A martingale is a stochastic process that formalizes the idea of a fair game.
Definition
A stochastic process {Zn,n≥1} is said to be a martingale process if
E[|Zn|]<∞ for all n
and
E[Zn+1|Z1,..,Zn]=Zn
so if we think of Zn as the fortune of a gambler than for a martingale process the expected fortune stays constant. Note
E[Zn+1]=E{E[Zn+1|Z1,..,Zn]}=E[Zn]=..=E[Z1]
let X1, X2,.. be independent rv’s with mean 0 and let Zn=X1+..+Xn, then
let X1, X2,.. be independent rv’s with mean 1 and let Zn=X1×..×Xn, then
Let \(\{N(t); t\ge0\}\) be a Poisson process with rate \(\lambda\), then \(X(t)=N(t)-\lambda t\) is a (continuous-time) martingale.
The fact that the expectation only depends on the last time point before t follows from the fact that a Poisson process is a Markov process. Now
\[ \begin{aligned} &E[X(t)|X(s)] = \\ &E[N(t)-\lambda t| N(s)-\lambda s] =\\ &E[N(t)-\lambda t| N(s)] =\\ &E[N(t)-N(s)+N(s)-\lambda t| N(s)] =\\ &E[N(t)-N(s)| N(s)] + E[N(s)-\lambda t| N(s)] =\\ &E[N(t)-N(s)] + N(s)-\lambda t =\\ &\lambda(t-s) + N(s)-\lambda t =\\ &N(s)-\lambda s=X(t) \end{aligned} \]
The more impressive result is the reverse: this is the only counting process that is a martingale! (Watanabe 1964)
Definition
A positive integer-valued, possibly infinite, rv N is said to be a random time for the process {Zn,n≥1} if the event {N=n} is determined by the random variables Z1,..,Zn. That is, knowing Z1,..,Zn tells us whether or not N=n. If P(N<∞}=1, then N is called a stopping time
say a player plays roulette. He starts with $100 and bets $1 in each round. He decides to stop if he reaches $200 (or goes broke). Then if N is the number of games he plays N is stopping time.
Definition
Let N be a random time for the process {Zn,n≥1}, then
is called the stopped process.
Proposition
If N is a random time for the martingale {Zn,n≥1}, then the stopped process is also a martingale.
without proof
Here is the main result for martingales:
Theorem (The Martingale Stopping Theorem}
If either
and there is an M<∞ such that
E[|Zn+1-Zn| |Z1,..,Zn]<M
then E[Zn]=E[Z1]
In other words in a fair game if a gambler uses a stopping time to decide when to quit, then his expected final fortune is equal to his expected initial fortune. Thus in the sense of expected value, no successful gambling strategy is possible if one of the conditions of the theorem are satisfied.
There are many supposedly “guaranteed” strategies on how to win in a casino. A popular one is this: bet $1 on red in roulette. if you loose double your bet and so on. Say you loose 3 times and then win, then your net-win is -1+(-2)+(-4)+8=+1, so you win $1. In fact a “sequence” of n losses followed by a win always ends with an overall win of $1! Great! Unfortunately according to the martingale stopping theorem, even if roulette were a fair game this would still not work! Why not?
By the way, strategies of this type have a name, the St. Petersburg strategy.
Corollary (Wald’s equation)
If Xi, i≥1 are iid with E[|X|]<∞ and if N is a stopping time for X1, X2,.. with E[N]<∞, then
suppose a computer randomly generates integers. Let N be the number of integers it has to generate before we see a predetermined sequence, for example (0 0 0 0) or maybe (0 1 2 3 4 5).
To compute E[N] imagine a sequence of gambles, each initially having 1 unit, playing a fair game. Gambler i begins playing at the beginning of the ith day bets 1 unit that the value on that day is equal to 0. If he wins (and so has 10 units) he bets those 10 units on the second day, again to get 0. If he wins again he will have 100 units and so on. If 0 0 0 0 happens he wins $10000-$1 = $9999, if any of his bets fails he looses $1. At the beginning of each day another gambler starts to play. If we let Xn denote the total wining of the casino after the nth day, then since all bets are fair Xn is a martingale with mean 0. Let N denote the time until 0 0 0 0 happens. Now at the end of day N each of the gamblers 1,..,N-4 would have lost 41, gambler N-3 would have won $9999, gambler N-2 would have won $999, gambler N-1 $99 and gambler N $9. So
XN=N-4-$9999-$999-$99-$9=N-11110=0, so E[N]=11110