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1 Getting Started

1.1 Installation and Updating

1.1.1 Base R

You can get a free version of R for your computer from a number of sources. The download
is about 70MB and setup is fully automatic. Versions for several operating systems can be
found on the R web site
https://cran.r-project.org
Note

• the one item you should change from the defaults is to install R into a folder under the
root, aka C:\R

• You might be asked at several times whether you want to do something (allow access,
run a program, save a library, . . . ), always just say yes!

• You will need to connect to a reasonably fast internet for these steps.
• This will take a few minutes, just wait until the > sign appears.

FOR MAC OS USERS ONLY
There are a few things that are different from MacOS and Windows. Here is one thing you
should do:
Download XQuartz - XQuartz-2.7.11.dmg
Open XQuartz
Type the letter R (to make XQuartz run R)
Hit enter Open R Run the command .First()
Then, every command should work correctly.

1.1.2 RStudio

We will run R using an interface called RStudio. You can download it at RStudio.

1.1.3 Updating

R releases new versions about every three months or so. In general it is not necessary to
get the latest version every time. Every now and then a package won’t run under the old
version, and then it is time to do so. In essence this just means to install the latest version
of R from CRAN. More important is to now also update ALL your packages to the latest
versions. This is done simply by running
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update.packages(ask=FALSE, dependencies=TRUE)

1.2 R Markdown

R Markdown is a program for making dynamic documents with R. An R Markdown document
is written in markdown, an easy-to-write plain text format with the file extension .Rmd. It
can contain chunks of embedded R code. It has a number of great features:

• easy syntax for a number of basic objects

• code and output are in the same place and so are always synced

• several output formats (html, latex, word)
In recent years I (along with many others) who work a lot with R have made Rmarkdown
the basic way to work with R. So when I work on a new project I immediately start a
corresponding R markdown document.

1.2.1 Get Started

to start writing an R Markdown document open RStudio, File > New File > R Markdown.
You can type in the title and some other things.
The default document starts like this:
---
title: “My first R Markdown Document”
author: “Dr. Wolfgang Rolke”
date: “April 1, 2018”
output: html_document
---
This follows a syntax called YAML (also used by other programs). Everything between the
three dashes (which are needed) is YAML code. There are other things that can be put here
as well, or you can erase all of it.
YAML stands for Yet Another Markup Language. It has become a standard for many
computer languages to describe different configurations. For details go to yaml.org.
Then there is other stuff you should erase. Next File > Save. Give the document a name
with the extension .Rmd
I have a number of things that I need in (almost) all of my Rmd files, and I am to lazy
to erase the stuff that the default starting document comes with. So I have a file called
blank.Rmd which already has everything as I (usually) want it. All I need to do is rename it
and put it in the right folder.
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1.2.2 Basic R Markdown Syntax

Markdown has simple keyboard shortcuts for many basic editing features. For example, #,
##, ### are for chapter and section headers. Subscripts are done with beginning and
ending ~, so for X1 you need to type X~1~. For superscripts use Xˆ1ˆ.
For a complete list of the basic syntax go to https://rmarkdown.rstudio.com/articles_intro.
html or to https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

1.2.3 Embedded Code

There are two ways to include code chunks (yes, that’s what they are called!) into an R
Markdown document:
a. stand alone code

simultaneously enter CTRL-ALT-i and you will see this:
“‘{r}
“‘
Here ‘ is a back tick, on Windows keyboards found on the upper left key, below ~.
you can now enter any R code you like:
“‘{r}
x <- rnorm(10)
mean(x)
“‘
which will appear in the final document as
x <- rnorm(10)
mean(x)

Actually, it will be like this:
x<-rnorm(10)
mean(x)

## [1] 0.1938

so we can see the result of the R calculation as well. The reason it didn’t appear like this
before was that I added the argument eval=FALSE:
“‘{r eval=FALSE}
which keeps the code chunk from actually executing (aka evaluating). This is useful if the
code takes along time to run, or if you want to show code that is actually faulty, or for any
number of other reasons.
there are several useful arguments:

• eval=FALSE (shows but doesn’t run the code)
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• eval=2:5 (shows all the code but only runs lines 2 to 5)
• echo=FALSE (the code chunk is run but does not appear in the document)

• echo=2:5 (shows only code on lines 2 to 5)

• warning=FALSE (warnings are not shown)

• message=FALSE (messages are not shown)

• cache=TRUE (code is run only if there has been a change, useful for lengthy calculations)

• error=TRUE (if there are errors in the code R normal terminates the parsing (executing)
of the markdown document. With this argument it will ignore the error, which helps
with debugging)

• engine=‘Rcpp’ (to include C++ code)
Many of these options can be set globally, so they are active for the whole document. This is
useful so you don’t have to type them in every time. I have the following code chunk at the
beginning of all my Rmd:
library(knitr)
opts_chunk$set(fig.width=6, fig.align = "center",

out.width = "70%", warning=FALSE, message=FALSE)

We have already seen the message and warning options. The other one puts any figure in the
middle of the page and sizes it nicely.
If you have to override these defaults just include that in the specific chunk.
b. inline code.

here is a bit of text:
and the mean was 0.1938.
Now I didn’t type in the number, it was done with the chunk
## `r mean(x)`

1.2.4 Creating Output

To create the output you have to “knit” the document. This is done by clicking on the knit
button above. If you click on the arrow you can change the output format.

1.2.4.1 HTML, Latex(Pd), Word, PowerPoint etc.

One of the great features of Markdown is that its syntax is independent of the eventual
document format, so the same markdown file can immediately produce an HTML file of a
pdf or or. . .
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In this class we will only use the HTML format, which is the easiest.
In order to knit to pdf you have to install a latex interpreter. My suggestion is to use Miktex,
but if you already have one installed it might work as well.
There are several advantages / disadvantages to each output format:

• HTML is much faster

• HTML looks good on a webpage, pdf looks good on paper

• HTML needs an internet connection to display math, pdf does not

• HTML can use both html and latex syntax, pdf works only with latex (and a little bit
of html)

I generally use HTML when writing a document, and use pdf only when everything else is
done. There is one problem with this, namely that a document might well knit ok to HTML
but give an error message when knitting to pdf. Moreover, those error messages are weird!
Not even the line numbers are anywhere near right. So it’s not a bad idea to also knit to pdf
every now and then.

1.2.5 Tables

One of the more complicated things to do in R Markdown is tables. For a nice illustration
look at
https://stackoverflow.com/questions/19997242/simple-manual-rmarkdown-tables-that-look-good-in-html-pdf-and-docx
My preference is to generate a data frame and the use the kable function:
Gender <- c("Male", "Male", "Female")
Age <- c(20, 21, 19)
df <- data.frame(Gender, Age)
knitr::kable(df)

Gender Age
Male 20
Male 21
Female 19

I have written my own kable routine which improves a bit on the basic version:
kable.nice <- function (x,

do.row.names = TRUE,
col.names = NA, font.size = 15)

{
library(tidyverse)
library(kableExtra)
kable(x, row.names = do.row.names,

col.names = col.names) %>%
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kable_styling(bootstrap_options = "striped",
full_width = FALSE,
font_size = font.size)

}
kable.nice(df)

Gender Age
1 Male 20
2 Male 21
3 Female 19

which I am sure you agree is nice! You can use it yourself, just copy paste the function code
into an R chunk of your document.
It is also possible to use HTML code to make a table:
## <table border="1">
## <tr><th>Gender</th><th>Age</th></tr>
## <tr><td>Male</td><td>20</td></tr>
## <tr><td>Male</td><td>21</td></tr>
## <tr><td>Female</td><td>19</td></tr>
## </table>

It will look like this in HTML:
Gender
Age
Male
20
Male
21
Female
19
but won’t look like anything in pdf.
The corresponding latex table will look good in pdf but not in HTML!
So what do you do if you don’t know yet what the output will be, or if you want your routine
to produce nice output either way? The solution is this: the document can check what the
output format is at run time, and then insert the corresponding code. This works as follows.
Say we want to include some code to print a piece of text in red, say for highlighting it. Now
in html we would need the code <font color=“red”>, then the text and finally </font>
to get back to black. In latex however we need \textcolor{red}{our text}. Here is a little
routine that will do it:
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fontcolor <- function (txt) {
library(knitr)
output.format <- opts_knit$get("rmarkdown.pandoc.to")

# this figures out what the output format is
if(output.format == "latex")

out <- paste0("\\textcolor{red}{", txt, "}")
else

out <- paste0("<font color='red'>", txt, "</font>")
out

}

and now if we have
## `r fontcolor("this is in red")`

it will appear as this is in red in either html or latex.

1.2.6 LATEX

You have not worked with latex (read: latek) before? Here is your chance to learn. It is well
worthwhile, latex is the standard document word processor for science. And once you get
used to it is WAY better and easier than (say) Word.
Because latex code will generally display correctly in an html document but html will not in
a latex document I suggest to stick as much as possible with latex.
Latex has a HUGE list of symbols for just about anything. A nice list of common symbols is
found on https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols. Often when I
need one I don’t remember I just google it. For example, say I want to use the symbol for
the real numbers: R. So I google “latex real numbers symbol”, and the first document tells
me the code is \mathbf{R}!
Latex code is usually used in two ways: as part of a sentence or as stand-alone. In the first
case use a single dollar sign at the beginning and the end. For example the code
We want to integrate the function
$f(x)=\exp(-x^2)$

will display as
We want to integrate the function
f(x) = exp(−x2).
Exercise
Does anyone know how I displayed the code and not the formula the first time?

The other way to display math in latex is via
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1.2.6.1 Multiline math

say you want the following in your document:

E[X] =
∫ ∞
−∞

xf(x)dx =∫ 1

0
xdx = 1

2x
2|10 = 1

2

for this to display correctly in HTML and PDF you need to use the format
## $$
## \begin{aligned}
## &E[X] = \int_{-\infty}^{\infty} xf(x) dx=\\
## &\int_{0}^{1} x dx = \frac12 x^2 |_0^1 = \frac12
## \end{aligned}
## $$

so a multiline expression starts and ends with double dollar signs.
By default when you knit to pdf the intermediate latex file is deleted. If you want to keep it,
maybe so you can change it in a latex editor, use the following in the YAML header:
output:
pdf_document:
keep_tex: true

notice the spaces before the text, they are needed!

1.2.7 snippets

A snippet is a short piece of code that one uses quite often, and so it would be nice not to
have to type it in every time. RStudio has a number of them pre-defined. Go to Tools >
Global Options > Code > Edit Snippets.
There are snippets for various languages, including R Markdown. To use a snippet, simply
type the code and then Shift+Tab.
You can even wright your own! For example, I have one called mta that has all the basics to
start a multi-line latex math expression.

1.3 History, Basic Usage

1.3.1 S

S is a statistical programming language developed primarily by John Chambers and (in
earlier versions) Rick Becker and Allan Wilks of Bell Laboratories. The aim of the language,
as expressed by John Chambers, is “to turn ideas into software, quickly and faithfully”.
The first working version of S was built in 1976, and operated on the GCOS operating system.
At this time, S was unnamed, and suggestions included Interactive SCS (ISCS), Statistical
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Computing System, and Statistical Analysis System (which was already taken: see SAS
System). The name ‘S’ (used with single quotation marks, until 1979) was chosen, as it has
the common letter used in statistical computing, and is consistent with other programming
languages designed from the same institution at the time (namely the C programming
language).
By 1988, many changes were made to S and the syntax of the language. The New S Language
(1988 Blue Book) was published to introduce the new features, such as the transition from
macros to functions and how functions can be passed to other functions (such as apply).
In the late 1990s AT&T sold the S license to a private company that started to charge a lot
of money for it. This lead to

1.3.2 R

R is an implementation of the S programming language combined with lexical scoping
semantics inspired by Scheme. There are some important differences between S and R, but
much of the code written for S runs unaltered.
R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New
Zealand, and is currently developed by the R Development Core Team, of which Chambers is
a member. R is named partly after the first names of the first two R authors and partly as a
play on the name of S. The project was conceived in 1992, with an initial version released in
1995 and a stable beta version in 2000.

1.3.3 RStudio

RStudio is a free and open-source integrated development environment (IDE) for R, a
programming language for statistical computing and graphics. RStudio was founded by JJ
Allaire, creator of the programming language ColdFusion. Hadley Wickham is the Chief
Scientist at RStudio.
Work on RStudio started at around December 2010, and the first public beta version (v0.92)
was officially announced in February 2011. Version 1.0 was released on 1 November 2016.
Version 1.1 was released on 9 October 2017.
R can be run by itself using the command line interface, but it is usually much nicer to use
RStudio as a front end. Considering that it is only about three years old it has taken the R
world by storm!

1.3.4 Getting Started

Once R (or Rstudio) is opened you will see the >. This is the command prompt. It means R
is waiting for you to do something!
Don’t like >? No sweat, you can change it (although I don’t recommend changing the
prompt). Here is how:
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options()(prompt="@")

In fact, you can change almost anything with the options command.
length(options())

## [1] 136

shows there are 136 of them. Two you might want to remember are
options()["digits"]

## $digits
## [1] 4
pi

## [1] 3.142
options(digits=5)
pi

## [1] 3.1416
options(digits=15)
pi

## [1] 3.14159265358979

and
options()$warn

## [1] 0

this tells R to warn about certain things. Those are not errors, just warnings, and usually
they are ok. Sometimes though they are not needed and can be a nuisance, and then you can
turn them off with
options(warn=-1)

Changing one or more of these options is something one needs to do on occasion inside a
function. If so you likely want to reset them to the defaults before leaving the function. Say
we have a program that prints results to the screen and we want all the numbers to have 4
digits. Then we can use
# At start of function:
default.options <- options()
options(digits=4)
# now do stuff
# then at the end of the program
options(default.options)
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1.3.5 Saving your Stuff

The standard setup is to have separate folders for each project. When starting a new one
RStudio creates the folder and within the files

• foldername.Rproj is the RStudio project file

• .RData is the R worksheet
In the past the .RData file was the “heart” of R, and typically there was one for each project,
with different names. RStudio wants you to essentially forget about it, there is actually an
option in Tools > Global Options to just ignore any RData file. If you do need to create a
.RData file (maybe to send stuff to someone else) use
save.image("c:/folder/filename.RData")

Notice the use of the backslash as a separator for folders. On Windows systems one usually
uses forward slashes (“\”) but these have a special use in R as the “escape character”. One
alternative is to use
save.image("c:\\folder\\filename.RData")

but / is generally preferred.

1.3.6 Assignments

The basic assignment character in R is <-
x <- 1
x

## [1] 1

Note think of an arrow pointing left
Note = also works:
x = 2
x

## [1] 2

but mainly for reasons of backward compatibility <- is generally recommended.
RStudio has a lot of useful shortcuts, one of them is ALT - , which enters <- and even the
spaces around it!
Check out the list of keyboard shortcuts at Tools > Keyboards shortcuts.

1.3.7 Help!

1.3.7.1 Help inside of R

R has a help command. Let’s say we want to find out about the mean command:
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?mean

This opens a page in the Help pane with all sorts of information regarding the mean command.
Another useful function is arg, which lists the arguments of a routine:
args(splot)

## function (y, x, z, w, use.facets = FALSE, add.line = 0, plot.points = TRUE,
## jitter = FALSE, errorbars = FALSE, label_x, label_y, label_z,
## main_title, add.text, add.text_x, add.text_y, plotting.symbols = NA,
## plotting.size = 1, plotting.colors = NA, ref_x, ref_y, log_x = FALSE,
## log_y = FALSE, no.legends = FALSE, return.graph = FALSE)
## NULL

splot is not a command that is part of R but one I wrote myself to make nice looking
scatterplots. Unfortunately args often doesn’t work well for basic R commands:
args(mean)

## function (x, ...)
## NULL

1.3.7.2 Help from Outside of R

R has one of the most active and friendly user communities anywhere. So if you run into a
problem do this:

1.3.7.3 Google!

Most of the problems you have, someone else already had. They ended up asking for help
on the internet, and someone replied. So all you need to do is find that reply. Start with a
google search. Typically you want to include R in your search terms. If at first you don’t
succeed, try, try again!

1.3.7.4 Stackoverflow

Many times your google search will lead you to stackoverflow. This is a website for people
working on computer coding problems to help each other. It is not specific to R but the R
community is using it to discuss and solve R questions.
If you can not find a solution to your problem, eventually you might want to post a question
on stackoverflow. To do so you have to become a member, which is free.
Here are some guidelines for posting questions:

• did you really try hard enough to find an answer on your own? It is very embarrassing
when you post a question and the reply is a link to a simple Google search that has the
answer already.

• try and eliminate anything that does not have to do with your problem.
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• produce a simple and short example of your problem. Anything over 5 or 10 lines of
code is almost certainly to long.

1.3.7.5 ls, rm

use the ls command to get a listing of the current objects in the worksheet:
ls()[1:5]

## [1] "%!in%" "acorn" "Age" "agesex" "agesexUS"

If there are many objects (the worksheet I have open right now has over 250!) you can specify
part of the name:
ls(pattern = "^sa")

## [1] "salaries"

the ˆ (called “caret”) in front of sa means that ls will list all objects whose name starts with
sa. This is what is called a regular expression. These are general (non R) rules for specifying
patters. They are a science all their own, and we will need to have a look at them at some
point.
If you need some more details on the objects you can use
ls.str(pattern = "^sa")

## salaries : 'data.frame': 25 obs. of 3 variables:
## $ Salary: int 21700 24000 23800 26000 27200 25100 26700 27600 28300 29100 ...
## $ Years : int 3 9 10 11 12 4 6 7 9 11 ...
## $ Level : chr "Low" "Low" "Low" "Low" ...

Often you create an object that is only needed for a short time. If you want to get rid of it
use rm (remove)
x <- 1:10
sum(x^3)

## [1] 3025
rm(x)

you can also remove many objects in one step. Let’s say we have worked on a problem for a
while and we created a number of objects. All of them start with “my”. Now we can do this
a <- ls(pattern = "^my")
rm(list=a)

I have a routine called cleanup:
cleanup <- function ()
{

options(warn=-1)
oldstuff <- c("f", "f1", "F","n", "m", "a", "A", "b", "B",
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"i", "j", "plt", "plt1", "plt2", "x", "xx", "y",
"z", "u", "v", "xy", "out", "mu")

rm(list=oldstuff, envir = .GlobalEnv)
options(warn = 0)

}

• the things in oldstuff (like f and x) are the names I generally use for stuff that I expect
to need only for a short time.

• it has the options(warn=-1) command because many of these names will not be present
when I run the cleanup command, and each of those would result in a warning. I
already know this, so I don’t need the warning. At the end I reset to the default with
options(warn = 0).

• notice the empty line before the end of the function. This means there will be no return
result. Without it the routine would return NULL.

• notice the argument envir. We will talk about what that means soon.

1.3.8 Naming Conventions

It is good practice to have a consistent style when choosing names for objects, functions etc.
There is a detailed description at https://google.github.io/styleguide/Rguide.xml. Here are
the most important ones:

• File Names
File names should end in .R and, of course, be meaningful.
GOOD: predict_ad_revenue.R
BAD: foo.R

• Identifiers
Don’t use underscores ( _ ) or hyphens ( - ) in identifiers. Identifiers should be named
according to the following conventions.
The preferred form for variable names is all lower case letters and words separated with dots.
GOOD: avg.clicks
BAD: avg_Clicks
Make function names verbs.
GOOD: calculate.avg.clicks
BAD: clicks
constants are named like functions but with an initial k.
kbins <- 20
krun <- 1000

• Spacing
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Place spaces around all binary operators (=, +, -, <-, etc.). Exception: Spaces around =’s
are optional when passing parameters in a function call.
GOOD: x <- 1
BAD: x<-1

• Do not place a space before a comma, but always place one after a comma.
GOOD: x <- c(1, 2, 3)
BAD: x <- c(1,2,3)

These conventions always have a bit of personal style, which one might like or not. Here is
another style rule:
Place a space before left parenthesis, except in a function call.
GOOD: if (debug)
BAD: if(debug)
Now personally I really don’t like this one and I don’t use it!
Instead of the . between words many people prefer to use camel back:
calculateMeans
That is just fine, I would recommend however you stick with one or the other.

2 Base R

2.1 Data Types

Everything in R is an object. All objects have two intrinsic attributes: mode and length.
The mode is the basic type of the elements of the object. There are four main modes:

• numeric

• character

• complex

• logical (FALSE or TRUE)
Other modes exist but they do not represent data, for instance function or expression. The
length is the number of elements of the object. To display the mode and the length of an
object use the functions mode and length, respectively:
x <- 1; mode(x)

## [1] "numeric"
y <- "A"; mode(y)

## [1] "character"
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z <- TRUE; mode(z)

## [1] "logical"

R is quite different from most computer languages in that it often tries to figure out what
you might want to do, even if it is not obvious. For example R can handle some strange
calculations:
1/0

## [1] Inf
0/0

## [1] NaN

Here Inf is of course infinite, and NaN stands for not a number. These can be used in
calculations:
exp(-Inf)

## [1] 0

Numeric comes in two forms, integer and double. If you want to make sure an object is an
integer use
n <- 2L
is.integer(n)

## [1] TRUE

Years ago this was very useful because integers require much less storage space. These days
with gigabyte sized memory it is rarely needed.
R can also handle complex numbers:
z <- 1i
u <- 1+1i
v <- 1-1i
z^2

## [1] -1+0i
u+v

## [1] 2+0i
u*v

## [1] 2+0i

The real and the imaginary parts are chosen with
Re(v)

## [1] 1
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Im(v)

## [1] -1

Two other standard functions for complex numbers are
• complex conjugate

z = x+ iy

z̄ = x− iy
v

## [1] 1-1i
Conj(v)

## [1] 1+1i

• Modulus:

z = x+ iy

Modulus =
√
x2 + y2

Mod(1+1i)

## [1] 1.414

Objects of type character are identified with quotes:
y <- "A"

sometimes you want the " to be treated as a character. This can be done with the escape
character \:
"color=\"red\""

## [1] "color=\"red\""

2.1.1 Vectors

the basic data unit of R is a vector. One can create a vector with the combine command:
x <- c(3, 5, 6, 3, 4, 5)
x

## [1] 3 5 6 3 4 5

If you want a vector of characters again use quotes:
x <- c("A", "A", "B", "C")
x
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## [1] "A" "A" "B" "C"

for logical:
x <- c(FALSE, FALSE, TRUE)
x

## [1] FALSE FALSE TRUE

note that there are no quotes. “FALSE” would be the word FALSE, not the logical value.
Note: this also works:
x <- c(F, F, T)
x

## [1] FALSE FALSE TRUE

but I recommend writing FALSE and TRUE because sometimes F and T are used for other
things (F=Female)
the symbol R uses for missing values is NA (not available). Again, no quotes:
x <- c(3, 5, NA, 3, 4, 5)
x

## [1] 3 5 NA 3 4 5

Sometimes you want to create an object without any value:
x <- NULL
x

## NULL
c(x, 1)

## [1] 1

and note, the NULL is gone! This is useful when we are building up a vector (maybe inside a
function), but we don’t know ahead of time how large it will be.
Finally, dates and times are always tricky:
Sys.time()

## [1] "2019-07-15 14:31:18 -04"
Sys.Date()

## [1] "2019-07-15"

2.1.2 Type Conversion

Consider the following:
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x <- c(3, 5, 6, 3, "A", 5)
x

## [1] "3" "5" "6" "3" "A" "5"

in this case the vector is a mixture of numeric and character. But R vectors can never be
such a mixture, so R (by itself!) decides to make it a character vector. This is called type
conversion, and R does a lot of this, usually in a good way.
There are a number of routines that
a. test for a data type

b. convert to a data type
they either start with is. or with as.:
x <- c(3, 5, NA, 3, 4, 5)
is.numeric(x)

## [1] TRUE
y <- c(2, 1, 5, 2)
y

## [1] 2 1 5 2
x <- as.character(y)
x

## [1] "2" "1" "5" "2"
as.numeric(x)

## [1] 2 1 5 2
x <- c("2", "1", "# ", "2", "A")
as.numeric(x)

## [1] 2 1 NA 2 NA

Consider this:
x <- c(1, 2, 5, FALSE, 4, TRUE)
x

## [1] 1 2 5 0 4 1
as.character(x)

## [1] "1" "2" "5" "0" "4" "1"

so FALSE gets turned into 0, TRUE into 1.
But also
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x <- c("1", "2" ,"5", FALSE, "4", TRUE)
x

## [1] "1" "2" "5" "FALSE" "4" "TRUE"
as.numeric(x)

## [1] 1 2 5 NA 4 NA

Here FALSE gets first turned into a character, and then stays as such.
R has almost 100 is. and as. functions built in!
Exercise
Before running these in R, try and think about the answer:
What is the result of
c(1, FALSE)
c("A", FALSE)
c(1L, FALSE)
-1 < FALSE
1 == "1"

2.1.3 Dates

The default format is yyyy-mm-dd:
mydates <- as.Date(c("2018-01-01", "2018-06-13"))
mydates

## [1] "2018-01-01" "2018-06-13"
mydates[2]-mydates[1]

## Time difference of 163 days

2.1.4 Factor

a very common data type in Statistics is a factor. These are vectors with a fixed number of
different values (called levels) and possibly an ordering.
Here is an example of their usage. Say we have a list of students, identified by their year:
students

## [1] "Junior" "Sophomore" "Sophomore" "Senior" "Junior"
## [6] "Senior" "Senior" "Sophomore" "Sophomore" "Junior"

Let’s count how many of each we have:
table(students)
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## students
## Junior Senior Sophomore
## 3 3 4

there are two problems with this table:
a. the ordering is wrong

b. the Freshman class is missing.
We can fix both of these by turning the vector into a factor:
students.fac <- factor(students,

levels=c("Freshman", "Junior", "Sophomore", "Senior"),
ordered=TRUE)

table(students.fac)

## students.fac
## Freshman Junior Sophomore Senior
## 0 3 4 3

Here is another difference:
c(students, "Senior")

## [1] "Junior" "Sophomore" "Sophomore" "Senior" "Junior"
## [6] "Senior" "Senior" "Sophomore" "Sophomore" "Junior"
## [11] "Senior"
c(students, "Graduate")

## [1] "Junior" "Sophomore" "Sophomore" "Senior" "Junior"
## [6] "Senior" "Senior" "Sophomore" "Sophomore" "Junior"
## [11] "Graduate"
c(students.fac, "Senior")

## [1] "2" "3" "3" "4" "2" "4" "4"
## [8] "3" "3" "2" "Senior"
c(students.fac, "Graduate")

## [1] "2" "3" "3" "4" "2" "4"
## [7] "4" "3" "3" "2" "Graduate"

so we can easily add an element to students, but if we do the same with student.fac it gets
very confused! Strangely enough, it doesn’t even work when the added item is in the list of
levels!
Notice also that with c(students, “Senior”) we don’t get the list of students but a list of
numbers (as characters) plus “Senior”. This is because internally R stores factors as integers,
but when we add “Senior” these get converted to character.
Here is what you can do:
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lvls <- levels(students.fac)
x <- factor(c(as.character(students.fac), "Senior", "Graduate"),

levels=c(lvls, "Graduate"), ordered=TRUE)
x

## [1] Junior Sophomore Sophomore Senior Junior Senior Senior
## [8] Sophomore Sophomore Junior Senior Graduate
## Levels: Freshman < Junior < Sophomore < Senior < Graduate
table(x)

## x
## Freshman Junior Sophomore Senior Graduate
## 0 3 4 4 1

Exercise
ltrs <- c("a", "b", "b", "c", "c", "c")
f1 <- factor(ltrs)
f1

## [1] a b b c c c
## Levels: a b c
levels(f1) <- c("c", "b", "a")

What does f1 now look like?

2.2 Data Formats

2.2.1 Vectors

here are some useful commands for vectors:
x <- c(1, 2, 3, 4, 5, 6)
x

## [1] 1 2 3 4 5 6
length(x)

## [1] 6
names(x) <- LETTERS[1:6]
x

## A B C D E F
## 1 2 3 4 5 6

If we have several vectors of the same type and length which belong together we can put
them in a
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2.2.2 Matrix

x <- c(1, 2, 3, 4, 5, 6)
y <- c(4, 2, 3, 5, 3, 4)
z <- c(3, 4, 2, 3, 4, 2)
cbind(x, y, x)

## x y x
## [1,] 1 4 1
## [2,] 2 2 2
## [3,] 3 3 3
## [4,] 4 5 4
## [5,] 5 3 5
## [6,] 6 4 6
rbind(x, y, z)

## [,1] [,2] [,3] [,4] [,5] [,6]
## x 1 2 3 4 5 6
## y 4 2 3 5 3 4
## z 3 4 2 3 4 2

here are several other ways to make a matrix:
matrix(x, 2, 3)

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
matrix(x, ncol=2)

## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6
matrix(0, 3, 3)

## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0
## [3,] 0 0 0
diag(3)

## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
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we can control how the matrix is filled in:
matrix(1:8, nrow=2)

## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
matrix(1:8, nrow=2, byrow = TRUE)

## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 5 6 7 8

just like vectors a matrix is all of the same type, with R doing type conversion if necessary:
matrix(c(1, 2, "A", 3), 2, 2)

## [,1] [,2]
## [1,] "1" "A"
## [2,] "2" "3"

useful commands for R matrices are:
x <- matrix(c(1, 2, 3, 4, 5, 6), 2, 3)
x

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
dim(x)

## [1] 2 3
nrow(x)

## [1] 2
ncol(x)

## [1] 3
dimnames(x) <- list(c("A", "B"), c("a", "b", "c"))
x

## a b c
## A 1 3 5
## B 2 4 6
colnames(x)

## [1] "a" "b" "c"
rownames(x)
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## [1] "A" "B"
colnames(x) <- c("Height", "Age 1", "Age 2")
x

## Height Age 1 Age 2
## A 1 3 5
## B 2 4 6

Actually I would recommend
colnames(x) <- c("Height", "Age.1", "Age.2")
x

## Height Age.1 Age.2
## A 1 3 5
## B 2 4 6

empty spaces in names are allowed but can on occasion lead to problems, so avoiding them is
a good idea. Of course they are not nice as labels in graphs or as titles in tables, but it is
usually easy to change those.
Sometimes a matrix is created by a function and given row and column names automatically,
but we don’t want it to have them. They can be removed with
rownames(x) <- NULL
x

## Height Age.1 Age.2
## [1,] 1 3 5
## [2,] 2 4 6

Here is a strange way to make a matrix:
x <- 1:6
x

## [1] 1 2 3 4 5 6
dim(x) <- c(2, 3)
x

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6

Why does this work? dim is an attribute of an object, by changing this attribute we are
changing the object.

What happens if we try to make a matrix out of a vector that doesn’t have the right number
of entries?
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matrix(1:5, 2, 2)

## Warning in matrix(1:5, 2, 2): data length [5] is not a sub-multiple or
## multiple of the number of rows [2]

## [,1] [,2]
## [1,] 1 3
## [2,] 2 4

not surprisingly it just uses the elements needed.
matrix(1:3, 2, 2)

## Warning in matrix(1:3, 2, 2): data length [3] is not a sub-multiple or
## multiple of the number of rows [2]

## [,1] [,2]
## [1,] 1 3
## [2,] 2 1

In this case R just starts all over again. This behavior is called recycling (in computer science,
not just R)
In either case R gives a warning. Except in rare cases you should try to avoid these things,
they are usually the consequence of bad programming.

2.2.3 Arrays

an array is a k-dimensional matrix. For example
array(1:8, dim=c(2, 2, 2))

## , , 1
##
## [,1] [,2]
## [1,] 1 3
## [2,] 2 4
##
## , , 2
##
## [,1] [,2]
## [1,] 5 7
## [2,] 6 8

Often these come about as a 3-way table:
x <- sample(1:3, size=20, replace=T)
y <- sample(c("F", "M"), size=20, replace = T)
z <- sample(c("a", "b", "c"), size=20, replace = T)
xyz <- table(x,y,z)
xyz
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## , , z = a
##
## y
## x F M
## 1 2 1
## 2 0 0
## 3 0 1
##
## , , z = b
##
## y
## x F M
## 1 1 4
## 2 1 2
## 3 0 3
##
## , , z = c
##
## y
## x F M
## 1 1 1
## 2 2 1
## 3 0 0

The commands for arrays are similar to those for matrices:
dim(xyz)

## [1] 3 2 3
dimnames(xyz)

## $x
## [1] "1" "2" "3"
##
## $y
## [1] "F" "M"
##
## $z
## [1] "a" "b" "c"

2.2.4 Data Frames

sometimes we have several vectors of the same length but of different types, then we can put
them together as a data frame:
x <- c(1, 2, 3, 4, 5, 6)
y <- c("a", "a", "b", "c", "a", "c")
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z <- c(T, T, F, T, F, T)
xyz <- data.frame(x, y, z)
xyz

## x y z
## 1 1 a TRUE
## 2 2 a TRUE
## 3 3 b FALSE
## 4 4 c TRUE
## 5 5 a FALSE
## 6 6 c TRUE

This type of data is very common in Statistics, and data frames have been the standard data
type from its beginning. In general when you get data from a source like the internet it will
be as a data frame.

The same commands as for matrices work for data frames as well:
dim(xyz)

## [1] 6 3
nrow(xyz)

## [1] 6
ncol(xyz)

## [1] 3
dimnames(xyz) <- list(letters[1:6], c("a", "b", "c"))
xyz

## a b c
## a 1 a TRUE
## b 2 a TRUE
## c 3 b FALSE
## d 4 c TRUE
## e 5 a FALSE
## f 6 c TRUE
colnames(xyz)

## [1] "a" "b" "c"
rownames(xyz)

## [1] "a" "b" "c" "d" "e" "f"

Say we want to add another column (variable) to the data frame:
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xyz[[4]] <- (1:6)^2
colnames(xyz)[4] <- "squares"
xyz

## a b c squares
## a 1 a TRUE 1
## b 2 a TRUE 4
## c 3 b FALSE 9
## d 4 c TRUE 16
## e 5 a FALSE 25
## f 6 c TRUE 36

If we want to get rid of a column:
xyz[[4]] <- NULL

There is a strange default behavior of data frames: they turn strings into factors:
df <- data.frame(x=1:5, y=letters[1:5])
str(df)

## 'data.frame': 5 obs. of 2 variables:
## $ x: int 1 2 3 4 5
## $ y: Factor w/ 5 levels "a","b","c","d",..: 1 2 3 4 5

You can prevent this from happening, though:
df <- data.frame(x = 1:5,

y = letters[1:5],
stringsAsFactors = FALSE)

str(df)

## 'data.frame': 5 obs. of 2 variables:
## $ x: int 1 2 3 4 5
## $ y: chr "a" "b" "c" "d" ...

In fact, this is what I want to happen almost all the time. So I change that option globally
whenever I run R or RStudio. I will show you how to do that at some point.
If a data frame is all of the same type we can use as.matrix to turn it into a matrix.
Exercise
what does as.matrix() do when it is applied to a data frame with columns of different types?

Finally, if the vectors aren’t even of the same lengths we have

2.2.5 Lists
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x <- c(1, 2, 3, 4, 5, 6)
y <- c("a", "a", "b")
z <- c(T, T)
xyz <- list(x, y, z)
xyz

## [[1]]
## [1] 1 2 3 4 5 6
##
## [[2]]
## [1] "a" "a" "b"
##
## [[3]]
## [1] TRUE TRUE

lists are displayed quite differently from the other formats. Here are a number of commands:
length(xyz)

## [1] 3
names(xyz) <- c("Count", "Letter", "Married?")
xyz

## $Count
## [1] 1 2 3 4 5 6
##
## $Letter
## [1] "a" "a" "b"
##
## $`Married?`
## [1] TRUE TRUE

Often we want to use a list inside a function to record various values. So we need to create
an “empty” list of a certain length:
x <- as.list(1:3)
x

## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3

and if we run out of space:
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x[[4]] <- "a"
x

## [[1]]
## [1] 1
##
## [[2]]
## [1] 2
##
## [[3]]
## [1] 3
##
## [[4]]
## [1] "a"

Internally R stores all data as lists. In fact anything can be an element of a list:

2.2.5.1 Example

In Statistics we often have data of the form (x, y) and we want to find a linear model. For
example consider the data on wine consumption and life expectancy:
kable.nice(wine)
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Country Wine.Consumption Heart.Disease.Deaths
1 Australia 2.5 211
2 Austria 3.9 167
3 Belgium 2.9 131
4 Canada 2.4 191
5 Denmark 2.9 220
6 Finland 0.8 297
7 France 9.1 71
8 Iceland 0.8 211
9 Ireland 0.7 300
10 Italy 7.9 107
11 Netherlands 1.8 167
12 New Zealand 1.9 266
13 Norway 0.8 227
14 Spain 6.5 86
15 Sweden 1.6 207
16 Switzerland 5.8 115
17 United Kingdom 1.3 285
18 United States 1.2 199
19 Germany 2.7 172

attach(wine)
plot(Wine.Consumption, Heart.Disease.Deaths,

xlab = "Wine Consumption",
ylab = "Heart Disease per 100000")
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Note The data set wine and the routine splot are part of a large collection of data sets and
routines that I use in many of my courses. You can download the file at http://academic.
uprm.edu/wrolke/Resma3/Resma3.RData.
Let’s say we want to fit a linear model:
fit <- lm(Heart.Disease.Deaths~Wine.Consumption)
plot(Wine.Consumption, Heart.Disease.Deaths,

xlab = "Wine Consumption",
ylab = "Heart Disease per 100000")

abline(fit)

2 4 6 8

10
0

15
0

20
0

25
0

30
0

Wine Consumption

H
ea

rt
 D

is
ea

se
 p

er
 1

00
00

0

34

http://academic.uprm.edu/wrolke/Resma3/Resma3.RData
http://academic.uprm.edu/wrolke/Resma3/Resma3.RData


Let’s say we want to save the data and the fit for future use:
wine.all <- list(data=wine, fit=fit)
length(wine.all)

## [1] 2

data frames are lists, with the additional requirement that each column has the same length.
But a “column” need not be what you think:
z <- list(fit, fit, fit)
length(z)

## [1] 3
df <- data.frame(x=1:3, y=letters[1:3])
df$z <- z
dim(df)

## [1] 3 3

This works, but I don’t recommend it. A list is likely a better option here.
Example
Say we have the following data set: in each of 10 experiments 5 measurements in five
different locations coded as A-E were taken. The result was stored as a list, with each set of
measurements an element:
results

## $`Experiment 1`
## A B C D E
## 124.8 94.4 135.2 111.2 90.9
##
## $`Experiment 2`
## A B C D E
## 83.4 76.7 78.7 68.7 123.1
##
## $`Experiment 3`
## A B C D E
## 116.6 95.5 105.3 92.5 148.8
##
## $`Experiment 4`
## A B C D E
## 84.1 98.9 105.0 112.4 96.5
##
## $`Experiment 5`
## A B C D E
## 55.5 74.7 107.2 99.8 81.2
##
## $`Experiment 6`
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## A B C D E
## 97.7 83.7 104.8 71.5 107.3
##
## $`Experiment 7`
## A B C D E
## 105.0 101.3 100.4 105.1 87.0
##
## $`Experiment 8`
## A B C D E
## 97.6 113.3 122.0 102.9 97.6
##
## $`Experiment 9`
## A B C D E
## 81.8 71.2 84.1 125.1 115.4
##
## $`Experiment 10`
## A B C D E
## 95.6 91.5 91.6 119.9 94.5

Now we want to find the means by locations. One way would be to loop over the list elements,
but much easier is:
Reduce(`+`, results)/length(results)

## A B C D E
## 94.21 90.12 103.43 100.91 104.23

2.3 Generating Objects

2.3.1 Vectors

There are numerous ways to generate vectors which have some structure. Here are some
useful commands:
The easiest way to do this is to use the c (concatenate) command:
x <- c(0, 2, 3, 1, 5)
x

## [1] 0 2 3 1 5

to make regular sequences use “:” (read “to”)
1:5

## [1] 1 2 3 4 5
-2:2

## [1] -2 -1 0 1 2

and then we can combine these:
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c(1:5, 11:15)

## [1] 1 2 3 4 5 11 12 13 14 15

there are also a number of commands for this purpose:
• seq

seq(1, 10, 1)

## [1] 1 2 3 4 5 6 7 8 9 10
seq(1, 10, 1/2)

## [1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5
## [15] 8.0 8.5 9.0 9.5 10.0
seq(0, 10, length=20)

## [1] 0.0000 0.5263 1.0526 1.5789 2.1053 2.6316 3.1579 3.6842
## [9] 4.2105 4.7368 5.2632 5.7895 6.3158 6.8421 7.3684 7.8947
## [17] 8.4211 8.9474 9.4737 10.0000

• sequence
this creates a series of sequences of integers each ending by the numbers given as arguments:
sequence(10)

## [1] 1 2 3 4 5 6 7 8 9 10
sequence(c(2, 5, 3))

## [1] 1 2 1 2 3 4 5 1 2 3

• rep
rep(1, 10)

## [1] 1 1 1 1 1 1 1 1 1 1
rep(1:3, 10)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
rep(1:3, each=3)

## [1] 1 1 1 2 2 2 3 3 3
rep(c("A", "B", "C"), c(4, 7, 3))

## [1] "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "B" "C" "C" "C"
rep(1:3, rep(5, 3))

## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
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Exercise
What does this do?
rep(1:10, 10:1)

• gl
The function gl (generate levels) is very useful because it generates regular series of factors.
The usage of this function is gl(k, n) where k is the number of levels (or classes), and n is the
number of replications in each level.
Two options may be used: length to specify the number of data produced, and labels to
specify the names of the levels of the factor.
gl(3, 5)

## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
## Levels: 1 2 3
gl(3, 5, length=30)

## [1] 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3
## Levels: 1 2 3
gl(2, 6, label=c("Male", "Female"))

## [1] Male Male Male Male Male Male Female Female Female Female
## [11] Female Female
## Levels: Male Female

• expand.grid
this takes a couple of vectors and writes them as a matrix with each combination.
expand.grid(1:2, 1:3)

## Var1 Var2
## 1 1 1
## 2 2 1
## 3 1 2
## 4 2 2
## 5 1 3
## 6 2 3
expand.grid(First=1:2, Second=1:3, Third=c("A", "B"))

## First Second Third
## 1 1 1 A
## 2 2 1 A
## 3 1 2 A
## 4 2 2 A
## 5 1 3 A
## 6 2 3 A
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## 7 1 1 B
## 8 2 1 B
## 9 1 2 B
## 10 2 2 B
## 11 1 3 B
## 12 2 3 B

there are a number of R routines who need the data in this format as arguments, so this is
an easy way to convert them.

• outer
This calculates the outer product of two vectors. It creates a matrix of length(x) x length(y)
where zij = f(xi, yj) for some function f
x <- 1:3
y <- 1:5
outer(x, y, "*")

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 2 4 6 8 10
## [3,] 3 6 9 12 15

You can use any function you like:
outer(x, y, function(x,y) {x^2/y})

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0.5 0.3333 0.25 0.2
## [2,] 4 2.0 1.3333 1.00 0.8
## [3,] 9 4.5 3.0000 2.25 1.8

If it is actual multiplication you want there is also a short hand:
x %o% y

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 2 4 6 8 10
## [3,] 3 6 9 12 15

Want to practice your multiplication tables?
x <- 1:10
names(x) <- x
x %o% x

## 1 2 3 4 5 6 7 8 9 10
## 1 1 2 3 4 5 6 7 8 9 10
## 2 2 4 6 8 10 12 14 16 18 20
## 3 3 6 9 12 15 18 21 24 27 30
## 4 4 8 12 16 20 24 28 32 36 40
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## 5 5 10 15 20 25 30 35 40 45 50
## 6 6 12 18 24 30 36 42 48 54 60
## 7 7 14 21 28 35 42 49 56 63 70
## 8 8 16 24 32 40 48 56 64 72 80
## 9 9 18 27 36 45 54 63 72 81 90
## 10 10 20 30 40 50 60 70 80 90 100

Exercise
What (if anything) does this do?
(1:3 %o% 1:3) %o% 1:2

2.3.2 Specialty Data

Some common objects are easy to create:
letters

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"
LETTERS

## [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q"
## [18] "R" "S" "T" "U" "V" "W" "X" "Y" "Z"

2.3.3 Expressions

up to now we discussed how to generate data objects. Soon we will be talking about how to
write your own functions. There is however also a type of object somewhat in between, so
called expressions.
An expression is a series of characters which make sense for R. All valid commands are
expressions. When a command is typed directly on the keyboard, it is then evaluated by R
and executed if it is valid. In many circumstances, it is useful to construct an expression
without evaluating it: this is what the function expression is made for. It is, of course,
possible to evaluate the expression subsequently with eval().
x <- 3; y <- 2.5; z <- 1
exp1 <- expression(x / (y + exp(z)))
exp1

## expression(x/(y + exp(z)))
eval(exp1)

## [1] 0.5749

Expressions can be used for many things. Here are two examples:
1. I want to draw the graph of a function, including the equation:
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curve(x^2*exp(-x^2), -2, 2,
main = expression(x^2*exp(-x^2)),
ylab = "")
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2. Do symbolic math. For derivatives we have the function D, which returns partial
derivatives:

D(exp1, "x")

## 1/(y + exp(z))
eval(D(exp1, "x"))

## [1] 0.1916
D(exp1, "y")

## -(x/(y + exp(z))^2)
eval(D(exp1, "y"))

## [1] -0.1102
D(exp1, "z")

## -(x * exp(z)/(y + exp(z))^2)
eval(D(exp1, "z"))

## [1] -0.2995

Exercise
Use the D function to find d2

dx2
x2

1+x3 |x=0
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In general R’s use as a symbolic language is very limited. There are of course many purpose
built languages for this, such as Maple or Mathematica.

2.4 Sub-setting / Data Wrangling

2.4.1 Vectors

Consider the following vector:
x

## A B C D E F G H I J
## 9.0 6.4 7.4 6.1 9.0 2.9 1.9 8.9 5.0 8.8

The elements of a vector are accessed with the bracket [ ] notation:
x[3]

## C
## 7.4
x[1:3]

## A B C
## 9.0 6.4 7.4
x[c(1, 3, 8)]

## A C H
## 9.0 7.4 8.9
x[-3]

## A B D E F G H I J
## 9.0 6.4 6.1 9.0 2.9 1.9 8.9 5.0 8.8
x[-c(1, 2, 5)]

## C D F G H I J
## 7.4 6.1 2.9 1.9 8.9 5.0 8.8

if a vector has names they can be used as well:
x["C"]

## C
## 7.4
x[c("A","D")]

## A D
## 9.0 6.1

There are also strange things one can do and sometimes get away with:
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x <- 1:10
names(x) <- letters[1:10]
x

## a b c d e f g h i j
## 1 2 3 4 5 6 7 8 9 10
x[0]

## named integer(0)
x[3.1]

## c
## 3
x[3.6]

## c
## 3
x[a]

## a
## 1

Another way to subset a vector is with logical conditions:
x[x > 4]

## e f g h i j
## 5 6 7 8 9 10
x[x>4 & x<7]

## e f
## 5 6

It is also possible to replace values in a vector this way:
x[x<2] <- 0
x

## a b c d e f g h i j
## 0 2 3 4 5 6 7 8 9 10

This can be useful, for example to code a variable:
Gender <- sample(c("Male", "Female"),

size = 10,
replace = TRUE)

Gender

## [1] "Male" "Female" "Male" "Female" "Male" "Male" "Female"
## [8] "Male" "Female" "Female"
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GenderCode <- rep(0, length(Gender))
GenderCode[Gender=="Male"] <- 1
GenderCode

## [1] 1 0 1 0 1 1 0 1 0 0

Exercise
Say we have vectors x and y with the coordinates of points:
x <- runif(10000)
y <- runif(10000)
plot(x, y, pch=".")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

subset x and y in such a way that only points in the circle are left:
plot(x1, y1, pch=".")
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2.4.2 Matrices and Data Frames

Consider the following data frame:
students

## Age GPA Gender
## 1 23 3.1 Female
## 2 20 3.2 Male
## 3 21 2.1 Female
## 4 20 2.1 Male
## 5 24 2.3 Female
## 6 18 2.9 Male
## 7 20 2.3 Male
## 8 22 3.9 Male
## 9 20 2.6 Male
## 10 21 3.2 Male

Because a vector has rows and columns we now need to specify both:
students[2, 3]

## [1] Male
## Levels: Female Male

There are a variety of ways to do sub-setting:
students[, 1]

## [1] 23 20 21 20 24 18 20 22 20 21
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students[[1]]

## [1] 23 20 21 20 24 18 20 22 20 21
students$Age

## [1] 23 20 21 20 24 18 20 22 20 21

And yet another way to do this:
attach(students)

Age

## [1] 23 20 21 20 24 18 20 22 20 21

Exercise
What does this do?
x <- 1:10
x[]

Although these seem to do the same there actually subtle differences. Consider this:
students[, 1]

## [1] 23 20 21 20 24 18 20 22 20 21
students[1]

## Age
## 1 23
## 2 20
## 3 21
## 4 20
## 5 24
## 6 18
## 7 20
## 8 22
## 9 20
## 10 21
students[[1]]

## [1] 23 20 21 20 24 18 20 22 20 21

In the first and last case R returns a vector, in the second case a data frame with one column.
It is possible to tell R not to do this type conversion in the first case
students[, 1, drop=FALSE]

## Age
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## 1 23
## 2 20
## 3 21
## 4 20
## 5 24
## 6 18
## 7 20
## 8 22
## 9 20
## 10 21

but this does not work for the [[1]] or $Age versions.
students[1:3, 1]

## [1] 23 20 21
students[-2, ]

## Age GPA Gender
## 1 23 3.1 Female
## 3 21 2.1 Female
## 4 20 2.1 Male
## 5 24 2.3 Female
## 6 18 2.9 Male
## 7 20 2.3 Male
## 8 22 3.9 Male
## 9 20 2.6 Male
## 10 21 3.2 Male
students[1:4, -1]

## GPA Gender
## 1 3.1 Female
## 2 3.2 Male
## 3 2.1 Female
## 4 2.1 Male
students[Age>20, ]

## Age GPA Gender
## 1 23 3.1 Female
## 3 21 2.1 Female
## 5 24 2.3 Female
## 8 22 3.9 Male
## 10 21 3.2 Male

You can have several conditions, put together with & (AND), | (OR) and ! (NOT), but some
care is needed:
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students[Age>=20 & Age<=22, 1]

## [1] 20 21 20 20 22 20 21

is fine but
students[20 <= Age <= 22, 1]

does not work.
Exercise
Subset students so that only females over 21 with a GPA of at least 3.0 are left.
## Age GPA Gender
## 8 22 3.9 Male

2.4.3 Lists

Sub-setting of lists is very similar to data frames:
mylist <- list(First=1:5,

Second=LETTERS[1:8],
Third=20:22)

mylist

## $First
## [1] 1 2 3 4 5
##
## $Second
## [1] "A" "B" "C" "D" "E" "F" "G" "H"
##
## $Third
## [1] 20 21 22
mylist[1]

## $First
## [1] 1 2 3 4 5
mylist[[1]]

## [1] 1 2 3 4 5
mylist$Second

## [1] "A" "B" "C" "D" "E" "F" "G" "H"
mylist[1:2]

## $First
## [1] 1 2 3 4 5
##
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## $Second
## [1] "A" "B" "C" "D" "E" "F" "G" "H"
mylist[[1:2]]

## [1] 2

so [1] returns a list with just one element whereas [[1]] and $ do type conversion to a vector if
possible. [1:2] yields the first two elements of the list.
The last one is strange, why is the result 2? Actually, it does this:
mylist[[1]][2]

## [1] 2

This can be quite confusing. Here is useful memory device
If list x is a train, x[[5]] is the content of car 5, whereas x[4:5] is the train consisting of cars 4
and 5

2.4.4 Partial Matching

There is one important difference between $ and [[]], the first one allows partial matching:
x <- list(inside=1:3, outside=5:10)
x$o

## [1] 5 6 7 8 9 10
x[[o]]

## Error in eval(expr, envir, enclos): object 'o' not found

I don’t however recommend to make use of this feature unless necessary.

2.4.5 Useful logic commands

x<-1; y<-2; z<-3
c(x, y, z)>2.5

## [1] FALSE FALSE TRUE
any(c(x, y, z)>2.5)

## [1] TRUE
all(c(x, y, z)>2.5)

## [1] FALSE
x <- 1:3; y <- 1:3
x == y
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## [1] TRUE TRUE TRUE
identical(x, y)

## [1] TRUE
all.equal(x, y)

## [1] TRUE

identical compares the internal representation of the data and returns TRUE if the objects
are strictly identical, and FALSE otherwise.
all.equal compares the “near equality” of two objects, and returns TRUE or displays a
summary of the differences. The latter function takes the approximation of the computing
process into account when comparing numeric values. The comparison of numeric values on
a computer is sometimes surprising!
0.9 == (1 - 0.1)

## [1] TRUE
identical(0.9, 1 - 0.1)

## [1] TRUE
all.equal(0.9, 1 - 0.1)

## [1] TRUE

but
0.9 == (1.1 - 0.2)

## [1] FALSE
identical(0.9, 1.1 - 0.2)

## [1] FALSE
all.equal(0.9, 1.1 - 0.2)

## [1] TRUE

How come 1.1− 0.2 6= 0.9? This is because of machine precision issues:
all.equal(0.9, 1.1 - 0.2, tolerance = 1e-16)

## [1] "Mean relative difference: 1.234e-16"

2.4.6 subset command

Finally there is a command that was written for sub-setting:
subset(students, Age>20)
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## Age GPA Gender
## 1 23 3.1 Female
## 3 21 2.1 Female
## 5 24 2.3 Female
## 8 22 3.9 Male
## 10 21 3.2 Male
subset(students, Age>20 & Gender=="Male")

## Age GPA Gender
## 8 22 3.9 Male
## 10 21 3.2 Male
subset(students, Age>20, select = Gender)

## Gender
## 1 Female
## 3 Female
## 5 Female
## 8 Male
## 10 Male
subset(students, Age>20, select = Gender, drop=TRUE)

## [1] Female Female Female Male Male
## Levels: Female Male

Notice that this last one results in a vector.
Exercise
The data set upr (part of Resma3.RData) has the application information provided to the
University of all students that were eventually accepted between 2003 and 2013. Here are
the first three students:
head(upr, 3)

## ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
## 1 00C2B4EF77 2005 M 502 3.97 647
## 2 00D66CF1BF 2003 M 502 3.80 597
## 3 00AB6118EB 2004 M 1203 4.00 567
## Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
## 1 621 626 672 551 342 3.67
## 2 726 618 718 575 343 2.75
## 3 691 424 616 609 342 3.62
## Graduated Year.Grad. Grad..GPA Class.Facultad
## 1 Si 2012 3.33 INGE
## 2 No NA NA INGE
## 3 No NA NA CIENCIAS

How many female students applied in either 2010 or 2011, had a high school GPA of at least
3.0 and a freshman GPA between 3.0 and 3.5?
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2.4.7 order command

if we need to sort a vector we have the sort command:
sort(Age)

## [1] 18 20 20 20 20 21 21 22 23 24

but sometime we want to sort one vector by the order of another:
students[order(Age), ]

## Age GPA Gender
## 6 18 2.9 Male
## 2 20 3.2 Male
## 4 20 2.1 Male
## 7 20 2.3 Male
## 9 20 2.6 Male
## 3 21 2.1 Female
## 10 21 3.2 Male
## 8 22 3.9 Male
## 1 23 3.1 Female
## 5 24 2.3 Female

Example Look-up Tables
Say we want to write a function which many times needs to calculate log(n!). We soon run
into the following problem:
log(factorial(175))

## [1] Inf

despite the fact that this is not a really big number (it is 732.3394). The problem is that
internally R uses the gamma function to calculate factorials, and Γ(175) is larger than what
R can handle.
There is of course a simple solution:

log(n!) = log(
n∏
i=1

i) =
n∑
i=1

log i

but this turns out to be quite slow. Here is a better solution: we will make use of Sterling’s
formula:

n! ∼ nne−n
√

2πn

log(n!) ∼ n log(n)− n+ 1
2 log(2πn)

say we will need to find log(n!) for n ranging from 0 to 500, then we can create a look-up
table. For small values of n we use the exact formula, then the approximation:
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logfac <- 0:500
names(logfac) <- logfac
for(n in 0:50)

logfac[n+1] <- log(factorial(n))
for(n in 51:500)

logfac[n+1] <- n*log(n)-n+0.5*log(2*pi*n)

and now we can find various values very easy:
logfac[c("2", 5, 30, 301, 30)]

## 2 5 30 301 30
## 0.6931 4.7875 74.6582 1420.6127 74.6582

Exercise
why did I use
logfac[c(“2”, 5, 30, 301, 30)]
and not
logfac[c(2, 5, 30, 301, 30)]

2.5 Generating Random Variates

2.5.1 Random Numbers

Everything starts with generating X1, X2, .. iid U[0,1]. These are simply called random
numbers. There are some ways to get these:

• random number tables

• numbers taken from things like the exact (computer) time

• quantum random number generators

• . . .
The R package random has the routine randomNumbers which gets random numbers from a
web site which generates them based on (truly random) atmospheric phenomena.
require(random)
randomNumbers(20, 0, 100)

## V1 V2 V3 V4 V5
## [1,] 75 98 92 41 37
## [2,] 56 32 97 100 86
## [3,] 77 15 2 59 89
## [4,] 64 57 49 36 1

53



2.5.2 Pseudo-Random Numbers

These are numbers that look random, smell random . . .
Of course a computer can not do anything truly random, so all we can do is generate X1, X2,
.. that appear to be iid U[0,1], so-called pseudo-random numbers. In R we have the function
runif :
runif(5)

## [1] 0.0586 0.5099 0.4658 0.4694 0.3597

or
round(runif(5, min=0, max=100), 1)

## [1] 71.3 11.6 78.4 64.2 80.5

If we want to choose from a finite set we have
sample(letters, 5)

## [1] "f" "y" "t" "d" "z"

if no number is given it yields a random permutation:
sample(1:10)

## [1] 5 10 9 6 4 1 7 2 3 8

if we want to allow repetitions we can do this as well. Also, we can give the (relative)
probabilities:
table(sample(1:5, size=1000,

replace=TRUE, prob=c(1, 2, 3, 2, 1)))

##
## 1 2 3 4 5
## 102 228 328 225 117

Notice that the probabilities need not be normalized (aka add up to 1)
Exercise
How can we randomly select 20 rows of the upr data set?
Exercise
A very useful technic in Statistics is called the Bootstrap. To use it one needs to find (many)
Bootstrap samples. These are observations from the original data set, chosen at random and
with repetition, as many as the original data set had. For example if the data is
## [1] 13 20 26 30 31 34 35 37 38 48

Bootstrap samples might be
## [1] 13 20 20 26 31 38 38 38 48 48
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## [1] 13 20 20 30 31 31 35 35 37 48

## [1] 13 20 34 34 34 35 37 38 48 48

How can we find Bootstrap samples of the upr data set?

2.5.3 Standard Probability Distributions

Not surprisingly many standard distributions are part of base R. For each the format is
• dname = density

• pname = cumulative distribution function

• rname = random generation

• qname = quantile function
Note we will use the term density for both discrete and continuous random variables.
Example Poisson distribution
We have X ∼ Pois(λ) if

P (X = x) = λx

x! e
−λ; x = 0, 1, ...

options(digits=4)
x <- c(0, 8, 12, 20)
# density
dpois(x, lambda=10)

## [1] 0.0000454 0.1125990 0.0947803 0.0018661
10^x/factorial(x)*exp(-10)

## [1] 0.0000454 0.1125990 0.0947803 0.0018661
# cumulative distribution function
ppois(x, 10)

## [1] 0.0000454 0.3328197 0.7915565 0.9984117
# random generation
rpois(5, 10)

## [1] 9 10 11 8 9
# quantiles
qpois(1:4/5, 10)

## [1] 7 9 11 13

Here is a list of the distributions included with base R:
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• beta distribution: dbeta.
• binomial (including Bernoulli) distribution: dbinom.
• Cauchy distribution: dcauchy.
• chi-squared distribution: dchisq.
• exponential distribution: dexp.
• F distribution: df.
• gamma distribution: dgamma.
• geometric distribution: dgeom.
• hypergeometric distribution: dhyper.
• log-normal distribution: dlnorm.
• multinomial distribution: dmultinom.
• negative binomial distribution: dnbinom.
• normal distribution: dnorm.
• Poisson distribution: dpois.
• Student’s t distribution: dt.
• uniform distribution: dunif.
• Weibull distribution: dweibull.

Exercise
Generate 10000 variates from a Binomial distribution with n=10, p=0.25 and compare the
relative frequencies with the theoretical probabilities.

With some of these a bit of caution is needed. For example, the usual textbook definition of
the geometric random variable is the number of tries in a sequence of independent Bernoulli
trials until a success. This means that the density is defined as

P (X = x) = p(1− p)x−1; x = 1, 2, ..
R however defines it as the number of failures until the first success, and so it uses

P (X∗ = x) = dgeom(x, p) = p(1− p)x; x = 0, 1, 2, ..
Of course this is easy to fix. If you want to generate the “usual” geometric do
x <- rgeom(10, 0.4) + 1
x

## [1] 3 2 1 4 3 1 8 2 3 2
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if you want to find the probabilities or cdf:
round(dgeom(x-1, 0.4), 4)

## [1] 0.1440 0.2400 0.4000 0.0864 0.1440 0.4000 0.0112 0.2400 0.1440 0.2400
round(0.4*(1-0.4)^(x-1), 4)

## [1] 0.1440 0.2400 0.4000 0.0864 0.1440 0.4000 0.0112 0.2400 0.1440 0.2400

Another example is the Gamma random variable. Here most textbooks use the definition

f(x;α, β) = 1
Γ(α)βαx

α−1e−x/β; x > 0

but R uses

f ∗(x;α, β) = βα

Γ(α)x
α−1e−βx; x > 0

dgamma(1.2, 0.5, 2)

## [1] 0.06608
2^0.5/gamma(0.5)*1.2^(0.5-1)*exp(-2*1.2)

## [1] 0.06608

Again, it is easy to re-parametrize:
dgamma(1.2, 0.5, 1/(1/2))

## [1] 0.06608

Exercise
Consider a normal mixture model, say

f(x, α) = αφ(x, 0, 1) + (1− α)φ(x, 4, 1)
where φ is the normal density

φ(x, µ, σ) = 1√
2πσ2

exp{−(x− µ)2

2σ2 }

How could we generate 1000 variates from f if (say) α = 0.3? This is what it should look like:
hist(x, breaks=100, main="")
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2.5.4 Other Variates

if you need to generate random variates from a distribution that is not part of base R you
should first try to find a package that includes it.
Example multivariate normal
there are actually several packages, the most commonly used one is mvtnorm
library(mvtnorm)
x <- rmvnorm(1000,

mean = c(0, 1),
sigma = matrix(c(1, 0.8, 0.8, 2), 2, 2))

plot(x,
pch=20,
xlab = expression(x[1]),
ylab = expression(x[2]))
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sigma is the variance-covariance matrix, so in the above we have

ρ = Cor(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
=

0.8√
1 ∗ 2

= 0.566

round(c(var(x[, 1]),
var(x[, 2]),
cor(x[, 1], x[, 2])), 3)

## [1] 1.013 1.917 0.515

If you can’t find a package you have to write your own! Here is a routine that will generate
random variates from any function fun (given as a character vector) in one dimension on a
finite interval [A, B]:
rpit <- function (n, fun, A, B)
{

f <- function(x) eval(parse(text=fun))
m <- min(2 * n, 1000)
x <- seq(A, B, length = m)
y <- f(x)
z <- (x[2] - x[1])/6 * cumsum((y[-1] + 4 * y[-2] + y[-3]))
z <- z/max(z)
y <- c(0, z)
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xyTmp <- cbind(x, y)
approx(xyTmp[, 2], xyTmp[, 1], runif(n))$y

}

pit stands for probability integral transform, which is a theorem in probability theory that
explains why this works.
Let’s try it out:
y <- rpit(1000, "x^2", 0, 1)
hist(y, 50, freq=FALSE, main="")
curve(3*x^2, 0, 1,

col = "blue",
lwd = 2,
add = TRUE)
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notice that for rpit the function doesn’t even have to be normalized (aka integrate to 1).
or a bit more complicated:
y <- rpit(1000, "x*sin(2*pi*x)^2", 0, 1)
hist(y, 50, freq=FALSE, main="")
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How about adding the density curve? For that we do need to normalize the function, that is
we need to make sure that

∫ 1

0
x sin(2πx)2dx = 1

but this is not a trivial integral, so we need to use a numerical method:
x <- seq(0, 1, length=250)
f <- x*sin(2*pi*x)^2
I <- sum( (f[-1]+f[-250])/2 *(x[-1]-x[-250]))
# Riemann sum
hist(y, 50, freq=FALSE, main="")
curve(x*sin(2*pi*x)^2/I, 0, 1,

col = "blue",
lwd = 2,
add = TRUE)
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Exercise
generate 1000 variates from a Beta (1.5, 3) distribution, draw the histogram with 50 bins
and add the density curve.
Hint: here you can use base R routines.

Want to learn how to generate data from any random vector? Come to my course ESMA5015
Simulation!

2.6 Writing Functions

2.6.1 General Information

In R/RStudio you have several ways to write your own functions:
• In the R console type

myfun <- function(x) {
out <- x^2
out

}

• RStudio: click on File > New File > R Script. A new empty window pops up. Type
fun, hit enter, and the following text appears:

name <- function(variables) {
}
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change the name to myfun, save the file as myfun.R with File > Save. Now type in the code.
When done click the Source button.

• fix: In the R console run
fix(myfun)

now a window with an editor pops up and you can type in the code. When you are done
click on Save. If there is some syntax error DON’T run fix again, instead run
myfun <- edit()

• Open any code editor outside of RStudio, type in the code, save it as myfun.R, go to
the console and run

source('../some.folder/myfun.R')

Which of these is best? In large part that depends on your preferences. In my case, if I expect
to need that function just for a bit I use the fix option. If I expect to need that function
again later I start with the first method, but likely soon open the .R file outside RStudio
because most code editors have many useful features not available in RStudio.
If myfun is open in RStudio there are some useful keyboard shortcuts. If the curser is on
some line in the RStudio editor you can hit

• CTRL-Enter run current line or section

• CTRL-ALT-B run from beginning to line

• CTRL-Shift-Enter run complete chunk
• CTRL-Shift-P rerun previous

2.6.2 Testing

As always you can test whether an object is a function:
x <- 1
f <- function(x) x
is.function(x)

## [1] FALSE
is.function(f)

## [1] TRUE

The get function takes a character string and returns a function (if it exists)
get("f")(4)

## [1] 4
get("g")(4)
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## Error in get("g"): object 'g' not found

2.6.3 Arguments

There are several ways to specify arguments in a function:
calc.power <- function(x, y, n=2) x^n + y^n

here n has a default value, x and y do not.
if the arguments are not named they are matched in order:
calc.power(2, 3)

## [1] 13

or they can be explicitly named in any order:
calc.power(y=2, x=3)

## [1] 13
calc.power(n=3, 2, 3)

## [1] 35

This however is not recommend as it can be very confusing.

R does partial matching of arguments:
f <- function(first, second) {

first + second
}
f(fi=1, s=3)

## [1] 4

but this is not a good programming style.
Default arguments can be defined in terms of others:
f <- function(first, second=2*first) {

first + second
}
f(1)

## [1] 3

If an argument does not have a default it can be tested for
f <- function(first, second) {

if(!missing(second))
out <- first + second

else out <- first
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out
}
f(1)

## [1] 1
f(1, s=3)

## [1] 4

There is a special argument . . . , used to pass arguments on to other functions:
f <- function(x, which, ...) {

f1 <- function(x, mult) mult*x
f2 <- function(x, pow) x^pow
if(which==1)

out <- f1(x, ...)
else

out <- f2(x, ...)
out

}
f(1:3, 1, mult=2)

## [1] 2 4 6
f(1:3, 2, pow=3)

## [1] 1 8 27

This is one of the most useful programming structures in R!
Note this example also shows that in R functions can call other functions. In many computer
programs there are so called sub-routines, in R this concept does not exist, functions are just
functions.
Functions can even call themselves:
f <- function() {

cat("A")
if(sample(1:5, 1)>1) f()
cat("\n")

}
f()

## AAAAAA

this is called recursion and is a very powerful programming technique, although for reasons
of memory management not as useful in R as in other languages.
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2.6.4 Lazy Evaluation

R uses a concept called lazy evaluation. This means that an argument is not evaluated until
it is used:
f <- function(first, second) {

if(first<10)
out <- first

else
out <- first + second

out
}
f(5, "A")

## [1] 5
f(11, "A")

## Error in first + second: non-numeric argument to binary operator

This can be a source of computer bugs. One can override this behavior with the force
command:
f <- function(first, second) {

force(first+second)
if(first<10)

out <- first
else

out <- first + second
out

}
f(5, "A")

## Error in first + second: non-numeric argument to binary operator

Note there is another simple way to accomplish the same thing: just use a statement like
test <- first+second
but force makes it clearer that the purpose here is to make sure first and second are of the
correct type.

2.6.5 Return Values

A function can either return nothing or exactly one thing. It will automatically return the
last object evaluated:
f <- function(x) {

x^2
}
f(1:3)
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## [1] 1 4 9

however, it is better programming style to have an explicit return object:
f <- function(x) {

out <- x^2
out

}
f(1:3)

## [1] 1 4 9

There is another way to specify what is returned:
f <- function(x) {

return(x^2)
}
f(1:3)

## [1] 1 4 9

but this is usually used to return something early in the program:
f <- function(x) {

if(!any(is.numeric(x)))
return("Works only for numeric!")

out <- sum(x^2)
out

}
f(1:3)

## [1] 14
f(letters[1:3])

## [1] "Works only for numeric!"

If you want to return more than one item use a list:
f <- function(x) {

sq <- x^2
sm <- sum(x)
list(sq=sq, sum=sm)

}
f(1:3)

## $sq
## [1] 1 4 9
##
## $sum
## [1] 6
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2.6.6 on.exit

on.exit is a routine that you use inside a function and that gets called and executed whenever
the function terminates.
The advantage of on.exit is that is gets called when the function exits, regardless of whether
an error was thrown. This means that its main use is for cleaning up after risky behavior.
Risky, in this context, usually means accessing resources outside of R (that consequently
cannot be guaranteed to work).
Common examples include connecting to databases or files (where the connection must be
closed when you are finished, even if there was an error), or saving a plot to a file (where the
graphics device must be closed afterwards)
Exercise
What does this function return?
f <- function(x=y) {

y <- 10
x

}
f()

2.6.7 Basic Programming Structures in R

R has all the standard programming structures:

2.6.7.1 Conditionals (if-else)

f <- function(x) {
if(x>0) y <- log(x)
else y <- NA
y

}
f(c(2, -2))

## [1] 0.6931 NaN

A useful variation on the if statement is switch:
centre <- function(x, type) {

switch(type,
mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
centre(x, "mean")
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## [1] -1.099
centre(x, "median")

## [1] 0.2245
centre(x, "trimmed")

## [1] 0.001319

special R construct: ifelse
x <- sample(1:10, size=7, replace = TRUE)
x

## [1] 10 10 2 7 9 4 4
ifelse(x<5, "Yes", "No")

## [1] "No" "No" "Yes" "No" "No" "Yes" "Yes"

Exercise
What is the difference between these two functions:
f1 <- function(x) {

if(x<10) return(0)
x

}
f2 <- function(x) {

ifelse(x<10, 0, x)
}

2.6.7.2 Loops

there are three standard loops in R:
• for loop

y <- rep(0, 10)
for(i in 1:10) y[i] <- i*(i+1)/2
y

## [1] 1 3 6 10 15 21 28 36 45 55

sometimes we don’t know the length of y ahead of time, then we can use
for(i in seq_along(y)) y[i] <- i*(i+1)/2
y

## [1] 1 3 6 10 15 21 28 36 45 55

If there is more than one statement inside a loop use curly braces:
for(i in seq_along(y)) {

y[i] <- i*(i+1)/2
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if(y[i]>40) y[i] <- (-1)
}
y

## [1] 1 3 6 10 15 21 28 36 -1 -1

You can nest loops:
A <- matrix(0, 4, 4)
for(i in 1:4) {

for(j in 1:4)
A[i, j] <- i*j

}
A

## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 2 4 6 8
## [3,] 3 6 9 12
## [4,] 4 8 12 16

• while loop
this is useful if we don’t know how often the loop needs to run.
Let’s say we want to do a simulation of rolling three dice and we want to generate the event
“number of repetitions needed until a triple” (triple = all three dice equal). If so x has the
equal entries, so table(x) has length one:
k <- 1
x <- sample(1:6, size=3, replace=TRUE)
while (length(table(x))!=1) {

k <- k+1
x <- sample(1:6, size=3, replace=TRUE)

}
k

## [1] 3

• repeat loop
similar to while loop, except that the check is done at the end
k <- 0
repeat {

k <- k+1
x <- sample(1:6, size=3, replace=TRUE)
if(length(table(x))==1) break

}
k

## [1] 3
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Notice that a while and repeat loop could in principle run forever. I often include a counter
that ensures the loop will eventually stop:
k <- 0
counter <- 0
repeat {

k <- k+1
counter <- counter+1
x <- sample(1:6, size=3, replace=TRUE)
if(length(table(x))==1 | counter>1000) break

}
k

## [1] 40

2.7 Object-Oriented Programming

Like C++ and just about every other modern programming language R is object oriented.
This is huge topic and we will only discuss the basic ideas. It is also only worth while (and in
fact absolutely necessary) when writing large programs, at least several 100 lines.
We start with the following:
x <- rnorm(100)
# Expirical Distribution Function
a <- ecdf(x)
plot(a)
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# Non parametric density estimate
a <- density(x)

71



plot(a, type="l")
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so although we call the same command (plot) we get different graphs, one of the empirical
distribution function and the other a non-parametric density estimate.
But how does R know what to do in either case? The reason is that each object has a class
property:
a <- ecdf(x)
class(a)

## [1] "ecdf" "stepfun" "function"
a <- density(x)
class(a)

## [1] "density"

so when plot starts to run it examines the class property of the argument and does the
corresponding graph.
There are many different plot functions (or methods)
methods(plot)

## [1] plot,ANY-method plot,color-method
## [3] plot.aareg* plot.acf*
## [5] plot.ACF* plot.agnes*
## [7] plot.areg* plot.areg.boot*
## [9] plot.aregImpute* plot.augPred*
## [11] plot.biVar* plot.cld*
## [13] plot.clusGap* plot.compareFits*
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## [15] plot.confint.glht* plot.correspondence*
## [17] plot.cox.zph* plot.curveRep*
## [19] plot.data.frame* plot.decomposed.ts*
## [21] plot.default plot.dendrogram*
## [23] plot.density* plot.describe*
## [25] plot.diana* plot.drawPlot*
## [27] plot.ecdf plot.factor*
## [29] plot.formula* plot.function
## [31] plot.gbayes* plot.ggplot*
## [33] plot.glht* plot.gls*
## [35] plot.gtable* plot.hcl_palettes*
## [37] plot.hclust* plot.histogram*
## [39] plot.HoltWinters* plot.intervals.lmList*
## [41] plot.isoreg* plot.lda*
## [43] plot.lm* plot.lme*
## [45] plot.lmList* plot.mca*
## [47] plot.medpolish* plot.mlm*
## [49] plot.mona* plot.nffGroupedData*
## [51] plot.nfnGroupedData* plot.nls*
## [53] plot.nmGroupedData* plot.partition*
## [55] plot.pdMat* plot.ppr*
## [57] plot.prcomp* plot.princomp*
## [59] plot.profile* plot.profile.nls*
## [61] plot.Quantile2* plot.R6*
## [63] plot.ranef.lme* plot.ranef.lmList*
## [65] plot.raster* plot.regsubsets*
## [67] plot.ridgelm* plot.rm.boot*
## [69] plot.rpart* plot.shingle*
## [71] plot.silhouette* plot.simulate.lme*
## [73] plot.spec* plot.spline*
## [75] plot.stepfun plot.stl*
## [77] plot.summary.formula.response* plot.summary.formula.reverse*
## [79] plot.summaryM* plot.summaryP*
## [81] plot.summaryS* plot.Surv*
## [83] plot.survfit* plot.table*
## [85] plot.transcan* plot.trellis*
## [87] plot.ts plot.tskernel*
## [89] plot.TukeyHSD* plot.varclus*
## [91] plot.Variogram* plot.xyVector*
## [93] plot.zoo*
## see '?methods' for accessing help and source code

so when we call plot with an object of class density, it in turn calls the function plot.density.

R actually has three different ways to use object-oriented programming, called S3, S4 and
RC. We won’t go into the details and which of them is more useful under what circumstances.
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In the following examples we use S3, which is the easiest to use but also usually sufficient.
Say we work for a store. At the end of each day we want to create a short report that

• gives the number of sales, their mean and standard deviation for each salesperson.

• does a boxplot of the sales, grouped by salesperson
Say the data is in a data frame where the first column is the amount of a sale and the second
column identifies the salesperson. So it might look like this:

Sales Salesperson
23.62 Mary
12.32 Mary
21.20 Jim
59.33 Ann
23.63 Jim

Here is the non-object oriented solution:
report <- function(dta) {

salespersons <- unique(dta$Salesperson)
tbl <- matrix(0, length(salespersons), 3)
rownames(tbl) <- salespersons
colnames(tbl) <- c("Sales", "Mean", "SD")
for(i in seq_along(salespersons)) {

df <- dta[dta$Salesperson==salespersons[i], ]
tbl[i, 1] <- nrow(df)
tbl[i, 2] <- round(mean(df$Sales), 2)
tbl[i, 3] <- round(sd(df$Sales), 2)

}
boxplot(dta$Sales~dta$Salesperson,

horizontal=TRUE)
return(kable.nice(tbl))

}
report(sales.data)
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Sales Mean SD
Mary 10 45.41 34.28
Jim 11 48.13 29.47
Ann 9 37.20 23.59
Jack 10 35.05 19.96

Here is the object oriented one. First we have to define a new class:
as.sales <- function(x) {

class(x) <- c("sales", "data.frame")
return(x)

}

Next we have to define the methods:
stats <- function(x) UseMethod("stats")
stats.sales <- function(dta) {

salespersons <- unique(dta$Salesperson)
tbl <- matrix(0, length(salespersons), 3)
rownames(tbl) <- salespersons
colnames(tbl) <- c("Sales", "Mean", "SD")
for(i in seq_along(salespersons)) {

df <- dta[dta$Salesperson==salespersons[i], ]
tbl[i, 1] <- nrow(df)
tbl[i, 2] <- round(mean(df$Sales), 2)
tbl[i, 3] <- round(sd(df$Sales), 2)

}
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return(kable.nice(tbl))
}

“plot” already exists, so we don’t need the UseMethod part:
plot.sales <- function(dta)

boxplot(dta$Sales~dta$Salesperson, horizontal=TRUE)

and now we can run
sales.data <- as.sales(sales.data)
# assign class sales to data frame
stats(sales.data)

Sales Mean SD
Mary 10 45.41 34.28
Jim 11 48.13 29.47
Ann 9 37.20 23.59
Jack 10 35.05 19.96

plot(sales.data)
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So far not much has been gained. But let’s say that sometimes we also have information on
the whether the sales person was on the morning or on the afternoon shift, and we want to
include this in our report. One great feature of object-oriented programming is inheritance,
that is we can define a new class that already has all the features of the old one, plus whatever
new one we want.
so say now the data is
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Sales Salesperson Time
1 23.62 Mary Afternoon
2 12.32 Mary Afternoon
3 21.20 Jim Morning
4 59.33 Ann Morning
5 23.63 Jim Afternoon

class(sales.time.data) <- c("salestime",
"sales",
"data.frame")

plot(sales.time.data)
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and so we see that because sales.data is also of class sales plot still works. But we can also
define its own plot method:
plot.salestime <- function(dta) {

par(mfrow=c(1,2))
Sales <- dta$Sales[dta$Time=="Morning"]
Salesperson <- dta$Salesperson[dta$Time=="Morning"]
boxplot(Sales~Salesperson, main="Morning")
Sales <- dta$Sales[dta$Time=="Afternoon"]
Salesperson <- dta$Salesperson[dta$Time=="Afternoon"]
boxplot(Sales~Salesperson, main="Afternoon")

}
plot(sales.time.data)
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Note that we already used inheritance in the definition of the sales class:
class(x) <- c("sales", "data.frame")

so that the data remains as a data frame. If we had used
class(x) <- "sales"

sales.data would have been turned into a list.

generally every class has at least three methods:
• print

• summary (stats)

• plot

Example
Let’s return to the empirical distribution function discussed earlier. It is defined as follows:
Let x1, .., xn be a sample from some probability density f . Then the empirical distribution
function F̂ (x) is defined by

F̂ (x) = number of xi ≤ x

n

Let’s have a closer look at the ecdf object:
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x <- sort(rnorm(10))
y <- ecdf(x)
class(y)

## [1] "ecdf" "stepfun" "function"

so the classes of an ecdf object are ecdf, stepfun and function. Let’s see what that means:
plot(y)
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class(y) <- c("stepfun", "function")
plot(y)
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class(y) <- "function"
plot(x, y(x))
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Example
Let’s say we have a data frame with an x and a y column, which are the coordinates of some
function. We want the plot command to graph that function:
x <- seq(0, 1, length=250)
y <- sin(4*pi*x)
df <- data.frame(x=x, y=y)
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plot(df)
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We can do this by defining a new class fn:
class(df) <- c("fn", "data.frame")
plot.fn <- function(df) {

plot(df[, 1], df[, 2], type="l",
xlab="x", ylab="y")

}
plot(df)
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Exercise
Say for all the functions that cross the horizontal line y=0 we want to add that line to the
graph. Use OOP!
plot(df)
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2.8 Vector Arithmetic

One of the most useful features of R is it’s ability to do math on vectors. In fact we have
already used this feature many times, but now we will study it explicitly.
options(digits=4)

x <- 1:10
x

## [1] 1 2 3 4 5 6 7 8 9 10
x^2

## [1] 1 4 9 16 25 36 49 64 81 100
sqrt(x)

## [1] 1.000 1.414 1.732 2.000 2.236 2.449 2.646 2.828 3.000 3.162
x^2*exp(-(x/10)^2)

## [1] 0.990 3.843 8.225 13.634 19.470 25.116 30.019 33.747 36.034 36.788
y <- rep(1:2, 5)
y
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## [1] 1 2 1 2 1 2 1 2 1 2
x+y

## [1] 2 4 4 6 6 8 8 10 10 12
x^2+y^2

## [1] 2 8 10 20 26 40 50 68 82 104

To some degree that also works for matrices:
x <- matrix(1:10, nrow=2)
x

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 3 5 7 9
## [2,] 2 4 6 8 10
x^2

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 9 25 49 81
## [2,] 4 16 36 64 100

but this can also fail!

2.8.1 Matrix Algebra

R can also handle basic matrix calculations:
x

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
y

## [,1] [,2]
## [1,] 2 2
## [2,] 2 2
x*y

## [,1] [,2]
## [1,] 2 4
## [2,] 6 8

so this does element wise multiplication. If we want to do actual matrix multiplication we
have
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x %*% y # an infix operator!

## [,1] [,2]
## [1,] 6 6
## [2,] 14 14
rbind(1:3) %*% cbind(1:3)

## [,1]
## [1,] 14

we can use the solve command to solve a system of linear equations. Say we have the system

2x+ 3y − z = 1
x− y = 0
y + 3z = 2

A <- rbind(c(2, 3, -1), c(1, -1, 0), c(0, 1, 3))
A

## [,1] [,2] [,3]
## [1,] 2 3 -1
## [2,] 1 -1 0
## [3,] 0 1 3
solve(A, c(1, 0, 2))

## [1] 0.3125 0.3125 0.5625

or to find the inverse matrix:
solve(A)

## [,1] [,2] [,3]
## [1,] 0.1875 0.625 0.0625
## [2,] 0.1875 -0.375 0.0625
## [3,] -0.0625 0.125 0.3125

transposition is done with
t(A)

## [,1] [,2] [,3]
## [1,] 2 1 0
## [2,] 3 -1 1
## [3,] -1 0 3

Note so careful when using t as the name of an object!
As you know (I hope?) from linear algebra any (non-singular square) matrix A can be written
in the form
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A = UDU−1

where D is a diagonal matrix. One use of this is we can then easily find

A2 = AA =
UDU−1UDU−1 =
UDDU−1 =
UD2U−1

and with induction we get

An = UDnU−1

Example Say
A <- matrix(1:9/10, 3, 3)
z <- eigen(A)
z

## eigen() decomposition
## $values
## [1] 1.612e+00 -1.117e-01 5.239e-17
##
## $vectors
## [,1] [,2] [,3]
## [1,] -0.4645 -0.8829 0.4082
## [2,] -0.5708 -0.2395 -0.8165
## [3,] -0.6770 0.4039 0.4082
z$vectors %*% diag(z$values^2) %*% solve(z$vectors)

## [,1] [,2] [,3]
## [1,] 0.30 0.66 1.02
## [2,] 0.36 0.81 1.26
## [3,] 0.42 0.96 1.50
A %*% A

## [,1] [,2] [,3]
## [1,] 0.30 0.66 1.02
## [2,] 0.36 0.81 1.26
## [3,] 0.42 0.96 1.50
z$vectors %*% diag(z$values^10) %*% solve(z$vectors)

## [,1] [,2] [,3]
## [1,] 13.25 30.00 46.75
## [2,] 16.28 36.86 57.45
## [3,] 19.31 43.72 68.14
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Other functions for matrices are qr for decomposition and svd for singular value decomposition.
There are also packages for dealing with things like sparse matrices etc.

2.8.2 Vectorization

When you write your own functions you should write them in such a way that they in turn
are vectorized, that is can be applied to vectors. Here is one way to this. Consider the
function integrate, which does numerical integration:
f <- function(x) {x^2}
I <- integrate(f, 0, 1)
is.list(I)

## [1] TRUE
names(I)

## [1] "value" "abs.error" "subdivisions" "message"
## [5] "call"

as we see the result of a call to the integrate function is a list. The important part is the
value, so we can write
integrate(f, 0, 1)$value

## [1] 0.3333

but let’s say we want to calculate this integral for an interval of the form [0, A], not just [0,
1]. Here A might be many possible values. We can do this:
fA <- function (A) integrate(f, 0, A)$value
fA(1)

## [1] 0.3333
fA(2)

## [1] 2.667

but not
fA(1:2)

## Error in integrate(f, 0, A): length(upper) == 1 is not TRUE

so we need to “vectorize”:
fAvec <- Vectorize(fA)
fAvec(c(1, 2))

## [1] 0.3333 2.6667

This works fine, but does have some drawbacks. General functions like Vectorize have to
work in a great many different cases, so they need to do a lot of checking, which takes time
to do. In practice it is often better to vectorize your routine yourself:
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fA.vec <- function (A) {
y <- 0*A
for(i in seq_along(A))

y[i] <- integrate(f, 0, A[i])$value
y

}
fA.vec(c(1, 2))

## [1] 0.3333 2.6667

Once you have a function that does something for one value, vectorizing it is (usually) very
quick and almost always worthwhile!

2.8.3 apply family of functions

There is a set of routines that can be used to vectorize. Say we want to do a simulation to
study the variance of the mean and the median in a sample from the normal distribution.
sim1 <- function(n, B=1e4) {

y <- matrix(0, B, 2)
for(i in 1:B) {

x <- rnorm(n)
y[i, 1] <- mean(x)
y[i, 2] <- median(x)

}
c(sd(y[, 1]), sd(y[, 2]))

}
sim1(50)

## [1] 0.1414 0.1743

Here is an alternative:
• apply

sim2 <- function(n, B=1e4) {
x <- matrix(rnorm(n*B), B, 50)
c(sd(apply(x, 1, mean)), sd(apply(x, 1, median)))

}
sim2(50)

## [1] 0.1402 0.1748

Now this obviously has the advantage of being shorter.
If you read books on R written more than a few year ago you find many comments warning
against the use of loops. They used to be very slow, much slower than using apply. Let’s
check the speed of the calculation with the microbenchmark package:
library(microbenchmark)
microbenchmark(sim1(50), times = 10)
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## Unit: milliseconds
## expr min lq mean median uq max neval
## sim1(50) 597.6 603.4 643.1 606.7 611.9 965.9 10
microbenchmark(sim2(50), times = 10)

## Unit: milliseconds
## expr min lq mean median uq max neval
## sim2(50) 441.6 445.7 466.5 448.7 458.5 613.7 10

so the loop is actually faster! A few versions ago the whole implementation of loops in R
was rewritten, and these days they are actually quite fast! That still leaves the advantage of
short code.
There are variants of apply for other data structures:

• lapply for lists:
x <- list(A=rnorm(10), B=rnorm(20), C=rnorm(30))
lapply(x, mean)

## $A
## [1] -0.01575
##
## $B
## [1] 0.2297
##
## $C
## [1] 0.1962

as we see the result is again a list. Notice that this goes against the way R is generally
written: the resulting object could be type-converted to the simpler vector but is not.
Often we want it to be a vector. We could use unlist, or
sapply(x, mean)

## A B C
## -0.01575 0.22970 0.19617

• tapply for vectors
apply a function to the numbers in one vector, grouped by the values in another (categorical)
vector:
GPA <- round(runif(100, 2, 4), 1)
Gender <- sample(c("Male", "Female"),

size=100, replace=TRUE)
tapply(GPA, Gender, mean)

## Female Male
## 2.928 2.993

Here is another less obvious example:
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par(mfrow=c(1,2))
tapply(GPA, Gender, hist, breaks=50,

main="", xlab="", ylab="")
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2.9 Working with Characters

Working with character strings is one of the most common tasks in R. In this section we
discuss some of the routines we have for that.
Character strings can use single or double quotes:
'this is a string'

## [1] "this is a string"
"this is a string"

## [1] "this is a string"

Say you want to type in a vector of names. Having to type all those quotes is a bit of work,
but there is a nice routine in the Hmisc package that helps:
library(Hmisc)
Cs(Joe, Jack, Ann, Laura)

## [1] "Joe" "Jack" "Ann" "Laura"

Resma3 has the data set agesexUS, which has the breakdown of the US population by gender
and age according to the 2000 US Census. We are going to work with the names of the states
(plus DC and PR) for a bit:
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states <- agesexUS$State
head(states)

## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
## [6] "Colorado"

to find out how long a string is use
nchar(states)

## [1] 7 6 7 8 10 8 11 8 20 7 7 6 5 8 7 4 6 8 9 5 8 13 8
## [24] 9 11 8 7 8 6 13 10 10 8 14 12 4 8 6 12 12 14 12 9 5 4 7
## [47] 8 10 13 9 7 11

What state has the longest name?
states[which.max(nchar(states))]

## [1] "District of Columbia"

Say we want to shorten the strings to just the first three letters:
substring(states, first=1, last=3)

## [1] "Ala" "Ala" "Ari" "Ark" "Cal" "Col" "Con" "Del" "Dis" "Flo" "Geo"
## [12] "Haw" "Ida" "Ill" "Ind" "Iow" "Kan" "Ken" "Lou" "Mai" "Mar" "Mas"
## [23] "Mic" "Min" "Mis" "Mis" "Mon" "Neb" "Nev" "New" "New" "New" "New"
## [34] "Nor" "Nor" "Ohi" "Okl" "Ore" "Pen" "Rho" "Sou" "Sou" "Ten" "Tex"
## [45] "Uta" "Ver" "Vir" "Was" "Wes" "Wis" "Wyo" "Pue"

Now, though, several of the strings are the same (“Ala”). If that is a problem use
abbreviate(states)[1:6]

## Alabama Alaska Arizona Arkansas California Colorado
## "Albm" "Alsk" "Arzn" "Arkn" "Clfr" "Clrd"

This routine figures out what the length of the shortest string is that makes all of them
unique (here 4). We can make it a little longer if we want:
abbreviate(states, minlength = 6)[1:6]

## Alabama Alaska Arizona Arkansas California Colorado
## "Alabam" "Alaska" "Arizon" "Arknss" "Calfrn" "Colord"

Notice that this keeps the full strings as names.

Say we want the last 3 letters of the states names:
substring(states,

first = nchar(states)-2,
last = nchar(states))[1:6]

## [1] "ama" "ska" "ona" "sas" "nia" "ado"
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Let’s say we want all the states whose name starts with P:
grep("P", states)

## [1] 39 52

tells us those are the states at position 39 and 52, so now
states[grep("P", states)]

## [1] "Pennsylvania" "Puerto Rico"

or directly:
grep("P", states, value = TRUE)

## [1] "Pennsylvania" "Puerto Rico"

Here is another way to do this:
states[startsWith(states, "P")]

## [1] "Pennsylvania" "Puerto Rico"

Very useful is its partner:
states[endsWith(states, "o")]

## [1] "Colorado" "Idaho" "New Mexico" "Ohio" "Puerto Rico"

This can be used for example to find the files of a certain type in a folder:
dir()[endsWith(dir(), ".Rmd")][1:5]

## [1] "_main.Rmd" "assign.Rmd" "basic.stats.Rmd" "bayes.Rmd"
## [5] "blank.Rmd"

Notice that above we only got the states whose names have a capital P. What if we want all
states with either p or P?
grep(pattern = "[pP]", x = states, value = TRUE)

## [1] "Mississippi" "New Hampshire" "Pennsylvania" "Puerto Rico"

the syntax [pP] matches either p or P. This is an example of a regular expression, which we
will discuss shortly.
Exercise
Find all the states whose name consist of two or more words (like Puerto Rico)

## [1] "District of Columbia" "New Hampshire" "New Jersey"
## [4] "New Mexico" "New York" "North Carolina"
## [7] "North Dakota" "Rhode Island" "South Carolina"
## [10] "South Dakota" "West Virginia" "Puerto Rico"

91



We can also use the function tolower, which turns all the letters into lower case:
tolower(states)[1:4]

## [1] "alabama" "alaska" "arizona" "arkansas"
grep("p", tolower(states), value = TRUE)

## [1] "mississippi" "new hampshire" "pennsylvania" "puerto rico"

but now all the letters are lower case.
Of course there is also a toupper function.

We alreadu used grep. We also have the grepl function, which which does the same but
instead of the location it returns TRUE if the string contains the pattern:
states[1:6]

## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
## [6] "Colorado"
grepl(pattern = "s", states)[1:6]

## [1] FALSE TRUE FALSE TRUE FALSE FALSE

Suppose we want to replace all the A’s with *’s:
gsub("A", "*", states)[1:6]

## [1] "*labama" "*laska" "*rizona" "*rkansas" "California"
## [6] "Colorado"

There is also the sub function, which does the same as gsub but only to the first occurrence:
sub("a", "A", c("abba"))

## [1] "Abba"
gsub("a", "A", c("abba"))

## [1] "AbbA"

Exercise
cat(y, "\n")

t e n d a f t w o d z t o t y l d o i m a n i i r m r k p z m g f h g y q c v h z c v e r m u z p j v z a k w r v u f i w i s i w s j d i k e l n j r w x l w s o c n h o v e e e b n w d o f g y g a o x e w r k u s s j k l x h i n v r t y x u a o d i s m n z v f w t i l w j x w h m w d v t l s q s y

How many a’ are in this string?
You can get the vector into R as follows: copy it and in R run
# Windows
x <- scan("clipboard", what="char")
# Mac
x <- scan(pipe("pbpaste"), what="char")
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Let’s ask the following question: what is the distribution of the vowels in the names of the
states? For instance, let’s start with the number of a’s in each name. There’s a very useful
function for this purpose: gregexpr.
We can use it to get the number of times that a searched pattern is found in a character
vector. When there is no match, we get a value -1.
positions_a <- gregexpr(pattern = "a",

text = states,
ignore.case = TRUE)

positions_a[[1]]

## [1] 1 3 5 7
## attr(,"match.length")
## [1] 1 1 1 1
## attr(,"index.type")
## [1] "chars"
## attr(,"useBytes")
## [1] TRUE

tells us that in “Alabama” there are a’s in positions 1, 3, 5 and 7.
Now we need to go through all the states names and find out how many a’s there are in each.
Here is a fast way to do this, using one of the apply functions:
f <- function(x) {

ifelse(x[1] > 0, length(x), 0)
# if there is no a, x is -1, so we get 0
}
num_a <- sapply(positions_a, f)
num_a

## [1] 4 3 2 3 2 1 0 2 1 1 1 2 1 0 2 1 2 0 2 1 2 2 1 1 0 0 2 2 2 1 0 0 0 2 2
## [36] 0 2 0 2 1 2 2 0 1 1 0 1 1 1 0 0 0

Now let’s do this for all the vowels:
vowels <- c("a", "e", "i", "o", "u")
num_vowels <- rep(0, 5)
names(num_vowels) <- vowels
for(i in seq_along(vowels)) {

positions <- gregexpr(pattern = vowels[i],
text = states,
ignore.case = TRUE)

num_vowels[i] <- sum(sapply(positions, f))
}
num_vowels
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## a e i o u
## 62 29 48 40 10

2.9.1 paste, paste0 commands

One of the most useful commands in R is paste. It let’s us put together various parts as a
string:
paste(1:3)

## [1] "1" "2" "3"
paste("a", 1:3)

## [1] "a 1" "a 2" "a 3"
paste("a", 1:3, sep=":")

## [1] "a:1" "a:2" "a:3"
paste("a", 1:3, sep="")

## [1] "a1" "a2" "a3"

This last one (no space between) is needed often enough it has its own command:
paste0("a", 1:3)

## [1] "a1" "a2" "a3"

If we want to make a single string use
paste0("a", 1:3, collapse="")

## [1] "a1a2a3"
paste0("a", 1:3, collapse="-")

## [1] "a1-a2-a3"

Exercise
write a routine that generates a licence plate in Puerto Rico at random. For example
license.plate()

## [1] "WMC964"

paste “combines” stuff into a string. Sometimes we want to do the opposite:
txt <- "This is a short sentence"
strsplit(txt, " ")
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## [[1]]
## [1] "This" "is" "a" "short" "sentence"

notice that the result is a list, so often we use
unlist(strsplit(txt, " "))

## [1] "This" "is" "a" "short" "sentence"

Exercise
Here is Abraham Lincolns famous Gettyburg address:
cat(gettysburg)

Four score and seven years ago our fathers brought forth on this continent, a new nation, conceived in Liberty, and dedicated to the proposition that all men are created equal.

Now we are engaged in a great civil war, testing whether that nation, or any nation so conceived and so dedicated, can long endure. We are met on a great battle-field of that war. We have come to dedicate a portion of that field, as a final resting place for those who here gave their lives that that nation might live. It is altogether fitting and proper that we should do this.

But, in a larger sense, we can not dedicate -- we can not consecrate -- we can not hallow -- this ground. The brave men, living and dead, who struggled here, have consecrated it, far above our poor power to add or detract. The world will little note, nor long remember what we say here, but it can never forget what they did here. It is for us the living, rather, to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced. It is rather for us to be here dedicated to the great task remaining before us -- that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion -- that we here highly resolve that these dead shall not have died in vain -- that this nation, under God, shall have a new birth of freedom -- and that government of the people, by the people, for the people, shall not perish from the earth.

How many times did Lincoln use the word “people”?
## [1] 3

2.9.2 Regular Expressions

A regular expression (a.k.a. regex) is a special text string for describing a certain amount of
text. This “certain amount of text” receives the formal name of pattern. Hence we say that
a regular expression is a pattern that describes a set of strings.
Tools for working with regular expressions can be found in virtually all scripting languages
(e.g. Perl, Python, Java, Ruby, etc). R has some functions for working with regular expressions
although it does not provide the wide range of capabilities that other scripting languages do.
Nevertheless, they can take us very far with some workarounds (and a bit of patience).
To know more about regular expressions in general, you can find some useful information in
the following resources:

• Regex wikipedia http://en.wikipedia.org/wiki/Regular_expression
• Regular-Expressions.info website (by Jan Goyvaerts) http://www.regular-expressions.

info
The main purpose of working with regular expressions is to describe patterns that are used
to match against text strings. Simply put, working with regular expressions is nothing more
than pattern matching.
The result of a match is either successful or not. The simplest version of pattern matching is
to search for one occurrence (or all occurrences) of some specific characters in a string. For
example, we might want to search for the word “programming” in a large text document, or
we might want to search for all occurrences of the string “apply” in a series of files containing
R scripts.
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The most important use of regular expressions is in the replacement of a pattern, say using
gsub. Regular expressions allow us to not just use specific characters as patterns but much
more general things:
Let’s take the vector
cat(txt)

## In 2017 there where 17 hurricanes

Let’s say I want to pick out those elements of the vector that are (or at least could be)
numeric. Here is one way to do it:
as.numeric(txt)

## [1] NA 2017 NA NA 17 NA
txt[!is.na(as.numeric(txt))]

## [1] "2017" "17"

or we can use regexp:
txt[grepl("\\d", txt)]

## [1] "2017" "17"

Here d stands for digits. The backslash in front is the standard regex syntax, but backslashes
in R have special meanings, so we need another one in front. This second one is called an
escape character, it tells R to treat the backslash as such, and not as a special character.
Say we want to replace the spaces in a sentence with the underscore. The regex symbol space
is s:
gsub("\\s", "_", "Not a very interesting sentence")

## [1] "Not_a_very_interesting_sentence"

We already used [pP] before to match both small and large cap p’s. This is in fact a regular
expression. It matches everything between the brackets:
gsub("[0-9]", "%", txt)

## [1] "In" "%%%%" "there" "where" "%%"
## [6] "hurricanes"

A caret in front is NOT:
gsub("[^0-9]", "%", txt)

## [1] "%%" "2017" "%%%%%" "%%%%%" "17"
## [6] "%%%%%%%%%%"

Exercise
What command would replace all komma’s, dot’s and semicolons in the gettysburg address
with an ampersant (@)?
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Four score and seven years ago our fathers brought forth on this continent@ a new nation@ conceived in Liberty@ and dedicated to the proposition that all men are created equal@

Now we are engaged in a great civil war@ testing whether that nation@ or any nation so conceived and so dedicated@ can long endure@ We are met on a great battle-field of that war@ We have come to dedicate a portion of that field@ as a final resting place for those who here gave their lives that that nation might live@ It is altogether fitting and proper that we should do this@

But@ in a larger sense@ we can not dedicate -- we can not consecrate -- we can not hallow -- this ground@ The brave men@ living and dead@ who struggled here@ have consecrated it@ far above our poor power to add or detract@ The world will little note@ nor long remember what we say here@ but it can never forget what they did here@ It is for us the living@ rather@ to be dedicated here to the unfinished work which they who fought here have thus far so nobly advanced@ It is rather for us to be here dedicated to the great task remaining before us -- that from these honored dead we take increased devotion to that cause for which they gave the last full measure of devotion -- that we here highly resolve that these dead shall not have died in vain -- that this nation@ under God@ shall have a new birth of freedom -- and that government of the people@ by the people@ for the people@ shall not perish from the earth@

2.9.3 POSIX

Closely related to the regex character classes we have what is known as POSIX character
classes. In R, POSIX character classes are represented with expressions inside double brackets
[[ ]].
[[:lower:]] Lower-case letters
[[:upper:]] Upper-case letters [[:alpha:]] Alphabetic characters ([[:lower:]] and [[:upper:]])
[[:digit:]] Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
[[:alnum:]] Alphanumeric characters ([[:alpha:]] and [[:digit:]])
[[:blank:]] Blank characters: space and tab [[:cntrl:]] Control characters
[[:punct:]] Punctuation characters: ! ” # % & ’ ( ) * + , - . / : ;
[[:space:]] Space characters: tab, newline, vertical tab, form feed, carriage return, and space
[[:digit:]] Hexadecimal digits: 0-9 A B C D E F a b c d e f
[[:print:]] Printable characters ([[:alpha:]], [[:punct:]] and space) [[:graph:]] Graphical charac-
ters ([[:alpha:]] and [[:punct:]])
so we could also do this
as.numeric(txt[grepl("[[:digit:]]", txt)])

## [1] 2017 17

2.9.4 Some Examples

2.9.4.1 Palindrome

a palindrome is a word that is the same when read forwards or backwards. Some examples are
noon, civic, radar, level, rotor, kayak, reviver, racecar, redder, madam, and refer. Let’s write
a sequence of commands that take a sentence and return any palindromes. As an example,
consider
txt <- "At Noon the Meteorologist is checking the Radar"

which should result in the vector (“noon”, “radar”).
First we need to split the sentence into words:
wrds <- unlist(strsplit(txt, " "))
wrds

## [1] "At" "Noon" "the" "Meteorologist"
## [5] "is" "checking" "the" "Radar"
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Next we need to turn each word around. To do that we split each word into individual letters,
reverse them and paste them back together:
n <- length(wrds)
rev.wrds <- rep("", n)
for(i in 1:n)

rev.wrds[i] <- paste(unlist(strsplit(wrds[i], ""))[nchar(wrds[i]):1], collapse = "")
rev.wrds

## [1] "tA" "nooN" "eht" "tsigoloroeteM"
## [5] "si" "gnikcehc" "eht" "radaR"

Finally, let’s check whether the words are the same, but taking into account that Noon is
still a palindrome!
wrds[tolower(wrds) == tolower(rev.wrds)]

## [1] "Noon" "Radar"

2.9.4.2 Email Addresses

Consider the web site of the Math department at http://math.uprm.edu/academic/people.php
Let’s say we want to write a routine that picks out all the email addresses.
First we need to download the web site. This can be done with the scan command because
as is explained in the help file the argument can be a connection, which includes URL’s
txt <- scan("http://math.uprm.edu/academic/people.php",

what="char", sep="\n")

\n is the newline character, so each line of the webpage will be an element of the vector.
Next we need to figure out what defines an email address. Obviously it needs to have the @
symbol, so let’s go through the text and pick out those lines that have the @ symbol:
sum(unlist(gregexpr("@", txt))>0)

## [1] 236
txt <- grep("@", txt, value = TRUE)
length(txt)

## [1] 5

So the @ symbol appears 236 time. but strangely there are only 5 lines with @ symbols!
That is because
substring(txt[1], 1, 500)

## [1] " <table id=\"people\" cellspacing='0' border='0' cellpadding='2px'><tr><th bgcolor='#024253' width='150px'>Full Name</th> <th bgcolor='#024253' width='150px'>Email</th> <th bgcolor='#024253' width='60px'>Office</th> <th bgcolor='#024253' width='60px'>Phone</th> <th bgcolor='#024253' width='130px'>Position</th></tr><tr bgcolor='#E3EAA6'><td><a href='../people/peoplefind.php?person=Acar, Robert'>Acar, Robert</a></td><td><a href=\"mailto:robert.acar@upr.edu\"> robert.acar@upr.edu</a></td><td>L"

so on the website the addresses are in an html table, which was read in as a single string. We
can see that immediately after each email address is the text </a> , which is the html tag
to end a link. Let’s split up the text according to the </a> tag:
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txt <- unlist(strsplit(paste(txt, collapse=""), "</a>"))
txt[1:2]

## [1] " <table id=\"people\" cellspacing='0' border='0' cellpadding='2px'><tr><th bgcolor='#024253' width='150px'>Full Name</th> <th bgcolor='#024253' width='150px'>Email</th> <th bgcolor='#024253' width='60px'>Office</th> <th bgcolor='#024253' width='60px'>Phone</th> <th bgcolor='#024253' width='130px'>Position</th></tr><tr bgcolor='#E3EAA6'><td><a href='../people/peoplefind.php?person=Acar, Robert'>Acar, Robert"
## [2] "</td><td><a href=\"mailto:robert.acar@upr.edu\"> robert.acar@upr.edu"

OK, next we have to eliminate all the lines that don’t have a @ in it:
txt <- grep("@", txt, value = TRUE)
length(txt)

## [1] 118

which is good because 2*118=236, and each address appeared twice in the table. So we got
all of them.
Finally we need to extract the email address from each line. Checking them we see that just
before each address is an empty space, so maybe this will work:
txt <- unlist(str_split(txt, " "))
txt <- grep("@", txt, value = TRUE)
txt[1:4]

## [1] "href=\"mailto:robert.acar@upr.edu\">"
## [2] "robert.acar@upr.edu"
## [3] "href=\"mailto:edgar.acuna@upr.edu\">"
## [4] "edgar.acuna@upr.edu"

almost, we just need to get rid of those lines starting with href:
txt <- txt[!grepl("href", txt)]
txt

## [1] "robert.acar@upr.edu" "edgar.acuna@upr.edu"
## [3] "dorothy.bollman@gmail.com" "luis.caceres1@upr.edu"
## [5] "gabriele.castellini@upr.edu" "paul.castillo@upr.edu"
## [7] "omar.colon4@upr.edu" "silvestre.colon@upr.edu"
## [9] "angel.cruz14@upr.edu" "stan.dziobiak@upr.edu"
## [11] "wieslaw.dziobiak@upr.edu" "anacarmen.gonzalez@upr.edu"
## [13] "marggie.gonzalez@upr.edu" "darrell.hajek@upr.edu"
## [15] "edgardo.lorenzo1@upr.edu" "flor.narciso@upr.edu"
## [17] "victor.ocasio1@upr.edu" "juan.ortiz35@upr.edu"
## [19] "reyes.ortiz@upr.edu" "arturo.portnoy1@upr.edu"
## [21] "wilfredo.quinones2@upr.edu" "karen.rios3@upr.edu"
## [23] "olgamary.rivera@upr.edu" "yuri.rojas@upr.edu"
## [25] "wolfgang.rolke@upr.edu" "juan.romero4@upr.edu"
## [27] "samuel.rosario1@upr.edu" "krzysztof.rozga@upr.edu"
## [29] "hector.salas@upr.edu" "damaris.santana2@upr.edu"
## [31] "freddie.santiago1@upr.edu" "marko.schutz@upr.edu"
## [33] "alexander.shramchenko@upr.edu" "lev.steinberg@upr.edu"
## [35] "nilsa.toro@upr.edu" "pedro.torres14@upr.edu"
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## [37] "pedro.vasquez@upr.edu" "alejandro.velez2@upr.edu"
## [39] "julio.vidaurraza@upr.edu" "uroyoan.walker@upr.edu"
## [41] "keith.wayland@upr.edu" "xuerong.yong@upr.edu"
## [43] "zoraida.arroyo@upr.edu" "carmen.gonzalez23@upr.edu"
## [45] "tania.lopez@upr.edu" "javier.mercado3@upr.edu"
## [47] "madeline.ramos3@upr.edu" "robert.trabal@upr.edu"
## [49] "luisa.andino@upr.edu" "julio.barety@upr.edu"
## [51] "eliseo.cruz1@upr.edu" "gladys.dicristina@upr.edu"
## [53] "enriquejose.gallo@upr.edu" "cesar.herrera@upr.edu"
## [55] "rafael.martinez13@upr.edu" "julioc.quintana@upr.edu"
## [57] "tokuji.saito@upr.edu" "arlin.alvarado@upr.edu"
## [59] "alcibiades.bustillo@upr.edu" "andres.chamorro@upr.edu"
## [61] "edwin.florez@upr.edu" "einstein.morales@upr.edu"
## [63] "velcy.palomino@upr.edu" "walter.quispe@upr.edu"
## [65] "carlos.theran@upr.edu" "roberto.trespalacio@upr.edu"
## [67] "andrea.angarita@upr.edu" "hillary.bermudez@upr.edu"
## [69] "sergioi.betancourt@upr.edu" "cesar.bolanos@upr.edu"
## [71] "hilda.calderon@upr.edu" "joseemilio.calderon@upr.edu"
## [73] "victor.cardenas@upr.edu" "alexis.carrillo@upr.edu"
## [75] "carlos.carvajal@upr.edu" "jose.cordoba@upr.edu"
## [77] "henrry.cortez@upr.edu" "saed.cruz@upr.edu"
## [79] "victor.diaz16@upr.edu" "francisco.dejesus3@upr.edu"
## [81] "alix.enriquez@upr.edu" "angel.figueroa1@upr.edu"
## [83] "jean.galan@upr.edu" "cristian.gomez1@upr.edu"
## [85] "sergio.gomez@upr.edu" "cristian.gutierrez1@upr.edu"
## [87] "hassam.hayek@upr.edu" "javier.henriquez@upr.edu"
## [89] "sahily.hilerio@upr.edu" "ricardo.lopez9@upr.edu"
## [91] "ruth.lopez5@upr.edu" "lesbia.lopez@upr.edu"
## [93] "christian.lopez29@upr.edu" "rodrigo.leon@upr.edu"
## [95] "alibeth.luna@upr.edu" "eddie.mendez@upr.edu"
## [97] "robert.medina@upr.edu" "luis.mestre2@upr.edu"
## [99] "kevin.molina1@upr.edu" "bayron.morales@upr.edu"
## [101] "ana.moreno@upr.edu" "didier.murillo@upr.edu"
## [103] "bernnie.murillo@upr.edu" "daniel.ovalle@upr.edu"
## [105] "felix.pabon@upr.edu" "cristian.perdomo@upr.edu"
## [107] "jessenia.quintero@upr.edu" "eric.rivera8@upr.edu"
## [109] "daniel.rocha@upr.edu" "william.rueda@upr.edu"
## [111] "jose.santos7@upr.edu" "deiver.suarez@upr.edu"
## [113] "maria.torres65@upr.edu" "ana.trujillo2@upr.edu"
## [115] "juan.valera@upr.edu" "raul.valerio@upr.edu"
## [117] "diana.vargas1@upr.edu" "cesaraugusto.vega@upr.edu"

If we wanted to send an email to all the people in the department we could now use the write
command to copy them to the clipboard, switch to a mail program and copy them into the
address box.
Programs like these are routinely used to go through millions of websites and search for email
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addresses, which are then sent spam emails. This is why I only write mine like this:
wolfgang[dot]rolke[at]upr[dot]edu

2.9.4.3 Binary Arithmetic

We have previously discussed binary arithmetic. There we used a simple vector of 0’s and 1’s.
The main problem with that is that it is hard to vectorize the routines. Instead we will now
use character sequences like “1001”.
We have previously written several functions for this. We will want to reuse them but also
adapt them to this new format. To do so we need to turn a character string into a vector of
numbers and vice versa. Also we want our routines to be vectorized:

• Decimal to Binary
decimal.2.binary <- function(x) {

n <- length(x)
y <- rep("0", n)
for(k in 1:n) {

if(x[k]==0 | x[k]==1) { # simple cases
y[k] <- x[k]
next

}
i <- floor(log(x[k], base=2)) # largest power of 2 less than x
bin.x <- rep(1, i+1) # we will need i+1 0'1 and 1's, first is 1
x[k] <- x[k]-2^i
for(j in (i-1):0) {

if(2^j>x[k])
bin.x[j+1] <- 0

else {
bin.x[j+1] <- 1
x[k] <- x[k]-2^j

}
}
y[k] <- paste(bin.x[length(bin.x):1], collapse="")

}
y

}
decimal.2.binary(c(7, 8, 26))

## [1] "111" "1000" "11010"

• Binary to Decimal
binary.2.decimal <- function(x){

n <- length(x)
y <- rep(0, n)
for(i in 1:n) {

tmp <- as.numeric(strsplit(x[i], "")[[1]])
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y[i] <- sum(tmp*2^(length(tmp):1-1))
}
y

}
binary.2.decimal(c("111", "1000", "11010"))

## [1] 7 8 26
binary.2.decimal(decimal.2.binary(126))

## [1] 126
decimal.2.binary(binary.2.decimal(c("100101")))

## [1] "100101"

• is. binary:
is.binary <- function(x) {

n <- length(x)
y <- rep(TRUE, n)
for(i in 1:n) {

x.vec <- as.numeric(strsplit(x[i], "")[[1]])
if(all(x.vec==0)) {

y[i] <- TRUE
next

}
x.vec <- x.vec[x.vec!=0]
x.vec <- x.vec[x.vec!=1]
if(length(x.vec)==0) y[i] <- TRUE
else y[i] <- FALSE

}
y

}
is.binary(c("1001", "0", "11a1"))

## [1] TRUE TRUE FALSE

• addition
Here I am going to reuse the routine we had already written:
binary_addition <- function(x, y) {
# First make x and y of equal length and with one extra
# slot in case it's needed for carry over
# Fill x and y with 0's as needed.

n <- length(x)
m <- length(y)
N <- max(n, m)+1
x <- c(rep(0, N-n), x)
y <- c(rep(0, N-m), y)
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s <- rep(0, N) # for result
ca <- 0 # for carry over term
for(i in N:1) {

n <- x[i]+y[i]+ca
if(n<=1) {# no carry over

s[i] <- n
ca <- 0

}
else {# with carry over

s[i] <- 0
ca <- 1

}
}

if(s[1]==0) s <- s[-1]# leading 0 removed if necessary
s

}
binary_addition(c(1, 0), c(1, 1, 0))

## [1] 1 0 0 0
binary.addition<- function(x, y) {

n <- length(x)
m <- length(y)
if(m!=n) cat("Vectors have to have the same length!\n")
s <- rep("0", n)
for(i in 1:n) {

x.vec <- as.numeric(strsplit(x[i], "")[[1]])
y.vec <- as.numeric(strsplit(y[i], "")[[1]])
tmp <- binary_addition(x.vec, y.vec)
s[i] <- paste(tmp, collapse="")

}
s

}
binary.addition(c("0", "10", "1001"), c("0", "110", "1101"))

## [1] "0" "1000" "10110"

Let’s turn this into an infix addition operator:
'%+b%' <- function(x, y) binary.addition(x, y)
x <- c("10", "1001", "100101", "11101001")
y <- c("101", "1001", "10101", "1001100")
binary.2.decimal(x)

## [1] 2 9 37 233
binary.2.decimal(y)

## [1] 5 9 21 76
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z <- x %+b% y
x

## [1] "10" "1001" "100101" "11101001"
binary.2.decimal(z)

## [1] 7 18 58 309

Let’s define a new class of objects “binary numbers”:
as.binary <- function(x) {

class(x) <- "binary"
return(x)

}

what methods might be useful here? Let’s write two:
• print

this is how our number will appear when we use print(x):
print <- function(x) UseMethod("print")
print.binary <- function(x) {

n <- length(x)
for(i in 1:length(x)) {

y <- as.numeric(strsplit(x[i], "")[[1]])
y <- paste(y, collapse = ".")
cat(y, "\n")

}

}
x <- as.binary(c("10", "1001", "100101"))
print(x)

## 1.0
## 1.0.0.1
## 1.0.0.1.0.1

• summary
what should we calculate as summary statistics? Let’s do three:

• how many

• most frequent (mode, NA if all only once)

• percentage of 0’s
summary <- function(x) UseMethod("summary")
summary.binary <- function(x) {

n <- length(x)
if(length(unique(x))==length(x)) mode <- NA
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else {
z <- table(x)
z <- z[z==max(z)]
mode <- names(z)

}
y <- paste(x, collapse = "") # one long string
y <- as.numeric(strsplit(y, "")[[1]]) # vector of 0's and 1's
y <- round(sum(y==0)/length(y)*100, 1)
cat("N =", n, "\n")
cat("Mode =", mode, "\n")
cat("% 0's =", y, "\n")

}
x <- sample(1:100, size=1000, replace=TRUE)
x <- as.binary(decimal.2.binary(x))
print(x[1:5])

## [1] "11101" "1001010" "1111" "111000" "100010"
summary(x)

## N = 1000
## Mode = 1010111
## % 0's = 43.7

2.10 Data Input/Output, Transferring R Objects

2.10.1 Printing Info to Screen

The basic functions to display information on the screen are
options(digits=4)
x <- rnorm(5, 100, 30)
print(x)

## [1] 61.73 43.28 96.99 115.66 74.89
cat(x)

## 61.73 43.28 96.99 115.7 74.89

Both of these have certain advantages:
• with print you can easily control the number of digits:

print(x, digits=6)

## [1] 61.7320 43.2771 96.9860 115.6570 74.8856

• with cat you can easily mix text and numeric:
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cat("The mean is ", round(mean(x), 1), "\n")

## The mean is 78.5

The “\n” (newline) is needed so that the cursor moves to the next line. This also sometimes
referred as a carriage return.
Another advantage of cat is that one can have different rounding for different numbers:
x <- 1100; y <- 0.00123334
print(c(x, y), 4)

## [1] 1.100e+03 1.233e-03
cat(x, " ", round(y, 4), "\n")

## 1100 0.0012

Notice that in the case of print R switches to scientific notation. This default behavior can
be changed with
options(scipen=999)
print(c(x, y), 4)

## [1] 1100.000000 0.001233
options(scipen=0)
print(c(x, y), 4)

## [1] 1.100e+03 1.233e-03

Some times you need a high level of control over the output, for example when writing data
to a file that then will be read by a computer program that wants things just so. For this
you can use the sprintf command.
sprintf("%f", pi)

## [1] "3.141593"

Here the f stands for floating point, the most common type. Also note that the result of a
call to sprintf is a character vector.
Here are some variations:
sprintf("%.3f", pi) # everything before the ., 3 digits after

## [1] "3.142"
sprintf("%1.0f", pi) # 1 space, 0 after

## [1] "3"
sprintf("%5.1f", pi) # 5 spaces total, 1 after

## [1] " 3.1"
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sprintf("%05.1f", pi) # same but fill with 0

## [1] "003.1"
sprintf("%+f", pi) # all with + in front

## [1] "+3.141593"
sprintf("% f", pi) # space in front

## [1] " 3.141593"
sprintf("%e", pi) # in scientific notation, small e

## [1] "3.141593e+00"
sprintf("%E", pi) # or large E

## [1] "3.141593E+00"
sprintf("%g", 1e6*pi)

## [1] "3.14159e+06"

Here is another example. In Statistics we often find a p value. These should generally be
quoted to three digits. But when the p value is less than 10−3 R uses scientific notation. If
you want to avoid that do this
x <- 1100; pval <- 0.00123334

c(x, pval)

## [1] 1.100e+03 1.233e-03
sprintf("%.3f", c(x, pval))

## [1] "1100.000" "0.001"

2.10.2 Reading in a Vector

Often the easiest thing to do is to use copy-paste the data and then simply scan it into R:
x <- scan("clipboard")

Note: if you are using a Mac you need to use
x <- scan(pipe("pbpaste"))

• use the argument sep=“;” to change the symbol that is being used as a separator. The
default is empty space, common cases include comma, semi-colon, and newline (\n)

• scan assumes that the data is numeric, if not use the argument what=“char”.
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I need to do this so often I wrote a little routine for it:
getx <- function(sep="") {

options(warn=-1) # It might give a warning, I don't care
x <- scan("clipboard", what="character", sep=sep)
# always read as character
if(all(!is.na(as.numeric(x)))) # are all elements numeric?

x <- as.numeric(x) # then make it numeric
options(warn=0) # reset warning
x

}

Notice some features:
• the routine always reads the data as a character vector, whether it is character or

numeric.
• it then tries to turn it into numeric. If that works, fine, otherwise it stays character.

This is done with as.numeric(x), which returns NA if it can’t turn an entry into numeric,
so is.na(as.numeric(x)) returns TRUE if x can’t be made numeric.

• when trying to turn a character into a number R prints a warning. This is good in
general to warn you that you are doing something strange. Here, though, it is expected
behavior and we don’t need the warning. The routine suppresses them by setting
options(warn=-1), and setting it back to the default afterwards.

If the data is in a stand-alone file saved on your hard drive you can also read it from there:
x <- scan("c:/folder/file.R")

If it is a webpage use
x <- scan(url("http://somesite.html"))

Notice the use of / in writing folders. \ does not work on Windows because it is already used
for other things, \\ would work but is more work to type!
scan has a lot of arguments:
args(scan)

## function (file = "", what = double(), nmax = -1L, n = -1L, sep = "",
## quote = if (identical(sep, "\n")) "" else "'\"", dec = ".",
## skip = 0L, nlines = 0L, na.strings = "NA", flush = FALSE,
## fill = FALSE, strip.white = FALSE, quiet = FALSE, blank.lines.skip = TRUE,
## multi.line = TRUE, comment.char = "", allowEscapes = FALSE,
## fileEncoding = "", encoding = "unknown", text, skipNul = FALSE)
## NULL

the most useful are
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• what

• sep

• nmax: maximum number of lines to read, useful if you don’t know just how large the
file is and want to read just some of it to check it out.

• skip: number of lines at beginning to skip, for example if there is some header.

• quiet=FALSE: by default R will say how many lines have been read, this can be a
nuisance if you have a routine that reads in many files.

• blank.lines.skip=TRUE: does not read in empty lines. This is a problem if you want to
write the file out again later and want it to look as much as possible like the original.

Example: A non-standard input format.
Consider the file at
x <- scan("http://academic.uprm.edu/wrolke/esma6835/sales.txt")

for(i in 1:5) cat(x[i],"\n")

152 278,11 202 998,05 89 060,44
1 803 360,69 24 608,24 49 004,89

812 679,54 186 289,80 95 946,42
171 266,69 208 691,32 28 503,93
56 646,34 41 287,10 15 483,96

these are sales data for some store. We want to find the mean sales amount. So we need to
read the data into R, but there are some issues:

• the data delimits the decimals European-style, using a comma instead of a period.
• for easier readability the million and the thousand are separated by a space.

so the first number really is 152278.11.
How can we do this? To start we need to read the data as a single character string:
x <- paste0()

scan("http://academic.uprm.edu/wrolke/esma6835/sales.txt",
sep="\n"), collapse="")

Let’s see what we have, at least at the beginning:
substring(x, 1, 100)

## [1] " 152 278,11 202 998,05 89 060,44 1 803 360,69 24 608,24 49 004,89 812 679,"

Next we can replace the , with .:
x <- gsub(",", "\\.", x)
substring(x, 1, 100)
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## [1] " 152 278.11 202 998.05 89 060.44 1 803 360.69 24 608.24 49 004.89 812 679."

notice the \\. This is needed because . is a special character in R, it actually needs to be
escaped twice!
Next notice that the numbers are always separated by at least two spaces, so we can split
them up with
x <- strsplit(x, " ")[[1]]
x[1:10]

## [1] "" "" "152 278.11" ""
## [5] " 202 998.05" "" "" "89 060.44"
## [9] "1 803 360.69" ""

Now we can remove any spaces:
x <- gsub(" ", "", x)
x[1:10]

## [1] "" "" "152278.11" "" "202998.05"
## [6] "" "" "89060.44" "1803360.69" ""

and get rid of the "":
x <- x[x!=""]
x[1:10]

## [1] "152278.11" "202998.05" "89060.44" "1803360.69" "24608.24"
## [6] "49004.89" "812679.54" "186289.80" "95946.42" "171266.69"

Almost done:
x <- as.numeric(x)
mean(x)

## [1] 198450

2.10.3 Importing a Data Frame

the standard command to read data from a table into a data frame is read.table.
x <- read.table("c:/folder/file.R")

it has many of the same arguments as scan (for example sep). It also has the argument
header=FALSE. If your table has column names use header=TRUE. The same for row names.
Example:
say the following data is saved in a file named student.data.R:
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ID Age GPA Gender
37416 24 3.3 Female
44884 25 3.9 Female
16139 18 3.2 Male
13116 20 2.7 Female
39257 24 2.9 Female
94248 21 3.7 Female
96640 21 3.3 Female
28566 21 3.6 Female
49054 23 3.5 Male
43416 18 3.2 Male

Now we can use
read.table("c:/folder/student.data.R",

header=TRUE, row.names = 1)

the row.names=1 tells R to use the first column as row names.

2.10.4 Transferring Objects from one R to another

Say you have a few data sets and routines you want to send to someone else. The easiest
thing to do is use dump and source.
dump(c("data1", " data2", "fun1"), "c:/folder/mystuff.R")

Now to read in the stuff simply use
source("c:/folder/mystuff.R")

I often have to transfer stuff from one R project to another, so I wrote myself these two
routines:
dp <- function (x) dump(x, "clipboard")
sc <- function () source("clipboard")

2.10.5 Special File Formats

There are routines to read all sorts of file formats. The most important one is likely read.csv,
which can read Excel files saved in the comma delimited format.

2.10.6 Packages

there are a number of packages written to help with data I/O. We will discuss some of them
later.
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2.10.7 Working on Files

R can also be used to create, copy, move and delete files and folders on your hard drive. The
routines are
dir.create(. . . )
dir.exists(. . . )
file.create(. . . )
file.exists(. . . )
file.remove(. . . )
file.rename(from, to)
file.append(file1, file2)
file.copy(from, to)
You can also get a listing of the files in a folder:
head(dir("c:/R"))

## [1] "bin" "CHANGES" "COPYING" "doc" "etc" "include"

for the folder from which R started use
head(dir(getwd()))

## [1] "_book" "_bookdown.yml" "_bookdown_files" "_main.log"
## [5] "_main.Rmd" "_main.tex"

2.11 Graphs

In this section we will discuss some graphs that are part of base R. Later we will study more
advanced graphics, but it is still a good idea to know how to draw a base graph.

2.11.1 Barcharts

Say we have the data on the number of freshman, sophomores etc at some college:
head(students)

## [1] "Freshman" "Freshman" "Senior" "Freshman" "Freshman" "Freshman"

So here we have a categorical variable. One popular graph for this type of data is the pie
chart,
BUT repeat after me: pie charts are evil!!
A MUCH better alternative are bar charts:
barplot(table(students))
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Note that the argument to bar plot has to be a table.
But this is not quite right, Sophomores should come second. In general, when we have a
categorical variable which has an ordering we should turn it into a factor:
students.fac <-

factor(students,
levels = c("Freshman", "Sophomore",

"Junior", "Senior"),
ordered = TRUE)

tbl.students.fac <- table(students.fac)
barplot(tbl.students.fac)
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There are a number of arguments we find in most graphics routines:
barplot(tbl.students.fac,

main = "Our Students",
xlab = "Class",
ylab = "Counts")
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and then there are arguments specific to the graph:
barplot(tbl.students.fac,

main = "Our Students",
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xlab = "Counts",
ylab = "",
horiz = TRUE,
density = 10,
col = c("lightblue", "mistyrose",

"lightcyan", "lavender"))
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Notice that we can’t see all the y labels. It would be better to have them horizontal as well.
But we also need to make space for them:
par(mai=c(1,2,1,1))
barplot(tbl.students.fac,

main = "Our Students",
xlab = "Counts",
ylab = "",
horiz = TRUE,
density = 10,
las = 1,
col = c("lightblue", "mistyrose",

"lightcyan", "lavender"))
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Here I used the par command to set some parameters for how the graph is drawn. There is a
very long list of such parameters, see the par help file.

2.11.2 Histogram

x <- rnorm(1000, 100, 20)
hist(x,

breaks = 50,
main = "IQ",
xlab = "IQ",
ylab = "Counts")
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The hist command is useful for its side effect of counting:
range(x)

## [1] 40.0 181.2
hist(x,

breaks = c(0, 50, 80, 100, 120, 150, 250),
plot = FALSE)$counts

## [1] 7 143 359 356 129 6

Often we want to compare a histogram with a theoretical curve, say a probability density.
Then we can use the curve command with the argument add=TRUE:
x <- c(rnorm(1500, 100, 20),

rnorm(1000, 140, 10))
hist(x,

breaks = 50,
main = "",
freq=FALSE)

f <- function(x)
1.5*dnorm(x, 100, 20) + dnorm(x, 140, 10)

I <- integrate(f, 0, 200)$value
curve(f(x)/I, from=min(x), to=max(x),

add = TRUE,
col = "blue",
lwd = 2)
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2.11.3 Empirical Distribution Function

plot(ecdf(x))
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2.11.4 Boxplot
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boxplot(x, horizontal = TRUE)
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boxplot(Length~Status, data=mothers)
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2.11.5 Normal Probability Plot

qqnorm(x)
qqline(x)
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2.11.6 Scatterplot

plot(faithful$Eruptions,
faithful$Waiting.Time,
xlab = "Length of last eruption",
ylab = "Time until next eruption",
main = "Old Faithful Guyser")
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Let’s add the least squares regression fit to the graph:
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plot(faithful$Eruptions,
faithful$Waiting.Time,
xlab = "Length of last eruption",
ylab = "Time until next eruption",
main = "Old Faithful Guyser")

abline(lm(Waiting.Time~Eruptions,
data=faithful), lwd=2, lty=2)
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There are a lot of different plotting symbols:
plot(0:16, rep(0, 17), ylim=c(0,1),

type="n", xlab="", ylab="", axes=F)
for(i in 1:15) {

for(k in 1:3) {
points(i, c(0.8, 0.5, 0.2)[k], pch=i+(k-1)*15)
text(i, c(0.9, 0.6, 0.3)[k], label=i+(k-1)*15, adj = 0)

}
}
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Notice the setup of an empty graph!
Also, different line types:
plot(0:7, rep(0, 8), ylim=c(0,1),

type="n", xlab="", ylab="", axes=F)
for(i in 1:6) {

segments(i, 0.2, i, 1, lty=i)
text(i, 0.1, i)

}

1 2 3 4 5 6
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Consider the data set mtcars, which is part of base R. It has data on 32 different cars:
head(mtcars)

## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

say we wish to study the relationship of mpg (Miles per Gallon) and hp (Horsepower) but
also include information on the number of cylinders (either 4, 6 or 8):
cols <- rep("blue", 32)
cols[mtcars$cyl==6] <- "green"
cols[mtcars$cyl==8] <- "red"
plot(mtcars$hp, mtcars$mpg,

xlab = "Horsepower",
ylab = "Miles per Gallon",
col = cols, pch = 20)

legend(250, 33,
paste(c(4, 6, 8), "Cylinders"),
pch = 20,
col = c("blue", "green", "red"))
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Exercise
Do the graph again, but use the cylinder numbers as plotting symbols:
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Let’s add the least squares regression lines for each cylinder separately. We could use the
abline(fit) command, but notice that the hp ranges for the three cylinder types are quite
different. Using abline would draw the fit all the way across the graph. Here is a better
solution:
cls <- c("blue", "green", "red")
plot(mtcars$hp, mtcars$mpg,

xlab = "Horsepower",
ylab = "Miles per Gallon",
col = cols, pch = 20)

legend(250, 33,
paste(c(4, 6, 8), "Cylinders"),
pch = 20,
col = cls)

for(i in c(4, 6, 8)) {
fit <- lm(mpg[cyl==i]~hp[cyl==i],

data=mtcars)
x <- range(mtcars$hp[mtcars$cyl==i])
y <- coef(fit)[1] + coef(fit)[2]*x
segments(x[1], y[1], x[2], y[2],

col=cls[(i-2)/2])
}
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2.11.7 Multiple Graphs

sometimes we want to combine several graphs into one
par(mfrow=c(2, 2))
hist(rnorm(1000), 50,

main="Normal Distribution",
ylab="", xlab="")

hist(rt(1000, 2), 50,
main="t Distribution, df=2",
ylab="", xlab="")

hist(runif(1000), 50,
main="Uniform Distribution",
ylab="", xlab="")

hist(rchisq(1000, 2), 50,
main = expression(paste(chi^2,

" Distribution, df=2")),
ylab="", xlab="")
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This works fine for rectangular arrays. For more complicated graphs we have the layout
command. Let’s create a scatterplot of mpg by hp with marginal boxplots:
layout(matrix(c(2, 0, 1, 3), 2, 2,

byrow = TRUE),
c(3, 1), c(1, 3), TRUE)

par(mar = c(3, 3, 1, 1))
plot(mtcars$hp, mtcars$mpg)
par(mar = c(0, 3, 1, 1))
boxplot(mtcars$hp,

axes = FALSE, horizontal = TRUE)
par(mar = c(3, 0, 1, 1))
boxplot(mtcars$mpg, axes = FALSE)
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2.11.8 Functions that create graphs

When I write a paper or a talk or anything else that requires some graphs I always write a
routine plot.mytalk, which has everything to recreate every graph. This is a great way to not
only make changes if necessary but also to remind myself what I did back years ago when I
wrote it.
So I might have the following function to do the graph above:
figure1 <- function() {

layout(matrix(c(2, 0, 1, 3), 2, 2,
byrow = TRUE),

c(3, 1), c(1, 3), TRUE)
par(mar = c(3, 3, 1, 1))
plot(hp, mpg)
par(mar = c(0, 3, 1, 1))
boxplot(hp, axes = FALSE, horizontal = TRUE)
par(mar = c(3, 0, 1, 1))
boxplot(mpg, axes = FALSE)

}

Note these days I often do this with Rmarkdown instead.

2.11.9 Graphs that don’t look like Graphs

we can use R to make other types of pictures. Consider this diagram, which I use to illustrate
the topic of Cause vs Effect:
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it is actually done with these commands:
plot(c(10, 100), c(40, 100), axes=F,

xlab="", ylab="", type="n")
text(15, 90, "Cause-Effect",

cex=1.2, adj = 0)
text(c(20, 40), c(65, 65), c("X", "Y"),

cex=1.1, adj=0)
arrows(25, 65, 38, 65)
text(56, 90, "Confounding Variable",

cex=1.2, adj=0)
text(c(60, 70, 80), c(50, 75, 50), c("X", "Z", "Y"),

cex=1.1, adj=0)
arrows(70, 70, 62, 55)
arrows(70, 70, 78, 55)

An important example of this are maps:
library(maps)
map("usa")
text(-87.623177, 41.881832, "Chicago", cex=1.3)
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Chicago

People have done some very funny things with this. Run this code in the console (you need
to install the library cowsay first)
library(cowsay)
say("Hello world!", by = "cow")

2.11.10 Printing Graphs

Often we need to save a graph as a png or a postscript file, so we can include it in a webpage
or a latex document. I have to do this often enough I wrote a routine for it:
graph.out <-
function (f, foldername, graphname, format = "png")
{

file <- paste0(foldername, graphname, ".", format)
cat(file)
if (format == "png")

png(file)
if (format == "pdf")

pdf(file)
if (format == "ps")

postscript(file, horizontal = F, pointsize = 17)
if (format == "eps") {

setEPS()
postscript(file, horizontal = F, pointsize = 17)

}
f()
dev.off()
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}

here f is a function that produces a graph, so it might be called like this:
f <- function(x) hist(rnorm(1000), 50)
graph.out(f, "C:/mygraphs", "myhist")

and now there should be a file myhist.png in the folder C:/mygraphs.

2.12 Model Notation

A number of R routines (for example boxplot and lm) use the model notation y~x, which
you should read as y modeled as a function of x. So for example if we want to find the least
squares regression model of y on x we use
lm(y ~ x)

In standard math notation that means fitting an equation of the form

Y = β0 + β1x+ ε

Sometimes one wants to fit a no-intercept model:

Y = β1x+ ε

and this is done with
lm(y ~ x - 1)

If there are two predictors you can
• fit an additive model of the form

Y = β0 + β1x+ β2z + ε

with
lm(y ~ x + z)

• fit a model with an interaction term

Y = β0 + β1x+ β2z + β3x× z + ε

with
lm(y ~ x * z)

In the case of three (or more predictors) there are all sorts of possibilities:
• model without interactions
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Yi = β0 +
n∑
i=1

βixi + ε

lm(y ~ x1 + x2 + x3)

• model with all interactions

Yi = β0 +
n∑
i=1

βixi +
n∑

i,j=1
βijxixj + + ... + β1..nx1 × ..× xn + ε

lm(y ~ (x1 + x2 + x3)^3 )

• model with all pairwise interactions

Yi = β0 +
n∑
i=1

βixi +
n∑

i,j=1
βijxixj + ε

lm(y ~ (x1 + x2 + x3)^2 )

these model descriptions are not unique, for example the last one is equivalent to
lm(y ~ x1 * x2 * x3 - x1:x2:x3)

Sometime we want * to indicate actual multiplication and not interaction. This can be done
with
lm(y ~ x1 + x2 + I(x1*x2))

Another useful one is ., which stands for all +’s, so say (y, x1, x2, x3) are the columns of a
dataframe df, then
lm(y ~ x1 + x2 + x3, data=df )

is the same as
lm(y ~ ., data=df )

and
lm(y ~ .*x3, data=df )

is the same as
lm(y ~ x1 + x2 + x3 + x1*x3 +x2*x3)

if there are more than a few predictors it is usually easier to generate a matrix of predictors:
X <- cbind(x1, x2, x3, x4)
lm(y ~ X)
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2.12.0.1 Case Study: House Prices

we have a list of prices and other information on houses in Albuquerque, New Mexico:
head(albuquerquehouseprice)

## Price Sqfeet Feature Corner Tax
## 1 2050 2650 7 0 1639
## 2 2080 2600 4 0 1088
## 3 2150 2664 5 0 1193
## 4 2150 2921 6 0 1635
## 5 1999 2580 4 0 1732
## 6 1900 2580 4 0 1534

• additive model, all four predictors:
summary(lm(Price ~ Sqfeet +

Feature + Corner + Tax,
data=albuquerquehouseprice))

##
## Call:
## lm(formula = Price ~ Sqfeet + Feature + Corner + Tax, data = albuquerquehouseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -541.9 -73.7 -12.9 66.7 617.7
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 76.6016 60.7064 1.26 0.210
## Sqfeet 0.2668 0.0617 4.33 3.5e-05
## Feature 13.6326 13.2901 1.03 0.307
## Corner -89.0334 42.2067 -2.11 0.037
## Tax 0.6619 0.1088 6.08 2.1e-08
##
## Residual standard error: 171 on 102 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.809, Adjusted R-squared: 0.802
## F-statistic: 108 on 4 and 102 DF, p-value: <2e-16

• additive model, Sqfeet and Features
summary(lm(Price ~ Sqfeet + Feature,

data=albuquerquehouseprice))

##
## Call:
## lm(formula = Price ~ Sqfeet + Feature, data = albuquerquehouseprice)
##
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## Residuals:
## Min 1Q Median 3Q Max
## -1005.4 -99.1 -3.2 75.9 782.0
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.559 67.296 -0.02 0.982
## Sqfeet 0.584 0.039 14.98 <2e-16
## Feature 27.786 14.534 1.91 0.058
##
## Residual standard error: 202 on 114 degrees of freedom
## Multiple R-squared: 0.723, Adjusted R-squared: 0.718
## F-statistic: 148 on 2 and 114 DF, p-value: <2e-16

• model with interaction, Sqfeet and Features
summary(lm(Price ~ Sqfeet * Feature,

data=albuquerquehouseprice))

##
## Call:
## lm(formula = Price ~ Sqfeet * Feature, data = albuquerquehouseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -987.9 -98.8 -0.5 85.0 834.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 396.3758 172.4254 2.30 0.0234
## Sqfeet 0.3203 0.1124 2.85 0.0052
## Feature -75.5710 43.7668 -1.73 0.0870
## Sqfeet:Feature 0.0658 0.0264 2.50 0.0140
##
## Residual standard error: 198 on 113 degrees of freedom
## Multiple R-squared: 0.737, Adjusted R-squared: 0.73
## F-statistic: 106 on 3 and 113 DF, p-value: <2e-16

• model with pairwise interactions:
summary(lm(Price ~ (Sqfeet + Feature +

Corner + Tax)^2,
data=albuquerquehouseprice))

##
## Call:
## lm(formula = Price ~ (Sqfeet + Feature + Corner + Tax)^2, data = albuquerquehouseprice)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -383.9 -82.0 -2.7 56.1 644.3
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.64e+02 1.88e+02 1.40 0.1639
## Sqfeet 2.20e-01 2.01e-01 1.10 0.2759
## Feature -3.65e+01 4.60e+01 -0.79 0.4297
## Corner 4.37e+02 1.56e+02 2.80 0.0061
## Tax 3.18e-01 3.20e-01 0.99 0.3235
## Sqfeet:Feature 4.62e-02 4.44e-02 1.04 0.3011
## Sqfeet:Corner -3.96e-01 1.35e-01 -2.94 0.0041
## Sqfeet:Tax 1.11e-04 1.06e-04 1.04 0.2997
## Feature:Corner -1.88e+01 3.63e+01 -0.52 0.6062
## Feature:Tax -3.49e-02 6.53e-02 -0.53 0.5939
## Corner:Tax 2.51e-01 3.33e-01 0.75 0.4529
##
## Residual standard error: 157 on 96 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.849, Adjusted R-squared: 0.833
## F-statistic: 54 on 10 and 96 DF, p-value: <2e-16

• model with all possible terms:
summary(lm(Price ~ (Sqfeet + Feature +

Corner + Tax)^4,
data=albuquerquehouseprice))

##
## Call:
## lm(formula = Price ~ (Sqfeet + Feature + Corner + Tax)^4, data = albuquerquehouseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -379.6 -80.1 4.7 55.2 650.8
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.81e+02 3.68e+02 1.31 0.19
## Sqfeet 4.32e-02 2.89e-01 0.15 0.88
## Feature -8.41e+01 9.76e+01 -0.86 0.39
## Corner 2.49e+03 2.26e+03 1.10 0.27
## Tax 2.61e-01 5.25e-01 0.50 0.62
## Sqfeet:Feature 8.54e-02 6.73e-02 1.27 0.21
## Sqfeet:Corner -1.94e+00 1.59e+00 -1.22 0.23
## Sqfeet:Tax 1.93e-04 2.55e-04 0.76 0.45
## Feature:Corner -7.82e+02 6.42e+02 -1.22 0.23
## Feature:Tax -3.02e-02 1.35e-01 -0.22 0.82
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## Corner:Tax -2.41e+00 2.48e+00 -0.97 0.33
## Sqfeet:Feature:Corner 5.43e-01 4.33e-01 1.26 0.21
## Sqfeet:Feature:Tax -1.47e-05 5.93e-05 -0.25 0.80
## Sqfeet:Corner:Tax 1.93e-03 1.46e-03 1.32 0.19
## Feature:Corner:Tax 9.28e-01 7.04e-01 1.32 0.19
## Sqfeet:Feature:Corner:Tax -6.34e-04 3.96e-04 -1.60 0.11
##
## Residual standard error: 153 on 91 degrees of freedom
## (10 observations deleted due to missingness)
## Multiple R-squared: 0.863, Adjusted R-squared: 0.841
## F-statistic: 38.3 on 15 and 91 DF, p-value: <2e-16

2.13 Numerical Methods

R has a number of routines useful for numerical analysis

2.13.1 Integration

the basic function for numerical integration is integrate
f <- function(x, a=2) abs(sin(a*pi*x))
curve(f, 0, 1)
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integrate(f, 0, 1)

## 0.6366 with absolute error < 7e-15

the routine returns a list, usually we only want the value of the integral, so
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integrate(f, 0, 1)$value

## [1] 0.6366

integrate allows us to pass additional arguments to f with the . . . convention:
integrate(f, 0, 1, a=1.4)$value

## [1] 0.6118

Internally integrate subdivides the interval into 100 sub-intervals of equal length. Usually
this is enough, but if the function has some sharp peaks this does not work very well. One
solution is to increase the number of intervals:
integrate(f, 0, 1, subdivisions=1e4, a=1.4)$value

## [1] 0.6118

This again can be trouble if the evaluation of the function takes time. In that case you might
want to write your own numerical integration function:

• simple Riemann sum

∫ b

a
f(x)dx ≈

n∑
i=1

f(x∗i )(xi − xi−1)

where xi−1 ≤ x∗i ≤ xi.
x <- seq(0, 1, length=500)
y <- f(x)
mid <- (y[-1]+y[-500])/2
sum(mid)*(x[2]-x[1])

## [1] 0.6366

• Simpson’s Rule

∫ b

a
f(x)dx ≈ x2 − x1

6

n−1∑
i=1

f(xi−1) + 4f(xi) + f(xi+1))

sum(y[-1]+4*y[-2]+y[-3])*(x[2]-x[1])/6

## [1] 0.6366

or any other standard numerical integration formula, see for example Numerical Integration
Formulas

2.13.2 Double Integrals

R doesn’t have a dedicated routine for double integrals but it is easy to use the integrate
function for this as well using the fact that
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∫ ∫
f(x, y)d(x, y) =

∫ {∫
f(x, y)dx

}
dy

double.integral <-
function (f, low = c(0, 0), high = c(Inf, Inf))
{

integrate(function(y) {
sapply(y, function(y) {

integrate(function(x) f(x, y), low[1], high[1])$value
})

}, low[2], high[2])$value
}

f <- function(x, y) exp(2*(-x^2+x*y-y^2)/3)
double.integral(f, low=c(-Inf, -Inf))

## [1] 5.441

Is this right? Let’s check:

exp(2(−x2+xy−y2)/3) = 2π
√

1− (1/2)2

 1
2π
√

1− (1/2)2
exp

{
− 1

2(1− (1/2)2

(
x2 − 2xy(1/2) + y2

)}
but the function inside the brackets is the density of a bivariate normal random variable with
means (0, 0), standard deviations (1, 1) and correlation coefficient 1/2, so this integrates out
to 1. Therefore the integral is
2*pi*sqrt(1-(1/2)^2)

## [1] 5.441

2.13.3 Differentiation

We saw before the D function for finding derivatives:
f.prime <- D(expression(x^3), "x")
f.prime

## 3 * x^2
x <- 3.4; eval(f.prime)

## [1] 34.68
f.prime <- D(expression(x^2*sin(2*pi*x)), "x")
f.prime

## 2 * x * sin(2 * pi * x) + x^2 * (cos(2 * pi * x) * (2 * pi))
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x <- 0.4; eval(f.prime)

## [1] -0.3431

This of course works for higher order derivatives as well:
f.double.prime <- D(D(expression(x^3), "x"), "x")
f.double.prime

## 3 * (2 * x)
x <- 3.4; eval(f.double.prime)

## [1] 20.4
f.double.prime <- D(D(expression(x^2*sin(2*pi*x)), "x"), "x")
f.double.prime

## 2 * sin(2 * pi * x) + 2 * x * (cos(2 * pi * x) * (2 * pi)) +
## (2 * x * (cos(2 * pi * x) * (2 * pi)) - x^2 * (sin(2 * pi *
## x) * (2 * pi) * (2 * pi)))
x <- 0.4; eval(f.double.prime)

## [1] -10.67

Example
The Taylor polynomial of order k of a function f at a point x=a is defined by

T (x; a, k) =
k∑
i=0

dif

dxi
(a)(x− a)i

Let’s write a routine that draws the function and it’s Taylor polynomial of order k:
taylor <- function(f, a, k=1, from, to) {

expr <- parse(text=f)
# x and y coordinates of function

x <- seq(from, to, length=250)
y <- eval(expr)
t <- x

# x value of interest a
x <- a
z <- eval(expr)
taylor.coefficients <- rep(z, k+1)

# create text version of Taylor polynomial
x.text <- ifelse(a==0, "x", paste0("(x-", a,")"))
ttl <- paste0(f, " == ")
if(z==0) nosgn <- TRUE
else {

nosgn <- FALSE
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ttl <- paste0(ttl, round(z, 2))
}
for(i in 1:k) {

expr <- D(expr, "x")
tmp <- eval(expr)
z <- z + eval(expr)*(t-a)^i
tmp <- round(tmp, 2)
if(tmp!=0) {

ttl <- paste0(ttl, " ",
ifelse(nosgn, "", ifelse(tmp>0, "+", "-")),
" ", ifelse(abs(tmp)==1, "", paste0(abs(tmp),"*")),
x.text,
ifelse(i==1, "", paste0("^", i)))

}
nosgn <- FALSE

}
plot(t, y, type="l", lwd=2,

main=parse(text=ttl))
lines(t, z, col="blue")

}
taylor("log(x+1)", a=0, k=1, -0.5, 0.5)
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taylor("log(x+1)", a=0, k=3, -0.5, 0.5)
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Here is another example
taylor("x*sin(x^2)", a=0.86, k=2, from=0, to=2)
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xsin(x2) = 0.58 + 1.77(x − 0.86) + 2.1(x − 0.86)2
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taylor("x*sin(x^2)", a=1.4, k=2, from=0, to=2)
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The D function only works on functions that R recognizes. For other cases you might have to
write your own:
f <- function(x) log(gamma(x))
x <- seq(0.1, 2, length=250)
h <- (x[2]-x[1])
y <- f(x)
y.prime <- (y[-1]-y[-250])/h
mid <- (x[-1]+x[-250])/2
plot(mid, y.prime, type="l",

xlab="x", ylab="")

141



0.5 1.0 1.5 2.0

−
10

−
8

−
6

−
4

−
2

0

x

# Second derivative
y.2.prime <- rep(0, 248)
for(i in 2:249)

y.2.prime[i-1] <- (y[i-1]-2*y[i]+y[i+1])/h^2
plot(x[-c(1, 250)], y.2.prime, type="l",

xlab="x", ylab="")
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2.13.4 Root Finding

A very common problem is to have to solve an equation of the form f(x) = a. As a specific
example we will consider x sin(x2) = 1. Here are some ideas:

• Direct Method (Grid Search)
f <- function(x) x*sin(x^2)
x <- seq(0, 1.2, length=500)
y <- f(x)
curve(f, 0, 1.2, lwd=2)
abline(h=1)
y0 <- x[which.min(abs(y-1))]
abline(v=y0)
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## [1] 1.085

Of course we can combine that with D to find extrema of a function:
f <- function(x) x*sin(x^2)
x <- seq(0.5, 2, length=500)
y <- f(x)
curve(f, 0.5, 2, lwd=2)
y.prime <- eval(D(expression(x*sin(x^2)), "x"))
x0 <- x[which.min(abs(y.prime))]
abline(v=x0)
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c(x0, f(x0))

## [1] 1.354 1.308

An alternative is to use optimize. By default it finds minima, so
optimize(f, c(0.5, 2), maximum = TRUE)

## $maximum
## [1] 1.355
##
## $objective
## [1] 1.308

• uniroot command
R has the function uniroot to find the roots of a univariate function:
f <- function(x) x*sin(x^2)-1
uniroot(f, c(0, 1.2))$root

## [1] 1.084

• polyroot command
In the case of a polynomial one can also use polyroot. Say we want to find the roots of

p(x) = 1 + x− x2 + x4

polyroot(c(1, 1, -1, 0, 1))

## [1] 0.8774+0.7449i -0.7549-0.0000i -1.0000+0.0000i 0.8774-0.7449i
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this gives also the complex solutions. Often we only want the real ones:
z <- polyroot(c(1, 1, -1, 0, 1))
z <- Re(z[round(Im(z), 10)==0])
z

## [1] -0.7549 -1.0000

2.13.5 Higher Dimensional Optimization

If we have a function of more than one variable we can use nlm. Again it finds minima, but
there is no argument maximum=TRUE, so if we want a maximum we have to use -f.
Say we want to maximize

f(x, y) = e−(x−1)2−(y−2)2

(of course it is obvious the answer is 1, 2). Now
f <- function(x) -exp(-(x[1]-1)^2-(x[2]-2)^2)
nlm(f, c(0, 0))

## $minimum
## [1] -1
##
## $estimate
## [1] 1 2
##
## $gradient
## [1] 1.521e-07 -7.605e-08
##
## $code
## [1] 1
##
## $iterations
## [1] 16

Quite useful is the ability to calculate the Hessian matrix, that is H = (hij) and

hij = ∂2f

∂xi∂xj

nlm(f, c(0, 0), hessian = TRUE)

## $minimum
## [1] -1
##
## $estimate
## [1] 1 2
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##
## $gradient
## [1] 1.521e-07 -7.605e-08
##
## $hessian
## [,1] [,2]
## [1,] 2.000e+00 -1.665e-08
## [2,] -1.665e-08 2.000e+00
##
## $code
## [1] 1
##
## $iterations
## [1] 16

This works well as long as we can play a bit with the starting point but can be quite hard to
do in a simulation.
An alternative is optim, which let’s us define boundaries within which the optimum is to be
found. It also has a choice of methods, and sometimes one will work where the others do not.
Example
A very important object is Statistics is the log-likelihood function. Say we have observations
x1, .., xn from some density f(x; θ), where theta is some parameter (vector). Then the
log-likelihood function is defined by

l(θ) =
n∑
i=1

log f(xi; θ)

A standard way to estimate θ is using the method of maximum likelihood, which finds the
maximum of the likelihood function.
Say X ∼ Bernoulli(θ), then

f(x; θ) = θx(1− θ)1−x

log f(x; θ) = x log θ + (1− x) log(1− θ)

l(θ) =
n∑
i=1

x log θ + (1− x) log(1− θ)

Here is an example of what this might look like:
x <- sample(c(0, 1), size=50,

replace=TRUE, prob = c(2, 1))
ll <- function(theta, x) {

y <- length(theta)
for(i in seq_along(theta))

y[i] <- sum(x*log(theta[i]) +
(1-x)*log(1-theta[i]))
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y
}
theta <- seq(0, 1, 0.01)
plot(theta, ll(theta, x=x),

type="l",
xlab=expression(theta),
ylab="log-likelihood")

fn <- function(z) -ll(z, x=x)
# needs function to minimize
tmp <- optim(0.5, fn, lower=0.1, upper=0.9)
unlist(tmp)

## par
## "0.380000338209983"
## value
## "33.2032063282175"
## counts.function
## "6"
## counts.gradient
## "6"
## convergence
## "0"
## message
## "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH"
abline(v=tmp$par)
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Say X ∼ Normal(µ, σ), then
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x <- rnorm(50, 5, 2)
ll <- function(theta, x) {

-sum(log(dnorm(x, theta[1], theta[2])))
}
tmp <- optim(c(0, 1), ll, lower=c(-Inf, 0),

upper=c(Inf, Inf), x=x)
tmp$par

## [1] 5.345 2.113

2.14 Environments and Libraries

WARNING: In what follows I will only discuss a FEW of the issues involved with environments,
and I will simplify them greatly. For a much more detailed discussion see http://adv-r.had.
co.nz/Environments.html.
Let’s start with this:
search()

## [1] ".GlobalEnv" "wine"
## [3] "houseprice" "gasoline"
## [5] "elusage" "mothers"
## [7] "draft" "newcomb"
## [9] "package:parallel" "mtcars"
## [11] "package:RCurl" "package:bitops"
## [13] "package:combinat" "package:leaps"
## [15] "package:bootstrap" "package:maxLik"
## [17] "package:miscTools" "package:modelr"
## [19] "package:gapminder" "package:nycflights13"
## [21] "package:lubridate" "package:tidytext"
## [23] "package:gutenbergr" "package:babynames"
## [25] "package:bindrcpp" "package:magrittr"
## [27] "package:pdftools" "package:data.table"
## [29] "package:rio" "package:gpuR"
## [31] "package:testlib" "package:roxygen2"
## [33] "package:usethis" "package:devtools"
## [35] "package:pryr" "package:maps"
## [37] "package:Hmisc" "package:Formula"
## [39] "package:survival" "package:lattice"
## [41] "package:microbenchmark" "package:mvtnorm"
## [43] "package:random" "wine"
## [45] "package:kableExtra" "package:forcats"
## [47] "package:stringr" "package:dplyr"
## [49] "package:purrr" "package:readr"
## [51] "package:tidyr" "package:tibble"
## [53] "package:tidyverse" "package:knitr"
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## [55] "package:bookdown" "tools:rstudio"
## [57] "package:stats" "package:graphics"
## [59] "package:grDevices" "package:utils"
## [61] "package:datasets" ".MyEnv"
## [63] "package:moodler" "package:wolfr"
## [65] "package:shiny" "package:Rcpp"
## [67] "package:grid" "package:ggplot2"
## [69] "package:methods" "Autoloads"
## [71] "package:base"

These are the environments currently loaded into my R. In some ways you can think of this
as a folder tree, like:
paste0(search(), "/", collapse="")

## [1] ".GlobalEnv/wine/houseprice/gasoline/elusage/mothers/draft/newcomb/package:parallel/mtcars/package:RCurl/package:bitops/package:combinat/package:leaps/package:bootstrap/package:maxLik/package:miscTools/package:modelr/package:gapminder/package:nycflights13/package:lubridate/package:tidytext/package:gutenbergr/package:babynames/package:bindrcpp/package:magrittr/package:pdftools/package:data.table/package:rio/package:gpuR/package:testlib/package:roxygen2/package:usethis/package:devtools/package:pryr/package:maps/package:Hmisc/package:Formula/package:survival/package:lattice/package:microbenchmark/package:mvtnorm/package:random/wine/package:kableExtra/package:forcats/package:stringr/package:dplyr/package:purrr/package:readr/package:tidyr/package:tibble/package:tidyverse/package:knitr/package:bookdown/tools:rstudio/package:stats/package:graphics/package:grDevices/package:utils/package:datasets/.MyEnv/package:moodler/package:wolfr/package:shiny/package:Rcpp/package:grid/package:ggplot2/package:methods/Autoloads/package:base/"

This has the following effect. Say you type
x <- runif(10)
mean(x)

## [1] 0.5682

What has R just done? First it created an object called “x”, and stored it in the folder
“.GlobalEnv”. We can check:
ls()

## [1] "%!in%" "%+b%"
## [3] "a" "A"
## [5] "acorn" "Age"
## [7] "agesex" "agesexUS"
## [9] "aids" "airfilters"
## [11] "airpollution" "albuquerquehouseprice"
## [13] "alcohol" "arrange.arguments"
## [15] "as.binary" "as.sales"
## [17] "babe" "balance"
## [19] "barchart" "barley"
## [21] "bayes.prop" "berkeleyadmissions"
## [23] "binary.2.decimal" "binary.addition"
## [25] "binary_addition" "binner"
## [27] "birthrate" "birthweight"
## [29] "bloodpressure" "bplot"
## [31] "brainandiq" "brainsize"
## [33] "butterflies" "calc.power"
## [35] "calcium" "cancersurvival"
## [37] "cardeaths" "cateyes"
## [39] "cats" "causeofdeath"
## [41] "centre" "change.order"
## [43] "check.packages" "cheese"
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## [45] "chi.gof.test" "chi.ind.test"
## [47] "chromatography" "church"
## [49] "ci.mean.sim" "classsurvey"
## [51] "cleanup" "clouds"
## [53] "cls" "clt.illustration"
## [55] "cols" "company"
## [57] "cont.table" "correlation"
## [59] "counter" "countries"
## [61] "crop" "cuckoo"
## [63] "culture" "d"
## [65] "decimal.2.binary" "df"
## [67] "df1" "diamond"
## [69] "dlr" "dlr.predict"
## [71] "doGraph" "doTbl"
## [73] "double.integral" "dp"
## [75] "draft" "draw.cause.effect"
## [77] "draw.hist" "dropcourse"
## [79] "drownings" "drugaddiction"
## [81] "elusage" "esh"
## [83] "esh1" "ethanol"
## [85] "euros" "examscores"
## [87] "exp1" "f"
## [89] "f.double.prime" "f.prime"
## [91] "f1" "fA"
## [93] "fA.vec" "fabricwear"
## [95] "faithful" "fAvec"
## [97] "fermentation" "fiber"
## [99] "file_list" "filmcoatings"
## [101] "find.data.set" "fish"
## [103] "fit" "fivenumber"
## [105] "flammability" "flplot"
## [107] "fn" "fontcolor"
## [109] "foods" "forbes"
## [111] "friday13" "galton"
## [113] "gasoline" "gehan"
## [115] "gen.cont.table.data" "Gender"
## [117] "GenderCode" "gestation"
## [119] "get.moodle.data" "getfun"
## [121] "gettysburg" "getx"
## [123] "ggMarginal" "ggQQ"
## [125] "golfscores" "GPA"
## [127] "graph.out" "gunsandmurder"
## [129] "h" "headache"
## [131] "hearingaid" "highways"
## [133] "homework" "horsekicks"
## [135] "hostility" "hotdogs"
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## [137] "houseprice" "hpd.beta"
## [139] "hplot" "hubble"
## [141] "hyptest.helper" "i"
## [143] "I" "ibayesprop"
## [145] "ID" "idataio"
## [147] "igetdata" "ihist"
## [149] "ihplot" "info"
## [151] "inormal" "instructor"
## [153] "intplot" "iplot"
## [155] "iplotone" "iq"
## [157] "iqandsize" "is.binary"
## [159] "isCat" "isplot"
## [161] "isubset" "isummary"
## [163] "itemplate" "j"
## [165] "k" "kable.nice"
## [167] "kbins" "krun"
## [169] "kruskalwallis" "kyphosis"
## [171] "larvea" "leukemia"
## [173] "license.plate" "ll"
## [175] "lobster" "logfac"
## [177] "longjump" "ltrs"
## [179] "lunatics" "lung.cancer"
## [181] "lvls" "mallows"
## [183] "mannwhitney" "mcat"
## [185] "mendel" "mid"
## [187] "mines" "mlr"
## [189] "mlr.predict" "mothers"
## [191] "moths" "mplot"
## [193] "multiple.graphs" "mydates"
## [195] "mylist" "n"
## [197] "nested.models.test" "new.yml"
## [199] "newcomb" "normal.check"
## [201] "normal.ex" "nplot"
## [203] "num_a" "num_vowels"
## [205] "olympics" "one.sample.prop"
## [207] "one.sample.t" "one.sample.wilcoxon"
## [209] "one.time.setup" "oneway"
## [211] "painters" "pcbtrout"
## [213] "pearson.cor" "plot.fn"
## [215] "plot.fn0" "plot.sales"
## [217] "plot.salestime" "pop1950x2010"
## [219] "popular" "popularvote"
## [221] "population" "positions"
## [223] "positions_a" "predictors"
## [225] "print.binary" "prop.ps"
## [227] "pval" "race.table"
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## [229] "ratings" "report"
## [231] "results" "rev.wrds"
## [233] "rice" "rock.oil"
## [235] "rocks" "rogaine"
## [237] "rpit" "run.app"
## [239] "salaries" "sales.data"
## [241] "sales.time.data" "salesperson"
## [243] "sc" "seatbelt"
## [245] "setup.rmd" "sexratio"
## [247] "shoesales" "shuttle"
## [249] "sim1" "sim2"
## [251] "singer" "skulls"
## [253] "sleep" "slr"
## [255] "slr.predict" "smoking"
## [257] "smokingandjob" "solder"
## [259] "splot" "st.y"
## [261] "stamps" "stat.table"
## [263] "states" "stats"
## [265] "stats.sales" "stories"
## [267] "student.levels" "students"
## [269] "students.fac" "students.ord"
## [271] "studentsurvey" "studyhabits"
## [273] "sugar" "summary"
## [275] "summary.binary" "sv"
## [277] "t.ps" "taylor"
## [279] "tbl.students.fac" "test.mean.sim"
## [281] "test_sim" "testscores"
## [283] "theta" "titanic"
## [285] "tmp" "tms"
## [287] "trout" "tukey"
## [289] "tv" "twoway"
## [291] "txt" "u"
## [293] "upr" "us.population.2010"
## [295] "usa" "usmap"
## [297] "ustemperature" "v"
## [299] "vowels" "wilcoxon"
## [301] "wine" "wine.all"
## [303] "world.mortality.2017" "worldpopulation"
## [305] "worldseries" "wrds"
## [307] "wrinccensus" "wrincsample"
## [309] "x" "x0"
## [311] "x1" "xyz"
## [313] "y" "y.2.prime"
## [315] "y.prime" "y0"
## [317] "y1" "z"

Next R starts looking for an object called mean. To do that it again first looks into
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“.GlobalEnv”, but we already know it is not there.
Next R looks into “wine”, which we can do with
ls(2, pattern="mean")

## character(0)

and again no luck. This continues until we get to “package:base”:
ls(17, pattern="mean")

## character(0)

and there it is!
If an object is not in any of these environments it will give an error:
ddgdg

## Error in eval(expr, envir, enclos): object 'ddgdg' not found

This makes it clear that a routine that is part of a library can only be found if that library is
loaded.
One difference between a folder tree and this is that R starts looking at the top (in .GobalEnv)
and then works its way down.
There is an easy way to find out in which environment an object is located, with the routine
where in the library pryr :
library(pryr)
where("x")

## <environment: 0x0000021382ba86a8>
where("mean")

## <environment: namespace:base>

Another important consequence of this is that R stops when it finds an object, even if the
one you want is in a later environment. Here is an example:
my.data <- data.frame(x=1:10)
attach(my.data)
mean(x)

## [1] 0.5682
rm(x)
mean(x)

## [1] 5.5
search()[1:3]

## [1] ".GlobalEnv" "my.data" "wine"
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So here is what happens:
• the first time we call mean(x) R finds an x (the original one) in .GlobalEnv, and so

calculates its mean.

• after removing this x, the next time we call mean(x) it looks into the data frame my.data,
finds a variable called x, and now calculates its mean.

Notice that R gives a warning when we attach the data frame, telling us that there are now
two x’s.
The rules that R uses to find things are called scoping rules.
Let’s clean up before we continue:
detach(2)

2.14.1 runtime environments

How does this work when we run a function? To find out we can write a little function:
show.env <- function(){

x <- 1
print(list(ran.in=environment(),

parent=parent.env(environment()),
objects=ls.str(environment())))

}
show.env()

## $ran.in
## <environment: 0x00000213c3259a40>
##
## $parent
## <environment: 0x0000021382ba86a8>
##
## $objects
## x : num 1

this tells us that R ran the function in an environment with a very strange name, which
usually means it was created randomly. We can also see that its parent environment was
.GlobalEnv and that x is an object in it.
This means that any object created inside a function is only known there, it does not overwrite
any objects outside the function. One consequence is that if we need to create some temporary
objects we can use simple names like x or i, even if these already exist outside of the function.
Now where does show.env live?
environment(show.env)

## <environment: 0x0000021382ba86a8>
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Obvious, because that is where we created it!
How about a function inside a function?
show.env <- function() {

f <- function(){
print(list(ran.in=environment(),

parent=parent.env(environment()),
objects=ls.str(environment())))

}
f()
x <- 1
print(list(ran.in=environment(),

parent=parent.env(environment()),
objects=ls.str(environment())))

}
show.env()

## $ran.in
## <environment: 0x00000213bdce2918>
##
## $parent
## <environment: 0x00000213bdce25d0>
##
## $objects
##
## $ran.in
## <environment: 0x00000213bdce25d0>
##
## $parent
## <environment: 0x0000021382ba86a8>
##
## $objects
## f : function ()
## x : num 1

As we expect, the parent environment of f is the runtime environment of show.env.
Sometimes we want to save an object created inside a function to the global environment:
f <- function() {

a<-1
assign("a", a, envir=.GlobalEnv)

}
ls()

## [1] "%!in%" "%+b%"
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## [3] "a" "A"
## [5] "acorn" "Age"
## [7] "agesex" "agesexUS"
## [9] "aids" "airfilters"
## [11] "airpollution" "albuquerquehouseprice"
## [13] "alcohol" "arrange.arguments"
## [15] "as.binary" "as.sales"
## [17] "babe" "balance"
## [19] "barchart" "barley"
## [21] "bayes.prop" "berkeleyadmissions"
## [23] "binary.2.decimal" "binary.addition"
## [25] "binary_addition" "binner"
## [27] "birthrate" "birthweight"
## [29] "bloodpressure" "bplot"
## [31] "brainandiq" "brainsize"
## [33] "butterflies" "calc.power"
## [35] "calcium" "cancersurvival"
## [37] "cardeaths" "cateyes"
## [39] "cats" "causeofdeath"
## [41] "centre" "change.order"
## [43] "check.packages" "cheese"
## [45] "chi.gof.test" "chi.ind.test"
## [47] "chromatography" "church"
## [49] "ci.mean.sim" "classsurvey"
## [51] "cleanup" "clouds"
## [53] "cls" "clt.illustration"
## [55] "cols" "company"
## [57] "cont.table" "correlation"
## [59] "counter" "countries"
## [61] "crop" "cuckoo"
## [63] "culture" "d"
## [65] "decimal.2.binary" "df"
## [67] "df1" "diamond"
## [69] "dlr" "dlr.predict"
## [71] "doGraph" "doTbl"
## [73] "double.integral" "dp"
## [75] "draft" "draw.cause.effect"
## [77] "draw.hist" "dropcourse"
## [79] "drownings" "drugaddiction"
## [81] "elusage" "esh"
## [83] "esh1" "ethanol"
## [85] "euros" "examscores"
## [87] "exp1" "f"
## [89] "f.double.prime" "f.prime"
## [91] "f1" "fA"
## [93] "fA.vec" "fabricwear"
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## [95] "faithful" "fAvec"
## [97] "fermentation" "fiber"
## [99] "file_list" "filmcoatings"
## [101] "find.data.set" "fish"
## [103] "fit" "fivenumber"
## [105] "flammability" "flplot"
## [107] "fn" "fontcolor"
## [109] "foods" "forbes"
## [111] "friday13" "galton"
## [113] "gasoline" "gehan"
## [115] "gen.cont.table.data" "Gender"
## [117] "GenderCode" "gestation"
## [119] "get.moodle.data" "getfun"
## [121] "gettysburg" "getx"
## [123] "ggMarginal" "ggQQ"
## [125] "golfscores" "GPA"
## [127] "graph.out" "gunsandmurder"
## [129] "h" "headache"
## [131] "hearingaid" "highways"
## [133] "homework" "horsekicks"
## [135] "hostility" "hotdogs"
## [137] "houseprice" "hpd.beta"
## [139] "hplot" "hubble"
## [141] "hyptest.helper" "i"
## [143] "I" "ibayesprop"
## [145] "ID" "idataio"
## [147] "igetdata" "ihist"
## [149] "ihplot" "info"
## [151] "inormal" "instructor"
## [153] "intplot" "iplot"
## [155] "iplotone" "iq"
## [157] "iqandsize" "is.binary"
## [159] "isCat" "isplot"
## [161] "isubset" "isummary"
## [163] "itemplate" "j"
## [165] "k" "kable.nice"
## [167] "kbins" "krun"
## [169] "kruskalwallis" "kyphosis"
## [171] "larvea" "leukemia"
## [173] "license.plate" "ll"
## [175] "lobster" "logfac"
## [177] "longjump" "ltrs"
## [179] "lunatics" "lung.cancer"
## [181] "lvls" "mallows"
## [183] "mannwhitney" "mcat"
## [185] "mendel" "mid"
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## [187] "mines" "mlr"
## [189] "mlr.predict" "mothers"
## [191] "moths" "mplot"
## [193] "multiple.graphs" "my.data"
## [195] "mydates" "mylist"
## [197] "n" "nested.models.test"
## [199] "new.yml" "newcomb"
## [201] "normal.check" "normal.ex"
## [203] "nplot" "num_a"
## [205] "num_vowels" "olympics"
## [207] "one.sample.prop" "one.sample.t"
## [209] "one.sample.wilcoxon" "one.time.setup"
## [211] "oneway" "painters"
## [213] "pcbtrout" "pearson.cor"
## [215] "plot.fn" "plot.fn0"
## [217] "plot.sales" "plot.salestime"
## [219] "pop1950x2010" "popular"
## [221] "popularvote" "population"
## [223] "positions" "positions_a"
## [225] "predictors" "print.binary"
## [227] "prop.ps" "pval"
## [229] "race.table" "ratings"
## [231] "report" "results"
## [233] "rev.wrds" "rice"
## [235] "rock.oil" "rocks"
## [237] "rogaine" "rpit"
## [239] "run.app" "salaries"
## [241] "sales.data" "sales.time.data"
## [243] "salesperson" "sc"
## [245] "seatbelt" "setup.rmd"
## [247] "sexratio" "shoesales"
## [249] "show.env" "shuttle"
## [251] "sim1" "sim2"
## [253] "singer" "skulls"
## [255] "sleep" "slr"
## [257] "slr.predict" "smoking"
## [259] "smokingandjob" "solder"
## [261] "splot" "st.y"
## [263] "stamps" "stat.table"
## [265] "states" "stats"
## [267] "stats.sales" "stories"
## [269] "student.levels" "students"
## [271] "students.fac" "students.ord"
## [273] "studentsurvey" "studyhabits"
## [275] "sugar" "summary"
## [277] "summary.binary" "sv"
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## [279] "t.ps" "taylor"
## [281] "tbl.students.fac" "test.mean.sim"
## [283] "test_sim" "testscores"
## [285] "theta" "titanic"
## [287] "tmp" "tms"
## [289] "trout" "tukey"
## [291] "tv" "twoway"
## [293] "txt" "u"
## [295] "upr" "us.population.2010"
## [297] "usa" "usmap"
## [299] "ustemperature" "v"
## [301] "vowels" "wilcoxon"
## [303] "wine" "wine.all"
## [305] "world.mortality.2017" "worldpopulation"
## [307] "worldseries" "wrds"
## [309] "wrinccensus" "wrincsample"
## [311] "x0" "x1"
## [313] "xyz" "y"
## [315] "y.2.prime" "y.prime"
## [317] "y0" "y1"
## [319] "z"
f()
ls()

## [1] "%!in%" "%+b%"
## [3] "a" "A"
## [5] "acorn" "Age"
## [7] "agesex" "agesexUS"
## [9] "aids" "airfilters"
## [11] "airpollution" "albuquerquehouseprice"
## [13] "alcohol" "arrange.arguments"
## [15] "as.binary" "as.sales"
## [17] "babe" "balance"
## [19] "barchart" "barley"
## [21] "bayes.prop" "berkeleyadmissions"
## [23] "binary.2.decimal" "binary.addition"
## [25] "binary_addition" "binner"
## [27] "birthrate" "birthweight"
## [29] "bloodpressure" "bplot"
## [31] "brainandiq" "brainsize"
## [33] "butterflies" "calc.power"
## [35] "calcium" "cancersurvival"
## [37] "cardeaths" "cateyes"
## [39] "cats" "causeofdeath"
## [41] "centre" "change.order"
## [43] "check.packages" "cheese"
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## [45] "chi.gof.test" "chi.ind.test"
## [47] "chromatography" "church"
## [49] "ci.mean.sim" "classsurvey"
## [51] "cleanup" "clouds"
## [53] "cls" "clt.illustration"
## [55] "cols" "company"
## [57] "cont.table" "correlation"
## [59] "counter" "countries"
## [61] "crop" "cuckoo"
## [63] "culture" "d"
## [65] "decimal.2.binary" "df"
## [67] "df1" "diamond"
## [69] "dlr" "dlr.predict"
## [71] "doGraph" "doTbl"
## [73] "double.integral" "dp"
## [75] "draft" "draw.cause.effect"
## [77] "draw.hist" "dropcourse"
## [79] "drownings" "drugaddiction"
## [81] "elusage" "esh"
## [83] "esh1" "ethanol"
## [85] "euros" "examscores"
## [87] "exp1" "f"
## [89] "f.double.prime" "f.prime"
## [91] "f1" "fA"
## [93] "fA.vec" "fabricwear"
## [95] "faithful" "fAvec"
## [97] "fermentation" "fiber"
## [99] "file_list" "filmcoatings"
## [101] "find.data.set" "fish"
## [103] "fit" "fivenumber"
## [105] "flammability" "flplot"
## [107] "fn" "fontcolor"
## [109] "foods" "forbes"
## [111] "friday13" "galton"
## [113] "gasoline" "gehan"
## [115] "gen.cont.table.data" "Gender"
## [117] "GenderCode" "gestation"
## [119] "get.moodle.data" "getfun"
## [121] "gettysburg" "getx"
## [123] "ggMarginal" "ggQQ"
## [125] "golfscores" "GPA"
## [127] "graph.out" "gunsandmurder"
## [129] "h" "headache"
## [131] "hearingaid" "highways"
## [133] "homework" "horsekicks"
## [135] "hostility" "hotdogs"
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## [137] "houseprice" "hpd.beta"
## [139] "hplot" "hubble"
## [141] "hyptest.helper" "i"
## [143] "I" "ibayesprop"
## [145] "ID" "idataio"
## [147] "igetdata" "ihist"
## [149] "ihplot" "info"
## [151] "inormal" "instructor"
## [153] "intplot" "iplot"
## [155] "iplotone" "iq"
## [157] "iqandsize" "is.binary"
## [159] "isCat" "isplot"
## [161] "isubset" "isummary"
## [163] "itemplate" "j"
## [165] "k" "kable.nice"
## [167] "kbins" "krun"
## [169] "kruskalwallis" "kyphosis"
## [171] "larvea" "leukemia"
## [173] "license.plate" "ll"
## [175] "lobster" "logfac"
## [177] "longjump" "ltrs"
## [179] "lunatics" "lung.cancer"
## [181] "lvls" "mallows"
## [183] "mannwhitney" "mcat"
## [185] "mendel" "mid"
## [187] "mines" "mlr"
## [189] "mlr.predict" "mothers"
## [191] "moths" "mplot"
## [193] "multiple.graphs" "my.data"
## [195] "mydates" "mylist"
## [197] "n" "nested.models.test"
## [199] "new.yml" "newcomb"
## [201] "normal.check" "normal.ex"
## [203] "nplot" "num_a"
## [205] "num_vowels" "olympics"
## [207] "one.sample.prop" "one.sample.t"
## [209] "one.sample.wilcoxon" "one.time.setup"
## [211] "oneway" "painters"
## [213] "pcbtrout" "pearson.cor"
## [215] "plot.fn" "plot.fn0"
## [217] "plot.sales" "plot.salestime"
## [219] "pop1950x2010" "popular"
## [221] "popularvote" "population"
## [223] "positions" "positions_a"
## [225] "predictors" "print.binary"
## [227] "prop.ps" "pval"

161



## [229] "race.table" "ratings"
## [231] "report" "results"
## [233] "rev.wrds" "rice"
## [235] "rock.oil" "rocks"
## [237] "rogaine" "rpit"
## [239] "run.app" "salaries"
## [241] "sales.data" "sales.time.data"
## [243] "salesperson" "sc"
## [245] "seatbelt" "setup.rmd"
## [247] "sexratio" "shoesales"
## [249] "show.env" "shuttle"
## [251] "sim1" "sim2"
## [253] "singer" "skulls"
## [255] "sleep" "slr"
## [257] "slr.predict" "smoking"
## [259] "smokingandjob" "solder"
## [261] "splot" "st.y"
## [263] "stamps" "stat.table"
## [265] "states" "stats"
## [267] "stats.sales" "stories"
## [269] "student.levels" "students"
## [271] "students.fac" "students.ord"
## [273] "studentsurvey" "studyhabits"
## [275] "sugar" "summary"
## [277] "summary.binary" "sv"
## [279] "t.ps" "taylor"
## [281] "tbl.students.fac" "test.mean.sim"
## [283] "test_sim" "testscores"
## [285] "theta" "titanic"
## [287] "tmp" "tms"
## [289] "trout" "tukey"
## [291] "tv" "twoway"
## [293] "txt" "u"
## [295] "upr" "us.population.2010"
## [297] "usa" "usmap"
## [299] "ustemperature" "v"
## [301] "vowels" "wilcoxon"
## [303] "wine" "wine.all"
## [305] "world.mortality.2017" "worldpopulation"
## [307] "worldseries" "wrds"
## [309] "wrinccensus" "wrincsample"
## [311] "x0" "x1"
## [313] "xyz" "y"
## [315] "y.2.prime" "y.prime"
## [317] "y0" "y1"
## [319] "z"
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One place where this is useful is if you have a routine like a simulation that runs for a long
time and you want to save intermediate results.
As we just saw, environments can come about by loading libraries, by attaching data frames
(also lists) and (at least for a short while) by running a function. In fact we can also make
our own:
test_env <- new.env()
attach(test_env)
search()[1:3]

## [1] ".GlobalEnv" "test_env" "wine"

Now we can add stuff to our environment using the list notation:
test_env$a <- 1
test_env$fun <- function(x) x^2
ls(2)

## character(0)

Where are a and fun? Ops, we forgot to attach test_env:
attach(test_env)
ls(2)

## [1] "a" "fun"
search()[1:3]

## [1] ".GlobalEnv" "test_env" "test_env"

note that we had to attach the environment again for the two new objects to be useful, but
now we have two of them. It would be better if we detached it first.
Actually, let’s detach it completely
detach(2)
search()

## [1] ".GlobalEnv" "wine"
## [3] "houseprice" "gasoline"
## [5] "elusage" "mothers"
## [7] "draft" "newcomb"
## [9] "package:parallel" "mtcars"
## [11] "package:RCurl" "package:bitops"
## [13] "package:combinat" "package:leaps"
## [15] "package:bootstrap" "package:maxLik"
## [17] "package:miscTools" "package:modelr"
## [19] "package:gapminder" "package:nycflights13"
## [21] "package:lubridate" "package:tidytext"
## [23] "package:gutenbergr" "package:babynames"
## [25] "package:bindrcpp" "package:magrittr"
## [27] "package:pdftools" "package:data.table"
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## [29] "package:rio" "package:gpuR"
## [31] "package:testlib" "package:roxygen2"
## [33] "package:usethis" "package:devtools"
## [35] "package:pryr" "package:maps"
## [37] "package:Hmisc" "package:Formula"
## [39] "package:survival" "package:lattice"
## [41] "package:microbenchmark" "package:mvtnorm"
## [43] "package:random" "wine"
## [45] "package:kableExtra" "package:forcats"
## [47] "package:stringr" "package:dplyr"
## [49] "package:purrr" "package:readr"
## [51] "package:tidyr" "package:tibble"
## [53] "package:tidyverse" "package:knitr"
## [55] "package:bookdown" "tools:rstudio"
## [57] "package:stats" "package:graphics"
## [59] "package:grDevices" "package:utils"
## [61] "package:datasets" ".MyEnv"
## [63] "package:moodler" "package:wolfr"
## [65] "package:shiny" "package:Rcpp"
## [67] "package:grid" "package:ggplot2"
## [69] "package:methods" "Autoloads"
## [71] "package:base"

Why would you want to make a new environment? I have one called .MyEnv that is created
at startup. It has a set of small functions that I like to have available at all times but I don’t
want to “see” them when I run ls().
ls(".MyEnv")

## [1] "dp" "h" "hh" "ht" "ip" "mcat" "s" "sc" "sr" "trw"

If an object is part of a package that is installed on your computer you can also use it without
loading the package with the :: operator. As an example consider the package mailR, which
has the function send.mail to send emails from within R:
args(mailR::send.mail)

## function (from, to, subject = "", body = "", encoding = "iso-8859-1",
## html = FALSE, inline = FALSE, smtp = list(), authenticate = FALSE,
## send = TRUE, attach.files = NULL, debug = FALSE, ...)
## NULL

Some R texts suggest to avoid using attach at all, and to always use ::. The reason is that
what works on your computer with its specific setup may not work on someone elses. My
preference is to use :: if I use a function in this package just once but to attach the package
if I use the function several times.
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2.14.2 Packages

As we have already seen, packages/libraries are at the heart of R. Mostly it is where
we can find routines already written for various tasks. The main repository is at https:
//cran.r-project.org/web/packages/. Currently there are over 14500!
In fact, that is a problem: for any one task there are likely a dozen packages that would work.
Finding the one that works for you is not easy!
Once you decide which one you want you can download it by clicking on the Packages tab in
RStudio, select Install and typing the name. Occasionally RStudio won’t find it, then you
can do it manually:
install.packages("pckname")

Useful arguments are
• lib: the folder on you hard drive where you want to store the package (usually c:/R/lib).

• repos: the place on the internet where the package is located (if not it pops up a list to
choose from).

• dependencies=TRUE will also download any additional packages required.
Notice that this only downloads the package, you still have to load it into R:
library(mypcks)

If you install a new version of R you want to update all the packages:
update.packages(ask=FALSE)

Note sometimes after a major upgrade this fails, and you have to update each package one
by one. The last time this happened was after the upgrade from Ver 3.4.0 to 3.5.0.

2.14.3 Creating your own library

It has been said that as soon as your project has two functions, make a library. While that
might be a bit extreme, putting a collection of routines and data sets into a common library
certainly is worthwhile. Here are the main steps to do so:
First we need a couple of libraries. If you are using RStudio (and you really should when
creating a library), you likely have them already. If not get them as usual:
## install.packages("devtools")
library(devtools)
## devtools::install_github("klutometis/roxygen")
library(roxygen2)

First let’s make a new folder for our project and a folder called R inside of it:
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create("../testlib")

Open an explorer window and go to the folder testlib
Open the file DESCRIPTION. It looks like this:

Package: testlib
Title: What the Package Does (one line, title case)
Version: 0.0.0.9000
Authors@R: person(“First”, “Last”, email = “first.last@example.com”, role = c(“aut”, “cre”))
Description: What the package does (one paragraph).
Depends: R (>= 3.5.0)
License: What license is it under?
Encoding: UTF-8
LazyData: true

and so we can change it to

Package: testlib
Title: Test Library Version: 0.0.0.9000
Authors@R: person(“W”, “R”, email = “w.r@gmail.com”, role = c(“aut”, “cre”))
Description: Let’s us learn how to make our own libraries
Depends: R (>= 3.5.0)
License: Free
Encoding: UTF-8
LazyData: true

Next we have to put the functions we want to have in our library into the R folder:
f1 <- function(x) x^2
f2 <- function(x) sqrt(x)
dump("f1", "../testlib/R/f1.R")
dump("f2", "../testlib/R/f2.R")

Let’s change the working directory to testlib and check what we have in there:
setwd("../testlib")
dir()

## [1] "Data" "DESCRIPTION" "NAMESPACE" "R"
## [5] "testlib.Rproj"
dir("R")

## [1] "f1.R" "f2.R"
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Often we also want some data sets as part of the library:
test.x <- 1:10
test.y <- c(2, 3, 7)
use_data(test.x, test.y)
dir("Data")

## [1] "test.x.rda" "test.y.rda"

Notice that this saves the data in the .rda format, which is good because this format can be
read by R very fast.
In the next step we need to add comments to the functions.
Eventually these are the things will appear in the help files. They are
# ' f1 Function
# '
# ' This function finds the square.
# ' @param x.
# ' @keywords square
# ' @export
# ' @examples
# ' f1(2)

and the corresponding one for f2.
Now we need to process the documentation:
document()

One step left. You need to do this one from the parent working directory that contains the
testlib folder.
setwd("..")
install("testlib")

Note if you now look into the folder C:/R/library there will be a folder testlib, which is this
library.
Let’s check:
library(testlib)
search()[1:4]

## [1] ".GlobalEnv" "wine" "houseprice" "gasoline"
ls(2)

## [1] "Country" "Heart.Disease.Deaths" "Wine.Consumption"
f1(2)

## [1] 4
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f2(2)

## [1] 1.414

And that’s it!
Now there will be two folders with the name testlib:

• the one we just created

• another one in the default library folder. On Windows machines that is usually
../R/library and on Macs /Library/Frameworks/R.framework/Resources/library .

These two are NOT the same and only the second one is an actual R library. In essence the
install command takes the first folder and turns it into a library that it puts in the place
where R can find it.

I have several libraries that I often change, so I wrote a small routine to make it easy:
# ' make.library
# '
# ' This function creates a library called name in folder
# ' @param name name of library
# ' @param folder folder with library files
# ' @export
# ' @examples
# ' make.library("moodlr", folder="c:/files")

make.library <- function (name, folder)
{

library(devtools)
library(roxygen2)
olddir <- getwd()
setwd(folder) # go where you need to be
document() # make lib
setwd("..")
install(name)
setwd(olddir) # go back

}

so when I make a change to one of the routines in (say) wolfr all I need to do is run
make.library(name="wolfr",

folder="c:/wolfgang/R/mylibs")

Note that ultimately a library is a folder. You can send someone a library by sending them
the folder (usually as a compressed zip file)
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2.15 Customizing R

There are quite a few things that one might want to change from the defaults of R. For
example, I prefer a certain editor when writing a function, and there are a number of libraries
that I will need sooner or later, so I would like to have them loaded. Also, over the years
I have written a number of small routines that I use for various tasks, and I want them
available at any time.

2.15.1 .First and .Rprofile

The two routines to set up things the way I want are
• .First, to set up stuff specific to the project I am working on.

• .Rprofile, to set up stuff I need regardless of the current project.
Note that the . in front means that you can’t see this object when you run ls(). You can
however with
ls(all.names = TRUE)

The .First is part of the .RData file whereas the .Rprofile is separate.
When R starts it looks for a file called .Rprofile and executes any commands therein. Then it
runs the routine .First.
Well, at least that is how it used to be when we were using the command console. For reasons
never explained (and much complained about by the users) RStudio ignores the .First file at
startup, so we will need to have a work around.
Let’s start with a simple .Rprofile. This is a stand-alone file usually located in your default
working directory. You can find out what that is by running
dir("~")

On machines running Win10 it is usually the C:/Users/YourName/Documents folder.
Exactly in what folder the .Rprofile should be in is bit of a mystery, it depends not just on
your operating system but even on its version. You might need to do a bit of trial and error!

So here is what (part of) mine looks like:
options(show.signif.stars=FALSE) # for p-values
options(stringsAsFactors=FALSE) # a classic source of errors
library(ggplot2)
library(wolfr) # Two of my own
library(moodler)
.MyEnv <- new.env()
.MyEnv$sc <- function() source(“clipboard”)
.MyEnv$dp <- function(x) { dump(x,“clipboard”) }
.MyEnv$ip <- function(x) { # Install and immediately load a package
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install.packages(x, lib = “C:/R/library”)
library(x, character.only = TRUE)
}
attach(.MyEnv)
if(“First.R” %in% dir()) {# check whether there is a .First
source(“First.R”)
.First()
}
cat(“\nSuccessfully loaded .Rprofile at”, date(), “\n”)

So it changes a few options, loads some libraries, makes a new environment and defines a few
functions. Finally it checks the directory from where the Rproject was started to see whether
it contains a file First.R. If so it loads and executes it as well.
Say this project is about writing a shiny app, then the First.R would have the line
library(shiny)
Notice because a single .Rprofile sits in the default working directory the same one gets
executed every time I start RStudio, but different working directories might have different
First.R’s (or none)

2.15.2 Dropbox

Disclaimer: I discuss here Dropbox, but there are other companies that offer the same service
and this is not meant as an endorsement of Dropbox (although I do like it myself!).
Dropbox is a cloud based storage site. For me it helps to solve a number of issues:

• backup: done automatically
• version control: Dropbox keeps all old versions, so if (when!!!) you save a file and then

see that this was a mistake you can always go back and find a previous (good) version.
• keep things consistent: I have a number of computers, I don’t want to have to work on

keeping them synchronized. When I change a file in a Dropbox folder on one computer
and then go to another, as soon as the new file is uploaded I got it there as well.

• availability: I can get to my files anyplace, anytime.
• deal with submissions of students, avoids email

so I have a folder named R in the Dropbox folder. Inside that I have many folders, one for
each project.
There is a bit of an issue with this: every minute or so Dropbox wants to synchronize,
but RStudio “sees” this and shows an annoying pop-up. To avoid that, open Dropbox by
right-clicking the icon on the task bar, select the settings icon, choose preferences, click on
the Sync button, selective sync, and uncheck the box of the Rproj folder.
Now of course Dropbox won’t save anything automatically, so don’t forget to do it regularly
yourself!
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3 Extending R, Packages

3.1 Graphics with ggplot2

A large part of this chapter is taken from various works of Hadley Wickham. Among others
The layered grammar of graphics and R for Data Science.

3.1.1 Why ggplot2?

Advantages of ggplot2
• consistent underlying grammar of graphics (Wilkinson, 2005)

• plot specification at a high level of abstraction

• very flexible

• theme system for polishing plot appearance

• mature and complete graphics system

• many users, active mailing list

3.1.2 Grammar of Graphics

In 2005 Wilkinson, Anand, and Grossman published the book “The Grammar of Graphics”.
In it they laid out a systematic way to describe any graph in terms of basic building blocks.
ggplot2 is an implementation of their ideas.
The use of the word grammar seems a bit strange here. The general dictionary meaning of
the word grammar is:
the fundamental principles or rules of an art or science
so it is not only about language.
As our running example we will use the mtcars data set. It is part of base R and has
information on 32 cars:

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
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Say we want to study the relationship of hp and mpg. So we have two quantitative variables,
and therefore the obvious thing to do is a scatterplot. But there are a number of different
ways we can this:
attach(mtcars)
par(mfrow=c(2, 2))
plot(hp, mpg, main="Basic Graph")
plot(hp, mpg, pch="x", main="Change Plotting Symbol")
plot(hp, mpg, cex=2, main="Change Size")
plot(hp, mpg, main="With Fit");abline(lm(mpg~hp))
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The basic idea of the grammar of graphs is to separate out the parts of the graphs: there
is the basic layout, there is the data that goes into it, there is the way in which the data
is displayed. Finally there are annotations, here the titles, and possibly more things added,
such as a fitted line. In ggplot2 you can always change one of these without worrying how
that change effects any of the others.
Another way of looking at it this: in ggplot2 you build a graph like a lasagna: layer by layer.
Take the graph on the lower left. Here I made the plotting symbol bigger (with cex=2). But
now the graph doesn’t look nice any more, the first and the last circle don’t fit into the graph.
The only way to fix this is to start all over again, by making the margins bigger:
plot(hp, mpg, cex=2, ylim=range(mpg)+c(-1, 1))
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and that is a bit of work because I have to figure out how to change the margins. In ggplot2
that sort of thing is taken care of automatically!
Let’s start by recreating the first graph above.
ggplot(mtcars, aes(hp, mpg)) +

geom_point()
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this has the following logic:
• ggplot sets up the graph
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• it’s first argument is the data set (which has to be a dataframe)

• aes is the aestetic mapping. It connects the data to the graph

• geom is the geometric object (circle, square, line) to be used in the graph. Here it is
points.

Note ggplot2 also has the qplot command. This stands for quick plot
qplot(hp, mpg, data=mtcars)
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This seems much easier at first (and it is) but the qplot command is also very limited. Very
quickly you want to do things that aren’t possible with qplot, and so I won’t discuss it further
here.
Note consider the following variation:
ggplot(mtcars) +

geom_point(aes(hp, mpg))
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again it seems to do the same thing, but there is a big difference:
• if aes(x, y) is part of ggplot, it applies to all the geom’s that come later (unless a

different one is specified)

• an aes(x, y) as part of a geom applies only to it.

How about the problem with the graph above, where we had to increase the y margin?
ggplot(mtcars, aes(hp, mpg)) +

geom_point(shape=1, size=5)
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so we see that here this is done automatically.

Let’s say we want to identify the cars by the number of cylinders:
ggplot(mtcars, aes(hp, mpg, color=cyl)) +

geom_point()
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Notice that the legend is a continuous color scale. This is because the variable cyl has values
4, 6, and 8, and so is identified by R as a numeric variable. In reality it is categorical (ever
seen a car with 1.7 cylinders?), and so we should change that:
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mtcars$faccyl <- factor(cyl,
levels = c(4, 6, 8),
ordered = TRUE)

ggplot(mtcars, aes(hp, mpg, color=faccyl)) +
geom_point()
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we can also change the shape of the plotting symbols:
ggplot(mtcars, aes(hp, mpg, shape=faccyl)) +

geom_point()
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or both:
ggplot(mtcars, aes(hp, mpg, shape=faccyl, color=faccyl)) +

geom_point()
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let’s pretty up the graph a bit with some labels and a title. We will be playing around with
this graph for a while, so I will save some intermediate versions:
plt1 <- ggplot(mtcars, aes(hp, mpg, color=faccyl)) +

geom_point()
plt2 <- plt1 +

labs(x = "Horsepower",
y = "Miles per Gallon",
color = "Cylinders",
title = "Mileage goes down as Horsepower goes up")

plt2
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Say we want to add the least squares regression lines for cars with the same number of
cylinders:
plt3 <- plt2 +

geom_smooth(method = "lm", se = FALSE)
plt3
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There is another way to include a categorical variable in a scatterplot. The idea is to do
several graphs, one for each value of the categorical variable. These are called facets:
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plt3 +
facet_wrap(~cyl)
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The use of facets also allows us to include two categorical variables:
mtcars$facgear <-

factor(gear, levels = 3:5, ordered = TRUE)
ggplot(mtcars, aes(hp, mpg, color=faccyl)) +

geom_point(size = 1) +
labs(x = "Horsepower",

y = "Miles per Gallon",
color = "Cylinders",
title = "Mileage goes down as Horsepower goes up") +

geom_smooth(method = "lm", se = FALSE)
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This is almost a bit to much, with just 32 data points there is not really enough for such a
split.

3.1.3 Histograms

x <- rnorm(1000, 100, 30)
df3 <- data.frame(x = x)
bw <- diff(range(x))/50 # use about 50 bins
ggplot(df3, aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x", y = "Counts")
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Often we do histograms scaled to integrate to one. Then we can add the theoretical density
and/or a nonparametric density estimate:
x <- seq(0, 200, length=250)
df4 <- data.frame(x=x, y=dnorm(x, 100, 30))
ggplot(df3, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x", y = "Density") +
geom_line(data = df4, aes(x, y),

colour = "blue") +
geom_density(color = "red")
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Notice the red line on the bottom. This should not be there but seems almost impossible to
get rid of!
Here is another interesting case: say we have two data sets and we wish to draw the two
histograms, one overlaid on the other:
df5 <- data.frame(

x = c(rnorm(100, 10, 3), rnorm(80, 12, 3)),
y = c(rep(1, 100), rep(2, 80)))

ggplot(df5, aes(x=x)) +
geom_histogram(data = subset(df5, y == 1),

fill = "red", alpha = 0.2) +
geom_histogram(data = subset(df5, y == 2),

fill = "blue", alpha = 0.2)
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Notice the use of alpha. In general this “lightens” the color so we can see “behind”.

3.1.4 Boxplots

y <- rnorm(120, 10, 3)
x <- rep(LETTERS[1:4], each=30)
y[x=="B"] <- y[x=="B"] + rnorm(30, 1)
y[x=="C"] <- y[x=="C"] + rnorm(30, 2)
y[x=="D"] <- y[x=="D"] + rnorm(30, 3)
df6 <- data.frame(x=x, y=y)
ggplot(df6, aes(x, y)) +

geom_boxplot()
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strangely enough doing a boxplot without groups takes a little work. We have to “invent” a
categorical variable:
ggplot(df6, aes(x="", y)) +

geom_boxplot() +
xlab("")
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There is a modern version of this graph called a violin plot:
ggplot(df6, aes(x="", y)) +

geom_violin() +
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xlab("")
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3.1.5 Barcharts

x <- sample(LETTERS[1:5],
size = 1000,
replace = TRUE,
prob = 6:10)

df7 <- data.frame(x=x)
ggplot(df7, aes(x)) +

geom_bar(alpha=0.75, fill="lightblue") +
xlab("")
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Say we want to draw the graph based on percentages. Of course we could just calculate them
and then do the graph. Here is another way:
ggplot(df7, aes(x=x)) +

geom_bar(aes(y=100*(..count..)/sum(..count..)),
alpha = 0.75,
fill = "lightblue") +

labs(x="", y="Percentages")
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Notice how this works: in geom_bar we use a new aes, but the values in it are calculated
from the old data frame.
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Finally an example of a contingency table.
df7$y <- sample(c("X", "Y"),

size = 1000,
replace = TRUE,
prob = 2:3)

ggplot(df7, aes(x=x, fill = y)) +
geom_bar(position = "dodge") +

scale_y_continuous(labels=scales::percent) +
labs(x="", y="Percentages", fill="Y")
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3.1.6 Axis Ticks and Legend Keys

Let’s return to the basic plot of mpg by hp. Let’s say we want to change the axis tick marks:
ggplot(mtcars, aes(hp, mpg)) +

geom_point() +
scale_x_continuous(breaks = seq(50, 350, by=25)) +
scale_y_continuous(breaks = seq(0, 50, by=10))
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sometimes we want to do graphs without any tick labels. This is useful for example for maps
and also for confidential data, so the viewer sees the relationship but can’t tell the sizes:
ggplot(mtcars, aes(hp, mpg)) +

geom_point() +
scale_x_continuous(labels = NULL) +
scale_y_continuous(labels = NULL)
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By default ggplot2 draws the legends on the right. We can however change that. We can
also change the appearance of the legend. Recall that the basic graph is in plt2. Then
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plt2 +
theme(legend.position = "bottom") +
guides(color=guide_legend(nrow = 1,

override.aes = list(size=4)))
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3.1.7 Special Symbols in Labels etc.

Consider this boxplot:
plt <- ggplot(df, aes(x, y)) +
geom_boxplot() +
labs(x="")

plt
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Now it turns out that this are measurements of some chemical concentrations, and the name
of A is really N0π and of B it is αCo2. It would be nice to use these in the graph:
plt +
scale_x_discrete(labels =

c(expression(paste("N"[0], pi)),
expression(paste(alpha, "Co"^2))))
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Unfortunately the exact syntax differs when changing labels, annotations, titles etc, and it
can sometimes take a bit of work to find the right one.
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3.1.8 Saving the graph

It is very easy to save a ggplot2 graph. Simply run
ggsave("myplot.pdf")

it will save the last graph to disc.
One issue is figure sizing. You need to do this so that a graph looks “good”. Unfortunately
this depends on where it ends up. A graph that looks good on a web page might look ugly in
a pdf. So it is hard to give any general guidelines.
If you use R markdown, a good place to start is with the chunk arguments fig.with=6 and
out.width=“70%”. In fact on top of every R markdown file I have a chunk with
library(knitr)
opts_chunk$set(fig.width=6,

fig.align = "center",
out.width = "70%",
warning=FALSE,
message=FALSE)

so that automatically every graph is sized that way. I also change the default behavior of the
chunks to something I like better!

3.2 C++ with Rcpp

3.2.1 Basics

For this section you will need the Rcpp and the microbenchmark packages.
library(Rcpp)
library(microbenchmark)

C++ is probably the most widely used general programming language today. Actually, about
half the code of base R is written in C++! (the rest is about half and half R and Fortran)
Sometimes when you have some code that takes a while to run it is worthwhile to spend
some time speeding it up. One way to do this is to rewrite part of the code in C++.
Say we have the following problem: we have a data set with points (x, y) and for each point
we want to find the Euclidean distance to the origin d =

√
x2 + y2. Here is a simple routine

to do this:
dist1 <- function(x, y) {

n <- length(x)
d <- rep(0, n)
for(i in 1:n) d[i] <- sqrt(x[i]^2+y[i]^2)
d

}
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Let’s see how long this takes:
x <- rnorm(1e6)
y <- rnorm(1e6)
summary(microbenchmark(dist1(x, y)))["mean"]

## [1] NA

Now of course we can immediately speed things up by vectorizing the routine:
dist2 <- function(x, y) {

sqrt(x^2+y^2)
}
tmpR <- round(as.numeric(summary(microbenchmark(dist2(x, y)))["mean"]), 2)
tmpR

## [1] NA

Can we do even better?
# include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector dist3(NumericVector x, NumericVector y) {
int n=x.length();
NumericVector dist(n);
for (int i=0; i<n; ++i) dist[i]=sqrt(x[i]*x[i]+y[i]*y[i]);
return dist;

}

summary(microbenchmark(dist3(x, y)))["mean"]

## [1] NA

Note: in the R markdown document the above chunk starts like this:
“‘{r engine=‘Rcpp’}
this tells R markdown to treat this chunk as Rcpp code and compile it accordingly.
Actually, we can even do better than that:
# include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector dist4(NumericVector x, NumericVector y) {

NumericVector dist;
dist=sqrt(x*x+y*y);
return dist;

}

tmpRcpp <- round(as.numeric(summary(microbenchmark(dist4(x, y)))["mean"]), 2)
tmpRcpp
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## [1] NA

Those of you who already know a bit of C++ are going to be quite amazed, because this is
not even C++, it is sort of “vectorized” C++!

Now the difference between NA and NA milliseconds (the fastest non-C++ time) might not
seem like much, but imagine if we had to run this routine one million times, then the R
routine would take NA ∗10−3 × 106/3600 = NA hours, but the Cpp routine takes only NA
hours. Writing it takes literally 1 minute! (assuming you know how)
To start let’s discuss a few differences between R and C++ syntax:

• in C++ every variable has to be explicitly defined.
the most common data types are int, double, char and bool.

• in C++ (almost) every line ends with a ;

• vectors start with index 0, not 1

• the for loop is for(int i=0; i<n; ++i)

• the repeat loop is called a do loop and has the format
do {
# do stuff
} while( condition );

• whereas R does a lot of type conversion, C++ does none. This can lead to occasional
strange behavior:

# include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
double mydiv(int n, int m) {

return n/m;
}

mydiv(5, 2)

## [1] 2

so the result is 2, not 2.5. The reason is that when we divide two integers, in C++ the result
is always an integer.
The get the correct result we need to do the type conversion ourselves:
# include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
double mydiv(int n, int m) {
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return n/double(m);
}

mydiv(5, 2)

## [1] 2.5

To be linked to R the C++ routine has to start with with these lines:
# include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]

}

The easiest way to get started is to just use RStudio - File - New File - C++ File.
If the C++ routine takes as its argument a single value it can be defined in the usual C++
way, as in the mydiv routine. If we want to use a vector as an argument or the return object
we need to use a special variable type called NumericVector. It is just what it says it is.

3.2.2 Debugging

Generally you should only turn fairly short code into C++, so debugging is not to big a
problem. However, on occasion you might want to add a print statement to your code, so
you can find out where it fails. here is how:
# include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector dist5(NumericVector x, NumericVector y) {
int n=x.length();
NumericVector dist(n);
for(int i=0; i<n; ++i) {

dist[i]=sqrt(x[i]*x[i]+y[i]*y[i]);
Rcout<<i<<" "<<dist(i)<<"\n";

}
return dist;

}

dist5(x[1:5], y[1:5])

## 0 0.953316
## 1 0.982095
## 2 0.531598
## 3 0.841642
## 4 0.618781
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## [1] 0.9533 0.9821 0.5316 0.8416 0.6188

3.2.3 Sugar

Not only is Rcpp vectorized, many standard R functions have been ported to Rcpp. For
example, say we want to write a routine that simulates Brownian motion in R2. That is, a
stochastic process that moves as follows: if at time t it is at (x0, y0), then at time t+ δ it is
at (x0 + δX, y0 + δY ) where X, Y ∼ N(0, 1).
Note: generating stochastic process can be quite slow in R because they are difficult to
vectorize, with one step of a loop depending on the previous one.
The output of our function is going to be a nx2 matrix, so we will use the data type
NumericMatrix.
# include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericMatrix bw(int n, double delta) {
NumericMatrix xy(n, 2);
xy(0, 0) = 0;
xy(0, 1) = 0;
for(int i=2; i<n; ++i) {

xy(i, 0) = xy(i-1, 0) + delta*rnorm(1)[0];
xy(i, 1) = xy(i-1, 1) + delta*rnorm(1)[0];

}
return xy;

}

plot(bw(10000, 1),
type = "l",
xlab = "x",
ylab = "y",
col = "blue")

196



−60 −40 −20 0 20 40 60

−
25

0
−

15
0

−
50

0

x

y

Notice the term rnorm(1)[0], a little different from the standard R usage.
Anyone (like me!) who ever had to write a routine in C++ and needed a simple routine like
rnorm which does not exist in C++ will find this very sweet! And that is why it is called
sugar!

3.2.3.1 Example Fibonacci Numbers and the Golden Ratio

let’s write a routine that calculates the golden ratio via the Fibonacci numbers. First, these
are defined by

n0 = 1
n1 = 1
nk = nk−1 + nk−2

and the golden ratio is the limit

lim
k→∞

nk
nk−1

because of its definition the Fibonacci numbers are most easily calculated using recursion:
fibR <- function(n) {
if(n==0) return(0)
if(n==1) return(1)
return (fibR(n-1)+fibR(n-2))

}
fibR(10)

## [1] 55
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Let’s write this with Rcpp:
# include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
int fib_cpp(const int n) {
if(n==0) return(0);
if(n==1) return(1);
return fib_cpp(n-1)+fib_cpp(n-2);

}

fib_cpp(10)

## [1] 55

and now for the golden ratio:
golden_ratio <- function(n, fun) {
fun(n)/fun(n-1)

}
summary(microbenchmark(golden_ratio(10,

fun=fibR)))["mean"]

## [1] NA
summary(microbenchmark(golden_ratio(10,

fun=fib_cpp)))["mean"]

## [1] NA

not only is the cpp version much faster, in this example R is actually quite useless: while it
does recursion, doing it to often quickly becomes a problem (because of memory issues).
Now
golden_ratio(30, fun=fib_cpp)

## [1] 1.618

The actual value of the golden ratio is of course 1+
√

5
2 = 1.618...

3.2.4 Using existing C++ routines.

So far we used C++ to speed up calculations, and we could use Sugar to call standard
R functions in the C++ routine. There is another use, though. C++ has been the main
computing language in many fields for a long time, and so there exist a large number of
excellent routines already written. Say you found one of these and want to use it in your R
program. Here is how:
What we need to do is to write a Rcpp wrapper routine, that eventually calls the C++
subroutine. Here is an example:
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# include <Rcpp.h>
using namespace Rcpp;

//function declaration
double sum_of_squares(double x[], int n);

// [[Rcpp::export]]
double sub_routine(NumericVector x) {

int n=x.length();
double y[n];
double ssq;
for(int i=0;i<n;++i) y[i]=x[i];
ssq=sum_of_squares(y, n);
return ssq;

}

double sum_of_squares (double x[], int n)
{

double r;
for(int i=0;i<n;++i) r+=x[i]*x[i];
return r;

}

sub_routine(1:10)

## [1] 385

The sum_of_squares routine is pure C++, like any you might find on the web!

3.3 Parallel and GPU Computing

library(microbenchmark)

Many modern computers have several processor cores. This makes it easy to do parallel
computing with R. Also, many simulation problems are embarrassingly parallel, that is they
can be run in parallel very easily.

3.3.1 Using multiple processors

There are a number of packages that help here. I will discuss
library(parallel)

If you don’t know how many processors (called cores) you computer has your can check:
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detectCores()

## [1] 6

It is usually a good idea to leave one core for other tasks, so let’s use
num_cores <- detectCores()-1

of them.
Let’s consider a simple simulation problem. We wish to study the standard estimators of the
least squares regression line. That is we have a data set of the form (x, y) and we want to fit
an equation of the form y = β0 + β1x+ ε, where ε ∼ N(0, σ). The parameters β0, β1 and σ
are estimated by minimizing the least squares criterion

L(β0, β1) =
n∑
i=1

(y − β0 − β1x)2

We can use the R function lm to this:
x <- 1:20
y <- 5 + 2*x + rnorm(10, 0, 3)
fit <- lm(y~x)
plot(x, y)
abline(fit)
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40

x

y

coef(fit)

## (Intercept) x
## 6.303 1.944
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Now a simulation will be fix some numbers n, β0, β1 and σ, generate B data sets and find
the coefficients. Finally it will study the estimates.
sim_lm <- function(param) {

beta0 <- param[1]
beta1 <- param[2]
sigma <- param[3]
n <- param[4]
B <- param[5]
coefs <- matrix(0, B, 2)
x <- 1:n
for(i in 1:B) {

y <- beta0 + beta1*x + rnorm(n, 0, sigma)
coefs[i, ] <- coef(lm(y~x))

}
coefs

}
tm <- proc.time()
z1 <- sim_lm(c(5, 2, 3, 20, 50000))
tm <- round(proc.time()-tm)[3]
tm

## elapsed
## 30

so this takes almost 30 seconds. In real life we would repeat this now for different values of
the parameters, so you see this can take quite some time. Instead let’s parallelize the task:
cl <- makeCluster(num_cores)
params <- c(5, 2, 3, 20, 10000)
tm <- proc.time()
z2<-clusterCall(cl, sim_lm, params)
tm <- round(proc.time()-tm)[3]
tm

## elapsed
## 11

and so this took only about 11 seconds!
Did it really calculate the same thing? Let’s see. Please note that parallel returns a list, one
for each cluster:
par(mfrow=c(2, 2))
hist(z1[, 1], 100,

main = expression(paste(beta[0], ", Single")),
xlab = "")

hist(z1[, 2], 100,
main=expression(paste(beta[1], ", Single")),
xlab = "")

201



a <- rbind(z2[[1]], z2[[2]], z2[[3]], z2[[4]], z2[[5]])
hist(a[, 1], 100,

main = expression(paste(beta[0], ", Parallel")),
xlab = "")

hist(a[, 2], 100,
main = expression(paste(beta[1], ", Parallel")),
xlab = "")
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Certainly looks like it!
We previously discussed the apply family of functions. If one of these is what you want to
use, they have equivalents in parallel.
So say we have a large matrix and want to find the maximum in each row:
B <- 1e5
A <- matrix(runif(10*B), B, 10)
tm <- proc.time()
a <- apply(A, 1, max)
proc.time()-tm

## user system elapsed
## 0.32 0.08 0.48
tm <- proc.time()
a <- parRapply(cl, A, max)
proc.time()-tm

## user system elapsed
## 0.03 0.02 0.06
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In general the easiest case of parallizing a calculation is if you have already used the lapply
command: Let’s say we have the scores of students in a number of exams. Because each
exam had a different number of students we have the data organized as a list:
cat("Exam 1: ", grades$Exam_1, "\n")

## Exam 1: 64 80 74 77 65 62 75 68 62 64
cat("Exam 2: ", grades$Exam_2, "\n")

## Exam 2: 73 78 70 65 67 69 69 58 58 69 71 77 62 79 73
#...
cat("Exam 50: ", grades$Exam_50, "\n")

## Exam 50: 73 69 67 71 73

Now we want to find the minimum , mean, standard deviation and maximum of each exam.
We can do that with
grade.summary <- function(x) round(c(min(x),

mean(x),
sd(x),
max(x)), 1)

z <- lapply(grades, grade.summary)
z[1:2]

## $Exam_1
## [1] 62.0 69.1 6.8 80.0
##
## $Exam_2
## [1] 58.0 69.2 6.5 79.0

and to run this in parallel:
z <- parLapply(cl, grades, grade.summary)
z[1:2]

## $Exam_1
## [1] 62.0 69.1 6.8 80.0
##
## $Exam_2
## [1] 58.0 69.2 6.5 79.0

When you are done with the parallel calculations
stopCluster(cl)

3.3.2 GPU Programming

20 years ago or so there was a lot of talk about massively parallel computing. This was
the idea of using 100s or 1000s of cpu’s (computer processing units). It never went very far
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because such computers were way to expensive.
However, there was one area were such chips were in fact developed, namely for graphics
cards. The difference is that these cpus are extremely simple, they don’t have to do much,
just determine the colors of a few pixels. Eventually it occurred to people that as long as the
computations were simple as well, such pug’s (graphics processing units), could also be used
for other purposes. So if your computer has a dedicated graphics card you can do this.
Not all cards, however, will work. The most widely available ones are NVIDIA, but some
others work as well.
To do pug programming you need to get the spur library. Unlike most libraries this one is
distributed as a source, so before you can use it it needs to be compiled. This will happen
automatically but does take a bit of time.
To make sure you have all that is needed install the package and then run
library(gpuR)
detectGPUs()

## [1] 1

The spur package has mostly routines for matrix algebra. So let’s say we have a large matrix
which we want to invert.
A <- matrix(rnorm(100), 10, 10)
summary(microbenchmark(solve(A)))["mean"]

## [1] NA

To use spur we have to turn the matrix into a spur object, and then we can run solve again:
A_gpuR <- vclMatrix(A, type="float")
summary(microbenchmark(solve(A_gpuR)))["mean"]

## [1] NA

Most linear algebra methods have been created to be executed for the matrix and convector
objects. These methods include basic arithmetic functions %*%, +, -, *, /, t, , cross prod,
crosspatch, col Means, col Sums, row Mean, and row Sums.
Math functions include sin, sin, sing, cos, cos, cosh, tan, tan, tang, log, log10, exp, abs,
max, admin. Additional operations include some linear algebra routines such as cob(Pearson
Covariance) and eigen.
A few ’distance’ routines have also been added with the dist and distance (for pairwise)
functions. These currently include ’Euclidean’ and ’SqEuclidean’ methods.

3.4 Input/Output revisited

Libraries used in this section:
library(rio)
library(readr)
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library(data.table)
library(pdftools)

There are a number of packages that help with data I/O. Some are specialized for certain
data types, others are more general.

3.4.1 rio library

One of my favorites is rio. An introduction can be found at https://cran.r-project.org/web/
packages/rio/vignettes/rio.html. The list of supported file formats is quite impressive! You
use the import function to import data and the export function to export. The routine uses
the extension to figure out the file format. So say you have a file called mytestdata.csv in a
folder called c:/tmpdata, just run
import("c:/tmpdata/mytestdata.csv")

3.4.1.1 Example

B <- 2*1e6
x <- round(rnorm(B), 3)
y <- round(rnorm(B), 3)
z <- sample(letters[1:5], size=B, replace=TRUE)
xyz <- data.frame(x, y, z)
head(xyz, 3)

## x y z
## 1 -1.543 -0.497 c
## 2 0.466 -0.225 b
## 3 -0.246 1.123 b
dir.create("c:/tmpdata")
export(xyz, "c:/tmpdata/mytestdata.csv")
rm(xyz)

head(import("c:/tmpdata/mytestdata.csv"), 3)

## x y z
## 1 -1.543 -0.497 c
## 2 0.466 -0.225 b
## 3 -0.246 1.123 b

rio has the ability to read Minitab files. Unfortunately they have to be in the portable format,
and Minitab stopped using that some versions ago. So the easiest thing to do is save files in
Minitab as .csv.

3.4.1.2 readr library
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This package is specific to rectangular data, such as data from an Excel spreadsheet. It’s
main advantage is it’s speed when compared to the corresponding base R routine read.csv:
tm <- proc.time()
head(read.csv("c:/tmpdata/mytestdata.csv"), 2)

## x y z
## 1 -1.543 -0.497 c
## 2 0.466 -0.225 b
(proc.time()-tm)[3]

## elapsed
## 1.89
tm <- proc.time()
head(import("c:/tmpdata/mytestdata.csv"), 2)

## x y z
## 1 -1.543 -0.497 c
## 2 0.466 -0.225 b
(proc.time()-tm)[3]

## elapsed
## 0.06

Note that the data is in the form of a tibble. This is a special kind of data frame which we
will talk about later.

3.4.2 data.table library

Similar to read.table but faster and more convenient. The command is called fread:
tm <- proc.time()
head(fread("c:/tmpdata/mytestdata.csv"), 2)

## x y z
## 1: -1.543 -0.497 c
## 2: 0.466 -0.225 b
(proc.time()-tm)[3]

## elapsed
## 0.06

This command is what I would recommend if you deal with Big Data. These days we classify
data as follows:

• big data (a few hundred thousand rows, about 20 MB)
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• Big Data (5 million rows, about 1GB)

• Bigger Data (over 100 million rows, over 10GB)
In the case of Bigger Data you can no longer have all of it in memory, but it becomes necessary
to use a hard drive as memory. A useful package for that is bigmemory.

3.4.3 pdftools library

The pdf format is the most common document format on the internet, so quite often we are
faced with the following problem: we want to extract some data from a pdf. The problem is
that pdf files are not plain text and so can not be read directly by R. Here we can use the
package pdftools.

3.4.3.1 Example

Consider the report on the World Mortality Rate 2017. It has a large table with mortality
information. We begin by downloading it:
download.file("http://academic.uprm.edu/wrolke/esma6835/World-Mortality-2017-Data-Booklet.pdf", "world-mortality.pdf", mode="wb")

and then turn it into a text file:
txt <- pdf_text("world-mortality.pdf")
nchar(txt)

## [1] 73 1582 5395 2295 2332 3494 5456 4959 4766 3546 11 5683 5588 6350
## [15] 6156 5955 5928 6258 6232 2625 5764 3288 0 0

Notice that the document has 24 pages, and each is read in as one character string.
The data table starts on page 10, which is txt[12], and ends on page 19, which is txt[20].
Let’s begin by making a long character string with each piece of text/numbers separate. We
want to split the string at white spaces, which we can do with the reg expression
strsplit(txt, "\\s+")[[1]]

However, notice that some countries have a superscript (which is also separated from the
name by a white space) and that the large numbers have one white space in between also. So
what we need to do is split if there are two or more white spaces:
txt <- paste(txt[12:20], collapse = " ")
txt <- strsplit(txt, "\\s{2,}")[[1]]

There is a problem, though: some large numbers are written with a single space between (for
example Africa 10 596), so now there is a character vector “10 596” which we want to turn
into a number:
as.numeric("10 596")

## [1] NA
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so we need to remove those white spaces. It would be easy to remove all of them, but then
we would turn “Puerto Rico” into “PuertoRico”, and we don’t want that!
While we are at it, let’s also remove the superscripts on some of the country names.
for(i in seq_along(txt)) {

tmp <- strsplit(txt[i], "\\s+")[[1]]
if(length(tmp)==1) next # single item, nothing to do
if(any(is.na(as.numeric(tmp)))) { # some parts are character

if(!all(is.na(as.numeric(tmp)))) # not all parts are character
tmp <- tmp[is.na(as.numeric(tmp))]

# drop numbers (superscripts)
txt[i] <- paste(tmp, collapse = " ")

# all text, leave space between
}
else

txt[i] <- paste(tmp, collapse = "")
# all numbers, no spaces

}

For some reasons some are not working (maybe there was more than one white space?), so
we fix them directly:
k <- seq_along(txt)[txt=="Western Africa"]
txt[k+c(0,1)]

## [1] "Western Africa" "3"
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="China"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="South-Central Asia"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Malaysia"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Azerbaijan"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Cyprus"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Republic of Moldova"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Northern Europe"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Norway"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Southern Europe"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Serbia"]
txt <- txt[-(k+1)]
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k <- seq_along(txt)[txt=="Spain"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="TFYR Macedonia"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Caribbean"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Guadeloupe"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="NORTHERN AMERICA"]
txt <- txt[-(k+1)]
k <- seq_along(txt)[txt=="Micronesia"]
txt <- txt[-(k+1)]

How can we pick out the parts of text that we want?
Notice that the information starts with Burundi, so we remove everything before that:
k <- seq_along(txt)[txt=="Burundi"]
txt <- txt[k:length(txt)]

The last country is Tonga, so we remove everything after it’s row:
k <- seq_along(txt)[txt=="Tonga"]
txt <- txt[1:(k+13)]

Unfortunately the table is not contiguous, eventually there is a page break and then the title
text repeats. However, this part always starts with the words “World Mortality” and ends
with “(13)”, so it is easy to remove all of them:
k <- seq_along(txt)[txt=="World Mortality"]
j <- seq_along(txt)[txt=="(13)"]
k

## [1] 155 569 1049 1517 1983 2451 2917 3385
j

## [1] 203 614 1095 1562 2029 2496 2963 3430

so we see that the first “World Mortality” is at position 155, and the first “(13)” is at 203, so
we can remove everything in between.
But wait: the top of page 13 reads “World Mortality” on the left and “13”" on the right, but
on page 14 it is “14”" on the left and “World Mortality” on the right! These alternate, so we
need
k[c(2, 4, 6, 8)] <- k[c(2, 4, 6, 8)]-1

Let’s get rid of all of this:
for(i in 1:8) txt[k[i]:j[i]] <- NA
txt <- txt[!is.na(txt)]
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Now we can turn this into a data frame:
data.tbl <- as.data.frame(matrix(txt, byrow = TRUE, ncol=14))
for(i in 2:14)

data.tbl[, i] <- as.numeric(data.tbl[, i])
colnames(data.tbl) <- c("Country",

"Deaths", "Rate", "LifeExpectancy.Both",
"LifeExpectancy.Males", "LifeExpectancy.Females",
"InfantMortality", "UnderFive", "Prob15.60", "Prob0.70",
"PercUnder5", "PercUnder5.25", "Perc25.65", "PercOver65")

row.names(data.tbl) <- NULL

Let’s check a few to make sure we got it right:
k <- seq_along(txt)[txt=="Germany"]
txt[k:(k+13)]

## [1] "Germany" "910" "11.1" "80.8" "78.4" "83.2" "3"
## [8] "4" "71" "170" "0" "0" "14" "85"
k <- seq_along(txt)[txt=="Puerto Rico"]
txt[k:(k+13)]

## [1] "Puerto Rico" "29" "7.9" "79.7" "75.8"
## [6] "83.6" "6" "7" "96" "199"
## [11] "1" "1" "21" "77"

One final problem: every now and then the table has the means for various regions (Middle
Africa, etc). There is no other way but to get rid of them one by one. Just going through the
list I can find their row numbers: ‘
not.country <- c(21, 31, 39, 45, 62, 63, 72, 73, 79, 89,

101, 120, 121, 132, 144, 157, 165, 166,
184, 193, 207, 210)

data.tbl <- data.tbl[-not.country, ]

dump("data.tbl", "world.mortality.2017.R")

Let’s look at the life expectancy, sorted from highest to lowest:
dta <- data.tbl[order(data.tbl[, "LifeExpectancy.Both"],

decreasing = TRUE), c(1, 4)]
colnames(dta)[2] <- "Life Expectancy"
kable.nice(dta, do.row.names = FALSE)
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Country Life Expectancy
China, Hong Kong SAR 153
China, Macao SAR 152
Japan 151
Switzerland 150
Spain 149
Singapore 148
Italy 148
Australia 147
Iceland 146
Australia/New Zealand 146
France 145
Israel 144
Sweden 144
Canada 143
Norway 142
Republic of Korea 141
Martinique 140
Netherlands 139
New Zealand 139
Luxembourg 138
United Kingdom 136
Austria 136
Ireland 135
Finland 134
Guadeloupe 134
Channel Islands 133
Greece 133
Portugal 133
Belgium 133
Slovenia 132
Germany 132
Malta 131
Denmark 130
Cyprus 129
Réunion 128
Mayotte 127
China, Taiwan Province of China 126
Puerto Rico 126
French Guiana 126
Cuba 125
United States Virgin Islands 125
Costa Rica 125
Lebanon 123
Guam 123
Chile 122
United States of America 121
Czechia 120
Curaçao 118
Albania 117
Qatar 116
Panama 115
Croatia 113
Poland 112
Estonia 112
Uruguay 111
United Arab Emirates 109
Maldives 108
Brunei Darussalam 108
Montenegro 107
Mexico 107
Bahrain 106
Oman 106
New Caledonia 106
Slovakia 105
Bosnia and Herzegovina 105
French Polynesia 104
Argentina 103
Antigua and Barbuda 101
China 100
Viet Nam 100
Ecuador 100
Algeria 99
Hungary 98
Barbados 98
Jamaica 98
Iran (Islamic Republic of) 97
Aruba 97
Morocco 96
Tunisia 95
Turkey 95
TFYR Macedonia 95
Bahamas 95
Romania 94
Saint Lucia 94
Brazil 94
Sri Lanka 92
Malaysia 92
Thailand 92
Serbia 92
Nicaragua 92
Polynesia 92
Samoa 91
Peru 90
Mauritius 89
Kuwait 89
Bulgaria 89
Lithuania 88
Armenia 87
Saudi Arabia 87
Latvia 87
Venezuela (Bolivarian Republic of) 87
Jordan 86
Colombia 86
Dominican Republic 85
Grenada 84
Honduras 83
Seychelles 82
State of Palestine 82
El Salvador 82
Micronesia 82
Guatemala 81
Georgia 80
Saint Vincent and the Grenadines 80
Paraguay 79
Tonga 78
Belarus 76
Cabo Verde 75
Bangladesh 73
Azerbaijan 72
Vanuatu 72
Libya 71
Ukraine 71
Dem. People’s Republic of Korea 69
Republic of Moldova 69
Egypt 68
Suriname 68
Uzbekistan 67
Tajikistan 65
Russian Federation 65
Kyrgyzstan 64
Trinidad and Tobago 63
Solomon Islands 62
Belize 60
Fiji 59
Nepal 58
Syrian Arab Republic 58
Bhutan 57
Kazakhstan 56
Iraq 56
Western Sahara 55
Mongolia 54
Micronesia (Fed. States of) 54
Indonesia 53
Philippines 53
Bolivia (Plurinational State of) 52
Cambodia 50
Timor-Leste 50
India 49
Turkmenistan 48
Senegal 47
Kenya 46
Rwanda 46
Sao Tome and Principe 45
Myanmar 45
Guyana 45
Melanesia 45
Pakistan 44
Lao People’s Democratic Republic 44
Kiribati 43
Botswana 42
Gabon 41
Madagascar 40
Papua New Guinea 39
Ethiopia 38
United Republic of Tanzania 38
Yemen 37
Eritrea 36
Sudan 35
Congo 34
Namibia 33
Comoros 32
Afghanistan 31
Mauritania 30
Haiti 30
Malawi 29
Ghana 28
Djibouti 27
South Africa 26
Liberia 26
Zambia 24
Angola 23
Gambia 22
Benin 21
Zimbabwe 20
Burkina Faso 19
Togo 19
Niger 18
Uganda 17
Guinea 16
Democratic Republic of the Congo 15
Mozambique 13
Cameroon 12
Mali 11
Equatorial Guinea 10
Burundi 9
Swaziland 9
Guinea-Bissau 8
South Sudan 7
Somalia 6
Lesotho 5
Côte d’Ivoire 4
Nigeria 3
Chad 2
Central African Republic 1
Sierra Leone 1
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3.5 The pipe, dplyr, tibbles, tidyverse

3.5.1 The pipe

The traditional workflow of R comes in large part from other computer languages. So a
typical sequence would be like this:
df <- mtcars
df1 <- subset(df, hp>70)
ggplot(data=df1, aes(disp, mpg)) +

geom_point()
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This is not how we think, though. That would go something like this:
• take the mtcars data set

• then pick only cars with hp over 70

• then do the scatterplot of mpg vs. disp
In addition there is also the issue that we had to create an intermediate data set (df1).
The pipe was invented to fix all of these problems.
The basic package to use piping is
library(magrittr)

invented by Stefan Milton. The basic operator is %>%. The same as above can be done with
mtcars %>%

subset(x=., hp>70) %>% #R knows what hp is!
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ggplot(data=., aes(disp, mpg)) +
geom_point()
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In principle the pipe can always be used in this way:
x <- rnorm(10)
mean(x)

## [1] 0.2012
x %>%

mean()

## [1] 0.2012

Notice that here we called both mean and round without a needed argument. In principle
the pipe will always use the data on the left of %>% as the first argument of the command
on the right.
Exercise
Consider the following operation:
x <- c(0.109, 0.359, 0.63, 0.996, 0.515, 0.142, 0.017, 0.829, 0.907)
round(exp(diff(log(x))), 1)

## [1] 3.3 1.8 1.6 0.5 0.3 0.1 48.8 1.1

write the same using the pipe

At first it may not seem like writing x %>% f() is any easier than writing f(x), but this style
of coding becomes very useful when applying multiple functions; in this case piping will allow
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one to think from left to right in the logical order of functions rather than from inside to
outside in an ugly large nested statement of functions.

The pipe is only a few years old, but there are already many packages that take advantage of
it. The most important one, and a package useful in and of itself, is
library(dplyr)

written by Hadley Wickham. In essence it is a replacement for the apply family of R routines.
We can also write the above with
mtcars %>%

filter(hp>70) %>%
ggplot(aes(disp, mpg)) +

geom_point()
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Notice how filter is aware of the pipe, it doesn’t need to be told that it is supposed to work
with mtcars. So far, ggplot is not fully pipe aware (otherwise we could have written %>%
geom_point()), but this will change in the near future.

3.5.2 tibbles

dataframes have been the main data format of R since its beginnings, and are likely to stay
that way for a long time. They do, however have some shortcomings. Among other things,
when you type the name of a dataframe and hit enter, all of it is shown, even if the data set
is huge. On the other hand, interesting information such as the data types of the columns is
not shown. To help with these (and some other) issues the data format tibble was invented.
We can turn a dataframe into a tibble with
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tmtcars <- as.tbl(mtcars)
tmtcars

## # A tibble: 32 x 13
## mpg cyl disp hp drat wt qsec vs am gear carb faccyl
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <ord>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 6
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 6
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 4
## 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1 6
## 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2 8
## 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1 6
## 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4 8
## 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2 4
## 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2 4
## 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4 6
## # ... with 22 more rows, and 1 more variable: facgear <ord>

so we have all relevant information about the data set: its size (32x11), the variables and
their formats, and the beginning of the data set.
tibbles are also designed to work well with piping and with the package dplyr.
If you want to create a tibble from scratch use:
tibble(x=1:5, y=x^2)

## # A tibble: 5 x 2
## x y
## <int> <dbl>
## 1 1 1
## 2 2 4
## 3 3 9
## 4 4 16
## 5 5 25

Also, tibbles never use row.names, and it only recycles vectors of length 1. This is because
recycling vectors of greater lengths is a frequent source of bugs.

3.5.3 dplyr library

We have already seen the filter command, the dplyr version of subset. Here are the most
important dplyr commands:

• filter selects part of a data set by conditions (base R command: subset)
• select selects columns (base R command: [ ])
• arrange re-orders or arranges rows (base R commands: sort, order)
• mutate creates new columns (base R commands: any math function)
• summarise summarises values (base R commands: mean, median etc)
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• group_by allows for group operations in the “split-apply-combine” concept (base R
command: none)

3.5.3.1 Example: babynames

The library babynames (also by Hadley Wickham) has the number of children of each sex
given each name for each year from 1880 to 2015 according to the US census. All names with
more than 5 uses are given.
We want to do the following:

• take the names

• pick out all of those that start with “W”

• separate the genders

• find the total for each year

• do the line graph
library(babynames)
babynames %>%

filter(name %>% substr(1, 1) %>% equals("W")) %>%
group_by(year, sex) %>%
summarise(total = sum(n)) %>%
ggplot(data = ., aes(year, total, color = sex)) +

geom_line() +
labs(color="Gender") +
ggtitle('Names starting with W')
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How often is my name used for a baby in the US?
babynames %>%

filter(name == "Wolfgang") %>%
ggplot(data = ., aes(year, n)) +

geom_line()
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Looks like my name is getting more popular (even if it is still rare)!
What were the most popular girls names each year?
babynames %>% # take babynames

filter(sex=="F") %>% # then pick girls only
group_by(year) %>% # then separate the years
mutate(M=max(n)) %>% # then find most often used name
filter(n==M) %>% # then pick only those rows
ungroup() %>% # then join data back together
select(name) %>% # then select names only
table() %>% # then count how often each happened
sort(decreasing = TRUE) %>% # then organize data
cbind() # then turn data around for easier reading

## .
## Mary 76
## Jennifer 15
## Emily 12
## Jessica 9
## Lisa 8
## Linda 6
## Emma 5
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## Sophia 3
## Ashley 2
## Isabella 2

Let’s say we want to save a data set made with the pipe. Logically we should be able to do
this
babynames %>% # take babynames

filter(name=="Wolfgang") %>% # then pick me
wolfgangs # then give new data set a name

## Error in wolfgangs(.): could not find function "wolfgangs"

but that results in an error, only functions can be used in a pipe. So it is done like this:
wolfgangs <- babynames %>% # take babynames

filter(name=="Wolfgang") # then pick me
print(wolfgangs, n=3)

## # A tibble: 71 x 5
## year sex name n prop
## <dbl> <chr> <chr> <int> <dbl>
## 1 1929 M Wolfgang 8 0.00000722
## 2 1930 M Wolfgang 6 0.00000531
## 3 1932 M Wolfgang 7 0.00000652
## # ... with 68 more rows

This unfortunately breaks the logic of piping. There is a better way, though. Just remember
the logic of the assignment character <-, it’s an arrow!
babynames %>% # take babynames

filter(name=="Wolfgang") -> # then pick me
wolfgangs # then assign it a name

print(wolfgangs, n=3)

## # A tibble: 71 x 5
## year sex name n prop
## <dbl> <chr> <chr> <int> <dbl>
## 1 1929 M Wolfgang 8 0.00000722
## 2 1930 M Wolfgang 6 0.00000531
## 3 1932 M Wolfgang 7 0.00000652
## # ... with 68 more rows

Here is a common problem: say you have these two data sets:
students1

## # A tibble: 3 x 2
## name exam1
## <chr> <dbl>
## 1 Alex 78
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## 2 Ann 85
## 3 Marie 93
students2

## # A tibble: 3 x 2
## name exam2
## <chr> <dbl>
## 1 Alex 75
## 2 Ann 89
## 3 Marie 97

and we want to join them into one data set:
students1 %>%

left_join(students2)

## # A tibble: 3 x 3
## name exam1 exam2
## <chr> <dbl> <dbl>
## 1 Alex 78 75
## 2 Ann 85 89
## 3 Marie 93 97

Let’s say we want to find the times out of 100000 that the most popular names occurred in
the 2015:
babynames %>%

filter(year==2015) %>%
mutate(freq=round(n/sum(n)*100000)) %>%
select(name, freq) %>%
arrange(desc(freq)) %>%
print(n=5)

## # A tibble: 33,098 x 2
## name freq
## <chr> <dbl>
## 1 Emma 554
## 2 Olivia 533
## 3 Noah 532
## 4 Liam 498
## 5 Sophia 472
## # ... with 3.309e+04 more rows

so the mutate command let’s us calculate new variables and the arrange command let’s us
change the order of the rows.
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3.5.4 The tidyverse

ggplot2 and dplyr are two of a number of packages that together form the tidyverse. They
are centered around what is called tidy data. For a detailed discussion go to https://www.
tidyverse.org/.
The core packages are

• ggplot2

• dplyr

• tidyr

• readr

• purrr

• tibble

• stringr

• forcats
but you can get all of them in one step with
install.packages("tidyverse")

tidy data is defined as data were
1. Each variable you measure should be in one column.

2. Each different observation of that variable should be in a different row.

3. There should be one table for each “kind” of variable.

4. If you have multiple tables, they should include a column in the table that allows them
to be linked.

This is essentially the definition of a data frame, but it is enforced even more so by the tibbles
format. The theory behind tidy data was described by Hadley Wickham in the article Tidy
Data, Journal of Statistical Software. The packages in the tidyverse are all written to have a
consistent look and feel and work naturally with tidy data.
One big difference between dataframes and tibbles is that tibbles automatically ignore row
names:
head(mtcars, 3)

## mpg cyl disp hp drat wt qsec vs am gear carb faccyl
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4 6
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## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4 6
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1 4
## facgear
## Mazda RX4 4
## Mazda RX4 Wag 4
## Datsun 710 4
tbl.mtcars <- as.tbl(mtcars)
print(tbl.mtcars, n=3)

## # A tibble: 32 x 13
## mpg cyl disp hp drat wt qsec vs am gear carb faccyl
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <ord>
## 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4 6
## 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4 6
## 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1 4
## # ... with 29 more rows, and 1 more variable: facgear <ord>

This of course is no good here, the names of the cars are important. One way to fix this is to
use the rownames_to_column routine in the tibbles package:
library("tibble")
mtcars %>%

as.tbl() %>%
rownames_to_column() %>%
print(n=3)

## # A tibble: 32 x 14
## rowname mpg cyl disp hp drat wt qsec vs am gear carb
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
## 2 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
## 3 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
## # ... with 29 more rows, and 2 more variables: faccyl <ord>, facgear <ord>

One difficulty is to remember which routine is in what package. The best way is to simply
load them all with
library(tidyverse)

3.6 Interactive web applications with shiny
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library(shiny)

3.6.1 Basic shiny apps

shiny is a package that has routines to create interactive web applications that run in a
browser.
As an example consider the app Taylor Polynomials.
Every app has two parts:

• ui contains information about the layout of the page (user interface).

• server has the R routines that create the content of the page.
Let’s begin by creating a page that does the following: it generates a data set with n
observations from a standard normal distribution and then draws the histogram. The user
can choose n:

3.6.1.1 Example 1

ui <- fluidPage(
numericInput(inputId = "n", # name of variable

label = "Sample Size", # text on page
value = 1000), # starting value

plotOutput("plot1")
)
server <- function(input, output) {

output$plot1 <- renderPlot({
x <- rnorm(input$n)
bw <- diff(range(x))/50
ggplot(data.frame(x=x), aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x",
y = "Counts")

})
}
shinyApp(ui, server)

If you are on a computer that has R running with shiny installed you can run this and all
the apps here with
runGitHub(repo = "Computing-with-R",

username = "WolfgangRolke",
subdir = "shiny/example1")
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you can also do this: File > New File > Shiny Web App, copy-paste commands into file,
click Run App
Next we will improve the app in three ways:

• nicer layout
• add the possibility to change the number of bins
• add a title

3.6.1.2 Example 2

ui <- fluidPage(
titlePanel("Histogram App"),
sidebarLayout(

sidebarPanel( # Input widgets on left side of page
numericInput(inputId = "n",

label = "Sample Size",
value = 1000,

width = "40%"), # size of box
textInput(inputId = "nbins",

label = "Number of bins",
value = "50",
width = "20%") # size of box

),
mainPanel(

plotOutput("plot1")
)

))
server <- function(input, output) {

output$plot1 <- renderPlot({
x <- rnorm(input$n)
bw <- diff(range(x))/as.numeric(input$nbins)
ggplot(data.frame(x=x), aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x",
y = "Counts")

})
}
shinyApp(ui, server)

notice also that instead of a numericInput I used a textInput, although nbins is meant to be
a number. I often do this because I find the appearance of text inputs more pleasing. I can
of course always turn it into a number with as.numeric.
Next we will use one of the most useful commands in shiny: conditionalPanel. With this we
can control what happens in the app depending on the users choices.
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Let’s add the possibility to show a boxplot instead of the histogram. Notice that there are
no bins in a boxplot, so we want to show the nbins input only when a histogram is done:

3.6.1.3 Example 3

ui <- fluidPage(
titlePanel("Histogram or Boxplot App"),
sidebarLayout(

sidebarPanel(
numericInput("n", "Sample Size", 1000),
selectInput("whichgraph", "What Graph?",

choices = c("Histogram", "Boxplot"),
selected = "Boxplot"),

conditionalPanel(
condition = "input.whichgraph=='Histogram'",

textInput("nbins",
"Number of bins",
"50",
width = "20%")

)
),
mainPanel(

conditionalPanel(
condition="input.whichgraph=='Histogram'",

plotOutput("plot1")
),
conditionalPanel(

condition="input.whichgraph=='Boxplot'",
plotOutput("plot2")

)
)

))
server <- function(input, output) {

output$plot1 <- renderPlot({
x <- rnorm(input$n)
bw <- diff(range(x))/as.numeric(input$nbins)
ggplot(data.frame(x=x), aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x",
y = "Counts")

})
output$plot2 <- renderPlot({

x <- rnorm(input$n)
df <- data.frame(x=x, z=rep(" ", length(x)))
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ggplot(df, aes(z, x)) +
geom_boxplot() +
xlab("")

})
}
shinyApp(ui, server)

Another useful feature is the ability to create tabs. Let’s say we want to show the histogram
on one tab and the boxplot on another:

3.6.1.4 Example 4

ui <- fluidPage(
titlePanel("Histogram or Boxplot App"),
sidebarLayout(

sidebarPanel(
numericInput("n", "Sample Size", 1000),
conditionalPanel(condition="input.mytabs=='Histogram'",

textInput("nbins", "Number of bins", "50", width = "20%")
)

),
mainPanel(
tabsetPanel(

tabPanel("Histogram", plotOutput("plot1")),
tabPanel("Boxpot", plotOutput("plot2")),
id="mytabs"

)
)

))

Notice again the use of conditionalPanel: now the nbins box appears when the Histogram
tab is selected.
Did you notice a slight flaw in the program? When we switch from one graph to the other
the data is generated a new, so the graphs are not for the same data set. Let’s fix this.
Also let’s say we want on another tab to show some summary statistics:

3.6.1.5 Example 5

ui <- fluidPage(
titlePanel("Histogram or Boxplot App"),
sidebarLayout(

sidebarPanel(
numericInput("n", "Sample Size", 1000),
conditionalPanel(condition="input.mytabs=='Histogram'",

textInput("nbins", "Number of bins", "50", width = "20%")
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)
),
mainPanel(
tabsetPanel(

tabPanel("Histogram", plotOutput("plot1")),
tabPanel("Boxpot", plotOutput("plot2")),
tabPanel("Summary Statistics", uiOutput("text1")),
id="mytabs"

)
)

))
server <- function(input, output) {

data <- reactive({
rnorm(input$n)

})

summaries <- reactive({
x <- data()
list(n = length(x),

xbar = round(mean(x), 3),
shat = round(sd(x), 3))

})

output$plot1 <- renderPlot({
bw <- diff(range(data()))/as.numeric(input$nbins)
ggplot(data.frame(x=data()), aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x="x", y="Counts")
})

output$plot2 <- renderPlot({
x <- data()
df <- data.frame(x=x, z=rep(" ", length(x)))
ggplot(df, aes(z, x)) +

geom_boxplot() +
xlab("")

})

output$text1 <- renderText({
lns <- "<table>"
lns[2] <- paste("<tr><th>Sample Size&nbsp;</th><td>", summaries()[1], "</td></tr")
lns[3] <- paste("<tr><th>Mean&nbsp;&nbsp;</th><td>", summaries()[2], "</td></tr")
lns[4] <- paste("<tr><th>Standard Deviation&nbsp;&nbsp;&nbsp;</th><td>", summaries()[3], "</td></tr")
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lns[5] <- "</table>"
lns

})
}
shinyApp(ui, server)

This also shows that we can use html syntax in shiny. This is not a surprise because in the
end it is a web page!
shiny apps are incredible versatile, you can write apps with a lot of stuff in it. You can even
make little movies:

3.6.1.6 Example 6

ui <- fluidPage(
titlePanel("2-D Random Walk"),
sliderInput("step","Step",

min=1, max=100, value=1, step=1,
animate=animationOptions(interval = 500, loop = FALSE)),

plotOutput("plot", width="500", height="500")
)
server <- function(input, output) {

data <- reactive({
x <- cumsum(c(rep(0, 10), rnorm(1000)))
y <- cumsum(c(rep(0, 10), rnorm(1000)))
data.frame(x=x, y=y)

})

make.plot <- reactive({
xymax <- abs(max(data()))
ggplot(data(), aes(x, y)) +

lims(x=1.2*c(-xymax, xymax), y=1.2*c(-xymax, xymax)) +
labs(x="x", y="y")

})

output$plot <- renderPlot({

for(i in 1:input$step) {
plt <- make.plot() +

geom_point(data=data()[10*i, ],
aes(x,y), size=2, color="red") +

geom_line(data=data()[1:(10*i), ], aes(x,y),
size=0.25, color="blue", alpha=0.5)

}
plt
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})
}
shinyApp(ui, server)

3.6.2 Create/Run/Distribute shiny apps

There are a number of ways to create, run and distribute shiny apps:
1. Create an app:
• small apps are easiest done within RStudio, as in our example1

• for larger apps you should have two separate files called ui.R and server.R is some folder,
say myapp1. For example 1 they would look like this:

ui.R
shinyUI(fluidPage(

numericInput("n", "Sample Size", 1000),
plotOutput("plot1")

))

server.R
shinyServer(function(input, output) {
output$plot1 <- renderPlot({

x <- rnorm(input$n)
bw <- diff(range(x))/50
ggplot(data.frame(x=x), aes(x)) +
geom_histogram(color = "black", fill = "white", binwidth = bw) +
labs(x="x", y="Counts")

})
})

then in the console run
runApp("PATH/myapp1")

where PATH is the folder path to myapp1.
2. Distribute an app
• you can upload the folder myapp1 to github and then use

runGitHub("reponame", "username",
subdir = "shiny/myapp1")

here I assume you have myapp1 in a folder called shiny.
We will talk about Github a lot more soon.

• you can make a zip file out of the folder myapp1, upload it to a web site and then run
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runUrl("http://websiteurl/shiny/myapp1.zip")

• go to https://www.shinyapps.io, set up a (free) account. Then you can upload a few
apps. The big advantage of this is that even people who don’t have R can now run your
app. There are restrictions, though, on a free account, for example no more than 10
people can run an app at the same time.

Uploading an app to shinyapps should be very simple: run the app and click on the Publish
button in the upper right corner. I have however had occasional problems with this method.
If it does not work run the following command from the console:
shinyapps::deployApp("C:\\Users\\...\\name_of-app",

account="your_account_name")

For more information on how to get up and running with shinyapps.io read https://shiny.
rstudio.com/articles/shinyapps.html
library(magrittr)
library(dplyr)

3.7 Character Manipulation with stringr

Thanks to Hadley Wickham, we have the package stringr that adds more functionality to
the base functions for handling strings in R. According to the description of the package at
http://cran.r-project.org/web/packages/stringr/index.html stringr is a set of simple wrappers
that make R’s string functions more consistent, simpler and easier to use. It does this by
ensuring that: function and argument names (and positions) are consistent, all functions deal
with NA’s and zero length character appropriately, and the output data structures from each
function matches the input data structures of other functions.
We previously looked at the states in the US:
head(states)

## [1] "Alabama" "Alaska" "Arizona" "Arkansas" "California"
## [6] "Colorado"

We can find out how many letters each state has with
library(stringr)
states %>%

str_length()

## [1] 7 6 7 8 10 8 11 8 20 7 7 6 5 8 7 4 6 8 9 5 8 13 8
## [24] 9 11 8 7 8 6 13 10 10 8 14 12 4 8 6 12 12 14 12 9 5 4 7
## [47] 8 10 13 9 7 11

Also, we found out how many vowels the names of each state had. Here is how we can do
that with stringr :
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states %>%
str_count("a")

## [1] 3 2 1 2 2 1 0 2 1 1 1 2 1 0 2 1 2 0 2 1 2 2 1 1 0 0 2 2 2 1 0 0 0 2 2
## [36] 0 2 0 2 1 2 2 0 1 1 0 1 1 1 0 0 0

Notice that we are only getting the number of a’s in lower case. Since str_count() does not
contain the argument ignore.case, we need to transform all letters to lower case, and then
count the number of a’s like this:
states %>%

tolower() %>%
str_count("a")

## [1] 4 3 2 3 2 1 0 2 1 1 1 2 1 0 2 1 2 0 2 1 2 2 1 1 0 0 2 2 2 1 0 0 0 2 2
## [36] 0 2 0 2 1 2 2 0 1 1 0 1 1 1 0 0 0

Now let’s do this for all the vowels:
vowels <- c("a", "e", "i", "o", "u")
states %>%

tolower() %>%
str_split("") %>%
unlist() %>%
table() ->
x

x[vowels]

## .
## a e i o u
## 62 29 48 40 10

stringr provides functions for both
1) basic manipulations

2) regular expression operations
The following table contains the stringr functions for basic string operations:

Function Description Similar to
str_c() string concatenation paste()
str_length() number of characters nchar()
str_sub() extracts substrings substring()
str_dup() duplicates characters none
str_trim() removes leading and trailing whitespace none
str_pad() pads a string none
str_wrap() wraps a string paragraph strwrap()
str_trim() trims a string none
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Here are some examples:
paste("It", "is", "a", "nice", "day", "today")

## [1] "It is a nice day today"
str_c("It", "is", "a", "nice", "day", "today")

## [1] "Itisanicedaytoday"
str_c("It", "is", "a", "nice", "day", "today",

sep=" ")

## [1] "It is a nice day today"
str_c("It", "is", "a", "nice", "day", "today",

sep="-")

## [1] "It-is-a-nice-day-today"

next str_length. Compared to nchar() it can handle more data types, for example factors:
some_factor <- factor(c(1, 1, 1, 2, 2, 2),

labels = c("good", "bad"))
some_factor

## [1] good good good bad bad bad
## Levels: good bad
str_length(some_factor)

## [1] 4 4 4 3 3 3

whereas nchar(some_factor) results in an error.
A routine that has no direct equivalent in basic R is str_dup. It is sort of a rep for strings:
str_dup("ab", 2)

## [1] "abab"
str_dup("ab", 1:3)

## [1] "ab" "abab" "ababab"

Another handy function that we can find in stringr is str_pad() for padding a string. This is
useful if we want to have a nice alignment when printing some text.
Its default usage has the following form:
str_pad(string, width, side = “left”, pad = " ")
The idea of str_pad() is to take a string and pad it with leading or trailing characters to a
specified total width. The default padding character is a space (pad = " “), and consequently
the returned string will appear to be either left-aligned (side =”left" ), right-aligned (side =
“right”), or both (side = “both”).

231



Let’s see some examples:
str_pad("Great!", width = 7)

## [1] " Great!"
str_pad("Great", width = 8, side = "both")

## [1] " Great "
str_pad(str_pad("Great!", width = 7), width = 8, pad="#")

## [1] "# Great!"

Often when dealing with character vectors we end up with white spaces. These are easily
taken care of with str_trim:
txt <- c("some", " text", "with ", " white ", "space")
str_trim(txt)

## [1] "some" "text" "with" "white" "space"

An operation that one needs to do quite often is to extract the last (few) letters from words.
Using substring is tricky if the words don’t have the same lengths:
substring(txt, nchar(txt)-1, nchar(txt))

## [1] "me" "xt" "h " "e " "ce"

Much easier with
str_sub(txt, -2, -1)

## [1] "me" "xt" "h " "e " "ce"

You can use str_wrap() to modify existing whitespace in order to wrap a paragraph of text,
such that the length of each line is as similar as possible.
declaration.of.independence <- "We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty and the pursuit of Happiness."
cat(str_wrap(declaration.of.independence, width=40))

## We hold these truths to be self-evident,
## that all men are created equal, that
## they are endowed by their Creator with
## certain unalienable Rights, that among
## these are Life, Liberty and the pursuit
## of Happiness.

3.7.0.1 Example: Dracula by Bram Stoker

Let’s do a textual analysis of Bram Stoker’s Dracula. We can get an electronic copy of the
book from the Project Gutenberg http://www.gutenberg.org/. To get a book into R is very
easy, there is a package:
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library(gutenbergr)
dracula <- gutenberg_download(345)
dracula

## # A tibble: 15,568 x 2
## gutenberg_id text
## <int> <chr>
## 1 345 " DRACULA"
## 2 345 ""
## 3 345 ""
## 4 345 ""
## 5 345 ""
## 6 345 ""
## 7 345 " DRACULA"
## 8 345 ""
## 9 345 " _by_"
## 10 345 ""
## # ... with 15,558 more rows

Why 345? This is the id number used by the Gutenberg web site to identify this book. Go to
their website and check out what other books they have (there are over 57000 as of 2018).
The first column is the Gutenberg_id, so we can get rid of that
dracula <- dracula[, 2]

Let’s see the beginning of the book:
dracula[1:100, ] %>%

str_wrap(width=40) %>%
cat()

## c(" DRACULA", "", "", "", "", "",
## " DRACULA", "", " _by_", "", "
## Bram Stoker", "", " [Illustration:
## colophon]", "", " NEW YORK", "", "
## GROSSET & DUNLAP", "", " _Publishers_",
## "", " Copyright, 1897, in the United
## States of America, according", " to
## Act of Congress, by Bram Stoker", "",
## " [_All rights reserved._]", "", "
## PRINTED IN THE UNITED STATES", " AT",
## " THE COUNTRY LIFE PRESS, GARDEN CITY,
## N.Y.", "", "", "", "", " TO", "", " MY
## DEAR FRIEND", "", " HOMMY-BEG", "", "",
## "", "", "CONTENTS", "", "", "CHAPTER I",
## " Page", "", "Jonathan Harker's Journal
## 1", "", "CHAPTER II", "", "Jonathan
## Harker's Journal 14", "", "CHAPTER
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## III", "", "Jonathan Harker's Journal
## 26", "", "CHAPTER IV", "", "Jonathan
## Harker's Journal 38", "", "CHAPTER V",
## "", "Letters--Lucy and Mina 51", "",
## "CHAPTER VI", "", "Mina Murray's Journal
## 59", "", "CHAPTER VII", "", "Cutting
## from \"The Dailygraph,\" 8 August 71",
## "", "CHAPTER VIII", "", "Mina Murray's
## Journal 84", "", "CHAPTER IX", "",
## "Mina Murray's Journal 98", "", "CHAPTER
## X", "", "Mina Murray's Journal 111",
## "", "CHAPTER XI", "", "Lucy Westenra's
## Diary 124", "", "CHAPTER XII", "",
## "Dr. Seward's Diary 136", "", "CHAPTER
## XIII", "", "Dr. Seward's Diary 152",
## "", "CHAPTER XIV", "", "Mina Harker's
## Journal 167")

What are the most commonly used words in the book? Well, it will be something like “a”,
“and” etc. Those kinds of words are called stop_words, and they are not very interesting, and
it might be better to just take them out. There are lists of such words. One of them is in the
library tidytext:
library(tidytext)
stop_words

## # A tibble: 1,149 x 2
## word lexicon
## <chr> <chr>
## 1 a SMART
## 2 a's SMART
## 3 able SMART
## 4 about SMART
## 5 above SMART
## 6 according SMART
## 7 accordingly SMART
## 8 across SMART
## 9 actually SMART
## 10 after SMART
## # ... with 1,139 more rows

So we now want to go through Dracula and remove all the appearances of any of the words
in stop_words. This can be done with the dplyr command anti_join. However the two lists
need to have the same column names, and in Dracula it is text whereas in stop_words it is
word. Again, the library tidytext has a command:
dracula %>%

unnest_tokens(word, text) %>%
anti_join(stop_words) ->
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dracula
dracula

## # A tibble: 48,552 x 1
## word
## <chr>
## 1 dracula
## 2 dracula
## 3 _by_
## 4 bram
## 5 stoker
## 6 illustration
## 7 colophon
## 8 york
## 9 grosset
## 10 dunlap
## # ... with 48,542 more rows

So now for the most common words:
dracula %>%

count(word, sort=TRUE)

## # A tibble: 9,072 x 2
## word n
## <chr> <int>
## 1 time 390
## 2 van 323
## 3 night 310
## 4 helsing 301
## 5 dear 224
## 6 lucy 223
## 7 day 220
## 8 hand 210
## 9 mina 210
## 10 door 200
## # ... with 9,062 more rows

so time is the most common word, it appears 390 times in the book.

3.7.0.2 Example: Dracula vs The Time Machine

How do the words in Dracula compare to another famous fiction book of the era, The Time
Machine, by H. G. Wells? This is book # 35 in the Gutenberg catalog:
time.machine <- gutenberg_download(35)[, 2]
time.machine %>%

unnest_tokens(word, text) %>%
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anti_join(stop_words) ->
time.machine

time.machine %>%
count(word, sort=T)

## # A tibble: 4,135 x 2
## word n
## <chr> <int>
## 1 time 200
## 2 machine 85
## 3 white 59
## 4 traveller 55
## 5 world 52
## 6 hand 49
## 7 morlocks 46
## 8 people 46
## 9 weena 46
## 10 found 44
## # ... with 4,125 more rows

Actually, time is the most common word in both books (not a surprise in a book called The
Time Machine!)
Can we do a graphical display of the word frequencies? We will need some routines from yet
another package called tidyr.
We begin by joining the two books together, with a new column identifying the book:
library(tidyr)
freqs <- bind_rows(mutate(dracula, book="Dracula"),

mutate(time.machine, book="Time.Machine"))
freqs

## # A tibble: 59,663 x 2
## word book
## <chr> <chr>
## 1 dracula Dracula
## 2 dracula Dracula
## 3 _by_ Dracula
## 4 bram Dracula
## 5 stoker Dracula
## 6 illustration Dracula
## 7 colophon Dracula
## 8 york Dracula
## 9 grosset Dracula
## 10 dunlap Dracula
## # ... with 59,653 more rows

Next we add some useful columns:
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freqs %>%
mutate(word=str_extract(word, "[a-z']+")) %>%

# take out things like , etc
count(book, word) %>%
group_by(book) %>%
mutate(prop=n/sum(n)) %>% # take into account

# different lengths of the books
ungroup() %>%
filter(n>10) %>% # consider only words used frequently
select(-n) %>% # not needed anymore
arrange(desc(prop)) ->
freqs

Next we find all the words that appear in both books, and look at their relative proportions:
freqs %>%

spread(key=book, value = prop) %>%
# use one column for Dracula's
# proportions and another for Time Machine

na.omit() -> # words that appear in only one book are NA,
# eliminate them

common.words
print(common.words, n=4)

## # A tibble: 103 x 3
## word Dracula Time.Machine
## <chr> <dbl> <dbl>
## 1 absolutely 0.000247 0.000990
## 2 age 0.000288 0.00126
## 3 air 0.00111 0.00207
## 4 altogether 0.000330 0.000990
## # ... with 99 more rows
common.words %>%

ggplot(aes(x=Dracula, y=common.words$Time.Machine)) +
labs(x = "Dracula",

y = "Time Machine") +
geom_text(aes(label = word),

check_overlap = TRUE,
vjust = 1.5)
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3.8 Dates with lubridate

library(tidyverse)
library(lubridate)

For a more detailed discussion see Dates and Times Made Easy with lubridate.

3.8.1 Time and date basics

At first glance working with dates and times doesn’t seem so complicated, but consider the
following questions:

• Where all of these years leap years: 1800, 1900, 2000?

• Does every day have 24 hours?

• Does every minute have 60 seconds?
The answer to all these questions is: NO

• in principle every year divisible by 4 is a leap year, except if it is also divisible by 100,
but not if also divisible by 400! So 1800 and 1900 were not leap years. 2000 was.

• In countries that have Summer Time there are two days with 23 and 25 hours, respectively.
• Even the above is not enough to bring the time it takes the earth to orbit the sun in

perfect alignment with the calender year, so every now and then there is a minute that
has 61 seconds, called a leap second. Since this system of correction was implemented
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in 1972, 27 leap seconds have been inserted, the most recent on December 31, 2016 at
23:59:60.

There are also many regional differences in how date and time are written:
• USA: 4/29/2018 2.30pm

• Germany: 29/4/2018 14.30
Imagine you need to analyse some stock market data, starting from 1980 to today and in
second intervals. You would need to include all of these details!

3.8.2 Create a date object

to get today’s time and date:
today()

## [1] "2019-07-15"
now()

## [1] "2019-07-15 14:32:16 -04"

there are a number of ways to create a specific date object from a string:
ymd("2018-04-29")

## [1] "2018-04-29"
mdy("April 29th, 2018")

## [1] "2018-04-29"
dmy("29-April-2018")

## [1] "2018-04-29"

this also works:
ymd(20180429)

## [1] "2018-04-29"

to add time info use an underscore and the format:
ymd_hm("2018-04-29 2:30 PM")

## [1] "2018-04-29 14:30:00 UTC"
dmy_hms("29-April-2018 2:30:45 PM")

## [1] "2018-04-29 14:30:45 UTC"

As an example we will use the data set flights in the package nycflights13. It has airline
on-time data for all flights departing NYC in 2013.
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library(nycflights13)
flights %>%

print(n=4)

## # A tibble: 336,776 x 19
## year month day dep_time sched_dep_time dep_delay arr_time
## <int> <int> <int> <int> <int> <dbl> <int>
## 1 2013 1 1 517 515 2 830
## 2 2013 1 1 533 529 4 850
## 3 2013 1 1 542 540 2 923
## 4 2013 1 1 544 545 -1 1004
## # ... with 3.368e+05 more rows, and 12 more variables:
## # sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, flight <int>,
## # tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>,
## # distance <dbl>, hour <dbl>, minute <dbl>, time_hour <dttm>

Let’s start by calculating the hour and minutes of the departure from the dep_time. For this
we can use %/% for integer division and %% for modulo:
12.34 %% 2

## [1] 0.34
12.34 %/% 2

## [1] 6
2 * (12.34 %/% 2) + 12.34 %% 2

## [1] 12.34

with this we find
flights %>%

mutate(hour=dep_time %/% 100,
minute=dep_time %% 100) ->

flights

In this tibble the parts of the time and date info are in several columns. Let’s start by putting
them together:
flights %>%

select(year, month, day, hour, minute) %>%
print(n=4)

## # A tibble: 336,776 x 5
## year month day hour minute
## <int> <int> <int> <dbl> <dbl>
## 1 2013 1 1 5 17
## 2 2013 1 1 5 33
## 3 2013 1 1 5 42
## 4 2013 1 1 5 44
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## # ... with 3.368e+05 more rows

To combine the different columns into one date/time object we can use the command
make_datetime:
flights %>%

select(year, month, day, hour, minute) %>%
mutate(departure =

make_datetime(year, month, day, hour, minute)) ->
flights

flights %>%
select(departure) %>%
print(n=4)

## # A tibble: 336,776 x 1
## departure
## <dttm>
## 1 2013-01-01 05:17:00
## 2 2013-01-01 05:33:00
## 3 2013-01-01 05:42:00
## 4 2013-01-01 05:44:00
## # ... with 3.368e+05 more rows

3.8.3 Time spans

lubridate has a number of functions to do arithmetic with dates. For example, my age is
today()

## [1] "2019-07-15"
my.age <- today() - ymd(19610602)
as.duration(my.age)

## [1] "1834012800s (~58.12 years)"

3.9 Factors with forcats

We have previously discussed factors, that is categorical data with fixed values and ordering.
Now we will discuss the package forcats, which has a number of useful functions when working
with factors.
library(tidyverse)
library(forcats)

Let’s remind ourselves of the base R commands first. Consider the data set draft, with the
results of the 1970s military draft:
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draft %>%
ggplot(aes(Day.of.Year, Draft.Number)) +

geom_point()
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Let’s say instead we want to do a box plot of the draft numbers by month:
draft %>%

ggplot(aes(Month, Draft.Number)) +
geom_boxplot()
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Now this is no good, the ordering of the boxes is alphabetic. So we need to change the
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variable Month to a factor:
lvls <- c("Jan", "Feb", "Mar", "Apr", "May", "Jun",

"Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
Month.fac <- factor(draft$Month,

levels = lvls,
ordered = TRUE)

df <- data.frame(Month=Month.fac,
Draft_Number=draft$Draft.Number)

df %>%
ggplot(aes(Month, Draft_Number)) +

geom_boxplot()
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Quite often the order we want is the order in which the values appear in the data set, then
we can use
lvls <- unique(draft$Month)

The forcats package includes a data set called gss_cat:
gss_cat

## # A tibble: 21,483 x 9
## year marital age race rincome partyid relig denom tvhours
## <int> <fct> <int> <fct> <fct> <fct> <fct> <fct> <int>
## 1 2000 Never ma~ 26 White $8000 to~ Ind,near ~ Protes~ Southe~ 12
## 2 2000 Divorced 48 White $8000 to~ Not str r~ Protes~ Baptis~ NA
## 3 2000 Widowed 67 White Not appl~ Independe~ Protes~ No den~ 2
## 4 2000 Never ma~ 39 White Not appl~ Ind,near ~ Orthod~ Not ap~ 4
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## 5 2000 Divorced 25 White Not appl~ Not str d~ None Not ap~ 1
## 6 2000 Married 25 White $20000 -~ Strong de~ Protes~ Southe~ NA
## 7 2000 Never ma~ 36 White $25000 o~ Not str r~ Christ~ Not ap~ 3
## 8 2000 Divorced 44 White $7000 to~ Ind,near ~ Protes~ Luther~ NA
## 9 2000 Married 44 White $25000 o~ Not str d~ Protes~ Other 0
## 10 2000 Married 47 White $25000 o~ Strong re~ Protes~ Southe~ 3
## # ... with 21,473 more rows

which has the results of the General Social Survey (http://gss.norc.org). This is a survey in
the US done by the University of Chicago. We will use it to illustrate forcats.
Let’s begin by considering the variable race:
gss_cat$race %>%

table()

## .
## Other Black White Not applicable
## 1959 3129 16395 0

We can do the same thing with tidyverse routines:
gss_cat %>%

count(race)

## # A tibble: 3 x 2
## race n
## <fct> <int>
## 1 Other 1959
## 2 Black 3129
## 3 White 16395

Notice a bit of a difference: In the first case there is the Not applicable group but not in the
second. This is because “race” is a factor and this is among its levels. The table command
includes all levels, even if the count is 0, whereas count does not. This is likely what we want
most times, but not all the times.
By the way, we can always find out what the levels are:
levels(gss_cat$race)

## [1] "Other" "Black" "White" "Not applicable"

Let’s consider the average number of hours that a person spends watching TV per day,
depending on their religion:
gss_cat %>%

group_by(relig) %>%
summarise(

age = mean(age, na.rm = TRUE),
tvhours = mean(tvhours, na.rm = TRUE),
n = n()
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) ->
tv.relig

tv.relig %>%
ggplot(aes(tvhours, relig)) +
geom_point()
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This graph is hard to read, mainly because there is no ordering. But unlike Month the
variable itself doesn’t have any either. So maybe we should order by size:
tv.relig %>%

ggplot(aes(tvhours, fct_reorder(relig, tvhours))) +
geom_point() +
labs(x="TV Hours",

y="Religion")
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Let’s see how income varies with age:
gss_cat %>%

group_by(rincome) %>%
summarise(

age = mean(age, na.rm = TRUE),
n = n()

) ->
rincome

rincome %>%
ggplot(aes(age, rincome)) +
geom_point() +
labs(x="Age", y="Income")

246



No answer

Don't know

Refused

$25000 or more

$20000 − 24999

$15000 − 19999

$10000 − 14999

$8000 to 9999

$7000 to 7999

$6000 to 6999

$5000 to 5999

$4000 to 4999

$3000 to 3999

$1000 to 2999

Lt $1000

Not applicable

35 40 45 50 55

Age

In
co

m
e

What ordering makes the most sense here? There are two types of levels: those with actual
numbers, and those like “Not applicable”. We should probably separate them.
rincome %>%

ggplot(aes(age, fct_relevel(rincome,
c("Not applicable", "Refuse", "No answer")))) +

geom_point()+
labs(x="Age", y="Income")
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In a bar graph the most common ordering is by size:
gss_cat %>%

mutate(marital = marital %>%
fct_infreq() %>% fct_rev()

) %>%
ggplot(aes(marital)) +

geom_bar() +
labs(x="Marital Status",

y="Counts")
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3.10 Version Control and Collaboration, Github

Notice that the title doesn’t read with Github. This is because github is not an R package. It
is much more general.
Once you start working on larger projects (like a thesis?) you quickly run into the following
problem: you consider a change to the existing document but you are not sure yet. So you
make a copy. Then the same thing happens again, and again . . . Eventually you have 10
copies with strange names and no idea what is what. Version control is a general principle to
keep track of all these changes.
It gets even more important when you begin to collaborate with others, and everyone makes
changes to the same document, possibly at the same time.
There are many version control systems available. In fact Dropbox has a very rudimentary
one, it keeps older versions of a file so you can restore it when needed. But one of the very
best is Github, located at https://github.com/.
For a detailed introduction to git, github and how they work with RStudio see Happy git
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with R.
Unfortunately getting going with github is not a simple process. You need to install several
programs. My advice is to follow the instructions on Happy git with R precisely.
The main idea behind github is to branch a repo (repository). Essentially that makes a
complete copy. You can then make any changes, but without changing the master copy. Once
you are certain your changes will stay you commit them back to the master. You can make
such a branch of any repo that was declared public, which is most of them, even if it is not
yours. Then if they make changes to the files, all you need to do is pull the repo and you
also have the latest version!
This course (the Rmds) is available on github at https://github.com/WolfgangRolke/
Computing-with-R.

3.11 Setting up a new repo

github is independent of R and/or RStudio. You can use it for any purpose, even storing
your poetry. RStudio however was designed to work closely with github, and I will discuss
how to use gitub in this way.

Start by going to https://github.com and make sure you are logged in. Of course on your
first visit you have to create an account.
Click green “New repository” button. Or, if you are on your own profile page, click on
“Repositories”, then click the green “New” button.
Repository name: myrepo
Public
YES Initialize this repository with a README
Click big green button “Create repository.”
Copy the HTTPS clone URL to the clipboard

Now go to RStudio
start with File > New Project > Version Control and choose git.
paste the URL into the box and choose an appropriate folder.
Open a file explorer window and go to that folder. You will now find a file README.md as
well as an R project file in there.
Copy any files you wish to be part of the repo into this folder.
Go to RStudio and click on Git in the upper right corner, next to Environment etc. You see
all these files, check the boxes next to them under Staged.
Click on Commit, type a message and click Commit. A new window will pop up, when it is
done click Close.
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Finally click Push. RStudio will now send those files to github. When it is done click on close
Switch to your browser, refresh, and you should see those files.
Click on an Rmd and you will see something interesting: these are quite readable. In essence
you don’t need to knit to html or pdf, if you use github the Rmd itself becomes a webpage.
Now whenever you make a substantial change to one of these files, repeat the Commit-Push
steps to upload the file to github.

4 Statistics with R

4.1 Basic Statistics

In this section we will use R to analyze a number of data sets. I will assume that you are
familiar with basic concepts such as confidence intervals and hypothesis testing. If you are
not you can read up on them on the web page of my course ESMA 3101: Introduction to
Statistics I.

4.1.1 Basic Summaries and Graphs

We have talked about the upr admissions data before. Here are some simple things to do
when looking at this kind of data:

• Tables
Gender <- table(upr$Gender)
names(Gender) <- c("Female", "Male")
Percentage <- round(Gender/sum(Gender)*100, 1)
cbind(Gender, Percentage)

## Gender Percentage
## Female 11487 48.5
## Male 12179 51.5

• Contingency Tables
table(upr$Year, upr$Gender)

##
## F M
## 2003 1102 1151
## 2004 1040 1118
## 2005 1162 1138
## 2006 1137 1098
## 2007 1208 1256
## 2008 1219 1219
## 2009 1180 1237
## 2010 958 1073
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## 2011 853 919
## 2012 769 979
## 2013 859 991

or percentages based on grand total:
round(table(upr$Year, upr$Gender)/length(upr$Year)*100, 1)

##
## F M
## 2003 4.7 4.9
## 2004 4.4 4.7
## 2005 4.9 4.8
## 2006 4.8 4.6
## 2007 5.1 5.3
## 2008 5.2 5.2
## 2009 5.0 5.2
## 2010 4.0 4.5
## 2011 3.6 3.9
## 2012 3.2 4.1
## 2013 3.6 4.2

but often more interesting are percentages based on row totals
tmp <- table(upr$Year, upr$Gender)
apply(tmp, 1, sum)

## 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
## 2253 2158 2300 2235 2464 2438 2417 2031 1772 1748 1850
tmp <- round(tmp/apply(tmp, 1, sum)*100, 1)
tmp

##
## F M
## 2003 48.9 51.1
## 2004 48.2 51.8
## 2005 50.5 49.5
## 2006 50.9 49.1
## 2007 49.0 51.0
## 2008 50.0 50.0
## 2009 48.8 51.2
## 2010 47.2 52.8
## 2011 48.1 51.9
## 2012 44.0 56.0
## 2013 46.4 53.6

or column totals
• Bar Charts
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ggplot(upr, aes(x=Year, fill=Gender)) +
geom_bar(position="dodge", alpha=0.75)
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labs(x="", y="Counts")

## $x
## [1] ""
##
## $y
## [1] "Counts"
##
## attr(,"class")
## [1] "labels"

or based on grand total percentages:
ggplot(upr, aes(x=Year, fill=Gender)) +

geom_bar(aes(y = (..count..)/sum(..count..)),
position="dodge", alpha=0.75) +

scale_y_continuous(labels=scales::percent) +
labs(x="", y="Percentage",

title="Percentages based on Grand Total")
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4.1.2 Numerical Summaries

round(mean(upr$Freshmen.GPA, na.rm=TRUE), 3)

## [1] 2.733
round(median(upr$Freshmen.GPA, na.rm=TRUE), 3)

## [1] 2.83
round(sd(upr$Freshmen.GPA, na.rm=TRUE), 3) # Standard Deviation

## [1] 0.779
round(quantile(upr$Freshmen.GPA,

probs = c(0.1, 0.25, 0.75, 0.9),
na.rm=TRUE), 3) # Quantiles and Quartiles

## 10% 25% 75% 90%
## 1.71 2.32 3.28 3.65

Notice also that I have rounded all the answers. Proper rounding is an important thing to do!

4.1.3 Histogram and Boxplot

bw <- 4/50
# use about 50 bins
ggplot(upr, aes(Freshmen.GPA)) +

geom_histogram(color = "black",
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fill = "white",
binwidth = bw) +

labs(x = "Freshmen GPA", y = "Counts")
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ggplot(upr, aes(Gender,Freshmen.GPA)) +
geom_boxplot()
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4.1.4 Two Quantitative Variables

round(cor(upr$Year, upr$Freshmen.GPA,
use="complete.obs"), 3)

## [1] 0.097
ggplot(upr, aes(Year, Freshmen.GPA)) +

geom_jitter(shape=16, size=1/10, width = 0.25) +
scale_x_continuous(breaks = 2003:2013) +
labs(x="Year", y="GPA after Freshmen Year")

0

1

2

3

4

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

G
PA

 a
fte

r 
F

re
sh

m
en

 Y
ea

r

4.1.5 Inference for the Mean

The basic R command for inference for a population mean is t.test:

4.1.5.1 Example: Simon Newcomb’s Measurements of the Speed of Light

Simon Newcomb made a series of measurements of the speed of light between July and
September 1880. He measured the time in seconds that a light signal took to pass from his
laboratory on the Potomac River to a mirror at the base of the Washington Monument and
back, a total distance of 7400m. His first measurement was 0.000024828 seconds, or 24,828
nanoseconds (109 nanoseconds = 1 second).
We want to find a 95% confidence interval the speed of light.
attach(newcomb)
t.test(Measurement)
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##
## One Sample t-test
##
## data: Measurement
## t = 18770, df = 65, p-value <2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 24824 24829
## sample estimates:
## mean of x
## 24826

The assumptions for this method are:
• data comes from a normal distribution

• or data set is large enough
Let’s check:
y <- Measurement
dta <- data.frame(y = y,

x = rep(" ", length(y)))
ggplot(aes(x, y), data = dta) +

geom_boxplot()
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It seems there is at least one serious outlier. This should not happen if the data came from a
normal distribution.
We could proceed in one of two ways:

• eliminate outlier

256



x <- Measurement[Measurement>24775]
t.test(x)$conf.int

## [1] 24826 24829
## attr(,"conf.level")
## [1] 0.95

• use the median:
median(Measurement)

## [1] 24827

but now we need to find a confidence interval for the median. That can be done with the
non-parametric Wilcoxon Rank Sum method:
wilcox.test(newcomb$Measurement, conf.int = TRUE)

##
## Wilcoxon signed rank test with continuity correction
##
## data: newcomb$Measurement
## V = 2211, p-value = 2e-12
## alternative hypothesis: true location is not equal to 0
## 95 percent confidence interval:
## 24826 24829
## sample estimates:
## (pseudo)median
## 24827

4.1.5.2 Example: Resting Period of Monarch Butterflies

Some Monarch butterflies fly early in the day, others somewhat later. After the flight they have
to rest for a short period. It has been theorized that the resting period (RIP) of butterflies
flying early in the morning is shorter because this is a thermoregulatory mechanism, and it is
cooler in the mornings. The mean RIP of all Monarch butterflies is 133 sec. Test the theory
at the 10% level.
Research by Anson Lui, Resting period of early and late flying Monarch butterflies Danaeus
plexippus, 1997
1. Parameter: mean µ

2. Method: 1-sample t

3. Assumptions: normal data or large sample

4. α = 0.1
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5. H0 : µ = 133 (RIP is the same for early morning flying butterflies as all others)

6. H0 : µ < 133 (RIP is the shorter for early morning flying butterflies)

7.
t.test(butterflies$RIP.sec.,

mu=133,
alternative = "less")$p.value

## [1] 0.05584

8. p = 0.0558 < α = 0.1, so we reject the null hypothesis

9. It appears the resting time is somewhat shorter, but the conclusion is not a strong one.
Checking the assumption:
y <- butterflies$RIP.sec.
dta <- data.frame(y = y,

x = rep(" ", length(y)))
ggplot(aes(x, y), data = dta) +

geom_boxplot()
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looks good.

4.1.6 Inference for Proportions

The R routine for inference for a proportion (or a probability or a percentage) is binom.test.
This implements a method by Clopper and Pearson (1934). This method is exact and has no
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assumptions.
Note The formula discussed in many introductory statistic courses for the confidence interval
is

p̂± zα/2

√
p̂(1− p̂)

n

where p̂ is the proportion of success. This leads to confidence intervals that are now known
to be quite wrong, and so this method should not be used anymore. The same is true for the
corresponding hypothesis test. This method (actually a slight improvement due to Wilson
(1927)) is implemented in R by prop.test.

4.1.6.1 Example: Jon Kerrichs Coin

The South African Jon Kerrich spent some time in a German prisoner of war camp during
world war I. He used his time to flip a coin 10000 times, resulting in 5067 heads.
Test at the 5% level of significance whether 5067 heads in 10000 flips are compatible with a
fair coin.
1. Parameter: proportion π

2. Method: exact binomial

3. Assumptions: None

4. α = 0.05

5. H0 : π = 0.5 (50% of flips result in “Heads”, coin is fair)

6. Ha : π 6= 0.5 (coin is not fair)

7.
binom.test(x = 5067, n = 10000)$p.value

## [1] 0.1835

8. p = 0.1835 > α = 0.05, so we fail to reject the null hypothesis.

9. it appears Jon Kerrich’s coin was indeed fair.

4.1.6.2 Example: Sample Size for Polling
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Say some polling institute wants to conduct a poll for the next election for president. They
will then find a 95% confidence interval and they want this interval to have an error of 3
percentage points (aka ±0.03). What sample size do they need?
In American politics the two parties are always very close, so in a poll with n people about
n/2 will vote for one or the other party. Let’s do a little trial and error:
n <- 100
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.1017

Now that is to large, so
n <- 200
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.07134
n <- 400
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.05009
n <- 800
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.03522
n <- 1200
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.02868
n <- 1100
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.02997
n <- 1050
diff(as.numeric(binom.test(n/2, n)$conf.int)/2)

## [1] 0.03068

There is something quite remarkable about this result!

4.1.7 Correlation

4.1.7.1 Example: UPR Admissions data

What are the correlations between the various variables?
head(upr, 2)

## ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal
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## 1 00C2B4EF77 2005 M 502 3.97 647
## 2 00D66CF1BF 2003 M 502 3.80 597
## Aptitud.Matem Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA
## 1 621 626 672 551 342 3.67
## 2 726 618 718 575 343 2.75
## Graduated Year.Grad. Grad..GPA Class.Facultad
## 1 Si 2012 3.33 INGE
## 2 No NA NA INGE

Let’s take out the those variables that are not useful for predicting success, either because we
don’t have their value at the time of the admissions process (Freshmen.GPA) or for legal
reasons (Gender)
x <- upr[, -c(1:4, 11:16)]
head(x, 2)

## Highschool.GPA Aptitud.Verbal Aptitud.Matem Aprov.Ingles Aprov.Matem
## 1 3.97 647 621 626 672
## 2 3.80 597 726 618 718
## Aprov.Espanol
## 1 551
## 2 575
round(cor(x, use = "complete.obs") ,3)

## Highschool.GPA Aptitud.Verbal Aptitud.Matem Aprov.Ingles
## Highschool.GPA 1.000 0.176 0.156 0.049
## Aptitud.Verbal 0.176 1.000 0.461 0.513
## Aptitud.Matem 0.156 0.461 1.000 0.456
## Aprov.Ingles 0.049 0.513 0.456 1.000
## Aprov.Matem 0.216 0.474 0.819 0.481
## Aprov.Espanol 0.247 0.602 0.389 0.428
## Aprov.Matem Aprov.Espanol
## Highschool.GPA 0.216 0.247
## Aptitud.Verbal 0.474 0.602
## Aptitud.Matem 0.819 0.389
## Aprov.Ingles 0.481 0.428
## Aprov.Matem 1.000 0.404
## Aprov.Espanol 0.404 1.000

somewhat surprising, Highschool.GPA is not highly correlated with any of the tests. The
highest correlation is between the two math tests (0.819)

4.1.7.2 Example: The 1970’s Military Draft

In 1970, Congress instituted a random selection process for the military draft. All 366 possible
birth dates were placed in plastic capsules in a rotating drum and were selected one by one.
The first date drawn from the drum received draft number one and eligible men born on that
date were drafted first. In a truly random lottery there should be no relationship between
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the date and the draft number.
Question: was the draft was really “random”?
Here we have two quantitative variables, so we start with the scatterplot:
attach(draft)
ggplot(aes(x, y),

data=data.frame(x=Day.of.Year,
y=Draft.Number)) +

geom_point()
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and this does not look like there is a problem with independence.
However:
1) Parameter: Pearson’s correlation coefficient ρ
2) Method: Test for Pearson’s correlation coefficient ρ
3) Assumptions: relationship is linear and that there are no outliers.
4) α = 0.05

5) H0 : ρ = 0 (no relationship between Day of Year and Draft Number)
6) Ha : ρ 6= 0 (some relationship between Day of Year and Draft Number)
7)

cor.test(Draft.Number, Day.of.Year)$p.value

## [1] 1.264e-05

8) p = 0.0000 < α = 0.05, so we reject the null hypothesis,
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9) There is a statistically significant relationship between Day of Year and Draft Number.

4.1.8 Categorical Data Analysis - Tests for Independence

4.1.8.1 Example: Drownings in Los Angeles

Data is from O’Carroll PW, Alkon E, Weiss B. Drowning mortality in Los Angeles County,
1976 to 1984, JAMA, 1988 Jul 15;260(3):380-3.
Drowning is the fourth leading cause of unintentional injury death in Los Angeles County.
They examined data collected by the Los Angeles County Coroner’s Office on drownings that
occurred in the county from 1976 through 1984. There were 1587 drownings (1130 males and
457 females) during this nine-year period
drownings

## Male Female
## Private Swimming Pool 488 219
## Bathtub 115 132
## Ocean 231 40
## Freshwater bodies 155 19
## Hottubs 16 15
## Reservoirs 32 2
## Other Pools 46 14
## Pails, basins, toilets 7 4
## Other 40 12

Here we have two categorical variables (Method of Drowning and Gender), both categorical.
We want to know whether the variables are independent. The most popular method of
analysis for this type of problem is Pearson’s chi square test of independence. It is
done with the command chisq.test and it has the assumption of no expected counts less than
5.
1. Parameters of interest: measure of association

2. Method of analysis: chi-square test of independence

3. Assumptions of Method: all expected counts greater than 5

4. Type I error probability α=0.05

5. H0: Classifications are independent = there is no difference in the method of drowning
between men and women.

6. Ha: Classifications are dependent = there is some difference in the method of drowning
between men and women.
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7.
chisq.test(drownings)

##
## Pearson's Chi-squared test
##
## data: drownings
## X-squared = 144, df = 8, p-value <2e-16

8. p = 0 < α=0.05, we reject the null hypothesis, there is a statistically significant difference
between men and women and where they drown.

Let’s see whether there is a problem with the assumptions:
chisq.test(drownings)$expected

## Male Female
## Private Swimming Pool 503.409 203.591
## Bathtub 175.873 71.127
## Ocean 192.962 78.038
## Freshwater bodies 123.894 50.106
## Hottubs 22.073 8.927
## Reservoirs 24.209 9.791
## Other Pools 42.722 17.278
## Pails, basins, toilets 7.832 3.168
## Other 37.026 14.974

and we see that the expected counts of Pails, basins, toilets and Female is 3.2. In real life
this would be considered ok, but it would also be easy to fix:
newmale <- c(drownings[1:7, 1], 7+40)
newfemale <- c(drownings[1:7, 2], 4+12)
newdrown <- cbind(newmale, newfemale)
newdrown

## newmale newfemale
## Private Swimming Pool 488 219
## Bathtub 115 132
## Ocean 231 40
## Freshwater bodies 155 19
## Hottubs 16 15
## Reservoirs 32 2
## Other Pools 46 14
## 47 16
out <- chisq.test(newdrown)
out$expected

## newmale newfemale
## Private Swimming Pool 503.41 203.591
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## Bathtub 175.87 71.127
## Ocean 192.96 78.038
## Freshwater bodies 123.89 50.106
## Hottubs 22.07 8.927
## Reservoirs 24.21 9.791
## Other Pools 42.72 17.278
## 44.86 18.142
out$p.value

## [1] 8.519e-28

4.1.9 Comparing the Means of Several Populations - ANOVA

4.1.9.1 Example: Mothers Cocaine Use and Babies Health

Chasnoff and others obtained several measures and responses for newborn babies whose
mothers were classified by degree of cocaine use.
The study was conducted in the Perinatal Center for Chemical Dependence at Northwestern
University Medical School. The measurement given here is the length of the newborn.
Source: Cocaine abuse during pregnancy: correlation between prenatal care and perinatal
outcome
Authors: SN MacGregor, LG Keith, JA Bachicha, and IJ Chasnoff
Obstetrics and Gynecology 1989;74:882-885
attach(mothers)
dta <- data.frame(y = Length,

x = Status)
ggplot(aes(x, y), data = dta) +

geom_boxplot() +
labs(x="", y="Length")
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out <- matrix(0, 3, 3)
colnames(out) <- c("Size", "Mean", "SD")
rownames(out) <- unique(Status)
out[, 1] <- tapply(Length, Status, length)
out[, 2] <- round(tapply(Length, Status, mean), 2)
out[, 3] <- round(tapply(Length, Status, sd), 2)
out

## Size Mean SD
## Drug Free 39 51.1 2.9
## First Trimester 19 49.3 2.5
## Throughout 36 48.0 3.6

The standard method for this problem is called ANOVA (Analysis of Variance) and is run
with the aov command.
1. Parameters of interest: group means
2. Method of analysis: ANOVA
3. Assumptions of Method: residuals have a normal distribution, groups have equal variance

4. Type I error probability α=0.05

5. Null hypothesis H0: µ1 = µ2 = µ3 (groups have the same means)

6. Alternative hypothesis Ha: µi 6= µj (at least two groups have different means)

7.
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fit <- aov(Length~Status)
summary(fit)

## Df Sum Sq Mean Sq F value Pr(>F)
## Status 2 181 90.7 9.32 0.00021
## Residuals 91 886 9.7

8. 0.000 < 0.05, there is some evidence that the group means are not the same, the babies
whose mothers used cocaine tend to be a little shorter (less healthy?)

In step 3 we have the assumptions
a. residuals have a normal distribution

ggplot(data.frame(x=fit$res), aes(sample=x)) +
stat_qq() +
stat_qq_line()
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looks fine
b. groups have equal variance

The box plot shows that the variances are about the same.

Often if the null of no difference is rejected, one wants to go a step further and do a pairwise
comparison:

• is Drug Free different from First Trimester?

• is First Trimester different from Throughout?
There are a number of methods known for this problem, a popular one is by Tukey:
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tuk <- TukeyHSD(fit)
plot(tuk)
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this draws confidence intervals for the difference in means of all pairs. If an interval does not
contain 0, the corresponding pair is statistically significantly different.
Here that is the case only for Drug Free - Throughout, so the other two pairs are not
statistically significantly different. Remember, however that failing to reject H0 is NOT the
same as accepting H0. The fact that those pairs are not statistically significantly different is
almost certainly due to a lack of sample size.

4.1.10 Regression

4.1.10.1 Example: Predicting the Usage of Electricity

In Westchester County, north of New York City, Consolidated Edison bills residential cus-
tomers for electricity on a monthly basis. The company wants to predict residential usage,
in order to plan purchases of fuel and budget revenue flow. The data includes information
on usage (in kilowatt-hours per day) and average monthly temperature for 55 consecutive
months for an all-electric home. Data on consumption of electricity and the temperature in
Westchester County, NY.
attach(elusage)
head(elusage)

## Month Year Usage Temperature
## 1 8 1989 24.83 73
## 2 9 1989 24.69 67
## 3 10 1989 19.31 57
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## 4 11 1989 59.71 43
## 5 12 1989 99.67 26
## 6 1 1990 49.33 41
ggplot(aes(Temperature, Usage), data=elusage) +

geom_point()
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We want to find a model (aka a function) f with

Usage = f(Temperature) + ε

where ε is some random variable, often with the assumption ε ∼ N(0, σ).
1. Linear Model

Usage = β0 + β1 Temperature + ε

fit <- lm(Usage~Temperature, data=elusage)
summary(fit)

##
## Call:
## lm(formula = Usage ~ Temperature, data = elusage)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.305 -8.163 0.559 7.723 28.611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) 116.7162 5.5649 21.0 <2e-16
## Temperature -1.3646 0.0994 -13.7 <2e-16
##
## Residual standard error: 11.4 on 53 degrees of freedom
## Multiple R-squared: 0.78, Adjusted R-squared: 0.776
## F-statistic: 188 on 1 and 53 DF, p-value: <2e-16

gives the model as

Usage = 116.7− 1.36 Temperature + ε

How do we know that this is a good model? The main diagnostic is the Residual vs Fits plot:
Fits <- 116.7 - 1.36*Temperature
Residuals <- Usage-Temperature

actually, they are already part of the fit object:
ggplot(aes(Fits, Residuals),

data=data.frame(Fits=fitted(fit),
Residuals=residuals(fit))) +

geom_point() +
geom_smooth(se=FALSE) +
geom_abline(slope = 0)
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the idea is that if the model is good, the residuals and the fitted values should be independent,
and so this graph should not show any pattern. Adding the non-parametric fit and a horizontal
line shows that this is not the case here.

• polynomial model
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Let’s add a quadratic term to the model

Usage = β0 + β1 Temperature + β2 Temperature2 + ε

T2 <- Temperature^2
quad.fit <- lm(Usage~Temperature + T2,

data=elusage)
summary(quad.fit)

##
## Call:
## lm(formula = Usage ~ Temperature + T2, data = elusage)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.859 -5.681 0.376 5.465 21.970
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 196.71532 17.48757 11.25 1.5e-15
## Temperature -4.64046 0.69491 -6.68 1.6e-08
## T2 0.03073 0.00647 4.75 1.6e-05
##
## Residual standard error: 9.57 on 52 degrees of freedom
## Multiple R-squared: 0.847, Adjusted R-squared: 0.841
## F-statistic: 144 on 2 and 52 DF, p-value: <2e-16
ggplot(aes(Fits, Residuals),

data=data.frame(Fits=fitted(quad.fit),
Residuals=residuals(quad.fit))) +

geom_point() +
geom_smooth(se=FALSE) +
geom_abline(slope = 0)
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and that is much better. If it were not one can continue and add even higher order terms.
There will always be a polynomial model that give a good fit.

• Transformations
here we use some transformation (functions) of the data, for example log:
log.usage <- log(Usage)
log.temp <- log(Temperature)
log.fit <- lm(log.usage~log.temp)
summary(fit)

##
## Call:
## lm(formula = Usage ~ Temperature, data = elusage)
##
## Residuals:
## Min 1Q Median 3Q Max
## -22.305 -8.163 0.559 7.723 28.611
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 116.7162 5.5649 21.0 <2e-16
## Temperature -1.3646 0.0994 -13.7 <2e-16
##
## Residual standard error: 11.4 on 53 degrees of freedom
## Multiple R-squared: 0.78, Adjusted R-squared: 0.776
## F-statistic: 188 on 1 and 53 DF, p-value: <2e-16
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ggplot(aes(Fits, Residuals),
data=data.frame(Fits=fitted(log.fit),

Residuals=residuals(log.fit))) +
geom_point() +
geom_smooth(se=FALSE) +
geom_abline(slope = 0)
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and that is also not to bad. Other standard choices for transformations are square root and
inverse, but in principle any function might work.

How do we choose among these models? A standard measure of the quality of the fit is the
Coefficient of Determination. It is defined as

R2 = cor(Observed Values, Predicted Values)2100%

the better a model is, the more correlated it’s fitted values and the observed values should
be, so if we have a choice of two model, the one with the higher R2 is better.
Here we find
# Linear Model
round(100*unlist(summary(fit)$r.squared), 2)

## [1] 78.05
# Quadratic Model
round(100*unlist(summary(quad.fit)$r.squared), 2)

## [1] 84.69
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# Log Transfrom Model
round(100*unlist(summary(log.fit)$r.squared), 2)

## [1] 81.12

but we need to be careful here: the linear model is a special case of the quadratic model, and
so it’s R2 can never be smaller. There are other ways to choose between such nested models,
for example the F test, but here this is not an issue because the linear model is bad anyway.
Now the R2 of the quadratic model is 84.7% and that of the log transform model is 81.1%,
so the quadratic one is better.
Finally let’s have a look what those models look like:
x <- seq(min(Temperature), max(Temperature), length=100)
y.quad <- predict(quad.fit,

newdata=data.frame(Temperature=x,
T2 = x^2))

y.log <- exp(predict(log.fit,
newdata=data.frame(log.temp=log(x))))

dta <- data.frame(x=c(x, x),
y=c(y.quad, y.log),
Model=rep(c("Quadratic", "Log"),

each=100))
ggplot(aes(x, y, color=Model), data=dta) +

geom_line(size=1.2) +
geom_point(data=elusage,

aes(Temperature, Usage),
inherit.aes = FALSE) +

xlab("Temperature") +
ylab("Usage")
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4.2 Multiple Predictors

4.2.1 ANOVA

4.2.1.1 Case Study: Gasoline Type and Mileage

In an experiment to study gas mileage four different blends of gasoline are tested in each of
three makes of automobiles. The cars are driven a fixed distance to determine the mpg (miles
per gallon) The experiment is repeated three times for each blend-automobile combination.
(Taken from Lyman Ott)
Note that the interest here is indifferent gasoline blends, automobile is a blocking variable, so
this is a randomized block design.
Gasoline is numbers, but these are just codes for different blends, so it is a categorical variable
or factor.
gasoline$Gasoline <- factor(gasoline$Gasoline,

levels = c(1, 3, 2, 4),
ordered = TRUE)

gasoline <- as.data.frame(gasoline)

attach(gasoline)
head(gasoline)

## MPG Gasoline Automobile
## 1 22.7 1 A
## 2 22.4 1 A
## 3 22.9 1 A
## 4 21.5 2 A
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## 5 21.8 2 A
## 6 21.6 2 A

Here is an interesting calculation:
table(Gasoline, Automobile)

## Automobile
## Gasoline A B C
## 1 3 3 3
## 3 3 3 3
## 2 3 3 3
## 4 3 3 3

This shows us two things:
1. we have repeated measurements (several observations per factor-level combination)
2. we have a balanced design (the same number of repetitions in each factor-level combina-

tion)
This second feature used to be quite important because the calculations in a balanced design
are much simpler. Nowadays with fast computers this is not important anymore. There
are still good reasons why you want to design your experiment to have a balanced design if
possible, though!
ggplot(gasoline, aes(Gasoline, MPG)) +

geom_boxplot()
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ggplot(gasoline, aes(Automobile, MPG)) +
geom_boxplot()
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the boxplots suggest a difference between blends but not between automobiles.
The summary statistics are
round(tapply(MPG, Gasoline, mean), 1)

## 1 3 2 4
## 22.8 21.9 21.2 20.5
round(tapply(MPG, Gasoline, sd), 2)

## 1 3 2 4
## 0.36 0.25 0.37 0.36

Interaction:
In the case of two or more predictors (factors) we also need to worry about relationships
between them. This is called interaction.
One way to study this issue is as follows:

• find the means of MPG for each factor-level combination

• plot these points with one factor on the x axis

• connect the points according to the other factor
ggplot(data = gasoline,

aes(Automobile, MPG,
colour = Gasoline, group=Gasoline)) +

stat_summary(fun.y=mean, geom="point")+
stat_summary(fun.y=mean, geom="line")
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if there is no interaction, the line segments should be fairly parallel. This is the case here, so
there is no indication of interaction.
We have repeated measurements (3 per factor-level combination), so we can test also test
for this:
aov(MPG~Gasoline*Automobile, data=gasoline)

## Call:
## aov(formula = MPG ~ Gasoline * Automobile, data = gasoline)
##
## Terms:
## Gasoline Automobile Gasoline:Automobile Residuals
## Sum of Squares 25.405 0.527 0.909 2.247
## Deg. of Freedom 3 2 6 24
##
## Residual standard error: 0.306
## Estimated effects may be unbalanced

1) Parameters of interest: Interaction

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α=0.05

5) Null hypothesis H0 : no interaction

6) Alternative hypothesis Ha: some interaction
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7) p value = 0.1854
8) 0.1854 > 0.05, there is no evidence of interaction.

So we will now proceed without the interaction term:
aov(MPG~Gasoline+Automobile, data=gasoline)

## Call:
## aov(formula = MPG ~ Gasoline + Automobile, data = gasoline)
##
## Terms:
## Gasoline Automobile Residuals
## Sum of Squares 25.405 0.527 3.156
## Deg. of Freedom 3 2 30
##
## Residual standard error: 0.3243
## Estimated effects may be unbalanced

the assumptions are the same as those of oneway anova, they are fine here.
Now let’s test for the factors:
Test for Factor Gasoline:
1) Parameters of interest: means of gasoline groups

2) Method of analysis: ANOVA

3) Assumptions of Method: residuals have a normal distribution, groups have equal variance

4) Type I error probability α = 0.05

5) Null hypothesis H0 : µ1 = .. = µ4 (Gasoline groups have the same means)

6) Alternative hypothesis Ha: µi 6= µj (Gasoline groups have different means)

7) p value=0.000

8) 0.000<0.05, there is some evidence of differences in gasoline blends
Test for Factor Automobile is not really needed because this is a blocking variable.
Notice that if we included the interaction the p-value for Automobile was 0.08, without the
interaction it is 0.1. One advantage of being able to fit an additive model is that often it
makes the conclusions stronger.

4.2.2 Regression

4.2.2.1 Case Study: House Prices
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Prices of residencies located 30 miles south of a large metropolitan area with several possible
predictor variables.
attach(houseprice)
houseprice

## Price Sqfeet Floors Bedrooms Baths
## 1 69.0 1500 1 2 1.0
## 3 118.5 1881 1 2 2.0
## 4 104.0 1976 1 3 2.0
## 5 116.5 1881 1 3 2.0
## 6 121.5 1881 1 3 2.0
## 7 125.0 1976 1 3 2.0
## 8 128.0 2357 2 3 2.5
## 9 129.9 2167 1 3 1.7
## 10 133.0 2167 2 3 2.5
## 11 135.0 2167 2 3 2.5
## 12 137.5 2357 2 3 2.5
## 13 139.9 2167 1 3 2.0
## 14 143.9 2262 2 3 2.5
## 15 147.9 2548 2 3 2.5
## 16 154.9 2357 2 3 2.5
## 17 160.0 2738 2 3 2.0
## 18 169.0 2357 1 3 2.0
## 19 169.9 2643 1 3 2.0
## 20 125.0 2167 1 4 2.0
## 21 134.9 2167 1 4 2.0
## 22 139.9 2548 1 4 2.0
## 23 147.0 2643 1 4 2.0
## 24 159.0 2262 1 4 2.0
## 25 169.9 2548 2 4 3.0
## 26 178.9 2738 1 4 2.0
## 27 194.5 2833 2 4 3.0
## 28 219.9 2929 1 4 2.5
## 29 269.0 3310 2 4 3.0

Let’s go through the list of predictors one by one:
ggplot(houseprice, aes(Sqfeet, Price)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)
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## [1] 0.9152
ggplot(houseprice, aes(factor(Floors), Price)) +

geom_boxplot() +
labs(x="Floors")
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## [1] 0.2911

281



Note we used the boxplot here although Floors is a quantitative predictor. If the predictor
has only a few different values (2 here!) this is often a better choice.
ggplot(houseprice, aes(factor(Bedrooms), Price)) +

geom_boxplot() +
labs(x="Bedrooms")
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## [1] 0.6045
ggplot(houseprice, aes(factor(Baths), Price)) +

geom_boxplot() +
labs(x="Baths")
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## [1] 0.6526

Now to run the regression:
fit <- lm(Price~., data=houseprice)
summary(fit)

##
## Call:
## lm(formula = Price ~ ., data = houseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.02 -5.94 1.86 5.95 30.95
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.6198 17.7082 -3.82 0.00088
## Sqfeet 0.0857 0.0108 7.97 4.6e-08
## Floors -26.4931 9.4895 -2.79 0.01036
## Bedrooms -9.2862 6.8298 -1.36 0.18712
## Baths 37.3807 12.2644 3.05 0.00571
##
## Residual standard error: 13.7 on 23 degrees of freedom
## Multiple R-squared: 0.886, Adjusted R-squared: 0.866
## F-statistic: 44.8 on 4 and 23 DF, p-value: 1.56e-10

Notice that there is something very strange about this model!
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round(cor(houseprice[,-1]), 3)

## Sqfeet Floors Bedrooms Baths
## Sqfeet 1.000 0.370 0.652 0.628
## Floors 0.370 1.000 -0.018 0.743
## Bedrooms 0.652 -0.018 1.000 0.415
## Baths 0.628 0.743 0.415 1.000

The highest correlation between predictors is r=0.743 (Floors-Baths)

4.2.3 Variable Selection

Generally the fewer predictor we have in a model, the easier it is to understand/use, so
can we eliminate any of our predictors without making the model (stat. signif.)
worse?
There are several things one can think of:
Choose based on R2

but we already know this will always lead to the model with all predictors, for the same
reason that a cubic model always has an R2 at least as high as the quadratic model.
Note:
Price by Sqfeet, Floors and Bedrooms: R2=80.1%
Price by Floors, Bedrooms and Baths: R2=68.4%
Price by Sqfeet, Bedrooms and Baths: R2=83.5%
Price by Sqfeet, Floors, Bedrooms and Baths: R2=88.2%
so the model with all 4 has a higher R2 than any of the models with just 3,
but this will always be so, even if one of the predictors is completely useless.
Choose based on Hypothesis Tests
In the output of the fit object above we see that the p_value of Bedrooms = 0.187121 > 0.05,
so eliminate Bedrooms.
This sounds like a good idea AND IT IS WIDELY USED IN REAL LIFE, but it turns out
to be a bad one ! The reason why is bit hard to explain, though.
What we need is new idea:
Best Subset Regression and Mallow’s Cp

We will find ALL possible models and calculate Mallow’s Cp statistic for each. The model
with the lowest Cp is best.
library(leaps)
leaps(houseprice[, -1], Price, method="Cp", nbest=1)

## $which
## 1 2 3 4
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## 1 TRUE FALSE FALSE FALSE
## 2 TRUE FALSE FALSE TRUE
## 3 TRUE TRUE FALSE TRUE
## 4 TRUE TRUE TRUE TRUE
##
## $label
## [1] "(Intercept)" "1" "2" "3" "4"
##
## $size
## [1] 2 3 4 5
##
## $Cp
## [1] 8.834 8.812 4.849 5.000

so the best model has Cp=4.85 and uses Sqfeet, Floors and Baths.
To find the model we rerun lm, now without Bedrooms:
fit <- lm(Price~. - Bedrooms, data=houseprice)
summary(fit)

##
## Call:
## lm(formula = Price ~ . - Bedrooms, data = houseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.94 -7.11 2.12 5.66 33.35
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -73.92954 17.38880 -4.25 0.00028
## Sqfeet 0.07772 0.00917 8.48 1.1e-08
## Floors -19.67975 8.19979 -2.40 0.02451
## Baths 30.57922 11.39408 2.68 0.01298
##
## Residual standard error: 13.9 on 24 degrees of freedom
## Multiple R-squared: 0.877, Adjusted R-squared: 0.862
## F-statistic: 57.1 on 3 and 24 DF, p-value: 4.5e-11

4.3 Parameter Estimation

4.3.1 Maximum Likelihood

In this chapter we will study the problem of parameter estimation. In its most general form
this is as follows: we have a sample X1, .., Xn from some probability density f(x; θ). Here
both x and θ might be vectors. Also we will use the term density for both the discrete and
the continuous case.
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The problem is to find an estimate of θ based on the data X1, .., Xn, that is a function (called
a statistic) T (X1, .., Xn) such that in some sense T (X1, .., Xn) ≈ θ.
Generally one also wants to have some idea of the accuracy of this estimate, that is one wants
to calculate the standard error. Most commonly this is done by finding a confidence interval.
There are many ways to approach this problem, we will here only discuss the method of
maximum likelihood. This works as follows. If the sample is independent the joint density is
given by

f(x1, .., xn; θ) =
n∏
i=1

f(xi, θ)

and the log-likelihood function is defined by

l(θ) =
n∑
i=1

log f(xi, θ)

the estimate of θ is then found by maximizing the function l. Let’s call this θ̂.

4.3.2 Large Sample Theory of MLEs and Confidence Intervals

One major reason for the popularity of this method is the following celebrated theorem, due
to Sir R.A. Fisher: under some regularity conditions

√
n(θ̂ − θ) ∼ N(0,

√
I−1)

where N(µ, σ) is the normal distribution and I is the Fisher Information, given by

I(θ)ij = −E
[
∂i∂j

∂θi∂θj
log f(x; θ)

]

and so it is very easy to find a (1− α)100% confidence interval for (say) θi as

θ̂ ± zα/2

√
I−1
ii

where zα is the (1− α)100% quantile of the standard normal distribution. In R this is found
with
qnorm(1-0.05/2)

## [1] 1.96

if α = 0.05.
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4.3.2.1 Example: Inference for mean of normal distribution

X1, .., Xn ∼ N(µ, σ), σ known.

f(x;µ) = 1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

l(µ) =
∑

log f(xi, µ) =

n log( 1√
2πσ2

)− 1
2σ2

∑
(xi − µ)2

d

dµ
l(µ) = 1

σ2

∑
(xi − µ) = 0

µ̂ = 1
n

∑
xi

Here we have only one parameter (µ), so the Fisher Information is given by

I(µ) = −E
[
d2f(x;µ)
dµ2

]

and so we find

d

dµ
log f(x;µ) = 1

σ2 (x− µ)

d2

dµ2 log f(x;µ) = − 1
σ2

− E
[
d2f(x;µ)
dµ2

]
= −E

[
− 1
σ2

]
= 1
σ2√

I(µ)−1 =
√

1
1/σ2 = σ

√
n(µ̂− µ) ∼ N(0, σ)

µ̂ ∼ N(µ, σ/
√
n)

and we find the (1− α)100% confidence interval to be

µ̂± zα/2σ/
√
n

this is of course the standard answer (for known σ).

4.3.2.2 Example: Beta distribution

Say we have X1, .., Xn ∼ B(α, α).
Now

287



f(x;α) = Γ(2α)
Γ(α)2 [x(1− x)]α−1

where Γ(x) is the gamma function, defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt

now finding the mle analytically would require us to find the derivative of log Γ(α), which is
impossible. We will have to do this numerically.
Let’s start by creating an example data set:
set.seed(111)
n <- 150
x <- rbeta(n, 2.5, 2.5)
hist(x, 10)
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Now
ll <- function(a) {

-sum(log(dbeta(x, a, a)))
}
tmp <- nlm(ll, 2.5)
mle <- tmp$estimate
a <- seq(1, 5, length=250)
y <- rep(0, 250)
for(i in seq_along(a))

y[i] <- sum(log(dbeta(x, a[i], a[i])))
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plot(a, y, type="l")
abline(v=mle)
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## [1] 2.314

How about the Fisher information? Now, we can’t even find the first derivative, let alone the
second one. We can however estimate it! In fact, we already have all we need.
Notice that the Fisher Information is the (negative of the) expected value of the Hessian
matrix, and by the theorem of large numbers 1

n

∑
H → I. Now if we just replace I with the

observed information we get:
a 95% confidence interval is given by
hessian <- nlm(ll, 2.5, hessian = TRUE)$hessian
mle + c(-1, 1)*qnorm(1-0.05/2)/sqrt(hessian)

## [1] 1.838 2.791

Let’s put all of this together and write a “find a confidence interval” routine:
mle.est <-

function(f, # density
param, # starting value for nlm
alpha=0.05, # desired confidence level
rg, # range for plotting log-likelihood function
do.graph=FALSE # TRUE if we want to look at the

# log-likelihood function
)

{
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ll <- function(a) { # log-likelihood function
-sum(log(f(a)))

}
tmp <- nlm(ll, param, hessian = TRUE)
if(do.graph) { # if you want to see the loglikelihood curve

a <- seq(rg[1], rg[2], length=250)
y <- rep(0, 250)
for(i in seq_along(a))

y[i] <- sum(log(f(a[i])))
plot(a, y, type="l")
abline(v=tmp$estimate)

}
if(length(param)==1) {

ci <- tmp$estimate + c(-1, 1) *
qnorm(1-alpha/2)/sqrt(tmp$hessian)

names(ci) <- c("Lower", "Upper")
}
else {

I.inv <- solve(tmp$hessian) # find matrix inverse
ci <- matrix(0, length(param), 2)
colnames(ci) <- c("Lower", "Upper")
if(!is.null(names(param)))

rownames(ci) <- names(param)
for(i in seq_along(param))

ci[i, ] <- tmp$estimate[i] +
c(-1, 1)*qnorm(1-alpha/2)*sqrt(I.inv[i, i])

}
list(mle=tmp$estimate, ci=ci)

}

mle.est(f = function(a) {dbeta(x, a, a)},
param = 2.5,
rg = c(1, 5),
do.graph = TRUE)
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## $mle
## [1] 2.314
##
## $ci
## Lower Upper
## 1.838 2.791

How about the normal case, where we know the correct answer? Let’s compare them:
x <- rnorm(25, 10, 1)
c(mean(x), mean(x) + c(-1, 1)*qnorm(1-0.05/2)/sqrt(25))

## [1] 10.027 9.635 10.419
mle.est(f = function(a) {dnorm(x, a)},

param = 10,
rg = c(5, 15),
do.graph = TRUE)
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## $mle
## [1] 10.03
##
## $ci
## Lower Upper
## 9.635 10.419

And how about the multi dimensional parameter case? First again the normal check:
x <- rnorm(200, 5.5, 1.8)
param <- c(5.5, 1.8)
names(param) <- c("mu", "sigma")
mle.est(function(a) {dnorm(x, a[1], a[2])}, param=param)

## $mle
## [1] 5.587 1.676
##
## $ci
## Lower Upper
## mu 5.355 5.819
## sigma 1.512 1.840

and now for the Beta:
x <- rbeta(200, 2.5, 3.8)
param <- c(2.5, 3.8)
names(param) <- c("alpha", "beta")
mle.est(function(a) {dbeta(x, a[1], a[2])}, param=param)

## $mle
## [1] 2.349 3.731
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##
## $ci
## Lower Upper
## alpha 1.913 2.785
## beta 3.011 4.451

4.3.2.3 Example: Old Faithful geyser

The lengths of an eruption and the waiting time until the next eruption of the Old Faithful
geyser in Yellowstone National Park have been studied many times. Let’s focus on the waiting
times:
Time <- faithful$Waiting.Time
hist(Time, main="")
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How can we model this data? It seems we might have a mixture of two normal distributions.
Notice
c(mean(Time[Time<65]), mean(Time[Time>65]))

## [1] 54.05 80.05
c(sd(Time[Time<65]), sd(Time[Time>65]))

## [1] 5.365 5.867
sum(Time<65)/length(Time)

## [1] 0.3456

so maybe a model like this would work:
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0.35N(54, 5.4) + 0.65N(80, 5.9)

Let’s see:
hist(Time, main="", freq=FALSE, ylim=c(0, 0.05))
curve(0.35*dnorm(x, 54, 5.4) + 0.65*dnorm(x, 80, 5.9), 40, 100, add=TRUE)
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Not to bad!
Can we do better? How about fitting for the parameters?
x <- Time
f <- function(a)

a[1]*dnorm(x, a[2], a[3]) + (1-a[1])*dnorm(x, a[4], a[5])
res <- mle.est(f, param=c(0.35, 54, 5.4, 80, 5.9))
res

## $mle
## [1] 0.3609 54.6149 5.8712 80.0911 5.8677
##
## $ci
## Lower Upper
## [1,] 0.2998 0.422
## [2,] 53.2433 55.986
## [3,] 4.8176 6.925
## [4,] 79.1024 81.080
## [5,] 5.0819 6.654

and this looks like
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hist(Time, main="", freq=FALSE, ylim=c(0, 0.05))
curve(res$mle[1] * dnorm(x, res$mle[2], res$mle[3]) +

(1-res$mle[1])*dnorm(x, res$mle[4], res$mle[5]), 40, 100,
add=TRUE)
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Now this sounds good, and it is, however this is based on having a large enough sample. In
order to be sure ours is large enough one usually has to do some kind of coverage study.

4.3.3 Hurricane Maria

How many people died due to Hurricane Maria when it struck Puerto Rico on September 20,
2017? Dr Roberto Rivera and I tried to answer this question. We got the following information
from the Department of Health: during the time period September 1st to September 19 there
where 1582 deaths. During the period September 20 to October 31 there where 4319.
Now this means that during the time before the hurricane roughly 1587/19 = 83.5 people died
per day whereas in the 42 days after the storm it was 4319/42 = 102.8, or 102.8− 83.5 = 19.3
more per day. This would mean a total of 42× 19.3 = 810.6 deaths cause by Maria in this
time period.
Can we find a 95% confidence interval? To start, the number of people who die on any one
day is a Binomial random variable with n=3500000 (the population of Puerto Rico) and
success(!!!) parameter π. Apparently before the storm we had π = 83.5/3500000. If we
denote the probability to die due to Maria by µ, we find the probability model

f(x, y) = dbinom(1587, 19× 3500000, π)dbinom(4319, 42× 3500000, π + µ)
Let’s see:
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N <- 3500000
f <- function(a) -log(dbinom(1582, 19*N, a[1])) -

log(dbinom(4319, 42*N, a[1]+a[2]))
nlm(f, c(1582/19/3500000, (4319/42-1582/19)/3350000), hessian = TRUE)

## $minimum
## [1] 9.862
##
## $estimate
## [1] 2.379e-05 5.842e-06
##
## $gradient
## [1] 0 0
##
## $hessian
## [,1] [,2]
## [1,] -Inf -Inf
## [2,] -Inf -Inf
##
## $code
## [1] 1
##
## $iterations
## [1] 1

Oops, that didn’t work. The problem is that the numbers for calculating the Hessian matrix
become so small that it can not be done.
What to do? First we can try to use the usual Poisson approximation to the Binomial:
f <- function(a)

-log(dpois(1582, 19*a[1])) - log(dpois(4319, 42*(a[1]+a[2])))
res <- nlm(f, c(80, 20), hessian = TRUE)
res

## $minimum
## [1] 9.707
##
## $estimate
## [1] 83.26 19.57
##
## $gradient
## [1] -3.840e-12 -7.261e-12
##
## $hessian
## [,1] [,2]
## [1,] 0.6365 0.4084
## [2,] 0.4084 0.4084
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##
## $code
## [1] 1
##
## $iterations
## [1] 10

and now
round(42*(res$estimate[2] +

c(-1, 1)*qnorm(1-0.05/2)*sqrt(solve(res$hessian)[2, 2])))

## [1] 607 1037

An even better solution is to do a bit of math:

log {dpois(x, λ)} =

log
{
λx

x! e
−λ
}

=

x log(λ)− log(x!)− λ =

f <- function(a)
-1582*log(19*a[1]) + 19*a[1] -
4319*log(42*(a[1]+a[2])) + 42*(a[1]+a[2])

res <- nlm(f, c(20, 80), hessian = TRUE)
round(42*(res$estimate[2] +

c(-1, 1)*qnorm(1-0.05/2)*sqrt(solve(res$hessian)[2, 2])))

## [1] 607 1037

By the way, in the paper we used a somewhat different solution based on the profile likelihood.
In this case the answers are quite similar.
The paper is here
UPDATE: After a long legal fight the Department of Health on June 1st 2018 finally updated
the numbers:
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Notice how in general the number of deaths is much higher in the winter than in the summer.
So it may be best to just use the data from February to November:
deaths.before <- 2315+2494+2392+2390+2369+2367+2321+2928-1317
deaths.after <- 1317+3040+2671
deaths.before/231 # Daily Deaths before Maria

## [1] 79.04
deaths.after/72 # Daily Deaths after Maria

## [1] 97.61
round(72*(deaths.after/72 - deaths.before/231)) # point estimate for total deaths due to Maria

## [1] 1337
f <- function(a)

-deaths.before*log(231*a[1]) + 231*a[1] -
deaths.after*log(72*(a[1]+a[2])) + 72*(a[1]+a[2])

res <- nlm(f, c(20, 80), hessian = TRUE)
round(72*(res$estimate[2] +

c(-1, 1)*qnorm(1-0.05/2)*sqrt(solve(res$hessian)[2, 2])))

## [1] 1153 1521
Months <- factor(unique(draft$Month), ordered=TRUE)
Deaths <- c(2894, 2315, 2494, 2392, 2390, 2369, 2367,

2321, 2928, 3040, 2671, 2820)
ggplot(data=data.frame(x=1:12, y=Deaths), aes(x, y)) +
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geom_point()
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4.3.4 Packages for estimation

There are a number of packages available for maximum likelihood fitting:
library(maxLik)
x <- c(1582, 4319)
f <- function(param) {

x[1]*log(19*param[1]) - 19*param[1] +
x[2]*log(42*(param[1]+param[2])) - 42*(param[1]+param[2])

}
maxLik(logLik=f, start=c(20, 80))

## Maximum Likelihood estimation
## Newton-Raphson maximisation, 21 iterations
## Return code 2: successive function values within tolerance limit
## Log-Likelihood: 41906 (2 free parameter(s))
## Estimate(s): 83.18 19.65

In general these just provide wrappers for the routines mentioned above.

4.4 Bayesian Statistics

4.4.1 Prior and Posterior Distribution

Say we have a sample X = (X1, .., Xn), iid from some probability density f(.|θ), and we want
to do some inference on the parameter θ.
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A Bayesian analysis begins by specifying a prior distribution π(θ). Then one uses Bayes’
formula to calculate the posterior distribution:

f(θ|x) = f(x|θ)π(θ)/m(x)

where m(x) is the marginal distribution

m(x) =
∫
..
∫
f(x|θ)π(θ)dθ

4.4.1.1 Example: Normal mean, normal prior

X ∼ N(µ, σ) independent, σ known, µ ∼ N(a, b).
Now

m(x) =
∫ ∞
−∞

f(x|µ)π(µ)dµ =∫ ∞
−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2 1√
2πb2

e−
1

2b2
(µ−a)2

dµ

Note

(x− µ)2/σ2 + (µ− a)2/b2 =
x2/σ2 − 2xµ/σ2 + µ2/σ2 + µ2/b2 − 2aµ/b2 + a2/b2

(1/σ2 + 1/b2)µ2 − 2(x/σ2 + a/b2)µ+K1 =

(1/σ2 + 1/b2)
(
µ2 − 2x/σ

2 + a/b2

1/σ2 + 1/b2 µ

)
+K2 =

(µ− d)2

c2 +K3

where d = x/σ2+a/b2

1/σ2+1/b2 and c = 1/
√

1/σ2 + 1/b2

therefore

m(x) = K4

∫ ∞
−∞

e−
1

2c2 (µ−d)2
dµ = K5

because the integrand is a normal density with mean d and standard deviation c, so it will
integrate to 1 as long as the constants are correct.

f(θ|x) = f(x|θ)π(θ)/m(x) =
K6e

− 1
2c2 (µ−d)2

Notice that we don’t need to worry about what exactly K6 is, because the posterior will be a
proper probability density, so K6 will be what it has to be!
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So we found

µ|X = x ∼ N

(
x/σ2 + a/b2

1/σ2 + 1/b2 , 1/
√

1/σ2 + 1/b2

)
Let’s so a little simulation to see whether we got this right:
a <- 0.2 # just as an example
b <- 2.3
sigma <- 0.5
mu <- rnorm(1e5, a, b)
x <- rnorm(1e5, mu, sigma)
x0 <- 0.1
cc <- 1/sqrt(1/sigma^2 + 1/b^2)
d <- (x0/sigma^2+a/b^2)/(1/sigma^2 + 1/b^2)
z <- mu[x>x0-0.05 & x<x0+0.05]
hist(z, 50, freq=FALSE)
curve(dnorm(x, d, cc), -2, 2, add=TRUE)
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x0 <- (-1.1)
d <- (x0/sigma^2+a/b^2)/(1/sigma^2 + 1/b^2)
z <- mu[x>x0-0.05 & x<x0+0.05]
hist(z, 50, freq=FALSE)
curve(dnorm(x,d, cc), -3, 2, add=TRUE)
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4.4.1.2 Example: Binomial proportion, Uniform prior

X ∼ Bin(n, p), p ∼ U [0, 1]

m(x) =
∫ ∞
−∞

f(x|µ)π(µ)dµ =∫ 1

0

(
n

x

)
px(1− p)n−x1dp =

K1

∫ 1

0
p(x+1)−1(1− p)(n−x+1)−1dp = K2

because this is (up to a constant) a Beta density which will integrate to 1. So

f(θ|x) = f(x|θ)π(θ)/m(x) =
K3p

(x+1)−1(1− p)(n−x+1)−1

and we find

p|X = x ∼ Beta(x+ 1, n− x+ 1)

n <- 10
p <- runif(1e5)
x <- rbinom(1e5, n, p)
x0 <- 3
z <- p[x==x0]
hist(z, 50, freq=FALSE)
curve(dbeta(x, x0+1, n-x0+1), -2, 2, add=T)

302



Histogram of z

z

D
en

si
ty

0.0 0.2 0.4 0.6 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

4.4.2 Inference

In a Bayesian analysis any inference is done from the posterior distribution. For example,
point estimates can be found as the mean, median, mode or any other measure of central
tendency:

4.4.2.1 Example: Normal mean, normal prior

say the following is a sample X1, .., Xn from a normal with standard deviation σ = 2.3:
dta.norm

## [1] 2.2 2.3 2.5 5.0 5.0 5.0 5.0 5.1 5.3 5.8 6.0 6.1 6.1 6.1 6.2 6.5 6.6
## [18] 7.1 9.0 9.6

if we decide to base our analysis on the sample mean we have X̄ ∼ N(µ, σ/
√
n). Now if we

use the posterior mean we find

E[µ|X = x] = x/σ2 + a/b2

1/σ2 + 1/b2

now we need to decide what a and b to use. If we have some prior information we can use
that. Say we expect a priori that µ = 5, and of course we know σ = 2.3, then we could use
a = 5 and b = 3:
d <- (mean(dta.norm)/(2.3^2/20) + 5/3^2)/(1/(2.3^2/20) + 1/3^2)
d

## [1] 5.607
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If we wanted to find a 95% interval estimate (now called a credible interval) we can find it
directly from the posterior distribution:
cc <- 1/sqrt(1/(2.3^2/20) + 1/3^2)
cc

## [1] 0.5069
round(qnorm(c(0.025, 0.975), d, cc), 2)

## [1] 4.61 6.60

Note: the standard frequentist solution would be
round(mean(dta.norm), 2)

## [1] 5.62
round(mean(dta.norm)+c(-1, 1)*qt(0.975, 12)*2.3/sqrt(20), 2)

## [1] 4.50 6.75

4.4.2.2 Example: Binomial proportion, uniform prior

Say in a class with 134 students 31 received an A. Find a 90% credible interval for the true
percentage of students who get an A in this class.
round(qbeta(c(0.05, 0.95), 31 + 1, 134 - 31 + 1)*100, 1)

## [1] 17.8 29.7

4.4.2.3 Example: Normal mean, Gamma prior

let’s say that µ is a physical quantity, like the mean amount of money paid on sales. In that
case it makes more sense to use a prior that forces µ to be non-negative. For example we
could use µ ∼ Gamma(α, β). However, now we need to find

m(x) =
∫ ∞
−∞

1√
2πσ2

e−
1

2σ2 (x−µ)2 1
Γ(α)βαµ

α−1e−µ/βdµ

and this integral does not exist. We will have to use numerical methods instead. Let’s again
find a point estimate based on the posterior mean. As prior we will use µ ∼ Gamma(5, 1)
fmu <- function(mu)

dnorm(mean(dta.norm), mu, 2.3/sqrt(20))*
dgamma(mu, 5, 1)

mx <- integrate(fmu, lower=0, upper=Inf)$value
posterior.density <- function(mu) fmu(mu)/mx
posterior.mean <-

integrate(
function(mu) {mu*posterior.density(mu)},
lower = 0,
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upper = Inf)$value
round(posterior.mean, 2)

## [1] 5.55

how about a 95% credible interval? This we need to solve the equations

F (µ|x) = 0.025, F (µ|x) = 0.975

where F is the posterior distribution function. Again we need to work numerically. We can
use a simple bisection algorithm:
pF <- function(t) integrate(posterior.density,

lower=3, upper=t)$value
cc <- (1-0.95)/2
l <- 3
h <- posterior.mean
repeat {

m <- (l+h)/2
if(pF(m)<cc) l <- m
else h <- m
if(h-l<m/1000) break

}
left.endpoint <- m
h <- 8
l <- posterior.mean
repeat {

m <- (l+h)/2
if(pF(m)<1-cc) l <- m
else h <- m
if(h-l<m/1000) break

}
right.endpoint <- m
round(c(left.endpoint, right.endpoint), 2)

## [1] 4.56 6.54

Let’s generalize all this and write a routine that will find a point estimate and a (1− α)100%
credible interval for any problem with one parameter:
bayes.credint <- function(x, df, prior, conf.level=0.95, acc=0.001,

lower, upper, Show=TRUE) {
if(any(c(missing(lower), missing(upper))))

cat("Need to give lower and upper boundary\n")
posterior.density <- function(par, x) {

y <- 0*seq_along(par)
for(i in seq_along((par)))

y[i] <- df(x, par[i])*prior(par[i])/mx
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y
}
mx <- 1
mx <- integrate(posterior.density,

lower=lower, upper=upper, x=x)$value
if(Show) {

par <- seq(lower, upper, length=250)
y <- posterior.density(par, x)
plot(par, y, type="l")

}
f.expectation <- function(par, x) par*posterior.density(par, x)
parhat <- integrate(f.expectation,

lower=lower, upper=upper, x=x)$value
if(Show) abline(v=parhat)
pF <- function(t, x) integrate(posterior.density,

lower=lower, upper=t, x=x)$value
cc <- (1-conf.level)/2
l <- lower
h <- parhat
repeat {

m <- (l+h)/2
if(pF(m, x)<cc) l <- m
else h <- m
if(h-l<acc*m) break

}
left.endpoint <- m
h <- upper
l <- parhat
repeat {

m <- (l+h)/2
if(pF(m, x)<1-cc) l <- m
else h <- m
if(h-l<acc*m) break

}
right.endpoint <- m
if(Show) abline(v=c(left.endpoint, right.endpoint))
c(parhat, left.endpoint, right.endpoint)

}

4.4.2.4 Example: Normal mean, normal prior

df <- function(x, par) dnorm(x, par, 2.3/sqrt(20))
prior <- function(par) dnorm(par, 5, 2.3)
round(bayes.credint(mean(dta.norm), df=df, prior=prior,

lower=3, upper=8, Show=T), 2)
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## [1] 5.60 4.61 6.58

4.4.2.5 Example: Binomial proportion, uniform prior

df <- function(x, par) dbinom(x, 134, par)
prior <- function(par) dunif(par)
round(100*bayes.credint(x=31, df=df, prior=prior, acc=0.0001,

conf.level = 0.9, lower=0.1, upper=0.4, Show=T), 1)
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## [1] 23.5 17.8 29.7
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which is the same before:
round(qbeta(c(0.05, 0.95), 31 + 1, 134 - 31 + 1)*100, 1)

## [1] 17.8 29.7

4.4.2.6 Example: Normal mean, Gamma prior

df <- function(x, par) dnorm(x, par, 2.3/sqrt(20))
prior <- function(par) dgamma(par, 5, 1)
round(bayes.credint(mean(dta.norm), df=df, prior=prior,

lower=4, upper=7, Show=TRUE), 2)

4.0 4.5 5.0 5.5 6.0 6.5 7.0

0.
0

0.
2

0.
4

0.
6

0.
8

par

y

## [1] 5.55 4.57 6.53

4.4.2.7 Example: Binomial proportion, Lincoln’s hat prior

Say we pick a coin from our pocket. We flip it 1000 time and get 578 heads. We want to find
a 95% credible interval for the proportion of heads.
What would be good prior here? We might reason as follows: on the one had we are quite
sure that indeed it is an “almost” fair coin. On the other hand if it is not a fair coin we really
don’t know how unfair it might be. We can encode this in the Lincoln’s hat prior:
prior <- function(x) dunif(x) + dunif(x, 0.45, 0.55)
curve(prior, 0, 1, ylim=c(0, 11))
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df <- function(x, par) dbinom(x, 1000, par)
round(bayes.credint(x=578, df=df, prior=prior, acc=0.0001,

lower=0.5, upper=0.65, Show=TRUE), 3)
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y

## [1] 0.567 0.535 0.607

So, have we just solved the Bayesian estimation problem for one parameter?

4.4.2.8 Example: Beta density, Gamma prior

consider the following sample:
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dta.beta1 <- round(rbeta(1000, 2, 2), 3)
hist(dta.beta1, 50)

Histogram of dta.beta1

dta.beta1

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

Let’s say we know that this is from a Beta(a, a) distribution and we want to estimate a. As
a prior we want to use Gamma(2, 1)
Now what is df? Because this is an independent sample we find df(x, a) = ∏n

i=1 dbeta(xi, a, a),
so
df <- function(x, par) prod(dbeta(x, par, par))
prior <- function(par) dgamma(par, 2, 1)
round(bayes.credint(dta.beta1, df=df, prior=prior,

lower=1.5, upper=2.5, Show=TRUE), 2)
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## [1] 2.10 1.94 2.27

so far, so good. But now
dta.beta2 <- round(rbeta(10000, 2, 2), 3)
bayes.credint(dta.beta2, df=df, prior=prior,

lower=1.5, upper=2.5, Show=TRUE)

## Error in integrate(posterior.density, lower = lower, upper = upper, x = x): non-finite function value

Why does this not work? The problem is that the values is ∏n
i=1 dbeta(xi, a, a) get so small

that R can’t handle them anymore!
Occasionally one can avoid this problem by immediately choosing a statistic T(x), aka a
function of the data, so that T(X) has a distribution that avoids the product. That of course
is just what we did above by going to X̄ in the case of the normal! In fact, it is also what we
did in the case of the Binomial, because we replace the actual data (a sequence of Bernoulli
trials) with their sum.

Can we generalize this to more than one parameter? In principle yes, but in practice no, at
least not if the number of parameters is much more than 3 or 4. The main problem is the
calculation of the marginal m(x), because numerical integration in higher-dimensional spaces
is very difficult. In that case a completely different approach is used, namely sampling from
the posterior distribution using so called MCMC (Markov Chain Monte Carlo) algorithms.
df <- function(x, par) dpois(sum(x), 10*par)
prior <- function(par) 1/sqrt(par)
x <- rpois(10, 5)
bayes.credint(x=37, df=df, prior=prior, lower=0, upper=10, Show=T)
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## [1] 3.750 2.646 5.041

312


	Getting Started
	Installation and Updating
	R Markdown
	History, Basic Usage

	Base R
	Data Types
	Data Formats
	Generating Objects
	Sub-setting / Data Wrangling
	Generating Random Variates
	Writing Functions
	Object-Oriented Programming
	Vector Arithmetic
	Working with Characters
	Data Input/Output, Transferring R Objects
	Graphs
	Model Notation
	Numerical Methods
	Environments and Libraries
	Customizing R

	Extending R, Packages
	Graphics with ggplot2
	C++ with Rcpp
	Parallel and GPU Computing
	Input/Output revisited
	The pipe, dplyr, tibbles, tidyverse
	Interactive web applications with shiny
	Character Manipulation with stringr
	Dates with lubridate
	Factors with forcats
	Version Control and Collaboration, Github
	Setting up a new repo

	Statistics with R
	Basic Statistics
	Multiple Predictors
	Parameter Estimation
	Bayesian Statistics


