Time)

ggplot(faithful, aes(Waiting.Time)) +
geom_histogram(aes(y = ..density..),

color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

geom_line(data=data.frame(x=fit$x, y=fit$y),
aes(x, y), color="blue")

413

0.00

0.02

0.04

0.06

30 50 70 90 110

x

D
en

si
ty

this uses a normal density as the kernel function. It has several formulas implemented for
the choice of h. The default uses
bw.nrd0(faithful$Waiting.Time)

[1] 3.987559

but it is often recommended to change that to
bw.SJ(faithful$Waiting.Time)

[1] 2.504371

a method by Sheather and Jones
here are several:
fit1 <- density(faithful$Waiting.Time, bw=1.5)
fit2 <- density(faithful$Waiting.Time, bw=10)
ggplot(faithful, aes(Waiting.Time)) +
geom_histogram(aes(y = ..density..),

color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

geom_line(data=data.frame(x=fit$x, y=fit$y),
aes(x, y), color="blue") +

geom_line(data=data.frame(x=fit1$x, y=fit1$y),
aes(x, y), color="red") +

geom_line(data=data.frame(x=fit2$x, y=fit2$y),
aes(x, y), color="green")

414

0.00

0.02

0.04

0.06

25 50 75 100 125

x

D
en

si
ty

and it is clear that for small values of h we get a very ragged (under-smoothed) estimate
whereas for an h to large it is the other way around.

There is a long list of density estimation methods and associated routines. For a review see
Density estimation in R. Two libraries worth knowing about are

ASH

this stands for averaged and shifted histograms, an idea due to Scott (1992).
library(ash)
fit <- ash1(bin1(faithful$Waiting.Time))

[1] "ash estimate nonzero outside interval ab"
ggplot(faithful, aes(Waiting.Time)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

geom_line(data=data.frame(x=fit$x, y=fit$y),
aes(x, y), color="blue")

415

https://vita.had.co.nz/papers/density-estimation.pdf

0.00

0.02

0.04

0.06

40 60 80 100

x

D
en

si
ty

KernSmooth

a method due to Wand & Jones (1995). It’s main advantage is that it also works for higher
dimensional data.
library(KernSmooth)
data(geyser, package="MASS")
x <- cbind(geyser$duration, geyser$waiting)
est <- bkde2D(x, bandwidth=c(0.7, 7))
contour(est$x1, est$x2, est$fhat)

416

 0.001

 0.002

 0.003

 0.004 0.005

 0.006

 0.006

 0.007

 0.007

0 1 2 3 4 5 6

40
60

80
10

0
12

0

persp(est$fhat)

est$fhat

Y

Z

Boundary Problem

Most methods encounter problems when the true density does not go to 0 at the edges:
df <- data.frame(x=rexp(1000, 1))
fit <- density(df$x)
bw <- diff(range(df$x))/50

417

df1 <- data.frame(x=seq(0, 6, length=100),
y=exp(-seq(0, 6, length=100)))

ggplot(df, aes(x)) +
geom_histogram(aes(y = ..density..),

color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

geom_line(data=data.frame(x=fit$x, y=fit$y),
aes(x, y), color="blue") +

geom_line(data=df1,
aes(x, y), color="black")

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

x

D
en

si
ty

the reason is clear: The formula expects data on both sides of x, but in this case at x=0
there is data only on one side.
A simple solution is to “mirror” the data:
fit <- density(c(df$x, -df$x))
fit$y <- 2*fit$y[fit$x>0]
fit$x <- fit$x[fit$x>0]
bw <- diff(range(df$x))/50
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

geom_line(data=data.frame(x=fit$x, y=fit$y),

418

aes(x, y), color="blue") +
geom_line(data=df1,

aes(x, y), color="black")

0.00

0.25

0.50

0.75

1.00

0.0 2.5 5.0 7.5 10.0

x

D
en

si
ty

notice the factor of 2, which is needed to scale the density to integrate to 1. In general this
rescaling can be difficult.
This would work perfectly fine for a density that has slope 0 at the boundary points, for
example a uniform. It still is wrong in our case, because our density has slope -1.
Other more complicated solutions are known but none of them is very satisfactory.

Smooth Bootstrap

There is a version of the Bootstrap that can be helpful at times. The idea is to sample from
a non-parametric density estimate instead of the empirical distribution function. For this
however we would need to discuss how to simulate from a general distribution function. Come
to ESMA 5015 Simulation next time!

Example: Hidalgo stamps

A well known data set in statistics has the thicknesses (espesor) in millimeters of 485 Mexican
stamps (sello) printed in 1872-1874, from the 1872 Hidalgo issue.
It is thought that the stamps from this issue are a “mixture” of different types of paper, of
different thicknesses. Can we determine from the data how many different types of paper
were used?
kable.nice(matrix(stamps[1:50], nrow=10))

419

https://en.wikipedia.org/wiki/Postage_stamps_and_postal_history_of_Mexico#Hidalgo_issue_1872

0.060 0.069 0.07 0.070 0.071
0.064 0.069 0.07 0.070 0.071
0.064 0.069 0.07 0.070 0.071
0.065 0.070 0.07 0.070 0.071
0.066 0.070 0.07 0.070 0.071
0.068 0.070 0.07 0.070 0.071
0.069 0.070 0.07 0.070 0.071
0.069 0.070 0.07 0.070 0.071
0.069 0.070 0.07 0.070 0.071
0.069 0.070 0.07 0.071 0.071

Let’s start with
bw <- diff(range(stamps))/50
df <- data.frame(Thickness=stamps)
ggplot(df, aes(Thickness)) +
geom_histogram(color = "black",

fill = "white",
binwidth = bw) +
labs(x = "x", y = "Counts")

0

20

40

60

80

0.06 0.08 0.10 0.12

x

C
ou

nt
s

which seems to have at least two modes. This judgement however is tricky because it depends
on the number of bins we use.
An alternative is to use a frequency polygon

420

ggplot(df, aes(Thickness)) +
geom_freqpoly()

0

20

40

60

80

0.06 0.08 0.10 0.12

Thickness

co
un

t

which seems to suggest a much larger number of modes.
Let’s instead draw the graph using a nonparametric density estimate:
ggplot(df, aes(Thickness)) +

stat_density(geom="line")

0

10

20

30

40

0.06 0.08 0.10 0.12

Thickness

de
ns

ity

here it seems again like there are two modes, but this depends largely on the chosen bandwidth:

421

pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(df, aes(Thickness)) +

stat_density(geom="line", bw=0.01) ,
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(df, aes(Thickness)) +
stat_density(geom="line", bw=0.001) +ylab("") ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))

0

5

10

15

20

25

0.06 0.08 0.10 0.12

Thickness

de
ns

ity

0

20

40

60

0.06 0.08 0.10 0.12

Thickness

stat_density implements a kernel density estimator as discussed above, with choices of
different kernels and bandwidth selectors. In what follows we will need to explicitly calculate
these estimates and use the density routine.
From the above it is clear that the number of modes depends on the choice of h. It is possible
to show that the number of modes is a non-increasing function of h. At the extremes we
would have a simple normal distribution with one mode (h large and on the other a sharply
peaked mode at each observation (h tiny)
Let’s say we want to test

H0 : number of modes = 1 vs. Ha : number of modes > 1

Because the number of modes is a non-increasing function of h there exists an h1 such that
the density estimator has one mode for h < h1 and two or more modes for h > h1. Playing
around with
fhat <- function(h, t, dta=stamps) {

tmp <- density(dta, bw=h)
df <- data.frame(x=tmp$x, y=tmp$y)
if(missing(t)) return(df)
out <- approx(df, xout=t)$y

422

out[!is.na(out)]
}
draw.fhat <- function(h)

ggplot(fhat(h), aes(x, y)) + geom_line()

pushViewport(viewport(layout = grid.layout(2, 2)))
print(draw.fhat(0.01) ,

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(draw.fhat(0.005) ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(draw.fhat(0.0075) ,

vp=viewport(layout.pos.row=2, layout.pos.col=1))
print(draw.fhat(0.0068) ,

vp=viewport(layout.pos.row=2, layout.pos.col=2))

0

5

10

15

20

25

0.04 0.08 0.12 0.16

x

y

0

10

20

30

0.050 0.075 0.100 0.125 0.150

x

y

0

10

20

30

0.06 0.09 0.12 0.15

x

y

0

10

20

30

0.06 0.09 0.12 0.15

x

y

we find h1 ∼ 0.0068.
Is there a way to calculate the number of modes for a given h? here is one:
• calculate yi = f̂(ti;h) on a grid t1, ..tk

• calculate zi = yi− 1− yi and note that at a mode z will change from positive to negative

• number of modes = ∑
I[zi > 0 and zi+1 < 0]

Let’s write a simple routine that automates the process. It uses a bisection algorithm.
x.points <- seq(min(stamps), max(stamps), length = 250)
calc.num.mode = function(y) {

m <- length(y) - 1

423

z <- diff(y)
sum(ifelse(z[-m] >= 0 & z[-1] < 0, 1, 0))

}
find.h <- function(num.modes, h=0.007, Show=FALSE) {

repeat {
h <- h-0.001
if(Show)

cat("h =", h, " modes=",
calc.num.mode(fhat(h, x.points)), "\n")

if(calc.num.mode(fhat(h, x.points)) >= num.modes) break
}
low <- h
high <- h + 0.001
repeat {

h <- (low+high)/2
if(Show)

cat("h =", h, " modes=",
calc.num.mode(fhat(h, x.points)), "\n")

if(calc.num.mode(fhat(h, x.points)) < num.modes)
high <- h

else
low <- h

if(high-low<10^-7)
break

}
h

}

h1 <- find.h(1, Show = TRUE)

h = 0.006 modes= 2
h = 0.0065 modes= 2
h = 0.00675 modes= 1
h = 0.006875 modes= 1
h = 0.0069375 modes= 1
h = 0.00696875 modes= 1
h = 0.006984375 modes= 1
h = 0.006992188 modes= 1
h = 0.006996094 modes= 1
h = 0.006998047 modes= 1
h = 0.006999023 modes= 1
h = 0.006999512 modes= 1
h = 0.006999756 modes= 1
h = 0.006999878 modes= 1
h = 0.006999939 modes= 1

424

h5 <- find.h(5)

pushViewport(viewport(layout = grid.layout(1, 2)))
print(draw.fhat(h1) ,

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(draw.fhat(h5) ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))

0

10

20

30

0.06 0.09 0.12 0.15

x

y

0

10

20

30

40

0.050 0.075 0.100 0.125

x

y

So, how we can test

H0 : number of modes = 1 vs. Ha : number of modes > 1
Here it is:
• draw B bootstrap samples of size n from fhat(h1)
• for each find h∗1, the smallest h for which this bootstrap sample has just 1 mode

• approximate p-value of test is the proportion of h∗1 > h1.
the idea is this; if there is indeed just one mode, then in the bootstrap samples h∗1 should be
around h1 and so this proportions shouldn’t be to small.
Notice we don’t actually need h∗1, we just need to check if h∗1 > h1, which is the case if
f̂(x∗;h∗1) has at least two modes.
Note that we are not drawing bootstrap samples from “stamps” but from a density estimate,
f̂ . So this is an example of the smooth bootstrap mentioned above.
How do we draw from fhat? It can be shown that if y∗1, .., y∗n is a bootstrap sample from the
data, then a smooth bootstrap sample is given by

425

x∗i = ȳ∗ + (1 + h∗1/s
2)−1/2(y∗i − ȳ∗ + h∗1εi)

where εi ∼ N(0, 1)
test.modes <- function(k) {

h <- find.h(k+1)
q <- 1/sqrt((1 + h^2/var(stamps)))
B <- 1000
hstar <- rep(0, B)
for (i in 1:B) {

ystar <- sample(stamps, size = 485, replace = TRUE)
xstar <- mean(ystar) + q*(ystar-mean(ystar) +

h*rnorm(485))
y <- fhat(h, x.points, dta=xstar)
if (calc.num.mode(y) > k)

hstar[i] <- 1
}
length(hstar[hstar > h])/B

}
test.modes(1)

[1] 0

and so we find strong evidence against the null, there are more than one modes.
The same method works for testing

H0 : number of modes = k vs. Ha : number of modes > k

and we find
for(k in 2:9)

cat("k =", k, ", p =", test.modes(k),"\n")

k = 2 , p = 0.31
k = 3 , p = 0.037
k = 4 , p = 0.007
k = 5 , p = 0
k = 6 , p = 0
k = 7 , p = 0.344
k = 8 , p = 0.783
k = 9 , p = 0.549

So there are certainly more than one mode, with a chance for as many 7.

Time Series Analysis

A time series is any data collected over a period of time. Examples are

426

• Dow Jones Industrial index

• Population of Earth

• Number of AIDS patients at some hospital
• . . .

The main feature that sets time series apart is that the assumption of independence usually
fails. If I wanted to guess the size of the human population in 2019, knowing what it is in
2018 might be useful.

Example: Births in New York

data set of the number of births per month in New York city, from January 1946 to December
1959 (originally collected by Newton)
kable.nice(matrix(births[1:50], nrow=10))

26663 21672 23105 23950 21761
23598 21870 23110 23504 22874
26931 21439 21759 22238 24104
24740 21089 22073 23142 23748
25806 23709 21937 21059 23262
24364 21669 20035 21573 22907
24477 21752 23590 21548 21519
23901 20761 21672 20000 22025
23175 23479 22222 22424 22604
23227 23824 22123 20615 20894

the first step is to store the data in a time series object in R, so that we can use R’s many
functions for analyzing time series data. One way to do that is the base R function ts.
by default ts assumes equal space time units of one year. For other time spans we can use
the argument frequency. For example, if data is by month, use frequency=12. We can also
change the starting point:
birth.ts <- ts(births, frequency=12, start=c(1946, 1))
head(birth.ts)

[1] 26663 23598 26931 24740 25806 24364

Example: Deaths in Puerto Rico

number of deaths per month in Puerto Rico, according to the official deaths statistics of the
government:

427

Deaths <- c(2744, 2403, 2427, 2259, 2340, 2145,
2382, 2272, 2258, 2393, 2268, 2516,
2742, 2592, 2458, 2241, 2312, 2355,
2456, 2427, 2367, 2357, 2484, 2854,
2894, 2315, 2494, 2392, 2390, 2369,
2367, 2321, 2928, 3040, 2671, 2820,
2821, 2448, 2643, 2218)

pr.deaths.ts <- ts(Deaths, frequency=12,
start=c(2015, 1))

Example: Dow Jones Industrial index

Data set has the daily closing values of the Dow Jones Industrial Index from January 2000 to
November 2018 and the weekly closing values from January 1985 to November 2018.
the data set is available at dow.jones.rds
dow.jones <- readRDS("C:\\Users\\Wolfgang\\Dropbox\\teaching\\Computational-Statistics-with-R\\dow.jones.rds")
kable.nice(head(dow.jones$Weekly))

428

http://academic.uprm.edu/wrolke/esma6836/dow.jones.rds

Date Close
1985-01-28 1277
1985-02-04 1289
1985-02-11 1282
1985-02-18 1275
1985-02-25 1299
1985-03-04 1269

Again we want to turn this into a time series object. Here however we have the problem that
the time variable is not equal spaced (sometimes the New York stock exchange is not open
on a Monday or a Friday). One way to do this is to use the package zoo:
library(zoo)
dj.ts <- zoo(dow.jones$Weekly$Close,

order.by=as.Date(as.character(dow.jones$Weekly$Date)))

Graphs

There is an obvious graph for a time series, namely a line graph by time. A ts object already
has a plot function, so

Example: Births in New York

library(ggfortify)
autoplot(birth.ts)

20000

22500

25000

27500

30000

1950 1955 1960

429

Example: Deaths in Puerto Rico

autoplot(pr.deaths.ts)

2250

2500

2750

3000

2015 2016 2017 2018

here we have a strong seasonal trend, deaths go up a lot in the winter. And of course we
have a spike around September 2017!

Example: Dow Jones

autoplot(dj.ts)

0

10000

20000

1990 2000 2010 2020

Index

dj
.ts

430

Decomposition

In general a time series consists of some (or all) of these parts:
• a baseline

• a trend

• seasonal component(s)
• unusual parts

• random fluctuation

Example: Deaths in Puerto Rico

here we seem to have all of these:
• a baseline: roughly 2300 deaths per month

• a trend: from around 2250 in 2015 to 2500 in 2018

• seasonal component: winter month vs rest of year

• unusual parts: September 2017
One of the tasks in a time series analysis is to decompose the series into these parts.

Example: Births

births.dec <- decompose(birth.ts)
plot(births.dec)

431

20
00

0
26

00
0

ob
se

rv
ed

22
00

0
26

00
0

tr
en

d

−
20

00
0

15
00

se
as

on
al

−
15

00
0

15
00

1946 1948 1950 1952 1954 1956 1958 1960

ra
nd

om

Time

Decomposition of additive time series

so we see a clear trend and seasonal component

Example: Deaths in PR

an alternative to decompose is the stl routine, which uses loess to do the fitting:
pr.deaths.dec <- stl(pr.deaths.ts, "periodic")
plot(pr.deaths.dec)

22
00

28
00

da
ta

−
20

0
0

20
0

se
as

on
al

24
00

25
00

tr
en

d

−
20

0
0

20
0

2015.0 2015.5 2016.0 2016.5 2017.0 2017.5 2018.0

re
m

ai
nd

er

time

again a clear trend and seasonal component.

432

Example: Dow Jones

dj.dec <- stl(dj.ts, "periodic")

Error in na.fail.default(as.ts(x)): missing values in object

and this gives an error. That is because this time series has irregular time points. It can be
quite a chore to “fix” this problem. If the time periods are somewhat regular (in our case
they are almost one week) it is easier to make a new series with a regular time scale:
dj.alt.ts <- ts(dow.jones$Weekly$Close, frequency = 52,

start=c(1985, 1))
dj.alt.dec <- stl(dj.alt.ts, "periodic")
plot(dj.alt.dec)

50
00

20
00

0

da
ta

−
20

0
0

15
0

se
as

on
al

50
00

20
00

0

tr
en

d

−
20

00
0

20
00

1985 1990 1995 2000 2005 2010 2015 2020

re
m

ai
nd

er

time

which shows a clear trend but not any seasonality. We also see that the variation is increasing
over time.

ARIMA models

As we said before, the special feature of a time series is a dependence between neighboring
points. This suggests a way to analyse a time series by analyzing the correlation between
time points.

Example: Births

Let’s define a new variable: Yi = Xi −Xi−1, that is the change in the number of births from
one month to the next.

433

y <- diff(births)
plot(y)

0 50 100 150

−
20

00
0

20
00

40
00

Index

y

here we now longer have any pattern, which shows us that this series consisted only of a
trend (which we eliminated in y).
There are some R routines to do this for us for a time series:

Example: PR Deaths

acf(pr.deaths.ts)

434

0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series pr.deaths.ts

which shows a clear seasonal pattern.

the above is an example of a general model for time series called ARIMA (auto-regressive
integrated moving average).
Here are a couple of examples:
• AR(1) = ARIMA(1, 0, 0)

Xi = c+ α1Xi−1 + εi

for the births data we saw that Xi − Xi−1 was essentially random noise, so it seems that
series can be modeled as an AR(1).
• AR(2) = ARIMA(2, 0, 0)

Xi = c+ α1Xi−1 + α2Xi−2 + εi

- MA(1)=AR(0, 0, 1)

Xi = c+ β1εi−1 + εi

finally ARIMA combines both variations.

Example: Simulated data

let’s create some artificial data to see what is going on:

435

eps <- rnorm(100)
x <- sort(runif(100, 1, 10))
x.ar <- ts(5 + x[-1] + 0.2* x[-100] + eps[-100])
plot(x.ar)

Time

x.
ar

0 20 40 60 80 100

6
8

10
12

14
16

18

acf(x.ar)

0 5 10 15

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series x.ar

x.ma <- ts(5 + 2* eps[-1] + eps[-100])
plot(x.ma)

436

Time

x.
m

a

0 20 40 60 80 100

−
2

0
2

4
6

8
10

acf(x.ma)

0 5 10 15

−
0.

2
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

Series x.ma

so the acf plot of x.ma shows us that indeed we have a moving average process, with a lag of
1 or 2.
Fitting an ARIMA model can be done with the auto.arima routine from the forcast package:
library(forecast)
auto.arima(x.ar)

Series: x.ar
ARIMA(0,1,1) with drift

437

##
Coefficients:
ma1 drift
-0.8492 0.1159
s.e. 0.0626 0.0168
##
sigma^2 estimated as 1.096: log likelihood=-143.16
AIC=292.31 AICc=292.57 BIC=300.07

Spectral Analysis

The most general way to analyse a time series is a spectral analysis. In essence, we assume
that

Xt =
k∑
j=1

(Aj sin(2πνjt) +Bj cos(2πνjt))

and a spectral analysis amounts to estimating the parameters Aj, Bj, νj.
A fuller discussion of this is beyond our course. It would require first a discussion Fourier
analysis, one of the most widely used technics in mathematics and engineering.
The usual starting point is a look at the periodogram

Example: Births

par(mfrow=c(2, 2))
spec.pgram(birth.ts, spans = c(3, 3))
spec.pgram(birth.ts, spans = c(3, 5))
spec.pgram(birth.ts, spans = c(7, 11))
spec.pgram(birth.ts, spans = c(7, 21))

438

0 1 2 3 4 5 6
5e

+
02

5e
+

05

frequency

sp
ec

tr
um

Series: birth.ts
Smoothed Periodogram

bandwidth = 0.0694

0 1 2 3 4 5 6

2e
+

03
5e

+
05

frequency

sp
ec

tr
um

Series: birth.ts
Smoothed Periodogram

bandwidth = 0.0962

0 1 2 3 4 5 6

5e
+

04
5e

+
05

frequency

sp
ec

tr
um

Series: birth.ts
Smoothed Periodogram

bandwidth = 0.229

0 1 2 3 4 5 6

5e
+

04

frequency
sp

ec
tr

um

Series: birth.ts
Smoothed Periodogram

bandwidth = 0.404

and so we see that larger values of span do more smoothing and show the underlying patters

Example: PR Deaths

spec.pgram(pr.deaths.ts, span= c(3, 3))

1 2 3 4 5 6

10
00

20
00

50
00

10
00

0

frequency

sp
ec

tr
um

Series: pr.deaths.ts
Smoothed Periodogram

bandwidth = 0.312

Example: Dow Jones

439

spec.pgram(dj.alt.ts, span= c(3, 9))

0 5 10 15 20 25

1e
+

02
1e

+
04

1e
+

06

frequency

sp
ec

tr
um

Series: dj.alt.ts
Smoothed Periodogram

bandwidth = 0.0713

and as we know there is no seasonal component here.

440

	Getting Started
	R
	Installation and Updating
	Installing R
	RStudio
	Updating

	R Markdown, HTML and Latex
	R Markdown
	Basic R Markdown Syntax
	Embedded Code
	Creating Output
	HTML vs Latex(Pdf)
	Tables
	LATEX

	R Basics I
	Data Entry
	Data Types in R
	Commands for Vectors
	Data Frames
	Lists
	Subsetting of Data Frames
	Subsetting of Lists
	Vector Arithmetic
	apply

	R Basics II - Writing Functions
	General Information
	Testing
	Arguments
	Return Values
	Basic Programmming Structures in R

	Random Numbers and Simulation
	Random Numbers
	Standard Probability Distributions
	Other Variates
	Simulation

	Graphics with ggplot2
	Why ggplot2?
	Grammar of Graphics
	Histograms
	Boxplots
	Barcharts
	Axis Ticks and Legend Keys
	Saving the graph

	Important Commands
	The first functions to learn
	Important operators and assignment
	Comparison
	Random variables
	Matrix algebra
	Workspace
	Help
	Debugging
	Output
	Reading and writing data
	Files and directories

	General Statistics
	Descriptive Statistics
	Tables
	Contingency Tables
	Bar Charts
	Numerical Summaries
	Histogram and Boxplot
	Two Quantitative Variables
	Normal Probability Plot

	Parameter Estimation
	Likelihood function
	Maximum Likelihood estimation
	Numerical Computation
	EM Algorithm

	Confidence Intervals
	Coverage
	Finding Confidence Interval
	More than one parameter
	R Libraries

	Hypothesis Testing
	General Problem Statement
	Critical Region of a Test
	Type I error, level of test \alpha
	The p value
	Power of a Test
	Likelihood Ratio test
	Wilks' Theorem

	Bayesian Statistics
	Prior and Posterior Distribution
	Bayesian Inference

	Simulation
	Basic Idea
	Simulation Error
	Permutation Tests

	The Bootstrap
	Bootstrap Confidence Intervals

	Basic Inferences
	Inference for a Population Mean
	Inference for a Population Proportion
	Correlation
	Categorical Data Analysis - Tests for Independence

	Comparing the Means of Several Populations - ANOVA
	Basic Test
	Multiple Comparison

	Transformations and Nonparametric Methods
	Transformations
	Box-Cox Transforms
	Alternative to 1 Sample t
	Why not always use the non-parametric test?
	Alternative to two sample t
	Alternative to ANOVA

	Model Checking
	Graphical Checks
	Formal Tests
	Tests based on the empirical distribution function
	Null distribution via simulation

	Simple Regression (One Predictor)
	Least Squares Regression
	Alternatives to Least Squares
	ANOVA

	Assumptions of Least Squares Regression
	Prediction
	Basic Concept
	Confidence vs. Prediction Intervals
	Prediction vs. Extrapolation

	Nonlinear Models
	Transformations and Polynomial Models
	Prediction

	Finding the best model - Overfitting
	Question: which of these polynomial models should you use?
	Choosing between good Models

	Nonparametric Regression, Smoothing
	Bandwidth (Smoothing Parameter)
	Interval Estimation
	Confidence Bands

	Nonlinear Parametric Models
	Logistic Regression - General Linear Models

	Models with more than one predictor
	ANOVA with more than one factor
	Multiple Linear Regression
	Variable Selection
	Best Subset Regression and Mallow's Cp
	Prediction

	Models with Categorical Predictors
	Prediction
	Lines and Interaction

	Generalized Additive Models
	Subset Selection and Ridge Regression
	Subset Selection
	Ridge Regression
	Lasso

	Regression Trees
	How to grow a tree

	Principle Components Analysis

	Classification
	Introduction to Classification
	Misclassification Rate
	Overfitting and Cross-validation

	Classification Methods
	Linear and Quadratic discriminants
	Loess
	k-nearest neighbor

	Classification Trees
	Basic Trees
	Bagging
	Random Forests

	Neural Networks and Support Vector Machines
	Neural Networks
	Regression problems
	Support Vector Machines

	Classification Examples

	Special Topics
	Survival Analysis
	Censored Data
	Cox Proportional Hazard Model

	Nonparametric Density Estimation
	Kernel Density Estimation.
	ASH
	KernSmooth
	Boundary Problem
	Smooth Bootstrap

	Time Series Analysis
	Graphs
	Decomposition
	ARIMA models
	Spectral Analysis

