This is an exam. You can use any written material, either in books or online but you can not discuss it with ANYONE.
Do as much as possible analytically, otherwise use numerical method or simulation.
Below is a sample from a population with density \(f(x\vert a)=a/x^{a+1};x>1, a>1\)
1 1.02 1.03 1.03 1.03 1.03 1.03 1.04 1.05 1.05 1.05 1.06 1.06 1.07 1.07 1.08 1.09 1.09 1.09 1.1 1.11 1.11 1.12 1.13 1.13 1.14 1.15 1.15 1.16 1.16 1.16 1.17 1.2 1.2 1.21 1.21 1.22 1.23 1.23 1.23 1.24 1.24 1.24 1.24 1.24 1.25 1.25 1.26 1.28 1.34 1.35 1.41 1.43 1.43 1.43 1.44 1.44 1.44 1.44 1.44 1.45 1.45 1.46 1.47 1.48 1.48 1.51 1.51 1.53 1.55 1.56 1.58 1.58 1.61 1.65 1.66 1.69 1.71 1.73 1.75 1.77 1.78 1.8 1.84 1.87 1.88 1.93 1.97 2.02 2.12 2.26 2.3 2.52 2.62 2.7 2.73 3.1 3.74 3.82 4.29
You can generate your own samples with
rmid=function(n,a) runif(n)^(-1/a)
\[ \begin{aligned} &E[X] =\int_1^\infty xa/x^{a+1}dx=\int_1^\infty ax^{-a}dx= \\ &\frac{a}{-a+1}x^{-a+1}\vert_1^\infty = \frac{a}{a-1}\\ &\frac{a}{a-1} =\bar{x} \\ &\hat{a}=\frac{\bar{x}}{\bar{x}-1} \end{aligned} \]
\[ \begin{aligned} &f(\pmb{x}\vert a) =a^n/\left(\prod_{i=1}^n x_i\right)^{a+1} \\ &l(a\vert\pmb{x}) =n\log a-(a+1)\sum_{i=1}^n\log x_i \\ &dl(a\vert\pmb{x})/da =n/a-\sum_{i=1}^n\log x_i=0 \\ &\hat{a}=1/\overline{\log x} \end{aligned} \]
round(c(mean(dta)/(mean(dta)-1), 1/mean(log(dta))), 3)
## [1] 2.931 2.764
\[ \begin{aligned} &F(x\vert a)=\int_1^x a/t^{a+1}dt=-t^{-a}\vert_1^x = 1-1/x^a;a>1,x>1\\ &P(\log X<x) = P(X<e^x)=1-1/(e^x)^a=1-e^{-ax};x>1\\ &\log X\sim Exp(a) \\ &T=\sum_{i=1}^n \log X_i \sim Gamma(n, 1/a) \\ &E[\hat{a}]=E[n/T]=\int_{1}^{\infty}\frac{n}{x} \frac{a^n}{\Gamma(n)}x^{n-1}e^{-ax}dx=\\ &an\Gamma(n-1)/\Gamma(n)\int_{1}^{\infty} \frac{a^{n-1}}{\Gamma(n-1)}x^{(n-1)-1}e^{-ax}dx=an/(n-1) \end{aligned} \] Now
\[bias(\hat{a})=E[\hat{a}]-a=an/(n-1)-a=a/(n-1)\]
Here is a little simulation that shows the same:
B=1e4
a=2;n=3
x=matrix(rmid(n*B, 2), B, n)
ahat=1/apply(log(x), 1, mean)
round(c(a, mean(ahat), a*n/(n-1), a/(n-1)), 3)
## [1] 2.000 3.052 3.000 1.000
\[ \begin{aligned} &P\left(\vert\hat{a}-a\vert<\epsilon\right) = \\ &P\left(\vert n/T-a\vert<\epsilon\right) = \\ &P\left(a-\epsilon< n/T<a+\epsilon\right) = \\ &P\left(n/(a+\epsilon)< T<n/(a-\epsilon)\right) = \\ &\int_{n/(a+\epsilon)}^{n/(a-\epsilon)} \frac{a^n}{\Gamma(n)}x^{n-1}e^{-ax}dx =\\ &\int_{n/(a+\epsilon)}^{n/(a-\epsilon)} \frac{1}{\Gamma(n)}(ax)^{n-1}e^{-ax}(adx) = \\ &\int_{an/(a+\epsilon)}^{an/(a-\epsilon)} \frac{1}{\Gamma(n)}t^{n-1}e^{-t}dt \end{aligned} \] there does not seem to be an easy way to find this integral, so we might use numerical method:
n=10000;a=2;eps=0.1
I=a*n/c(a+eps, a-eps)
diff(pgamma(I, n, 1))
## [1] 0.9999992
and so it appears the mle is consistent.
\[H_0:a=2\text{ vs. }H_a:a\ne 2\] based on the large sample approximation of the likelihood ratio test
\[ \begin{aligned} &2(l(\hat{a})-l(a_0)) = \\ &2\left(n\log \hat{a}-(\hat{a}+1)\sum_{i=1}^n\log x_i-n\log a_0+(a_0+1)\sum_{i=1}^n\log x_i\right) = \\ &2\left(n\log (n/T)-(n/T+1)T-n\log a_0+(a_0+1)T\right) = \\ &2n\log [n/(a_0T)]- 2(n-Ta_0) \end{aligned} \]
n=length(dta);a0=2
TS=sum(log(dta))
ahat=n/TS
lrt=2*n*log(n/TS/a0)-2*(n-a0*TS)
round(c(lrt, 1-pchisq(lrt, 1)), 4)
## [1] 9.4279 0.0021
and so we fail to reject the null hypothesis.
\[H_0:a=2\text{ vs. }H_a:a\ne 2\] without using the large sample approximation of the likelihood ratio test.
let’s draw the curve of the likelihood ratio test statistic. Note that if a=3 and n=100 \(E[T]=n/a=100/3\) and \(sd[T]=\sqrt{n}/a=10/3\).
lrt=function(x) 2*n*log(n/x/a0)-2*(n-a0*x)
curve(lrt, 20, 50)
so clearly “lrt is small” is equivalent to “T” is neither small nor large. So
\[ \begin{aligned} &\alpha =P\left(|T|>cr\right) \\ &\alpha/2 =P\left(T<cr_1\right) \\ &\alpha/2 =P\left(T>cr_2\right) \\ &cr_1=qgamma(\alpha/2,n, a_0)\\ &cr_2=qgamma(1-\alpha/2,n, a_0) \end{aligned} \]
n=length(dta);alpha=0.05
qgamma(c(alpha/2,1-alpha/2), n, a0)
## [1] 40.68200 60.26447
TS
## [1] 36.17702
and so again we reject the null hypothesis.
\[ \begin{aligned} &f(\pmb{x}, a) = a^n/\left(\prod_{i=1}^n x_i\right)^{a+1}\times 1/a = a^{n-1} e^{-(a+1)T}\\ &m(T) =\int_{1}^\infty a^{n-1} e^{-(a+1)T}da = \\ &e^{-T}\frac{\Gamma(n)}{T^n}\int_{1}^\infty \frac{1}{\Gamma(n)}(Ta)^{n-1} e^{-aT}(Tda) = \\ &e^{-T}\frac{\Gamma(n)}{T^n}\int_{T}^\infty \frac{1}{\Gamma(n)}t^{n-1} e^{-t}dt=\\ &e^{-T}\frac{\Gamma(n)}{T^n}\left(1-pgamma(T, n, 1)\right)\\ &f(a\vert T) = \frac{a^{n-1} e^{-(a+1)T}}{e^{-T}\frac{\Gamma(n)}{T^n}\left(1-pgamma(T, n, 1)\right)} = \\ &\frac{T^n}{\Gamma{(n)}}a^{n-1}a^{-aT}/\left(1-pgamma(T, n, 1)\right) \end{aligned} \] if \(G\sim\Gamma(n,T)\), then the posterior density is the density of \(G|G>1\).
Finally
\[ \begin{aligned} &E[a\vert T] = \int_1^\infty a \frac{T^n}{\Gamma{(n)}}a^{n-1}a^{-aT}/\left(1-pgamma(T, n, 1)\right) da =\\ &\frac{\Gamma(n+1)}{T\Gamma(n)}\int_1^\infty \frac{T^{n+1}}{\Gamma{(n+1)}}a^{(n+1)-1}a^{-aT}/\left(1-pgamma(T, n, 1)\right) da = = \\ &\frac{n}{T}\frac{1-pgamma(T, n+1, 1)}{1-pgamma(T, n, 1)} \end{aligned} \]
n=length(dta)
TS=sum(log(dta))
(n/TS)*(1-pgamma(TS, n+1, 1))/(1-pgamma(TS, n, 1))
## [1] 2.764185