say we have samples X1,..,Xn iid N(μx,σx) and Y1,..,Ym iid N(μy,σy) and we want to test
H0:σx=σy vs H1:σx≠σy
We will assume μx and μy are known, in which case we can assume μx=μy=0.
Let’s derive the likelihood ratio test. We will do this in terms of the variances vx=σ2x and vy=σ2y , which is of course the same test.
First we find the joint density, using (2.3.14)
f(xx,yy|vx,vy)=(2πvx)−n/2exp{−12vx∑x2i}(2πvy)−m/2exp{−12vy∑y2i}=(2πvx)−n/2exp{−ntx2vx}(2πvy)−m/2exp{−mty2vy}
where we define tx=1n∑x2i and ty=1m∑y2i.
Now
l(vx,vy)=−n2log(2πvx)−ntx2vx−m2log(2πvy)−nty2vydldvx=−n2vx+tx2v2x=0 yields ˆvx=tx, and similarly ˆvy=ty
Under H0 we have vx=vy=:v, and so
L(v,v)=(2πv)−n/2exp{−ntx2v}(2πv)−m/2exp{−mty2v}=(2πv)−(n+m)/2exp{−ntx+mty2v}
l(v,v)=−n+m2log(2πv)−ntx+mty2v
and so ˆv=ntx+mtyn+m.
λ(xx,yy)=L(ˆv,ˆv)L(^vx,^vy)=(2πˆv)−(n+m)/2exp{−ntx+mty2ˆv}(2πˆvx)−n/2exp{−ntx2ˆvx}(2πˆvy)−m/2exp{−mty2ˆvy}=(2πntx+mtyn+m)−(n+m)/2exp{−ntx+mty2ntx+mtyn+m}(2πtx)−n/2exp{−ntx2tx}(2πty)−m/2exp{−mty2ty}=(ntx+mtyn+m)−(n+m)/2exp{−n+m2}(tx)−n/2exp{−n2}(ty)−m/2exp{−m2}=(n+m)(n+m)/2(ntx+mty)−(n+m)/2(tx)−n/2(ty)−m/2=(n+m)(n+m)/2(ntx+mtytx)−n/2(ntx+mtyty)−m/2=(n+m)(n+m)/2(n+m(ty/tx))−n/2(n(tx/ty)+m)−m/2=(n+m)(n+m)/2(n+n(mty/ntx))−n/2(m(ntx/mty)+m)−m/2=(n+m)(n+m)/2nn/2mm/2(1+1/F))−n/2(1+F)−m/2
where F=(ntx)/(mty)
Now LRT is small is equivalent to F is small or large, as we can see here:
n<-10; m<-15
fun <- function(x)
(n+m)^((n+m)/2)/n^(n/2)/m^(m/2)*
(1+1/x)^(-n/2)*(1+x)^(-m/2)
ggcurve(fun=fun, A=0.1, B=3)
and so under the null hypothesis
Xi∼N(0,σ)Xi/σ∼N(0,1)X2i/v∼χ2(1)=ntx/v=n∑i=1X2i/v∼χ2(n)F=(ntx/v)/(mty/v)∼F(n,m)
and we reject the null if F<qf(α/2,n,m) or F>qf(1−α/2,n,m).
n <- 10; m <- 14
x <- rnorm(n, 0, 1)
y <- rnorm(m, 0, 1)
tx <- mean(x^2)
ty <- mean(y^2)
(n*tx)/(m*ty)
## [1] 1.131456
qf(c(0.025, 0.975), n, m)
## [1] 0.2816576 3.1468612
n <- 10; m <- 14
x <- rnorm(n, 0, 1)
y <- rnorm(m, 0, 3)
tx <- mean(x^2)
ty <- mean(y^2)
(n*tx)/(m*ty)
## [1] 0.2153921