Proof the theorem from the class: Let \(X \sim \chi^2(n), Y \sim \chi^2(m)\) and independent. Let \(Z=(X/n)/(Y/m)\). Then \(Z \sim F(n,m)\)
Say \(X_1,...,X_n\) have a geometric rate p distribution and are independent. Let \(M=\max\{X_1,...,X_n\}\). Find the density of M.
Show that if \(X\sim t(n)\), then \(X^2\sim F(1, n)\).
Below is the data from a Binomial distribution Bin(10, p), already in the form of a table:
x | Freq |
---|---|
0 | 11 |
1 | 38 |
2 | 60 |
3 | 47 |
4 | 26 |
5 | 10 |
6 | 6 |
7 | 2 |
Draw the log-likelihood function as a function of p.