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1 Introduction to Statistics and R

Statistics is the Science of Uncertainty, it let’s us learn useful information in situations
where there is incomplete information.

1.0.0.1 Example (From the book An Introduction to the Bootstrap by Efron and Tibshi-
rani) Below we have the results of a small experiment, in which 7 out of 16 mice were
randomly selected to receive a new medical treatment, while the remaining 9 mice were
assigned to the control group. The treatment was intended to prolong survival after surgery:
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Treatment Control
94 52
197 104
16 146
38 10
99 50
141 31
23 40

27
46

The obvious question is: does the new treatment increase survival times?
How can we answer this question? The first thing we can try is to calculate the mean survival
times:

round(c(mean(treatment), mean(control)), 1)

## [1] 86.9 56.2

so the mice in the treatment group lived about 30.7 days longer than those in the control
group.
But why the mean? Why not the median or some other measure of average?
Is there some theoretical justification for the mean as the best way to calculate an average?
Is it always best?
Very good, but we really don’t care about these 16 mice, they are dead anyway. These
16 mice were just a random sample of the population of all mice who might receive
this treatment or this control, and what we really want to know is whether the treatment
statistically significantly increases survival.
Some standard terminology:
Population: all of the entities (people, events, things etc.) that are the focus of a study
Census: If all the entities of a population are included in the study.
Sample: any subset of the population
Random sample: a sample found through some randomization (flip of a coin, random
numbers on computer etc.)
Simple Random Sample (SRS): each “entity” in the population has an equal chance of
being chosen for the sample.
Stratified Sample: First divide population into subgroups, then do a SRS in each subgroup.
Bias: a systematic difference between a sample and its population
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Statistically Significant: not due to random chance.
Parameter: any numerical quantity associated with a population
Statistic: any numerical quantity associated with a sample

Here is our question again: from the data we know that the difference of the sample means
(a Statistic) is 30.7 days.
What we really want to know is whether the corresponding difference of the population
means (a Parameter) is positive.
In other words we want to use the information in the sample to make an inference for the
corresponding population.
So, how do we find out whether or not the difference of 30.7 days above is statistically
significant? Consider the following boxplot:
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In addition to the average of a data set this also gives us an idea of the variation in the
data.
So, how can we find the variance of the difference of the mean survival times? First we can
find the sample standard deviation:

s =
√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2

The idea behind this formula is simple:
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• Xi−X̄ is the deviation (distance) of each individual observation from the mean (these
are sometimes called the residuals or errors)

• squaring the residuals gets rid of minus signs (but so would taking absolute values)

• s would be the square root of the mean of these squared deviations, except we would
need to divide by n instead of n-1.

Finding s within each group we get:

round(c(sd(treatment), sd(control)), 2)

## [1] 66.77 42.42

• But why the sample standard deviation?

Why not some other measure of “variation”?
This is the standard deviation of the individual observations.
From here we can find the standard errors of the sample means with s/

√
n (why?)

round(c(sd(treatment)/sqrt(length(treatment)),
sd(control)/sqrt(length(control))), 2)

## [1] 25.24 14.14

Finally we can find the standard error of the difference of the means:

standard error of difference =
√

25.242 + 14.142) = 28.9.
Why this formula? This is essentially taking the average of the group standard deviations,
so why not use (25.24+14.14)/2=19.67?
So we know we have a sample mean difference of 30.7 with a standard error of 28.9, that is the
sample mean difference is 30.7/28.9 =1.05 standard deviations above 0. From probability
theory we know that anything within 2 standard deviations might well be due to random
fluctuation.
But why 2 standard deviations? Why not 1 or 3 or 4.55?
It seems we can’t say that there is a statistically significant difference between the treatment
and the control. Does that mean there is no difference? Actually, no: if we had more data
and the difference in means of 30.7 days with standard deviations of about 50 would persist,
what sample size would be needed to find a statistically significant difference? The graph
shows the standard deviations vs. the sample size (equal for both groups):
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so we would need about 26 mice in each group.
Does this mean the treatment is really better than the control, we just didn’t use enough mice
in our study? Again, not necessarily, maybe the difference in means of 30.7 would decrease
if we used more mice, and we would never pass the threshold of 2 standard deviations. We
can’t know that until we run a larger experiment. The above graph just gives us an idea
how large such a new experiment should be.

1.1 R - Installation and Updating

For a detailed introduction to R you can read the material of my course Computing with R
You can get a free version of R for your computer from a number of sources. The download
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is about 70MB and setup is fully automatic. Versions for several operating systems can be
found on the R web site
https://cran.r-project.org
Note

• the one item you should change from the defaults is to install R into a folder under the
root, aka C:\R

• You might be asked at several times whether you want to do something (allow access,
run a program, save a library, . . . ), always just say yes!

• You will need to connect to a reasonably fast internet for these steps.

• This will take a few minutes, just wait until the > sign appears.

FOR MAC OS USERS ONLY
There are a few things that are different from MacOS and Windows. Here is one thing you
should do:
Download XQuartz - XQuartz-2.7.11.dmg
Open XQuartz
Type the letter R (to make XQuartz run R)
Hit enter Open R Run the command .First()
Then, every command should work correctly.

1.1.1 RStudio

We will run R using an interface called RStudio. You can download it at RStudio.

1.1.2 Updating

R releases new versions about every three months or so. In general it is not necessary to
get the latest version every time. Every now and then a package won’t run under the old
version, and then it is time to do so. In essence this just means to install the latest version
of R from CRAN. More important is to now also update ALL your packages to the latest
versions. This is done simply by running

update.packages(ask=FALSE, dependencies=TRUE)

1.2 R Basics I

To start run
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ls()

This shows you a “listing”" of the files (data, routines etc.) in the current project. (Likely
there is nothing there right now)
Everything in R is either a data set or a function. It is a function if it is supposed to do
something (maybe calculate something, show you something like a graph or something else
etc. ). If it is a function is ALWAYS NEEDS (). Sometimes the is something in between
the parentheses, like in

mean(x)

## [1] 6

Sometimes there isn’t like in the ls(). But the () has to be there anyway.
If you have worked for a while you might have things you need to save, do that by clicking
on
File > Save
RStudio has a nice recall feature, using the up and down arrow keys. Also, clicking on the
History tab shows you the recently run commands. Finally, typing the first three letters
of a command in the console and then typing CTRL-ˆ shows you a list of when you ran
commands like this the last times.
R is case-sensitive, so a and A are two different things.
Often during a session you create objects that you need only for a short time. When you no
longer need them use rm to get rid of them:

x <- 10
x^2

## [1] 100

rm(x)

the <- is the assignment character in R, it assigns what is on the right to the symbol on the
left. (Think of an arrow to the left)

1.2.1 Data Entry

For a few numbers the easiest thing is to just type them in:

x <- c(10, 2, 6, 9)
x

## [1] 10 2 6 9

c() is a function that takes the objects inside the () and combines them into one single object
(a vector).
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1.2.2 Data Types in R

the most basic type of data in R is a vector, simply a list of values.
Say we want the numbers 1.5, 3.6, 5.1 and 4.0 in an R vector called x, then we can type

x <- c(1.5, 3.6, 5.1, 4.0)
x

## [1] 1.5 3.6 5.1 4.0

Often the numbers have a structure one can make use of:

1:10

## [1] 1 2 3 4 5 6 7 8 9 10

10:1

## [1] 10 9 8 7 6 5 4 3 2 1

1:20*2

## [1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

c(1:10, 1:10*2)

## [1] 1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12 14 16 18 20

Sometimes you need parentheses:

n <- 10
1:n-1

## [1] 0 1 2 3 4 5 6 7 8 9

1:(n-1)

## [1] 1 2 3 4 5 6 7 8 9

The rep (“repeat”) command is very useful:

rep(1, 10)

## [1] 1 1 1 1 1 1 1 1 1 1
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rep(1:3, 10)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

rep(1:3, each=3)

## [1] 1 1 1 2 2 2 3 3 3

rep(c("A", "B", "C"), c(4,7,3))

## [1] "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "B" "C" "C" "C"

what does this do?

rep(1:10, 1:10)

1.2.3 Commands for Vectors

To find out how many elements a vector has use the length command:

x <- c(1.4, 5.1, 2.0, 6.8, 3.5, 2.1, 5.6, 3.3, 6.9, 1.1)
length(x)

## [1] 10

The elements of a vector are accessed with the bracket [ ] notation:

x[3]

## [1] 2

x[1:3]

## [1] 1.4 5.1 2.0

x[c(1, 3, 8)]

## [1] 1.4 2.0 3.3

x[-3]

## [1] 1.4 5.1 6.8 3.5 2.1 5.6 3.3 6.9 1.1
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x[-c(1, 2, 5)]

## [1] 2.0 6.8 2.1 5.6 3.3 6.9 1.1

Instead of numbers a vector can also consist of characters (letters, numbers, symbols etc.)
These are identified by quotes:

c("A", "B", 7, "%")

## [1] "A" "B" "7" "%"

A vector is either numeric or character, but never both (see how the 7 was changed to “7”).
You can turn one into the other (if possible) as follows:

x <- 1:10
x

## [1] 1 2 3 4 5 6 7 8 9 10

as.character(x)

## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

x <- c("1", "5", "10", "-3")
x

## [1] "1" "5" "10" "-3"

as.numeric(x)

## [1] 1 5 10 -3

A third type of data is logical, with values either TRUE or FALSE.

x <- 1:10
x

## [1] 1 2 3 4 5 6 7 8 9 10

x > 4

## [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

these are often used as conditions:
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x[x>4]

## [1] 5 6 7 8 9 10

This, as we will see shortly, is EXTREMELY useful!

1.2.4 Data Frames

data frames are the basic format for data in R. They are essentially vectors of equal length
put together as columns.
A data frame can be created as follows:

df <- data.frame(
Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21),
GPA=c(3.5, 3.7, 2.9, 2.8, 3.1)

)
df

## Gender Age GPA
## 1 M 23 3.5
## 2 M 25 3.7
## 3 F 19 2.9
## 4 F 22 2.8
## 5 F 21 3.1

1.2.5 Lists

The most general data structures are lists. They are simply a collection of objects. There
are no restrictions on what those objects are.

lst <- list(
Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21, 26, 34),
f=function(x) x^2,
list(A=c(1, 1), B=c("X", "X", "Y"))

)
lst

1.2.5.1 Example

12



## $Gender
## [1] "M" "M" "F" "F" "F"
##
## $Age
## [1] 23 25 19 22 21 26 34
##
## $f
## function(x) x^2
## <environment: 0x00000148d359d5f8>
##
## [[4]]
## [[4]]$A
## [1] 1 1
##
## [[4]]$B
## [1] "X" "X" "Y"

A data frame is a list with an additional requirement, namely that the elements of the list
be of equal length.

1.2.5.2 Case Study: UPR Admissions consider the upr data set . This is the application
data for all the students who applied and were accepted to UPR-Mayaguez between 2003
and 2013.

dim(upr)

## [1] 23666 16

tells us that there were 23666 applications and that for each student there are 16 pieces of
information.

colnames(upr)

## [1] "ID.Code" "Year" "Gender" "Program.Code" "Highschool.GPA"
## [6] "Aptitud.Verbal" "Aptitud.Matem" "Aprov.Ingles" "Aprov.Matem" "Aprov.Espanol"
## [11] "IGS" "Freshmen.GPA" "Graduated" "Year.Grad." "Grad..GPA"
## [16] "Class.Facultad"

shows us the variables

head(upr, 3)

## ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal Aptitud.Matem
## 1 00C2B4EF77 2005 M 502 3.97 647 621
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## 2 00D66CF1BF 2003 M 502 3.80 597 726
## 3 00AB6118EB 2004 M 1203 4.00 567 691
## Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA Graduated Year.Grad. Grad..GPA
## 1 626 672 551 342 3.67 Si 2012 3.33
## 2 618 718 575 343 2.75 No NA NA
## 3 424 616 609 342 3.62 No NA NA
## Class.Facultad
## 1 INGE
## 2 INGE
## 3 CIENCIAS

shows us the first three cases.
Let’s say we want to find the number of males and females. We can use the table command
for that:

table(Gender)

## Error: object ’Gender’ not found

What happened? Right now R does not know what Gender is because it is “hidden” inside
the upr data set. Think of upr as a box that is currently closed, so R can’t look inside and
see the column names. We need to open the box first:

attach(upr)
table(Gender)

## Gender
## F M
## 11487 12179

there is also a detach command to undo an attach, but this is not usually needed because
the attach goes away when you close R.
Note: you need to attach a data frame only once in each session working with R.
Note: Say you are working first with a data set “students 2016” which has a column called
Gender, and you attached it. Later (but in the same R session) you start working with a
data set “students 2017” which also has a column called Gender, and you are attaching this
one as well. If you use Gender now it will be from “students 2017”.

1.2.6 Subsetting of Data Frames

Consider the following data frame (not a real data set):
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students

## Age GPA Gender
## 1 23 3.1 Female
## 2 20 3.2 Male
## 3 21 2.1 Female
## 4 20 2.1 Male
## 5 24 2.3 Female
## 6 18 2.9 Male
## 7 20 2.3 Male
## 8 22 3.9 Male
## 9 20 2.6 Male
## 10 21 3.2 Male

Here each single piece of data is identified by its row number and its column number. So for
example in row 2, column 2 we have “3.2”, in row 6, column 3 we have “Male”.
As with the vectors before we can use the [ ] notation to access pieces of a data frame, but
now we need to give it both the row and the column number, separated by a ,:

students[6, 3]

## [1] "Male"

As before we can pick more than one piece:

students[1:5, 3]

## [1] "Female" "Male" "Female" "Male" "Female"

students[1:5, 1:2]

## Age GPA
## 1 23 3.1
## 2 20 3.2
## 3 21 2.1
## 4 20 2.1
## 5 24 2.3

students[-c(1:5), 3]

## [1] "Male" "Male" "Male" "Male" "Male"
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students[1, ]

## Age GPA Gender
## 1 23 3.1 Female

students[, 2]

## [1] 3.1 3.2 2.1 2.1 2.3 2.9 2.3 3.9 2.6 3.2

students[, -3]

## Age GPA
## 1 23 3.1
## 2 20 3.2
## 3 21 2.1
## 4 20 2.1
## 5 24 2.3
## 6 18 2.9
## 7 20 2.3
## 8 22 3.9
## 9 20 2.6
## 10 21 3.2

another way of subsetting a data frame is by using the $ notations:

students$Gender

## [1] "Female" "Male" "Female" "Male" "Female" "Male" "Male" "Male" "Male"
## [10] "Male"

1.2.7 Subsetting of Lists

The double bracket and the $ notation also work for lists:

lst <- list(
Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21, 26, 34),
f=function(x) x^2,
list(A=c(1, 1), B=c("X", "X", "Y"))

)
lst[[4]][[2]]

1.2.7.1 Example
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## [1] "X" "X" "Y"

lst$Gender

## [1] "M" "M" "F" "F" "F"

1.2.8 Vector Arithmetic

R allows us to apply any mathematical functions to a whole vector:

x <- 1:10
2*x

## [1] 2 4 6 8 10 12 14 16 18 20

x^2

## [1] 1 4 9 16 25 36 49 64 81 100

log(x)

## [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101 2.0794415
## [9] 2.1972246 2.3025851

sum(x)

## [1] 55

y <- 21:30

x+y

## [1] 22 24 26 28 30 32 34 36 38 40

x^2+y^2

## [1] 442 488 538 592 650 712 778 848 922 1000

mean(x+y)

## [1] 31

Let’s try something strange:
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c(1, 2, 3) + c(1, 2, 3, 4)

## [1] 2 4 6 5

so R notices that we are trying to add a vector of length 3 to a vector of length 4. This
should not work, but it actually does!
When it runs out of values in the first vector, R simply starts all over again.
In general this is more likely a mistake by you, check that this is what you really wanted to
do!

1.2.9 apply

A very useful routine in R is apply, and its brothers.
Let’s say we have the following matrix:

Age <- matrix(sample(20:30, size=100, replace=TRUE), 10, 10)
Age[1:5, 1:5]

## [,1] [,2] [,3] [,4] [,5]
## [1,] 20 23 21 23 27
## [2,] 28 23 29 23 29
## [3,] 27 25 27 20 20
## [4,] 28 24 30 28 28
## [5,] 22 24 26 30 29

and we want to find the sums of the ages in each column. Easy:

sum(Age[, 1])

## [1] 250

sum(Age[, 2])

## [1] 248

. . .

sum(Age[, 10])

## [1] 244

or much easier
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apply(Age, 2, sum)

## [1] 250 248 261 257 249 259 248 249 244 244

There are a number of apply routines for different data formats.

1.2.9.1 Case Study: upr admissions Let’s say we want to find the mean Highschool GPA:

mean(Highschool.GPA)

## [1] 3.65861

But what if we want to do this for each year separately? Notice that apply doesn’t work
here because the Years are not in separated columns. Instead we can use

tapply(Highschool.GPA, Year, mean)

## 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
## 3.646627 3.642484 3.652774 3.654729 3.628072 3.648552 3.642946 3.665298 3.685485 3.695046
## 2013
## 3.710843

1.3 R Basics II - Writing Functions

1.3.1 General Information

In R/RStudio you have several ways to write your own functions:

• In the R console type

myfun <- function(x) {
out <- x^2
out

}

• RStudio: click on File > New File > R Script. A new empty window pops up. Type
fun, hit enter, and the following text appears:

name <- function(variables) {
}
change the name to myfun, save the file as myfun.R with File > Save. Now type in the code.
When done click the Source button.

• fix: In the R console run
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fix(myfun)

now a window with an editor pops up and you can type in the code. When you are done
click on Save. If there is some syntax error DON’T run fix again, instead run

myfun <- edit()

myfun will exist only until you close R/RStudio unless you save the project file.

• Open any code editor outside of RStudio, type in the code, save it as myfun.R, go to
the console and run

source(’../some.folder/myfun.R’)

Which of these is best? In large part that depends on your preferences. In my case, if I
expect to need that function just for a bit I use the fix option. If I expect to need that
function again later I start with the first method, but likely soon open the .R file outside
RStudio because most code editors have many useful features not available in RStudio.
If myfun is open in RStudio there are some useful keyboard shortcuts. If the curser is on
some line in the RStudio editor you can hit

• CTRL-Enter run current line or section

• CTRL-ALT-B run from beginning to line

• CTRL-Shift-Enter run complete chunk
• CTRL-Shift-P rerun previous

1.3.2 Testing

As always you can test whether an object is a function:

x <- 1
f <- function(x) x
is.function(x)

## [1] FALSE

is.function(f)

## [1] TRUE
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1.3.3 Arguments

There are several ways to specify arguments in a function:

calc.power <- function(x, y, n=2) x^n + y^n

here n has a default value, x and y do not.
if the arguments are not named they are matched in order:

calc.power(2, 3)

## [1] 13

If an argument does not have a default it can be tested for

f <- function(first, second) {
if(!missing(second))

out <- first + second
else out <- first
out

}
f(1)

## [1] 1

f(1, s=3)

## [1] 4

There is a special argument . . . , used to pass arguments on to other functions:

f <- function(x, which, ...) {
f1 <- function(x, mult) mult*x
f2 <- function(x, pow) x^pow
if(which==1)

out <- f1(x, ...)
else

out <- f2(x, ...)
out

}
f(1:3, 1, mult=2)

## [1] 2 4 6
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f(1:3, 2, pow=3)

## [1] 1 8 27

This is one of the most useful programming structures in R!
Note this example also shows that in R functions can call other functions. In many computer
programs there are so called sub-routines, in R this concept does not exist, functions are just
functions.

1.3.4 Return Values

A function can either return nothing or exactly one thing. It will automatically return the
last object evaluated:

f <- function(x) {
x^2

}
f(1:3)

## [1] 1 4 9

however, it is better programming style to have an explicit return object:

f <- function(x) {
out <- x^2
out

}
f(1:3)

## [1] 1 4 9

There is another way to specify what is returned:

f <- function(x) {
return(x^2)

}
f(1:3)

## [1] 1 4 9

but this is usually used to return something early in the program:
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f <- function(x) {
if(!any(is.numeric(x)))

return("Works only for numeric!")
out <- sum(x^2)
out

}
f(1:3)

## [1] 14

f(letters[1:3])

## [1] "Works only for numeric!"

If you want to return more than one item use a list:

f <- function(x) {
sq <- x^2
sm <- sum(x)
list(sq=sq, sum=sm)

}
f(1:3)

## $sq
## [1] 1 4 9
##
## $sum
## [1] 6

1.3.5 Basic Programmming Structures in R

R has all the standard programming structures:

f <- function(x) {
if(x>0) y <- log(x)
else y <- NA
y

}
f(c(2, -2))

1.3.5.1 Conditionals (if-else)
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## [1] 0.6931472 NaN

A useful variation on the if statement is switch:

centre <- function(x, type) {
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
centre(x, "mean")

## [1] -0.5824938

centre(x, "median")

## [1] -0.5463664

centre(x, "trimmed")

## [1] -0.4655241

special R construct: ifelse

x <- sample(1:10, size=7, replace = TRUE)
x

## [1] 10 10 10 3 8 1 5

ifelse(x<5, "Yes", "No")

## [1] "No" "No" "No" "Yes" "No" "Yes" "No"

1.3.5.2 Loops there are two standard loops in R:

• for loop

y <- rep(0, 10)
for(i in 1:10) y[i] <- i*(i+1)/2
y

## [1] 1 3 6 10 15 21 28 36 45 55

sometimes we don’t know the length of y ahead of time, then we can use
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for(i in seq_along(y)) y[i] <- i*(i+1)/2
y

## [1] 1 3 6 10 15 21 28 36 45 55

If there is more than one statement inside a loop use curly braces:

for(i in seq_along(y)) {
y[i] <- i*(i+1)/2
if(y[i]>40) y[i] <- (-1)

}
y

## [1] 1 3 6 10 15 21 28 36 -1 -1

You can nest loops:

A <- matrix(0, 4, 4)
for(i in 1:4) {

for(j in 1:4)
A[i, j] <- i*j

}
A

## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 2 4 6 8
## [3,] 3 6 9 12
## [4,] 4 8 12 16

• repeat loop

k <- 0
repeat {

k <- k+1
x <- sample(1:6, size=3, replace=TRUE)
if(length(table(x))==1) break

}
k

## [1] 2

Notice that a repeat loop could in principle run forever. I usually include a counter that
ensures the loop will eventually stop:
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k <- 0
counter <- 0
repeat {

k <- k+1
counter <- counter+1
x <- sample(1:6, size=3, replace=TRUE)
if(length(table(x))==1 | counter>1000) break

}
k

## [1] 32

1.4 Random Numbers and Simulation

1.4.1 Random Numbers

Everything starts with generating X1, X2, .. iid U[0,1]. These are simply called random
numbers. There are some ways to get these:

• random number tables

• numbers taken from things like the exact (computer) time

• quantum random number generators

• . . .

The R package random has the routine randomNumbers which gets random numbers from
a web site which generates them based on (truly random) atmospheric phenomena.

require(random)
randomNumbers(20, 0, 100)

## V1 V2 V3 V4 V5
## [1,] 76 19 28 96 20
## [2,] 66 29 96 83 19
## [3,] 76 31 4 7 90
## [4,] 92 74 73 57 76

Most of the time we will use pseudo-random numbers, that is numbers that are not actually
random but are indistinguishable from those. In R this is done with

runif(5)

## [1] 0.8041365 0.2552747 0.5694376 0.2959418 0.3451290
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runif(5, 100, 300)

## [1] 168.1014 221.6839 213.3105 120.4541 165.1059

1.4.2 Standard Probability Distributions

Not surprisingly many standard distributions are part of base R. For each the format is

• dname = density

• pname = cumulative distribution function

• rname = random generation

• qname = quantile function

Note we will use the term density for both discrete and continuous random variable.

1.4.2.1 Example Poisson distribution We have X ∼ Pois(λ) if

P (X = x) = λx

x! e
−λ, x = 0, 1, ...

# density
dpois(c(0, 8, 12, 20), lambda=10)

## [1] 4.539993e-05 1.125990e-01 9.478033e-02 1.866081e-03

10^c(0, 8, 12, 20)/factorial(c(0, 8, 12, 20))*exp(-10)

## [1] 4.539993e-05 1.125990e-01 9.478033e-02 1.866081e-03

# cumulative distribution function
ppois(c(0, 8, 12, 20), 10)

## [1] 4.539993e-05 3.328197e-01 7.915565e-01 9.984117e-01

# random generation
rpois(5, 10)

## [1] 9 12 10 12 8
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# quantiles
qpois(1:4/5, 10)

## [1] 7 9 11 13

Here is a list of the distributions included with base R:

• beta distribution: dbeta.

• binomial (including Bernoulli) distribution: dbinom.

• Cauchy distribution: dcauchy.

• chi-squared distribution: dchisq.

• exponential distribution: dexp.

• F distribution: df.

• gamma distribution: dgamma.

• geometric distribution: dgeom.

• hypergeometric distribution: dhyper.

• log-normal distribution: dlnorm.

• multinomial distribution: dmultinom.

• negative binomial distribution: dnbinom.

• normal distribution: dnorm.

• Poisson distribution: dpois.

• Student’s t distribution: dt.

• uniform distribution: dunif.

• Weibull distribution: dweibull.

With some of these a bit of caution is needed. For example, the usual textbook definition of
the geometric random variable is the number of tries in a sequence of independent Bernoulli
trials until a success. This means that the density is defined as

P (X = x) = p(1− p)x−1, x = 1, 2, ..
R however defines it as the number of failures until the first success, and so it uses

P (X∗ = x) = dgeom(x, p) = p(1− p)x, x = 0, 1, 2, ..
Of course this is easy to fix. If you want to generate the “usual” geometric do
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x <- rgeom(10, 0.4) + 1
x

## [1] 4 2 4 4 1 3 8 1 1 3

if you want to find the probabilities or cdf:

round(dgeom(x-1, 0.4), 4)

## [1] 0.0864 0.2400 0.0864 0.0864 0.4000 0.1440 0.0112 0.4000 0.4000 0.1440

round(0.4*(1-0.4)^(x-1), 4)

## [1] 0.0864 0.2400 0.0864 0.0864 0.4000 0.1440 0.0112 0.4000 0.4000 0.1440

Another example is the Gamma random variable. Here most textbooks use the definition

f(x;α, β) = 1
Γ(α)βαx

α−1e−x/β

but R uses

f ∗(x;α, β) = βα

Γ(α)x
α−1e−βx

dgamma(1.2, 0.5, 2)

## [1] 0.06607584

2^0.5/gamma(0.5)*1.2^(0.5-1)*exp(-2*1.2)

## [1] 0.06607584

Again, it is easy to re-parametrize:

dgamma(1.2, 0.5, 1/(1/2))

## [1] 0.06607584

1.4.3 Other Variates

if you need to generate random variates from a distribution that is not part of base R you
should first try to find a package that includes it.
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1.4.3.1 Example multivariate normal there are actually several packages, the most com-
monly used one is mvtnorm

library(mvtnorm)
x <- rmvnorm(1000,

mean = c(0, 1),
sigma = matrix(c(1, 0.8, 0.8, 2), 2, 2))

plot(x,
pch=20,
xlab = expression(x[1]),
ylab = expression(x[2]))
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sigma is the variance-covariance matrix, so in the above we have

ρ = Cor(X, Y ) =
Cov(X, Y )√

Var(X)Var(Y )
=

0.8√
1 ∗ 2

= 0.566

round(c(var(x[, 1]),
var(x[, 2]),
cor(x[, 1], x[, 2])), 3)

## [1] 0.952 1.921 0.568
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1.4.4 Simulation

In a simulation we attempt to generate data just like what we might see in a real-live
experiment, except that we control all the details. The we carry out some calculations on
that artificial data, and we repeat this many times. Here are some examples:

1.4.4.1 Example When rolling a fair die 5 times, what is the probability of no sixes? Of
no more than one six?

B <- 10000 # number of simulation runs
num.sixes <- rep(0, B) # to store results
for(i in 1:B) {

x <- sample(1:6, size=5, replace=TRUE) # roll 5 dice
num.sixes[i] <- length(x[x==6]) # how many sixes?

}
# Probability of no sixes
length(num.sixes[num.sixes==0])/B

## [1] 0.395

# Probability of no more than one sixes
length(num.sixes[num.sixes<=1])/B

## [1] 0.8008

Of course one can do this also analytically:

P (no sixes) = P (no six on any die) =
P (no six on first die ∩ .. ∩ no six on fifth die) =

5∏
i=1

P (no six on ithdie) = (5
6)5 = 0.402

but already the second one is a bit harder to do analytically but not via simulation.

One issue we have with a simulation is the simulation error, namely that the simulation will
always yield a slightly different answer.

1.4.4.2 Example Say we have X, Y, Z ∼ N(0, 1) and set M = max {|X|, |Y |, |Z|}. What
is the mean and standard deviation of M?

B <- 10000
x <- matrix(abs(rnorm(3*B)), ncol=3)
M <- apply(x, 1, max)
hist(M, 50, main="")
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round(c(mean(M), sd(M)), 3)

## [1] 1.331 0.587

1.4.4.3 Example Symmetric Random Walk in R Let P (Zi = −1) = P (Zi = 1) = 1
2 and

Xn = ∑n
i=1 Zi. Let A>0 some integer. Let’s write a routine that finds the median number

of steps the walk takes until it hits either -A or A.
One issue with simulations of stochastic processes is that in general they are very slow. Here
I will use a little trick: I will generate part of the process, and then check whether the event
of interest has already happened.

first.hit <- function(A) {
B <- 10000
num.steps <- rep(0, B)
for(i in 1:B) {

x <- 0
k <- 0
repeat {

z <- sample(c(-1, 1), size=1000, replace=TRUE)
x <- x + cumsum(z)
if(max(abs(x))>=A) break
x <- x[1000]
k <- k+1000

}
k <- k+seq_along(x)[abs(x)>=A][1]
num.steps[i] <- k
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}
median(num.steps)

}
first.hit(100)

## [1] 7480

1.4.4.4 Example The following you find in any basic stats course: A 100(1−α)% confidence
interval for the success probability in a sequence of n Bernoulli trials is given by

p̂± zα/2
√
p̂(1− p̂)/n

where p̂ is the proportion of successes. This method is supposed to work if n is at least 50.
Let’s do a simulation to test this method.

ci.prop.sim <- function(p, n, conf.level=95, B=1e4) {
z <- qnorm(1-(1-conf.level/100)/2)
bad <- 0
for(i in 1:B) {

x <- sample(0:1, size=n, replace = TRUE, prob=c(1-p, p))
phat <- sum(x)/n
if(phat - z*sqrt(phat*(1-phat)/n)>p) bad<-bad+1
if(phat + z*sqrt(phat*(1-phat)/n)<p) bad<-bad+1

}
bad/B

}

ci.prop.sim(0.5, 100)

## [1] 0.0548

and that is not so bad.
But

ci.prop.sim(0.1, 50)

## [1] 0.1224

and that is very bad indeed!
Soon we will consider a method that is guaranteed to give intervals with correct coverage,
no matter what p and n are.
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1.4.4.5 Example: Simultaneous Inference There is a famous (infamous?) case of three psy-
chiatrists who studied a sample of schizophrenic persons and a sample of non schizophrenic
persons. They measured 77 variables for each subject - religion, family background, child-
hood experiences etc. Their goal was to discover what distinguishes persons who later become
schizophrenic. Using their data they ran 77 hypothesis tests of the significance of the dif-
ferences between the two groups of subjects, and found 2 significant at the 2% level.They
immediately published their findings.
What’s wrong here? Remember, if you run a hypothesis test at the 2% level you expect to
reject the null hypothesis of no relationship 2% of the time, but 2% of 77 is about 1 or 2, so
just by random fluctuations they could (should?) have rejected that many null hypotheses!
This is not to say that the variables they found to be different between the two groups were
not really different, only that their method did not proof that.
In its general form this is known as the problem of simultaneous inference and is one of the
most difficult issues in Statistics today. One general solution of used is called Bonferroni’s
method. The idea is the following:
Let’s assume we carry out k hypothesis tests. All tests are done at α significance level and
all the tests are all independent. Then the probability that at least one test rejects the null
hypothesis although all null are true is given by

α∗ = P (at least one null rejected | all null true) =
1− P (none of the nulls rejected | all null true) =

1−
k∏
i=1

P (ith null is not rejected | ith null true) =

1−
k∏
i=1

[1− P (ith null is rejected | ith null true)] =

1− [1− α]k =

1−
[
1− kα +

(
k

2

)
α2 −+..

]
≈ kα

so if each individual test is done with α/k, the family-wise error rate is the desired one.
Let’s do a simulation to see how that would work in the case of our psychiatrists experiments.
There many details we don’t know, so we have to make them up a bit:

sim.shiz <- function(m, n=50, B=1e3) {
counter <- matrix(0, B, 2)
for(i in 1:B) {

for(j in 1:77) {
pval <- t.test(rnorm(n), rnorm(n))$p.value
if(pval<0.02) counter[i, 1]<-1
if(pval<0.05/m) counter[i, 2]<-1

}
}
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apply(counter, 2, sum)/B
}
sim.shiz(77)

## [1] 0.795 0.042

This works fine here. The main problem in real life is that it is rarely true that these test
are independent, and then all we can say is that the needed α is between α/k and α.

1.5 Graphics with ggplot2

A large part of this chapter is taken from various works of Hadley Wickham. Among others
The layered grammar of graphics and R for Data Science.

1.5.1 Why ggplot2?

Advantages of ggplot2

• consistent underlying grammar of graphics (Wilkinson, 2005)

• plot specification at a high level of abstraction

• very flexible

• theme system for polishing plot appearance

• mature and complete graphics system

• many users, active mailing list

but really, they are just so much nicer than base R graphs!

1.5.2 Grammar of Graphics

In 2005 Wilkinson, Anand, and Grossman published the book “The Grammar of Graphics”.
In it they laid out a systematic way to describe any graph in terms of basic building blocks.
ggplot2 is an implementation of their ideas.
The use of the word grammar seems a bit strange here. The general dictionary meaning of
the word grammar is:
the fundamental principles or rules of an art or science
so it is not only about language.
As our running example we will use the mtcars data set. It is part of base R and has
information on 32 cars:
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mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Say we want to study the relationship of hp and mpg. So we have two quantitative variables,
and therefore the obvious thing to do is a scatterplot. But there are a number of different
ways we can do this:

attach(mtcars)
par(mfrow=c(2, 2))
plot(hp, mpg, main="Basic Graph")
plot(hp, mpg, pch="x", main="Change Plotting Symbol")
plot(hp, mpg, cex=2, main="Change Size")
plot(hp, mpg, main="With Fit");abline(lm(mpg~hp))
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The basic idea of the grammar of graphs is to separate out the parts of the graphs: there
is the basic layout, there is the data that goes into it, there is the way in which the data is
displayed. Finally there are annotations, here the titles, and other things added, such as a
fitted line. In ggplot2 you can always change one of these without worrying how that change
effects any of the others.
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Take the graph on the lower left. Here I made the plotting symbol bigger (with cex=2).
But now the graph doesn’t look nice any more, the first and the last circle don’t fit into the
graph. The only way to fix this is to start all over again, by making the margins bigger:

plot(hp, mpg, cex=2, ylim=range(mpg)+c(-1, 1))
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and that is a bit of work because I have to figure out how to change the margins. In ggplot2
that sort of thing is taken care of automatically!
Let’s start by recreating the first graph above.

ggplot(mtcars, aes(hp, mpg)) +
geom_point()
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this has the following logic:

• ggplot sets up the graph

• it’s first argument is the data set (which has to be a dataframe)

• aes is the aestetic mapping. It connects the data to the graph by specifying which
variables go where

• geom is the geometric object (circle, square, line) to be used in the graph

Note ggplot2 also has the qplot command. This stands for qick plot

qplot(hp, mpg, data=mtcars)

38



10

15

20

25

30

35

100 200 300
hp

m
pg

This seems much easier at first (and it is) but the qplot command is also quite limited.
Very quickly you want to do things that aren’t possible with qplot, and so I won’t discuss it
further here.
Note consider the following variation:

ggplot(mtcars) +
geom_point(aes(hp, mpg))
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again it seems to do the same thing, but there is a big difference:
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• if aes(x, y) is part of ggplot, it applies to all the geom’s that come later (unless a
different one is specified)

• an aes(x, y) as part of a geom applies only to it.

How about the problem with the graph above, where we had to increase the y margin?

ggplot(mtcars, aes(hp, mpg)) +
geom_point(shape=1, size=5)
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so we see that here this is done automatically.

Let’s say we want to identify the cars by the number of cylinders:

ggplot(mtcars, aes(hp, mpg, color=cyl)) +
geom_point()
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Notice that the legend is a continuous color scale. This is because the variable cyl has values
4, 6, and 8, and so is identified by R as a numeric variable. In reality it is categorical (ever
seen a car with 1.7 cylinders?), and so we should change that:

mtcars$faccyl <- factor(cyl,
levels = c(4, 6, 8),
ordered = TRUE)

ggplot(mtcars, aes(hp, mpg, color=faccyl)) +
geom_point()
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we can also change the shape of the plotting symbols:

ggplot(mtcars, aes(hp, mpg, shape=faccyl)) +
geom_point()
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or both:

ggplot(mtcars, aes(hp, mpg, shape=faccyl, color=faccyl)) +
geom_point()

10

15

20

25

30

35

100 200 300
hp

m
pg

faccyl

4

6

8

42



let’s pretty up the graph a bit with some labels and a title. We will be playing around with
this graph for a while, so I will save some intermediate versions:

plt1 <- ggplot(mtcars, aes(hp, mpg, color=faccyl)) +
geom_point()

plt2 <- plt1 +
labs(x = "Horsepower",

y = "Miles per Gallon",
color = "Cylinders") +

labs(title = "Milage goes down as Horsepower goes up")
plt2
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Say we want to add the least squares regression lines for cars with the same number of
cylinders:

plt3 <- plt2 +
geom_smooth(method = "lm", se = FALSE)

plt3
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There is another way to include a categorical variable in a scatterplot. The idea is to do
several graphs, one for each value of the categorical variable. These are called facets:

plt3 +
facet_wrap(~cyl)
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The use of facets also allows us to include two categorical variables:
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mtcars$facgear <-
factor(gear, levels = 3:5, ordered = TRUE)

plt4 <- ggplot(aes(hp, mpg, color=faccyl),
data = mtcars) +

geom_point(size = 1)
plt4 <- plt4 +

facet_wrap(~facgear)
plt4 <- plt4 +

labs(x = "Horsepower",
y = "Miles per Gallon",
color = "Cylinders") +

labs(title = "Milage goes down as Horsepower goes up")
plt4 <- plt4 +

geom_smooth(method = "lm", se = FALSE)
plt4
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This is almost a bit to much, with just 32 data points there is not really enough for such a
split.

Let’s see how to use ggplot do a number of basic graphs:

1.5.3 Histograms
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x <- rnorm(1000, 100, 30)
df3 <- data.frame(x = x)
bw <- diff(range(x))/50 # use about 50 bins
ggplot(df3, aes(x)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x", y = "Counts")
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Often we do histograms scaled to integrate to one. Then we can add the theoretical density
and/or a nonparametric density estimate:

x <- seq(0, 200, length=250)
df4 <- data.frame(x=x, y=dnorm(x, 100, 30))
ggplot(df3, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +

labs(x = "x", y = "Density") +
geom_line(data = df4, aes(x, y),

colour = "blue") +
geom_density(color = "red")
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Notice the red line on the bottom. This should not be there but seems almost impossible
to get rid of!
Here is another interesting case: say we have two data sets and we wish to draw the two
histograms, one overlaid on the other:

df5 <- data.frame(
x = c(rnorm(100, 10, 3), rnorm(80, 12, 3)),
y = c(rep(1, 100), rep(2, 80)))

ggplot(df5, aes(x=x)) +
geom_histogram(data = subset(df5, y == 1),

fill = "red", alpha = 0.2) +
geom_histogram(data = subset(df5, y == 2),

fill = "blue", alpha = 0.2)
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Notice the use of alpha. In general this “lightens” the color so we can see “behind”.

1.5.4 Boxplots

y <- rnorm(120, 10, 3)
x <- rep(LETTERS[1:4], each=30)
y[x=="B"] <- y[x=="B"] + rnorm(30, 1)
y[x=="C"] <- y[x=="C"] + rnorm(30, 2)
y[x=="D"] <- y[x=="D"] + rnorm(30, 3)
df6 <- data.frame(x=x, y=y)
ggplot(df6, aes(x, y)) +

geom_boxplot()

48



5

10

15

20

A B C D
x

y

strangely enough doing a boxplot without groups takes a bit of a hack. We have to “invent”
a categorical variable:

ggplot(df6, aes(x="", y)) +
geom_boxplot() +
xlab("")

5

10

15

20

y

There is a modern version of this graph called a violin plot:
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ggplot(df6, aes(x="", y)) +
geom_violin() +
xlab("")
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1.5.5 Barcharts

x <- sample(LETTERS[1:5],
size = 1000,
replace = TRUE,
prob = 6:10)

df7 <- data.frame(x=x)
ggplot(df7, aes(x)) +

geom_bar(alpha=0.75, fill="lightblue") +
xlab("")
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Say we want to draw the graph based on percentages. Of course we could just calculate
them and then do the graph. Here is another way:

ggplot(df7, aes(x=x)) +
geom_bar(aes(y=(..count..)/sum(..count..)),

alpha = 0.75,
fill = "lightblue") +

labs(x="", y="Percentages")
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Notice how this works: in geom_bar we use a new aes, but the values in it are calculated
from the old data frame.
Finally an example of a contingency table:

df7$y <- sample(c("X", "Y"),
size = 1000,
replace = TRUE,
prob = 2:3)

ggplot(df7, aes(x=x, fill = y)) +
geom_bar(position = "dodge") +

scale_y_continuous(labels=scales::percent) +
labs(x="", y="Percentages", fill="Y")
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1.5.6 Axis Ticks and Legend Keys

Let’s return to the basic plot of mpg by hp. Let’s say we want to change the axis tick marks:

ggplot(mtcars, aes(hp, mpg)) +
geom_point() +
scale_x_continuous(breaks = seq(50, 350, by=25)) +
scale_y_continuous(breaks = seq(0, 50, by=10))
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sometimes we want to do graphs without any tick labels. This is useful for example for maps
and also for confidential data, so the viewer sees the relationship but can’t tell the sizes:

ggplot(mtcars, aes(hp, mpg)) +
geom_point() +
scale_x_continuous(labels = NULL) +
scale_y_continuous(labels = NULL)

hp

m
pg

By default ggplot2 draws the legends on the right. We can however change that. We can
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also change the appearance of the legend. Recall that the basic graph is in plt2. Then

plt2 +
theme(legend.position = "bottom") +
guides(color=guide_legend(nrow = 1,

override.aes = list(size=4)))
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1.5.7 Saving the graph

It is very easy to save a ggplot2 graph. Simply run

ggsave("myplot.density")

it will save the last graph to disc.
One issue is figure sizing. You need to do this so that a graph looks “good”. Unfortunately
this depends on where it ends up. A graph that looks good on a webpage might look ugly
in a density. So it is hard to give any general guidelines.
If you use R markdown, a good place to start is with the chunk arguments fig.with=6 and
out.width=“70%”. In fact on top of every R markdown file I have a chunk with

library(knitr)
opts_chunk$set(fig.width=6,

fig.align = "center",
out.width = "70%",
warning=FALSE,
message=FALSE)
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so that automatically every graph is sized that way. I also change the default behavior of
the chunks to something I like better!

1.6 Important R Commands

In the section I will list the most important commands in base R. The list is taken in large
part from Hadley Wickham’s book Advanced R. Most of them we already discussed. Those
we have not you can read up on yourself.

1.6.1 The first functions to learn

? str

1.6.2 Important operators and assignment

%in%, match
=, <-, «-
$, [, [[, head, tail, subset
with
assign, get

1.6.3 Comparison

all.equal, identical
!=, ==, >, >=, <, <=
is.na, complete.cases
is.finite

1.6.4 Random variables

(q, p, d, r) * (beta, binom, cauchy, chisq, exp, f, gamma, geom, hyper, lnorm, logis, multinom,
nbinom, norm, pois, signrank, t, unif, weibull, wilcox, birthday, tukey)

1.6.5 Matrix algebra

crossprod, tcrossprod
eigen, qr, svd
%*%, %o%, outer
rcond
solve
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1.6.6 Workspace

ls, exists, rm
getwd, setwd
q
source
install.packages, library, require

1.6.7 Help

help, ?
help.search
apropos
RSiteSearch
citation
demo
example
vignette

1.6.8 Debugging

traceback
browser
recover
options(error = )
stop, warning, message
tryCatch, try

1.6.9 Output

print, cat
message, warning
dput
format
sink, capture.output

1.6.10 Reading and writing data

data
count.fields
read.csv, write.csv
read.delim, write.delim
read.fwf
readLines, writeLines
readRDS, saveRDS
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load, save
library

1.6.11 Files and directories

dir
basename, dirname, tools::file_ext
file.path
path.expand, normalizePath
file.choose
file.copy, file.create, file.remove, file.rename, dir.create
file.exists, file.info
tempdir, tempfile
download.file,

2 Probability in Statistics

2.1 Probability Theory

2.1.1 Introduction

For a detailed discussion of Probability Theory go http://academic.uprm.edu/wrolke/
esma6600
We are not going to do a detailed review of the theory of probability. Instead we are going
to do through several examples that include the kinds of calculations you should know how
to do.

2.1.1.1 Example (2.1.1) say we have a random variable X with density f(x) = c/xa−1, x >
1, a > 0

a. find c

1 =
∫ ∞
−∞

f(x)dx =
∫ ∞

1

c

xa+1dx = −c
axa
|∞1 = c

a

soc = α.

b) Find E[X] and var(X)
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E[Xk] =
∫ ∞
−∞

xkf(x)dx =∫ ∞
1

xk
a

xa+1dx =∫ ∞
1

a

xa−k+1dx =
−a

(a− k)xa−k |
∞
1 =

a

k − a

if a > k and ∞ otherwise.
So

E[X] =
{

a
k−a a > 1
∞ a ≤ 1

var(X) = E[X2]− (E[X])2 ={
a

2−a − ( a
1−a)2 a > 2

∞ a ≤ 2 ={
a

(a−2)(a−1)2 a > 2
∞ a ≤ 2

c) Let Y = a logX. Find the density of Y.

Notice if x > 1, y = a log x > 0, so

FY (y) = P (Y < y) = P (a logX < y) =

P (X < ey/a) =
∫ ey/a

1
a/xa+1dx =

− x−a|ey/a1 = 1− e−x

so Y ∼ Exp(1)

2.1.1.2 Example (2.1.2) say we have a discrete random vector (X,Y) with

0 1 2
0 0.1 0.1 0.2
1 0.0 0.3 0.3

a) Find Cor(X,Y)
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Cor(X,Y) = Cov(X,Y)/(sd(X)sd(Y))
Cov(X,Y) = EXY-EX*EY EXY=0*0*0.1+0*1*0.1+. . . +1*2*0.3 = 0.3+2*0.3 = 0.9

0 1 2 fx
0 0.1 0.1 0.2 0.4
1 0.0 0.3 0.3 0.6
fy 0.1 0.4 0.5 1.0

E[X] = 0*0.4+1*0.6 = 0.6
E[Y] = 0*0.1+1*0.4+2*0.5 = 1.4
cov(X,Y) = E[XY]-E[X]E[Y] = 0.9-0.6*1.4 = 0.06
E[X2] = 02*0.4+12*0.6 = 0.6
var(X) = E[X2]-(E[X])2 = 0.6-0.62 = 0.24
sd(X)=

√
var(X) =

√
0.24 = 0.489

E[Y2] = 02*0.1+12*0.4+22*0.5 = 2.4
var(Y) = E[Y2]-(E[Y])2 = 2.4-1.42 = 0.44
sd(Y)=

√
var(Y ) =

√
0.44 = 0.663

cor(X,Y) = cov(X,Y)/(sd(X)sd(Y)) = 0.06/(0.489*0.663) = 0.185

b) Are X and Y independent?

No, because cov(X, Y ) 6= 0
or
f(0, 0) = 0.1 6= fX(0)fY (0) = 0.1× 0.4 = 0.04

c) Find E[X|Y=2]

E[X|Y=2] = ∑xfX|Y=1(x|2)
fX|Y=2(x|2) = f(x,2)/fY(2)
fX|Y=2(0|2) = f(0,2)/fY(2) = 0.2/0.5 = 0.4
fX|Y=2(1|2) = f(1,2)/fY(2) = 0.3/0.5 = 0.6

x P(X=x|Y=1)
0 0.4
1 0.6

E[X|Y=2] = 0*0.4+1*0.6 = 0.6
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2.1.1.3 Example (2.1.3) say we have random variables X,Y~U[0,1] and independent. Find
the density of Z=X+Y
Solution 1:

FX+Y (z) = P (X + Y ≤ z) =∫ ∞
−∞

P (X + Y ≤ z|Y = y)fY (y)dy =∫ ∞
−∞

(X ≤ z − y|Y = y)fY (y)dy =∫ ∞
−∞

FX|Y=y(z − y|y)fY (y)dy

fZ(z) = d

dz
FZ(z) =

d

dz

∫ ∞
−∞

FX|Y=y(z − y|y)fY (y)dy =∫ ∞
−∞

d

dz
FX|Y=y(z − y|y)fY (y)dy =∫ ∞

−∞
fX|Y=y(z − y|y)fY (y)dy =∫ ∞

−∞
fX(z − y)fY (y)dy

Now fx(x) = 0 if x < 0 or x > 1, so fx(z − y) = 0 if z < y or y < z − 1, so

∫ ∞
−∞

fX(z − y)fY (y)dy ={ ∫ z
0 1dy 0 < z < 1∫ 1
z−1 1dy 1 < z < 2 ={
z 0 < z < 1

2− z 1 < z < 2

Solution 2:
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here is a figure of this area:
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so
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2.1.1.4 Example (2.1.4) Let X1,..,Xn be a random sample from U{1,..,N} for some N>1.
Let M = max{Xi}. Show that M→N in probability.
M→N in probability
iff
for all ε > 0 P (|M −N | > ε)→ 0
Now

P (M ≤ m) = P (X1 ≤ m, ..,Xn ≤ m) =

P (X1 ≤ m)n = (m
N

)n, 1 ≤ m ≤ N

P (|M −N | > ε) = 1− P (N − ε ≤M ≤ N + ε) =
1− P (N − ε ≤M) = P (M < N − ε) =
P (M ≤ bN − εc) =

(bN − εc
N

)n → 0
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because bN − εc < N .

2.1.1.5 Example (2.1.5) say (X, Y) has joint density proportional to g(x, y) = x + y, 0 <
x, y < 1. Find the distribution function of of Z=E[Y|X].
Here are all the definitions we will need. Note that X and Y are continuous random variables,
so

E[Y |X = x] =
∫
yfY |X=x(y|x)dy

fY |X=x(y|x) = f(x, y)
fX(x)

fX(x) =
∫
f(x, y)dy

fY (y) =
∫
f(x, y)dx

Now

fX(x) =
∫ 1

0
c(x+ y)dy = c(xy + y2/2)|10 = c(x+ 1/2)

1 =
∫
fX(x)dx =

∫ 1

0
c(x+ 1/2)dx =

c(x2/2 + x/2)|10 = c(1/2 + 1/2); c = 1
fX(x) = x+ 1/2, 0 < x < 1
fY (y) = y + 1/2, 0 < y < 1 by symmetry

fY |X=x = f(x, y)
fX(x) = x+ y

x+ 1/2

E[Y |X = x] =
∫
yfY |X=x(y|x)dy =∫ 1

0
y
x+ y

x+ 1/2dy = xy2/2 + y3/3
x+ 1/2 |10 =

x/2 + 1/3
x+ 1/2

Z = E[Y |X] = X/2 + 1/3
X + 1/2

What values does Z take? Let’s see:

curve((x/2+1/3)/(x+1/2), 0, 1)
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so 5/9 < z < 2/3. Now

FZ(Z) = P (Z < z) = P (X/2 + 1/3
X + 1/2 < z) =

P (X/2 + 1/3 < zX + z/2) =
P (X(1/2− z) < z/2− 1/3) =

P (X >
z − 2/3
1− 2z ) = (because z>1/2)

1−
∫ z−2/3

1−2z

0
x+ 1/2dx =

1− (x2/2 + x/2|
z−2/3
1−2z

0 =

1− ((z − 2/3
1− 2z )2/2 + (z − 2/3

1− 2z )/2) =

1− ((z − 2/3)2 − (z − 2/3)(1− 2z))/(2(1− 2z)2)
1− (3z2 − 11z/3 + 10/9)/(2(1− 2z)2)

2.1.1.6 Example (2.1.6) say X ∼ Pois(λ), N = X + 1 and Y |N = n ∼ Beta(n, 1)

a) Find E[Y]
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b) Find E[X|Y=y]

67



68



2.1.1.7 Example (2.1.7) Say X1, .., X10 are iid N(10, 3). Find P (∑Xi > 110).
The sum of independent normal random variables is again normal. Also

E[
∑

Xi] =
∑

E[Xi] = 10× 10 = 100
V ar[

∑
Xi] =

∑
V ar[Xi] = 10× 32 = 90∑

Xi − 100√
90

∼ N(0, 1)

P (
∑

Xi > 110) =

P (
∑
Xi − 100√

90
>

110− 100√
90

) =

P (Z >
10√
90

) = 1− Φ(
√

10
3 )

1-pnorm(sqrt(10)/3)

## [1] 0.1459203

2.1.1.8 Example (2.1.8) Say X1, .., X10 are iid with E[X1] = 10 and sd(X1) = 3. Find
P (∑Xi > 110).
If the central limit theorem holds, we again have∑Xi ∼ N(100,

√
90) and so again P (∑Xi >

110) = 0.146.

2.1.1.9 Example (2.1.9) Say X1, .., Xn are iid Geom(p). Let T = ∑
Xi.

Are the population mean and median of T the same?
First the population mean of T:
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Now the population median is defined as follows: Say T~F, then M such P (T ≤M) = 0.5.
Let’s try first the case n=1:
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for example if p=0.1 we find M = 6.57 < 10 = 1/p, so the median is not equal to the mean.
How about the case n=2? First we need to find the distribution of X1 +X2:

and we can use R to find M:

find.median <- function (p)
{

dgeom2 <- function(k,p) {(k-1)*p^2*(1-p)^(k-2)}
M <- 1
F <- 0
repeat {

M <- M+1
F <- F+dgeom2(M,0.1)
if(F>=0.5) break

}
M

}
find.median(0.1)

## [1] 17

What about n=3?
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and now we don’t even have a function for F, but we can still use another idea: simulation.

find.median <- function (n, p, B=10000)
{

x<-rep(0,B)
for(i in 1:n) x <- x+rgeom(B,p)+1
return(quantile(x,0.5))

}
find.median(20, 0.1)

## 50%
## 198

and this works for any reasonably small number n.
Finally we have another solution if n is very large: let’s use the Central Limit Theorem:
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and we see that for large n they are indeed the same. Of course that raises the question how
large n has to be for this to work.
In this chapter we briefly discuss some distributions that often come up in Statistics.
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2.2 Distributions Arising in Statistics

2.2.1 Chisquare Distribution

2.2.1.1 Definition (2.2.1) A random variable X is said to have a chisquare distribution with
n degrees of freedom, X ∼ χ2(n), if it has density

f(x|n) = 1
Γ(n/2)2nx

n/2−1e−x/2;x > 0

Of course we have X ∼ Γ(n/2, 2)

pushViewport(viewport(layout = grid.layout(2, 2)))
print(ggcurve(fun=function(x) dchisq(x, 1), A=0, B=5) ,

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggcurve(fun=function(x) dchisq(x, 3), A=0, B=7) ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggcurve(fun=function(x) dchisq(x, 5), A=0, B=10) ,

vp=viewport(layout.pos.row=2, layout.pos.col=1))
print(ggcurve(fun=function(x) dchisq(x, 7), A=0, B=20) ,

vp=viewport(layout.pos.row=2, layout.pos.col=2))
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Say Z ∼ N(0, 1) and let X = Z2, then if x>0
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FX(x) = P (X < x) = P (Z2 < x) =
P (−
√
x < Z <

√
x) =∫ √x

−
√
x

1√
2π
e−t

2/2dt

fX(x) = dFx(x)
dx

= d

dx

∫ √x
−
√
x

1√
2π
e−t

2/2dt =

1√
2π
e−(
√
x)2/2 1

2
√
x
− 1√

2π
e−(−

√
x)2/2 −1

2
√
x

=

1√
2π

1√
x
e−x/2 =

1
Γ(1/2)21/2x

1/2−1e−x/2

so X ∼ χ2(1)
We have the following properties of a chi-square distribution:

2.2.1.2 Theorem (2.2.2) Say X ∼ χ2(n), X ∼ χ2(m) and X and Y are independent. Then

• E[X] = n

• var(X) = 2n

• X + Y ∼ χ2(n+m)

proof

E[Xk] =
∫ ∞

0
xk

1
Γ(n/2)2n/2x

n/2−1e−x/2dx =

1
Γ(n/2)2n/2

∫ ∞
0

xk+n/2−1e−x/2dx =

Γ((2k + n)/2)2(2k+n)/2

Γ(n/2)2n/2
∫ ∞

0

1
Γ((2k + n)/2)2(2k+n)/2x

(2k+n)/2−1e−x/2dx =

Γ(k + n/2)2k+n/2

Γ(n/2)2n/2 =

(k + n/2− 1)(k + n/2− 2)..n/2Γ(n/2)2k
Γ(n/2) =

(k + n/2− 1)(k + n/2− 2)..(n/2)2k

E[X] = n/2× 2 = n

var(X) = E[X2]− E[X]2 =
(n/2 + 1)(n/2)22 − n2 = n2 + 2n− n2 = 2n
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For the last part we use the convolution formula:

fX+Y (z) =
∫ ∞
−∞

fX(t)fY (z − t)dt =∫ z

0
fX(t)fY (z − t)dt = (0 < t < z)∫ z

0

1
Γ(n/2)2n/2 t

n/2−1e−t/2
1

Γ(m/2)2m/2 (z − t)m/2−1e−(z−t)/2dt =

1
Γ(n/2)2n/2

1
Γ(m/2)2m/2 e

−z/2
∫ z

0
tn/2(z − t)m/2−1dt = (u = t/z, du = dt/z)

1
Γ(n/2)Γ(m/2)2(n+m)/2 e

−z/2
∫ 1

0
(zu)n/2(z − zu)m/2−1zdu =

1
Γ(n/2)Γ(m/2)2(n+m)/2 e

−z/2zn/2+m/2−1
∫ 1

0
un/2(1− u)m/2−1du =

1
Γ((n+m)/2)2(n+m)/2 z

(n+m)/2−1e−z/2
∫ 1

0

Γ((n+m)/2)
Γ(n/2)Γ(m/2)u

n/2(1− u)m/2−1du =

1
Γ((n+m)/2)2(n+m)/2 z

(n+m)/2−1e−z/2

because the last integrand is a Beta density.
From this theorem it follows that if Z1, .., Zn are iid N(0,1), then ∑Z2

i ∼ χ2(n).

2.2.1.3 Definition (2.2.3) Say X1, .., Xn are a sample, then the sample variance is defined
by

s2 = 1
n− 1

n∑
i=1

(xi − x̄)2

2.2.1.4 Theorem (2.2.4) Say X1, .., Xn are iid N(µ,σ), then
(n− 1)S2/σ2 ∼ χ2(n− 1)
proof
First note that
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n∑
i=1

(xi − x̄)2 =

n∑
i=1

(xi − µ+ µ− x̄)2 =

n∑
i=1

[
(xi − µ)2 + 2(xi − µ)(µ− x̄) + (µ− x̄)2

]
=

n∑
i=1

(xi − µ)2 + 2(µ− x̄)
n∑
i=1

(xi − µ) + n(µ− x̄)2 =

n∑
i=1

(xi − µ)2 + 2(µ− x̄)(
n∑
i=1

xi − nµ) + n(µ− x̄)2 =

n∑
i=1

(xi − µ)2 + 2(µ− x̄)(nx̄− nµ) + n(µ− x̄)2 =

n∑
i=1

(xi − µ)2 − 2n(µ− x̄)2 + n(µ− x̄)2 =

n∑
i=1

(xi − µ)2 − n(µ− x̄)2

Now we know that Xi−µ
σ
∼ N(0, 1), and so ∑n

i=1

(
Xi−µ
σ

)2
∼ χ2(n). Also X̄ ∼ N(µ, σ/

√
n),

and so X̄−µ
σ/
√
n
∼ N(0, 1) and n(X̄−µ)2

σ2 ∼ χ2(1). Finally

(n− 1)s2/σ2 =
n∑
i=1

(
Xi − µ
σ

)2
− n(X̄ − µ)2

σ2 ∼ χ2(n− 1)

Note: we use “n-1” instead of “n” because then s2 is an unbiased estimator of σ2, that is
E[s2] = σ2.
Note: another important feature here is that x̄ ⊥ s2.

2.2.2 Student’s t Distribution (by W.S. Gosset)

2.2.2.1 Definition (2.2.5) Say X ∼ N(0, 1), Y ∼ χ2(n) and X ⊥ Y . Then

Tn = X/
√
Y/n

has a Student’s t distribution with n degrees of freedom, Tn ∼ t(n), that is

f(t|n) =
Γ(n+1

2 )
Γ(n2 )

1√
πn

1
(1 + t2/n)(n+1)/2

Note
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1
(1 + t2/n)(n+1)/2 = 1

(1 + t2/2
n/2 )n/2

1
(1 + t2/2

n/2 )1/2
→n→∞ e−t

2/2

so Tn → N(0, 1) in distribution.
We have E[Tn] = 0 if n>1 (and does not exist if n=1) and var(Tn) = n/(n− 2) if n>2 (and
does not exist if n ≤ 2).
The importance of this distribution in Statistics comes from the following:

2.2.2.2 Theorem (2.2.6) say X1, ..., Xn ∼ N(µ, σ). Then

√
n
X̄ − µ
s
∼ t(n− 1)

Note: s is of course an estimate of the population standard deviation, so this formula tries
to standardize the sample mean without knowing the exact standard deviation.
An important special case is X ∼ t(1). This is also called the Cauchy distribution. Notice it
has no finite mean (and of course then also no finite variance). It has density and cdf:

f(x) = 1
π(1 + x2)

F (x) = 1
π

arctan(x)

2.2.3 Snedecor’s F distribution

2.2.3.1 Definition (2.2.7) X is said to have an f distribution with n and m degrees of
freedom, X~F(n,m) if

f(x;n,m) = Γ((n+m)/2)
Γ(n/2)Γ(m/2)( n

m
)n/2 xn/2−1

(1 + nx/m)(n+m)/2

if x>0

2.2.3.2 Theorem (2.2.8) Say X ∼ χ2(n), Y ∼ χ2(m), independent, then the random vari-
able F = X/n

Y/m
∼ F (n,m).

We have E[F ] = m/(m− 2) (no mention of n!)
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2.2.3.3 Theorem (2.2.9) Say X1, ..., Xn ∼ N(µx, σx) and Y1, ..., Ym ∼ N(µx, σy). Further-
more Xi, Yj are independent for all i and j. Then

F = s2
x/σ

2
x

s2
y/σ

2
y

∼ F (n− 1,m− 1)

A very nice tool describing these and many other distributions as well as their relationships
was created by Lawrance M. Leemis and Raghu Pasupathy and is described in their Chance
August 2019 article “The ties that bind” can be found at http://www.math.wm.edu/~leemis/
chart/UDR/UDR.html.

2.2.4 Order Statistics

Many statistical methods, for example the median and the range, are based on an ordered
data set. In this section we study some of the common distributions of order statistics.
One of the difficulties when dealing with order statistics are ties, that is the same observation
appearing more than once. This should only occur for discrete data because for continuous
data the probability of a tie is zero. They may happen anyway because of rounding, but we
will ignore them in what follows.
Say X1, .., Xn are iid with density f. Then X(i) is the ith order statistics if X(1)< . . . < X(i)
< . . . <X(n)

Note X(1) = min{Xi} and X(n) = max{Xi}.
Let’s find the density of X(i). For this let Y be a r.v. that counts the number of Xj ≤ x
for some fixed number x. We can think of Y as the number of “successes” of n independent
Bernoulli trials with success probability p = P (Xi ≤ x) = F (x) for i=1,..,n.
So Y~Bin(n,F(x)). Note also that the event {Y ≥ i} means that more than i observations
are less or equal to x, so the ith largest is less or equal to x. Therefore

FX(i)(x) = P (X(i) ≤ x) =

P (Y ≥ i) =
n∑
k=i

(
n

k

)
F (x)k(1− F (x))n−k

with that we find
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dFX(i)(x)
dx

= d

dx

n∑
k=i

(
n

k

)
F (x)k(1− F (x))n−k

n∑
k=i

d

dx

[(
n

k

)
F (x)k(1− F (x))n−k

]
=

n∑
k=i

(
n

k

) [
kF (x)k−1f(x)(1− F (x))n−k + F (x)k(n− k)(1− F (x))n−k−1(−f(x))

]
=

n∑
k=i

(
n

k

) [
kF (x)k−1(1− F (x))n−k − (n− k)F (x)k(1− F (x))n−k−1

]
f(x)

to simplify the notation for a while let’s set t = F (X). Also note that the last term f(x)
does not depend on k, and so we have the sum

n∑
k=i

(
n

k

) [
ktk−1(1− t)n−k − (n− k)tk(1− t)n−k−1

]
=

n∑
k=i

(
n

k

)
ktk−1(1− t)n−k −

n−1∑
k=i

(
n

k

)
(n− k)tk(1− t)n−k−1 = {n− n = 0}(

n

i

)
iti−1(1− t)n−i+

n∑
k=i+1

(
n

k

)
ktk−1(1− t)n−k −

n−1∑
k=i

(
n

k

)
(n− k)tk(1− t)n−k−1 =

n!
(n− i)!i!it

i−1(1− t)n−i+

n−1∑
k=i

(
n

k + 1

)
(k + 1)tk(1− t)n−k−1 −

n−1∑
k=i

(
n

k

)
(n− k)tk(1− t)n−k−1

where the last equality follows from a change of summation index.
Note that

(
n

k + 1

)
(k + 1) = n!(k + 1)

(n− k − 1)!(k + 1)! = n!
(n− k − 1)!k!(

n

k

)
(n− k) = n!(n− k)

(n− k)!(n− (n− k))! = n!
(n− k − 1)!k!

and so the two sums are actually the same and therefore cancel out. So we find

fX(i)(x) = n!
(n− i)!(i− 1)!F (X)i−1(1− F (X))n−if(x)

2.2.4.1 Example (2.2.10) Say X1, .., Xn are iid U[0,1]. Then for 0<x<1 we have f(x)=1
and F(x)=x. Therefore
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fX(1)(x) = n!
(i− 1)!(n− i)!x

i−1(1− x)n−i =

Γ(n+ 1)
Γ(i)Γ(n− i+ 1)x

i−1(1− x)(n−i+1)−1

so X(1) ∼ Beta(i, n− i+ 1). Therefore

• E[X(1)] = i
n+1

• var(X(1)) = i(n−i+1)
(n+1)2(n+2)

2.2.5 Empirical Distibution Function

The empirical distribution function of a sample X1, .., Xn is defined as follows:

F̂ (x) = 1
n

n∑
i=1

I(−∞,x](Xi) = #Xi ≤ x

n

so it is the sample equivalent of the regular distribution function:

• F (x) = P (X ≤ x) is the probability that the rv X ≤ x.

• F̂ (x) is the proportion of X1, .., Xn ≤ x.

df <- data.frame(x = rnorm(10))
ggplot(df, aes(x)) +

stat_ecdf(geom = "step") +
stat_function(fun=pnorm) +
xlim(c(-3, 3))
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df <- data.frame(x = rnorm(100))
ggplot(df, aes(x)) +

stat_ecdf(geom = "step") +
stat_function(fun=pnorm)
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Let Zi = I(−∞,x](Xi), then P (Zi = 1) = P (Xi ≤ x) = F (x), and so Zi ∼ Ber(F (x)).
X1, ..., Xn are independent, and therefore ∑n

i=1 Zi ∼ Bin(n, F (x)). By the weak law of large
number
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F̂ (x) = 1
n

n∑
i=1

Zi → E[Z1] = F (x)

in probability. By the central limit theorem

√
n

F̂ (x)− F (x)√
F (x)(1− F (x))

→ N(0, 1)

in distribution.

2.2.6 Exponential Family

Definition
A distribution is said to belong to the exponential family if its density can be written as

f(x; θ) = h(x) exp
{
θTT (x)− A(θ)

}
where

• θ is a vector of parameters

• T (x) is a vector of sufficient statistics

• A is a function of θ alone and h is a function of x alone

we have
∫
f(x; θ)dx =∫
h(x) exp

{
θTT (x)− A(θ)

}
dx =

exp {−A(θ)}
∫
h(x) exp

{
θTT (x)

}
dx = 1

so

A(θ) = log
[∫

h(x) exp
{
θTT (x)

}
dx
]

2.2.6.1 Example (2.2.11)

• Bernoulli
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f(x; p) = px(1− p)1−x

exp {x log p+ (1− x) log(1− p)} =
exp {x(log p− log(1− p)) + log(1− p)} =

exp
{
x log p

1− p + log(1− p)
}

exp
{
xθ − log(1 + eθ)

}
where

θ = log p

1− p
h(x) = 1
T (x) = x

A(θ) = − log(1 + eθ)

because

θ = log p

1− p
eθ = p

1− p

p = eθ

1 + eθ

1− p = 1
1 + eθ

log(1− p) = − log(1 + eθ)

• Normal

1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

=

1√
2π

exp
{
− 1

2σ2

(
x2 − 2xµ+ µ2

)
− log σ

}
=

1√
2π

exp
{
−x

2

σ2 + xµ

σ2 −
µ2

2σ2 − log σ
}

so
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θ = (µ/σ2,−1/(2σ2)T

h(x) = 1√
2π

T (x) = (x, x2)T

A(θ) = µ2

2σ2 + log σ =

− θ2
1/(4θ2)− 1

2 log(−2θ2)

2.2.6.2 Theorem (2.2.12) The product of exponential families is an exponential family
proof

h1(x) exp
{
θT1 T1(x)− A1(θ)

}
h2(x) exp

{
θT2 T2(x)− A2(θ)

}
=

h1(x)h2(x) exp
{
θT1 T1(x) + θT2 T2(x)− A1(θ1)− A2(θ2)

}
=

h(x) exp
{
ψTS(x)− A(ψ)

}
where

h(x) = h1(x) + h2(x)
ψ = (θ1, θ2)T

S = (T1, T2)T

A(ψ) = A1(θ1) + A2(θ2)
The importance of exponential families is that they share many properties and that many
theorems can be proven for all of them simultaneously.

2.3 The Likelihood Function and Likelihood Principle

2.3.1 Likelihood Function

One of the most important “objects” in Statistics is the likelihood function defined as
follows:
Let XXX = (X1, .., Xn) be a random vector with joint density f(xxx|θ). then the likelihood
function L is defined as

L(θ|xxx) = f(xxx|θ)

This must be one of the most deceivingly simple equations in math, actually it seems to be
just a change in notation: L instead of f. What really matters and makes a huge difference
is that in the density we consider the x’s as variables and the θ as fixed, whereas in the
likelihood function we consider the θ as the variable(s) and the x’s as fixed. Essentially we
have:
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• f(xxx|θ) tells what we can expect to happen when we do an experiment.

• L(θ|xxx) tells us something about the parameter(s) after the experiment is done.

Things simplify a bit if X1, .., Xn is an iid sample. Then the joint density is given by

f(xxx|θ) =
∏
f(xi|θ)

2.3.1.1 Example (2.3.1) X1, .., Xn ∼ Ber(p):

f(xxx|π) =
n∏
i=1

pxi(1− p)1−xi =

p
∑

xi(1− p)n−
∑

xi

L(p|xxx) = p
∑

xi(1− p)n−
∑

xi

2.3.1.2 Example (2.3.2) X1, .., Xn ∼ N(µ, σ):

L(µ, σ|xxx) =
n∏
i=1

1√
2πσ2

exp{−1
2

(xi − µ)2

σ2 } =

(2πσ2)−n/2 exp{− 1
2σ2

∑
(xi − µ)2}

2.3.1.3 Example (2.3.3) X1, .., Xn ∼ Γ(α, β):

L(α, β|xxx) =
n∏
i=1

1
Γ(α)βαx

α−1
i exp{−xi/β} =

1
Γ(α)nβnα (

n∏
i=1

xi)α−1 exp{−(
∑

xi)/β}

2.3.1.4 Example (2.3.4) Y1 ∼ N(µ1, σ1), Y2 ∼ N(µ2, σ2), Z ∼ Ber(p) and X = (1−Z)Y1 +
ZY2.

L(p, µ1, σ1, µ2, σ1|xxx) =
n∏
i=1

 p√
2πσ2

1

exp
(
−(xi − µ1)2

2σ2
1

)
+ 1− p√

2πσ2
1

exp
(
−(xi − µ2)2

2σ2
1

)
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2.3.1.5 Example (2.3.5) An urn contains N balls. ni of these balls have the number “i” on
them, i=1,..,k and ∑ni = N . Say we randomly select a ball from the urn, note its number
and put it back. We repeat this m times. Let the rv Xi be the number of balls with the
number i that were drawn, and let XXX = (X1, .., Xk). Now the density of X is given

f(xxx|m,n1, .., nk) = m!
x1! · .. · xk!

k∏
i=1

(
ni
N

)xi
for any x1, .., xk with xi ∈ {0, 1, .., N} and

∑
xi = m

Now let’s assume we don’t know n1, ..nk and want to estimate them. First we can make a
slight change in the parameterization: pi = ni/N , i=1,..,k. The resulting random vector is
called the multinomial rv with parameters m, p1, .., pk.
Note if k=2 X1 ∼ Bin(m, p1) and X2 ∼ Bin(m, p2), so the multinomial is a generalization
of the binomial.
The likelihood function is given by

L(m, p1, .., pk|xxx) = m!
x1! · .. · xk!

k∏
i=1

pxii

where p1 + ..+ pk = 1 and x1 + ..+ xk = m.

There is a common misconception about the likelihood function: because it is the same as
the density it has the same properties. This is not true because the likelihood function is a
function of the parameters, not the variables.

2.3.1.6 Example (2.3.6) X ∼ Ber(p), so f(x) = px(1− p)1−x, x = 0, 1; 0 < p < 1
As a function of x with a fixed p we have f(x) ≥ 0 for all x and f(0)+f(1)=1 but as a function
of p with a fixed x, say x=1, we have

∫ ∞
−∞

L(p|1)dp =
∫ 1

0
pdp = 1

2

2.3.2 Log Likelihood

It turns out that for many problems the log of the likelihood function is more manageable
entity, mainly because it turns the product into a sum:
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2.3.2.1 Example (2.3.7) X1, .., Xn ∼ Ber(p)

l(p|xxx) = logL(p|xxx) =
log

(
p
∑

xi(1− p)n−
∑

xi
)

=
(
∑

xi) log p+ (n−
∑

xi) log(1− p)

(worry about xi=0 for all i or xi=1 for all i yourself)

n <- 100; pi <- 0.5
dta <- rbinom(n, 1, pi)
loglike_pi <- function(p) {

y <- 0*p
for(i in seq_along(p))

y[i] <- sum(dta)*log(p[i])+(n-sum(dta))*log(1-p[i])
y

}
ggcurve(fun=loglike_pi, A=0.4, B=0.6)
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2.3.2.2 Example (2.3.8) X1, .., Xn ∼ N(µ, σ):

l(µ, σ|xxx) = logL(µ, σ|xxx) =

log
(

2πσ2)−n/2 exp{− 1
2σ2

∑
(xi − µ)2}

)
=

− n

2 log(2πσ2)− 1
2σ2

∑
(xi − µ)2

This log-likelihood function is drawn here
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• as a function of µ, with σ fixed:

n <- 100; mu <- 5; sig <- 2
dta <- rnorm(n, mu, sig)
loglike_mu <- function(x) {

y <- x
for(i in seq_along(x))

y[i] <- (-n/2*log(2*pi*sig^2)-sum((dta-x[i])^2)/(2*sig^2))
y

}
ggcurve(fun=loglike_mu, A=4, B=6.5)

−140

−135

−130

−125

4.0 4.5 5.0 5.5 6.0 6.5
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• as a function of σ, with µ fixed:

loglike_sig <- function(x) {
y <- x
for(i in seq_along(x))

y[i] <-
(-n/2*log(2*pi*x[i]^2)-sum((dta-mu)^2)/(2*x[i]^2))

y
}
ggcurve(fun=loglike_sig, A=0.75, B=20)
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2.3.2.3 Example (2.3.9) X1, .., Xn ∼ Γ(α, β):

l(α, β) = logL(α, β) =

log
[

1
Γ(α)nβnα (

n∏
i=1

xi)α−1 exp{−(
∑

xi)/β}
]

=

− log Γ(α)− nα log β + (α− 1)
∑

(log xi)− (
∑

xi)/β

alpha <- 0.5; beta <- 2.1
dta <- rgamma(n, alpha, beta)
loglike_alpha <- function(x) {

y <- x
for (i in seq_along(x))

y[i] <- sum(log(dgamma(dta, x[i], 1/beta)))
y

}
ggcurve(fun=loglike_alpha, A=0.1, B=1)
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2.3.2.4 Example (2.3.10) Y1 ∼ N(µ1, σ1), Y2 ∼ N(µ2, σ2), Z ∼ Ber(p) and X = (1 −
Z)Y1 + ZY2.

l(p, µ1, σ1, µ2, σ1|xxx) = logL(p, µ1, σ1, µ2, σ1|xxx) =
n∑
i=1

log
 p√

2πσ2
1

exp
(
−(xi − µ1)2

2σ2
1

)
+ 1− p√

2πσ2
1

exp
(
−(xi − µ2)2

2σ2
1

)
2.3.2.5 Example (2.3.11) say X has a multinomial distribution with parameters m, p1, .., pk,
then

l(m, p1, .., pk|xxx) = logL(m, p1, .., pk|xxx) = m!
x1! · .. · xk!

k∏
i=1

pxii = log
(

m!
x1! · .. · xk!

)
+

k∑
i=1

xi log(pi)

2.3.2.6 Example (2.3.12) Say X belongs to an exponential family, then

l(θ;xxx) =
log

[
h(x) exp

{
θTT (x)− A(θ)

}]
=

log h(x) + θTT (x)− A(θ)
and in this case the log-likelihood function simplifies nicely.
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2.3.3 The Likelihood Principle

2.3.3.1 Definition (2.3.13) Likelihood Principle
If xxx and xxx are two sample points such that

L(θ|xxx) = C(x, yx, yx, y)× L(θ|yyy)

for all θ, then the conclusion drawn from xxx and yyy should be identical.
So if two sample points have proportional likelihoods, they contain the same information
about the parameter.

2.3.3.2 Example (2.3.14) say X1, .., Xn ∼ N(µ, σ), Y1, .., Yn ∼ N(µ, σ) and assume σ is
known. Then

L(µ|xxx)
L(µ|yyy) =

(2πσ2)n/2 exp
{
− 1

2σ2
∑(xi − µ)2

}
(2πσ2)n/2 exp

{
− 1

2σ2
∑(yi − µ)2

} =

(2πσ2)n/2 exp
{
− 1

2σ2

[∑
(xi − µ)2 −

∑
(yi − µ)2

]}
Now

∑
(xi − µ)2 =∑
(xi − x̄+ x̄− µ)2 =∑[

(xi − x̄)2 + 2(xi − x̄)(x̄− µ) + (x̄− µ)2
]

=∑
(xi − x̄)2 + 2(x̄− µ)

∑
(xi − x̄) + n(x̄− µ)2 =∑

(xi − x̄)2 + 2(x̄− µ)(
∑

xi − nx̄) + n(x̄− µ)2 =∑
(xi − x̄)2 + n(x̄− µ)2

and so

L(µ|xxx)
L(µ|yyy) =

(2πσ2)n/2 exp
{
− 1

2σ2

[∑
(xi − x̄)2 + n(x̄− µ)2 −

∑
(yi − ȳ)2 − n(ȳ − µ)2

]}
=

(2πσ2)n/2 exp
{
− n

2σ2

[
(x̄− µ)2 − (ȳ − µ)2

]}
×

exp
{
− 1

2σ2

[∑
(xi − x̄)2 −

∑
(yi − ȳ)2

]}
=

C(xxx,yyy)
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iff

(x̄− µ)2 − (ȳ − µ)2 = 0

this has to hold for all µ, which implies x̄ = ȳ.
So according to the likelihood principle if two experiments with the probability model
N(µ, σ), σ known observe the same sample means, they should give the same result.

2.3.3.3 Example (2.3.15) Consider the following problem: we have a Bernoulli trial with
success parameter p, and we wish to estimate p.
Experiment 1: in this experiment we repeat the Bernoulli trial 20 times, so the rv
X~Bin(20,p). We find x=7. Therefore

L1(p|7) =
(

20
7

)
p7(1− p)13

Experiment 2: in this experiment we repeat the Bernoulli trials until the 7th success, so the
rv Y~NegBin(7,p). We find y=20, therefore

L2(p|20) =
(

19
6

)
p7(1− p)13

so now L1(p|7) = cL2(p|20) and so according to the likelihood principle both experiments
should result in the same estimate of p, regardless of the fact that we performed completely
different experiments.
The likelihood principle is a good general principle for a statistical procedure but there are
common situations were it is violated. For example, an important task in Statistics ismodel
checking. Say for example we have the following probability model: X1, .., Xn ∼ N(µ, σ)
and we want to estimate µ. But then we worry whether our data really follows a normal
distribution, so we do some checking, for example draw a boxplot. This, though, violates the
likelihood principle because for one data set we might decide that the normal assumption
is wrong whereas for another we might accept it, even though both have the same sample
mean.

3 Bayesian and Frequentist Statistics

3.1 Bayesian Statistics

3.1.1 Bayesian Analysis Basics

In the classical, or frequentist approach to Statistics we consider a parameter θ a fixed
although unknown quantity. A random sample X1, .., Xn is drawn from a population indexed
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by θ and, based on the observed values in the sample, knowledge about the true value of θ
is obtained.
In the Bayesian approach θ is considered a quantity whose variation can be described by
a probability distribution (called a prior distribution), which is a subjective distribution
describing the experimenters belief and which is formulated before the data is seen. A
sample is then taken from a population indexed by θ and the prior distribution is updated
with this new information. The updated distribution is called the posterior distribution.
This updating is done using Bayes’ formula, hence the name Bayesian Statistics.
It is not that Bayesians don’t think a parameter is a fixed number. Rather it is our lack of
knowledge about the parameter that is described by the prior distribution.
Let’s denote the prior distribution by π(θ) and the sampling distribution by f(x|θ), then the
joint density of X and θ is given by

f(x, θ) = f(xxx|θ)π(θ)

the marginal of the distribution of X is

m(xxx) =
∫
f(xxx|θ)π(θ)dθ

and finally the posterior distribution is the conditional distribution of θ given the sample xxx
and is given by

π(θ|xxx) = f(xxx|θ)π(θ)
m(xxx)

Note the distribution m(xxx) is often called the prior predictive distribution.

3.1.1.1 Example (3.1.1) You want to see whether it is really true that coins come up heads
and tails with probability 1/2. You take a coin from your pocket and flip it 10 times. It
comes up heads 3 times. As a frequentist we would now use the sample mean as an estimate
of the true probability of heads, p and find p̂ = 0.3.
A Bayesian analysis would proceed as follows: let X1, ..., Xn ∼ Ber(p). Then Y = X1 + ..+
Xn ∼ Bin(n, p). Now we need a prior on p. Of course p is a probability, so it has values on
[0,1]. One distribution on [0,1] we know is the Beta, so we will use a Beta(α,β) as our prior.
Remember, this is a perfectly subjective choice, and anybody can use their own.
We find

f(y, p) =
[(
n

y

)
py(1− p)n−y

] [
Γ(α + β)
Γ(α)Γ(β)p

α−1(1− p)β−1
]

=(
n

y

)
Γ(α + β)
Γ(α)Γ(β)p

y+α−1(1− p)n−y+β−1

for the marginal we find
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m(xxx) =
∫ ∞
−∞

f(y, p)dp∫ 1

0

(
n

y

)
Γ(α + β)
Γ(α)Γ(β)p

y+α−1(1− p)n−y+β−1dp =(
n

y

)
Γ(α + β)
Γ(α)Γ(β)

∫ 1

0
py+α−1(1− p)n−y+β−1dp =(

n

y

)
Γ(α + β)
Γ(α)Γ(β)

Γ(y + α)Γ(n− y + β)
Γ(n+ α + β) ×

∫ 1

0

Γ(n+ α + β)
Γ(y + α)Γ(n− y + β)p

y+α−1(1− p)n−y+β−1dp =(
n

y

)
Γ(α + β)
Γ(α)Γ(β)

Γ(y + α)Γ(n− y + β)
Γ(n+ α + β)

because the integral is over a Beta(y + α, n− y + β) density and therefore equal to 1. This
is known as the beta-binomial distribution.
Finally the posterior distribution of p|X = xX = xX = x is

π(p|xxx) = f(xxx|p)π(p)
m(xxx) =(

n
y

)
Γ(α+β)

Γ(α)Γ(β)p
y+α−1(1− p)n−y+β−1(

n
y

)
Γ(α+β)

Γ(α)Γ(β)
Γ(y+α)Γ(n−y+β)

Γ(n+α+β)

=

Γ(n+ α + β)
Γ(y + α)Γ(n− y + β)p

y+α−1(1− p)n−y+β−1

and we find that p|X = xX = xX = x ∼ Beta(y + α, n− y + β)
Of course we still need to “extract” some information about the parameter p from the
posterior distribution. Once the sampling distribution and the prior are chosen, the posterior
distribution is fixed (even though it may not be easy or even possible to find it analytically),
but how we proceed now is completely open and there are in general many choices. If we
want to estimate p a natural estimator is the mean of the posterior distribution, given here
by

p̂B = (y + α)/(α + β + n)

This can be written as

p̂B =
(

n

α + β + n

)
(y
n

) +
(
α + β + n

α + β + n

)
( α

α + β
)

and we see that the posterior mean is a linear combination of the prior mean and the sample
mean.
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How about our problem with the 3 heads in the 10 flips? Well, we have to completely specify
the prior distribution, that is we have to choose α and β. The choice depends again on our
belief. For example, if we feel strongly that this coin is just like any other coin and therefore
really should be a fair coin we should choose them so that the prior puts almost all its weight
at around 1/2. For example, with α = β = 100 we get E[p]=0.5 and var(p)=0.0016. Then

p̂B = (3 + 100)/(100 + 100 + 10) = 0.4905

is our estimate for the probability of heads. Clearly for such a strong prior the actual sample
almost does not matter, For example for y=0 we would have found p̂B = 0.476 and for y=10
it would be p̂B = 0.524.
Maybe we have never even heard the word “coin” and have no idea what one looks like, let
alone what probability of “heads” might be. Then we could choose α = β = 1, that is the
uniform distribution, as our prior. Really this would indicate our complete lack of knowledge
regarding p. (this is called an uninformative prior). Now we find p̂B = (3 + 1)/(1 + 1 + 10) =
0.3, which is just the sample mean again.

Let’s study the effects of the different parts of our estimator:

• effect of the sample size on the estimate of p̂:

df <- data.frame(n=10*1:50,
y=(3*1:50 + 100)/(10*1:50 + 200))

ggplot(data=df, aes(n, y)) +
geom_point() +
labs(x="Sample Size", y="phat")

96



0.40

0.45

0 100 200 300 400 500
Sample Size

ph
at

so as the sample size increases, the estimate moves from close to 0.5 (the prior mean) to 0.3
(the mean of the data). The more data we have the less influence the prior has.

• effect of alpha=beta on the estimate of p:

df <- data.frame(alpha=1:100,
y=(3+1:100)/(10+2*1:100))

ggplot(data=df, aes(alpha, y)) +
geom_point() +
labs(x=expression(alpha), y="phat")
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A larger alpha means a prior more concentrated around 1/2. The “stronger” the prior, the
more it influences the estimate.

3.1.1.2 Example (3.1.2) say X~Bin(n,p), p known. Again, a Bayesian analysis begins with
a prior on n. Now n=1, 2, .. and so a prior is any sequence a_1, a_2, .. with
ai ≥ 0 and ∑ ai = 1.
Then

f(x, n) =
[(
n

x

)
px(1− p)n−x

]
an

m(xxx) =
∞∑
n=y

[(
n

x

)
px(1− p)n−x

]
an

π(n|xxx) = f(xxx|p)π(p)
m(xxx) =(

n
x

)
px(1− p)n−xan∑∞

n=y

(
n
x

)
px(1− p)n−xan

and this sum can not be found analytically.
If we want to find an estimate for n we can use for example the mode, that is the n which
has the largest posterior probability.
Here are some specific examples: say we observe x=217 and we know p=0.37. Also

• we know only that n ≤ 750, so we choose
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ai = 1/750 if 1 ≤ i ≤ 750, 0 otherwise,
The routine bayes.bin.n draws the prior and the posterior curve and finds the mode:

bayes.bin.n <- function (x, p, a)
{

N <- length(a)
q <- 1 - p
f <- rep(0, N)
f[x:N] <- choose(x:N, x) * q^(c(x:N) - x) * a[x:N]
mx <- sum(choose(x:N + x, x) * q^c(x:N) * a[x:N])
f <- f/mx
mode <- c(1:N)[which.max(f)]
df <- data.frame(

n=c(1:N, 1:N),
y=c(a, f),
Which=rep(c("prior", "posterior"), each=N))

print(ggplot(data=df, aes(n, y, color=Which)) +
geom_point() +
geom_vline(xintercept = mode))

mode
}

bayes.bin.n(217, 0.37, rep(1/750,750))

0.000

0.005

0.010

0 200 400 600
n

y

Which

posterior

prior

## [1] 586

• we know n is most likely 500 with a standard deviation of 50
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bayes.bin.n(217, 0.37, dnorm(1:750,500,50))

0.00

0.02

0.04

0 200 400 600
n

y

Which

posterior

prior

## [1] 562

• we know that n ≤ 750 and that n is a multiple of 50,

bayes.bin.n(217, 0.37, ifelse(c(1:750)%%50,0,1))

0.00
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0.50

0.75
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n

y
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## [1] 600

• we know this was one of the four experiments we did, with

n <- c(510, 525, 550, 575)
a <- rep(0, 750)
a[n] <- 1
bayes.bin.n(217, 0.37, a)

0

1000

2000

3000

0 200 400 600
n

y

Which

posterior

prior

## [1] 575

As we can see, the Bayesian method lets us include such knowledge in a very simple manner!

3.1.2 The Big Question: Bayesian or Frequentist?

Should you be a Bayesian?
Bayesian Statistics has a lot of good features. To begin with, it answers the right question,
P(Hypothesis|Data). There are others as well:

• Decision Theory

There is a branch of mathematics concerned with decision making. It is conceptually a very
useful and important one:

• Should you buy a new car, or keep the old one for another year?

• Should you invest your money into the stock market or buy fixed-interest bonds?
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• Should the government lower the taxes or instead use the taxes for direct investments?

In decision theory one starts out by choosing a loss function, that is a function that assigns
a value (maybe in terms of money) to every possible action and every possible outcome.

3.1.2.1 Example (3.1.3) You are offered the following game: you can either take $10 (let’s
call this action a), or you can flip a coin (action b). If the coin comes up heads you win $50,
if it comes up heads you loose $10. So there are two possible actions: take the $10 or flip
the coin, and three possible outcomes, you win $10, $50 or loose $10.
We need a value for each combination. One obvious answer is this one:
L(a)=10, L(b,“heads”)=50, L(b,“tails”)=-10
But there are other possibilities. Say you are in a bar. You already had food and drinks and
your tab is $27. Now you notice that you only have $8 in your pocket (and no credit card
etc.) Now if you win or loose $10 it doesn’t matter, either way you can’t pay your bill, and
it will be very embarrassing when it comes to paying. But if you win $50, you are fine. Now
your loss function might be:
L(a)=0, L(b,“heads”)=1000, L(b,“tails”)=0
The next piece in decision theory is the decision function. The idea is this: let’s carry out
an experiment, and depending on the outcome of the experiment we chose an action.

• Should you invest your money into the stock market or buy fixed-interest bonds?

Let’s do this: we wait until tomorrow. If the Dow Jones goes up, we invest in the stock
market, otherwise in bonds.
In decision theory a decision rule is called inadmissible if there is another rule that is
better no matter what the outcome of the experiment. Obviously it makes no sense to pick
an inadmissible rule.
So what’s the connection to Bayesian Statistics? First there are Bayesian decision rules,
which combine prior knowledge with the outcome of the experiment.

• based on the movement of the Dow Jones in the last year, I have a certain probability
that it will go up over the next year.

Now there is a famous theorem (the complete class theorem) that says that all admissible
rules are Bayesian decision rules for some prior.
Optimality
Obviously when we do something it would be nice to do it in an optimal (best) way. It turns
out that in Bayesian statistics it is often possible to show that a certain method is best,
better or at least as good as any other.
Should you be a Frequentist?
There are also arguments in favor of Frequentist statistics:
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priors are bad
or better to say you don’t like the subjectivity introduced by priors. In Bayesian statistics
it is entirely possible that two Scientists who have the same data available and use the same
method for analysis come to different conclusions, because they have different priors.
Frequentist methods work
For most of the history of Statistics, that is from about 1900 to about 1960, there was
(essentially) only Frequentist Statistics. In this time (and since) many methods have been
developed that worked very well in practice. Many of those turn out to be also Bayesian
methods when the right prior is used, but not all!

3.1.2.2 Example (3.1.4) one of the most useful modern methods, called the Bootstrap, is
a purely Frequentist method with no Bayesian theory. (Actually there is something called
the Bayesian bootstrap, but it is not the same as the classical bootstrap)

3.1.2.3 Example (3.1.5) A standard technic in regression is to study the residuals. This,
though, violates the likelihood principle and is therefore not allowed under the Bayesian
paradigm. Actually, most Bayesians study the residuals anyway.
Frequentist methods are often fairly simple
Even for the easiest problems (“estimate the mean GPA of students at the Colegio”) a
Bayesian analysis always seems to be complicated (choose a prior and a loss function, cal-
culate the posterior, extract the estimate from the posterior, try to do all of this optimally)
Frequentist solutions are often quick and easy.
So? Be Both!
Often in any a specific problem, one approach just makes more sense than the other.

3.2 Priors

The main issue in a Bayesian analysis is always the choice of priors. Here are some of the
common methods:

3.2.1 Subjective Prior

In many ways this is was is required by the Bayesian paradigm, namely to find a prior that
“encodes” your subjective belief about the parameter.

3.2.1.1 Example (3.2.1) let’s consider again the the coin example from before. Here is a
very different, but probably more realistic, prior: Before we flip the coin we reason as follows:
either the coin is fair, and we think that is most likely the case, or if it is not, we don’t have
any idea what it might be. We can “encode” this belief in the following prior:
Let δ1/2 be the point mass at 1/2, that is a random variable which always takes the value
1/2, or P (δ1/2 = 1/2) = 1. Let U ∼ U [0, 1] and let Z ∼ Ber(α). Now p = Zδ1/2 + (1−Z)U .
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So with probability α p is just 1/2 (and the coin is fair), and with probability 1 − α p is
uniform on [0,1] (and we don’t have any idea what’s going on).
This prior is a mixture of a discrete and a continuous r.v. so we will need to be a bit careful
with the calculations.
The cdf and the prior density are as follows

F (p) = P (p ≤ x) =
P (p ≤ x|Z = 0)P (Z = 0) + P (p ≤ x|Z = 1)P (Z = 1) ={

0× α + x(1− α) if x < 1
2

1× α + x(1− α) if x ≥ 1
2

={
x(1− α) if x < 1

2
α + x(1− α) if x ≥ 1

2

and so for x 6= 1
2 f(p) = 1− α because then the cdf is a straight line with slope 1− α. Also

P (p = 1
2) = α + 1

2(1− α)− 1
2(1− α) = α

The joint density of p and y is:

f(y, p) = f(y|p)π(p) =
 (1− α)

(
n
y

)
py(1− p)n−y if p 6= 1

2

α
(
n
y

)
py(1− p)n−y if p = 1

2

and the marginal distribution of y:

m(y) = P (Y = y|Z = 0)P (Z = 0) + P (Y = y|Z = 1)P (Z = 1) =

P (Y = y|p = 1
2)α + P (Y = y|p ∼ U [0, 1])(1− α) =

α

(
n

y

)
py(1− p)n−y +

∫ 1

0
(1− α)

(
n

y

)
py(1− p)n−ydp =

α

(
n

y

)
(1
2)y(1− (1

2))n−y+

(1− α)
(
n

y

)
Γ(y + 1)Γ(n− y + 1)

Γ(n+ 2)

∫ 1

0

Γ(n+ 2)
Γ(y + 1)Γ(n− y + 1)p

(y+1)−1(1− p)(n−y+1)−1dp =

α

(
n

y

)
(1
2)n + (1− α)

(
n

y

)
Γ(y + 1)Γ(n− y + 1)

Γ(n+ 2) =

α

(
n

y

)
(1
2)n + (1− α) n!

(n− y)!y!
y!(n− y)!
(n+ 1)! =

α

(
n

y

)
/2n + 1− α

n+ 1

because the uniform is also a Beta(1,1) and we can use the result above.
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Next we find the posterior distribution of p given y:

f(p|y) =
 (1− α)

(
n
y

)
py(1− p)n−y/

[
α
(
n
y

)
/2n + 1−α

n+1

]
if p 6= 1

2

α
(
n
y

)
py(1− p)n−y/

[
α
(
n
y

)
/2n + 1−α

n+1

]
if p = 1

2

Finally as above we can find the mean of the posterior distribution to get an estimate of p
for a given y. To simplify the notation let K = α

(
n
y

)
/2n + 1−α

n+1 , and then

E[p|y] =
1
2α
(
n

y

)
/2n/K +

∫ 1

0
p(1− α)

(
n

y

)
py(1− p)n−y/Kdp =

α

(
n

y

)
/2n+1/K+

(1− α)
(
n

y

)∫ 1

0
py+1(1− p)n−y/Kdp =

α

(
n

y

)
/2n+1/K+

(1− α)
(
n

y

)
Γ(y + 2)Γ(n− y + 1)

Γ(n+ 3)

∫ 1

0

Γ(n+ 3)
Γ(y + 2)Γ(n− y + 1)p

(y+2)−1(1− p)(n−y+1)−1dp/K =

α

(
n

y

)
/2n+1/K + (1− α)

(
n

y

)
Γ(y + 2)Γ(n− y + 1)

Γ(n+ 3) /K =[
α

(
n

y

)
/2n+1 + (1− α) n!

(n− y)!y!
(y + 1)!(n− y)!

(n+ 2)!

]
/K =[

α

(
n

y

)
/2n+1 + (1− α) y + 1

(n+ 2)(n+ 1)

]
/

[
α

(
n

y

)
/2n + 1− α

n+ 1

]

Again let’s study the effect of the parameters in the posterior distribution:

• effect of the sample size on the estimate of p

n <- 10*1:50
y <- 3*1:50
phat <- 0*n
alpha <- 0.999
for (i in 1:50)

phat[i] <- (alpha*choose(n[i], y[i])/2^(n[i]+1) +
(1-alpha)*(y[i]+1)/(n[i]+2)/(n[i]+1))/(alpha*choose(n[i], y[i])/2^n[i] + (1-alpha)/(n[i]+1))

ggplot(data.frame(n=n, phat=phat), aes(n, phat)) +
geom_point()
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• the effect of alpha on the estimate of p

alpha <- seq(0.01, 0.99, length = 100)
phat <- 0 * alpha
for (i in 1:100)

phat[i] <- (alpha[i]*choose(10, 3)/2^(10 + 1) +
(1-alpha[i])*(3+1)/(10+2)/(10+1))/(alpha[i]*
choose(10, 3)/2^10 + (1 - alpha[i])/(10+1))

ggplot(data.frame(alpha=alpha, phat=phat), aes(alpha, phat)) +
geom_point()
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A larger alpha means a prior that puts more weight on the coin being fair.
Generally finding a good subjective prior can be done using utility theory.

3.2.2 Conjugate Priors

these are priors which together with the sampling distribution lead to a posterior distribution
of the same type as the prior. We already saw one example:

3.2.2.1 Example (3.2.2) Binomial-Beta
Say X1, ..., Xn ∼ Bin(n, p) and p ∼ Beta(α, β), then

p|X = xX = xX = x ∼ Beta(α +
∑

xi, n−
∑

xi + β)

Here is another:

3.2.2.2 Example (3.2.3) Poisson-Gamma
Say X1, ..., Xn ∼ Pois(λ) and λ ∼ Gamma(α, β), then

λ|X = xX = xX = x ∼ Gamma(α +
∑

xi, β + n)

and of course we have
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3.2.2.3 Example (3.2.4) Normal-Normal
X1, ..., Xn ∼ N(µ, σ) and µ ∼ N(τ, θ), where σ, τ and θ are assumed to be known.
Then from (2.3.2) we have

f(x1, ..., xn|µ) = (2πσ2)−n/2 exp
{
− 1

2σ2

∑
(xi − µ)2

}
and so the joint density is given by

f(x1, ..., xn, µ) = (2πσ2)−n/2 exp
{
− 1

2σ2

∑
(xi − µ)2

}
(2πθ2)−1/2 exp

{
− 1

2θ2

∑
(µ− τ)2

}
Now ∑

(xi − µ)2 =∑
(xi − x̄+ x̄− µ)2 =∑[

(xi − x̄)2 + 2(xi − x̄)(x̄− µ) + (x̄− µ)2
]

=∑
(xi − x̄)2 + 2(x̄− µ)

∑
(xi − x̄) + n(x̄− µ)2 =∑

(xi − x̄)2 + 2(x̄− µ)(
∑

xi − nx̄) + n(x̄− µ)2 =∑
(xi − x̄)2 + n(x̄− µ)2

therefore

f(x1, ..., xn, µ) =

(2πσ2)−n/2 exp
{
− 1

2σ2

[∑
(xi − x̄)2 + n(x̄− µ)2

]} 1√
2πθ2

exp
{
− 1

2θ2 (µ− τ)2
}

=

exp
{
− 1

2σ2

[∑
(xi − x̄)2

]}
(2πσ2)−n/2 1√

2πθ2
exp

{
−1

2

[
n(x̄− µ)2

σ2 + (µ− τ)2

θ2

]}
Now

T = n(x̄− µ)2

σ2 + (µ− τ)2

θ2 = nθ2(x̄− µ)2 + σ2(µ− τ)2

σ2θ2

Note that

n(x̄− µ)2

σ2 + (µ− τ)2

θ2 = nθ2(x̄− µ)2 + σ2(µ− τ)2

σ2θ2

In the numerator we have
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nθ2(x̄− µ)2 + σ2(µ− τ)2 =
nθ2(x̄2 − 2x̄µ+ µ2) + σ2(µ2 − µτ + τ 2) =
(nθ2 + σ2)µ2 − 2(nθ2x̄2 + σ2τ)µ+ nθ2x̄2 + σ2τ 2 =

(nθ2 + σ2)
{
µ2 − 2nθ

2x̄2 + σ2τ

nθ2 + σ2 µ

}
+ nθ2x̄2 + σ2τ 2 =

(nθ2 + σ2)
µ2 − 2nθ

2x̄2 + σ2τ

nθ2 + σ2 µ+
(
nθ2x̄2 + σ2τ

nθ2 + σ2

)2

−
(
nθ2x̄2 + σ2τ

nθ2 + σ2

)2


+ nθ2x̄2 + σ2τ 2 =

(nθ2 + σ2)
{
µ− nθ2x̄2 + σ2τ

nθ2 + σ2

}2

− (nθ2x̄2 + σ2τ)2

nθ2 + σ2 + nθ2x̄2 + σ2τ 2

and so

T =(nθ2 + σ2)
{
µ− nθ2x̄2 + σ2τ

nθ2 + σ2

}2

− (nθ2x̄2 + σ2τ)2

nθ2 + σ2 + nθ2x̄2 + σ2τ 2

 /(σ2θ2)

(n/σ2 + 1/θ2)
{
µ− nθ2x̄2 + σ2τ

nθ2 + σ2

}2

− (nθ2x̄2 + σ2τ)2

(nθ2 + σ2)σ2θ2 + nx̄2/σ2 + τ 2/θ2

Let’s define

µ1 = nθ2x̄2 + σ2τ

nθ2 + σ2 =

nx̄2/σ2 + τ/θ2

(nθ2 + σ2)/(σ2θ2) =

nx̄2/σ2 + τ/θ2

n
σ2 + 1

θ2

and

σ2
1 = σ2θ2

nθ2 + σ2 = 1
n
σ2 + 1

θ2

and so
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T =

(n/σ2 + 1/θ2)
{
µ− nθ2x̄2 + σ2τ

nθ2 + σ2

}2

− (nθ2x̄2 + σ2τ)2

(nθ2 + σ2)σ2θ2 + nx̄2/σ2 + τ 2/θ2 =

(
µ− µ1

σ1

)2
−
(
nθ2x̄2 + σ2τ

nθ2 + σ2

)2
nθ2 + σ2

σ2θ2 + nx̄2/σ2 + τ 2/θ2 =(
µ− µ1

σ1

)2
− µ1/σ

2
1 + nx̄2/σ2 + τ 2/θ2

Now we put it all together:

f(x1, ..., xn, µ) =

exp
{
− 1

2σ2

[∑
(xi − x̄)2

]}
×

(2πσ2)−n/2 1√
2πθ2

exp
{
−1

2

[
n(x̄− µ)2

σ2 + (µ− τ)2

θ2

]}
=

exp
{
− 1

2σ2

[∑
(xi − x̄)2

]}
×

(2πσ2)−n/2 1√
2πθ2

exp
{
−1

2

[(
µ− µ1

σ1

)2
− µ1/σ

2
1 + nx̄2/σ2 + τ 2/θ2

]}
=

exp
{
− 1

2σ2

[∑
(xi − x̄)2 − µ1σ

2/σ2
1 + nx̄2 + σ2τ 2/θ2

]}
(2πσ2)−n/2 1√

2πθ2

√
2πσ2

1

1√
2πσ2

1

exp
{
−1

2

(
µ− µ1

σ1

)2
}

m(xxx) =

exp
{
− 1

2σ2

[∑
(xi − x̄)2 − µ1σ

2/σ2
1 + nx̄2 + σ2τ 2/θ2

]}
(2πσ2)−n/2 1√

2πθ2

√
2πσ2

1

f(µ|xxx) = f(xxx, µ)
m(xxx) = 1√

2πσ2
1

exp
{
−1

2

(
µ− µ1

σ1

)2
}

and so the posterior distribution is a N(µ1, σ1)

3.2.3 Non-informative Priors

just what it says, a prior that does not contain any “information” on the parameter.

3.2.3.1 Example (3.2.5) X1, .., Xn~Ber(p), then p~U[0,1] is a non-informative prior.
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3.2.3.2 Example (3.2.6) X1, .., Xn N(µ, σ), σ known. Now µ can be any real number, so
a prior has to be a density on the whole real line. But π(µ) = c is not possible because it
integrates out to infinity for any c>0!
There are two solutions to this problem:

• Allow improper priors, that is priors with an infinite integral. This is generally ok as
long as the posterior is a proper density:

f(xxx|µ) =
n∏
i=1

1√
2πσ2

exp
{
−(xi − µ)2

2σ2

}
=

(2πσ2)−n/2 exp
{
−
∑(xi − µ)2

2σ2

}
=

(2πσ2)−n/2 exp
{
−
∑(xi − x̄)2 + n(µ− x̄)2

2σ2

}
=

(2πσ2)−(n−1)/2/
√
n exp

{
−
∑(xi − x̄)2

2σ2

}
1√

2πσ2/n
exp

{
−(µ− x̄)2

2σ2/n

}

where we used (2.2.4). Next we find the marginal:

m(xxx) =
∫ ∞
−∞

f(xxx|µ)π(µ)dµ =

(2πσ2)−(n−1)/2/
√
n exp

{
−
∑(xi − x̄)2

2σ2

}∫ ∞
−∞

1√
2πσ2/n

exp
{
−(µ− x̄)2

2σ2/n

}
dµ =

(2πσ2)−(n−1)/2/
√
n exp

{
−
∑(xi − x̄)2

2σ2

}

because the integral is over a normal density and therefore equal to 1. Finally we find the
posterior distribution:

f(µ|xxx) = f(xxx|µ)π(µ)
m(xxx)

(2πσ2)−(n−1)/2/
√
n exp

{
−
∑

(xi−x̄)2

2σ2

}
1√

2πσ2/n
exp

{
− (µ−x̄)2

2σ2/n

}
(2πσ2)−(n−1)/2/

√
n exp

{
−
∑

(xi−x̄)2

2σ2

} =

1√
2πσ2/n

exp
{
−(µ− x̄)2

2σ2/n

}

and so we find µ|X = xX = xX = x ∼ N(x̄, σ/
√
n)

One justification for this is that we usually can express the improper prior as the limit of
a sequence of proper priors: we saw already that if X ∼ N(µ, σ) and µ ∼ N(τ, θ), then
µ|X = xX = xX = x ∼ N(µ1, σ1) and
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µ1 = nx̄/σ2 + τ/θ2

n
σ2 + 1

θ2
→ x̄

σ2
1 = 1

n
σ2 + 1

θ2
→ σ2/n

• A second solution is to think a little more about what “non-informative” really means.

3.2.3.3 Example (3.2.7) Say we have X1, .., Xn ∼ N(µ, σ) and we want to estimate σ. At
first it seems we should use π(σ) = 1, σ > 0. It turns out, though, that this is not really
“completely non-informative” because of the following: say we estimate σ = 2.7, then there
is small interval (0, 2.7) “below” our estimate but a very large interval (2.7,∞) “above” it.
There is a class of priors that were developed explicitly to express this idea of “complete lack
of knowledge” called Jeffrey’s priors:
Let’s say X1, .., Xn ∼ f(x|θ). Jeffrey considered one-to-one transformations of the parameter
δ = u(θ). From our discussions in probability we know that the prior density of δ is given
by

f(δ) = f(θ)|u−1(θ)|′

Jeffrey argued that true lack of knowledge means that any transformation of the parameter
should yield the equivalent result. Essentially it should not matter whether we measure
temperature in Fahrenheit or Centigrade. He showed that this implies that the prior should
be proportional to the square root of the Fisher information:

π(θ) ∝
√
J(θ)

where

J(θ) = −E
[
d2 log f(x|θ)

dθ2

]

here this means
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log f(x|σ) = log
[

1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}]

=

− 1
2 log(2π)− 2 log σ − 1

2σ2 (x− µ)2

d log f(x|θ)
dθ

= − 2
σ

+ 1
σ3 (x− µ)2

d2 log f(x|θ)
dθ2 = 2

σ2 −
3
σ4 (x− µ)2

E

[
d2 log f(x|θ)

dθ2

]
=

E
[ 2
σ2 −

3
σ4 (X − µ)2

]
=

2
σ2 −

3
σ4E[(X − µ)2] =

2
σ2 −

3
σ4σ

2 = −1/σ2

J(σ) = −E
[
d2 log f(x|θ)

dσ2

]
= 1/σ2

and so Jeffrey’s prior for σ is
√

1/σ2 = 1/σ. Note that this is an improper prior.

3.2.4 Empirical Bayes

3.2.4.1 Example (3.2.8) say X1, .., Xn ∼ Pois(λ) and λ ∼ Gamma(α, β), then we know
that

λ|X = x ∼ Gamma(α +
∑

xi, β + n)

But how do we choose α and β? In a subjective Bayesian analysis we would need to use prior
knowledge to estimate them. The idea of empirical Bayes is to use the data itself to estimate
the “hyper-parameters” α and β. For example, we know that the mean of a Gamma(α,β) is
αβ and the variance is αβ2. So we choose α and β as the solutions of the system of non-linear
equations
X̄ = αβ
s2 = αβ2

or
s2 = αβ × β = X̄ × β
so
β = s2/X̄ and α = X̄/β = X̄2/s2.
One can go even further and use the empirical distribution function as the cdf of the prior
itself. In many ways, though, empirical Bayes goes against the spirit of Bayesian analysis.
It also violates the likelihood principle!
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These are just some of the methods for finding priors, there are many others.
The situation becomes much more difficult in multi-dimensional problems, and there is a lot
of disagreement among Bayesians what constitutes a good prior there.

3.2.5 Calculation Issues

In most cases actual calculations have to be done using numerical methods and/or simulation.
Numerical Solutions

3.2.5.1 Example (3.2.9) the following is a data set from a Beta distribution with parame-
ters α and β = 2.5:

0.62 0.62 0.34 0.58 0.50 0.46 0.64 0.40 0.44 0.29
0.76 0.45 0.49 0.55 0.76 0.75 0.77 0.19 0.58 0.65
0.30 0.50 0.42 0.46 0.36 0.68 0.07 0.67 0.48 0.17
0.03 0.36 0.76 0.30 0.12 0.22 0.29 0.33 0.89 0.78
0.29 0.09 0.33 0.03 0.45 0.30 0.86 0.44 0.49 0.06

We want to find an estimate for α using as a prior α ∼ N(1.5, 1/4) and the median of the
posterior distribution. The marginal turns out to be

m(xxx) =
∫ ∞

0

(
Γ(α + β)
Γ(α)Γ(β)

)n (∏
xi
)α−1 (∏

(1− xi)
)β−1 1√

π/8
exp

{
−8(α− 1.5)2

}
dα

clearly there is no way to find this integral analytically, so we will do it numerically:

find.alpha <- function (data)
{

marginal <- 1
integrant <- function(t) {
y <- length(t)
for(i in 1:length(t))

y[i] <- prod(dbeta(data,t[i], 2.5))*
dnorm(t[i], 1.5, 0.25)/marginal

y
}
marginal <- integrate(integrant,0,4)$value
step <- c(1, 0.1 ,0.01)
a<-0
for(i in 1:3) {

repeat {
a <- a+step[i]
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I <- integrate(integrant,0,a)$value
print(c(a,I))
if(I>0.5) break

}
a <- a-step[i]

}
a

}
find.alpha(beta.data)

## [1] 1.000000e+00 1.108583e-07
## [1] 2.0000000 0.9560108
## [1] 1.100000e+00 5.531253e-06
## [1] 1.2000000000 0.0001362987
## [1] 1.300000000 0.001806294
## [1] 1.40000000 0.01382355
## [1] 1.50000000 0.06505595
## [1] 1.6000000 0.1998564
## [1] 1.7000000 0.4262885
## [1] 1.8000000 0.6760933
## [1] 1.7100000 0.4518548
## [1] 1.7200000 0.4775687
## [1] 1.730000 0.503323

## [1] 1.72

Simulation
Because analytic solutions are only possible in simple problems and numerical solutions are
difficult in problems with more than 3 or 4 parameters the most common solution today is
to simulate data from the posterior distribution.
This is possible because using a methodology called Markov Chain Monte Carlo (MCMC)
it is possible to sample from the posterior without having to know any constants, that is
without having to find the marginal m(xxx).

3.2.5.2 Example (3.2.10) Let’s do the example above again. The routine betaMCMC()
generates data from the posterior and finds the sample median. Notice that in the definition
of the posterior we just use the joint density, without the m(xxx).

betaMCMC <- function (x, just.alpha=TRUE, B = 10000) {
if(just.alpha)

posterior <- function(a, b)
prod(dbeta(x, a, b)) * dnorm(a, 1.5, 0.25)

else
posterior <- function(a, b)
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prod(dbeta(x, a, b)) *
dnorm(a, 1.5, 0.25) * dnorm(b, 2.5, 0.5)

A <- matrix(0, B, 2)
A[1, ] <- c(1.7, 2.5)
for (i in 2:B) {

u <- runif(1, max(0, A[i-1, 1]-0.5), A[i-1, 1]+0.5)
if(!just.alpha)

v <- runif(1, max(0, A[i-1, 2]-0.5), A[i-1, 2]+0.5)
else v <- 2.5
if (runif(1) < posterior(u, v)/posterior(A[i-1, 1],

A[i-1, 2]))
A[i, ] <- c(u, v)

else A[i, ] <- A[i - 1, ]
}
bw <- diff(range(A[, 1]))/50
plot(ggplot(data.frame(x=A[, 1]), aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw))

if(just.alpha) return(median(A[, 1]))
bw <- diff(range(A[, 2]))/50
plot(ggplot(data.frame(x=A[, 2]), aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw))

apply(A, 2, median)
}

betaMCMC(beta.data)
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## [1] 1.727399

It is fairy simple to include β as a free parameter as well. As a prior for β we will use
N(2.5,0.5)

betaMCMC(beta.data, just.alpha = FALSE)
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## [1] 1.612542 2.159380

Want to know why this generates data from the posterior? Come to ESMA 5015 Simulation!

4 Parameter Estimation

4.1 Properties of Estimators

We will use the following notation: X has density f(x|θ) indicates that the density depends
on a parameter θ (which could be a vector). For example θ = (µ, σ) for the normal.

4.1.0.1 Definition (4.1.1) Say we have XXX = (X1, ..., Xn) with density f(x|θ). Then any
function of the data T (XXX) = T (X1, ..., Xn)is called a statistic. If it is meant to estimate θ
it is called an estimator of θ.
We will now discuss a number of properties of estimators. All these properties are equally
important for Bayesians and Frequentists.

4.1.1 Unbiased Estimators

An estimator T is called unbiased for θ if

E[T (X1, ..., Xn)] = θ
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4.1.1.1 Example (4.1.2) say X1, ..., Xn ∼ U [0, θ]. Find an unbiased estimator of θ.
We will consider two possible estimators, one based on the sample mean and another based
on the maximum:

1. E[X̄] = E[X1] = θ/2

Let T1(xxx) = 2x̄, then E[T1] = θ, so T1 is unbiased.

2. Consider T2 = max{Xi}. Recall that Xi/θ ∼ U [0, 1], and so T2/θ ∼ Beta(n, 1), and so

E[T2] = θE[T2/θ] = θ
n

n+ 1
and so n+1

n
T2 is unbiased.

4.1.2 Bias

the bias of an estimator is defined by

bias(T ) = E[T ]− θ

4.1.2.1 Example (4.1.3) say X1, ..., Xn ∼ U [0, θ], then

bias(T2) = ET2 − θ =

θ
n

n+ 1 − θ = − θ

n+ 1

4.1.3 Mean Square Error

4.1.3.1 Definition (4.1.4) The mean square error of an estimator is defined by

MSE(θ) = E
[
||T (XXX)− θ||2

]
where ||.|| is some norm.

4.1.3.2 Example (4.1.5) X1, ..Xn ∼ N(µ, 1) and T (xxx) = x̄. Then

E
[
||T (XXX)− θ||2

]
=

E
[
|X̄ − µ|2

]
=

E
[
(X̄ − µ)2

]
=

var(X̄) = 1/n
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4.1.3.3 Example (4.1.6) X1, ..., Xn ∼ U [0, θ]

E
[
||T2 − θ||2

]
=

E

[
(T2 −

nθ

n+ 1 + nθ

n+ 1 − θ)
2
]

=

E(T2 −
nθ

n+ 1)2 + 2(ET2 −
nθ

n+ 1)( nθ

n+ 1 − θ) + ( nθ

n+ 1 − θ)
2 =

var(T2) + 0 + (E[T2]− θ)2 =
var(T2) + bias(T2)2

It turns out to be quite true in general that

MSE(T ) = var(T ) + bias(T )2

Because the mean square error combines both variance and bias is seems natural that a
good estimator should have a small mean square error, and in fact many estimation methods
attempt to minimize the mean square error.
From the formula it is clear that a small bias might be acceptable if it also has a small
variance, because then we get a small mean square error.
This is often referred to as the bias-variance trade-off.

4.1.4 Stein’s phenomenon, James-Stein estimator

Say we have X1, ..Xn ∼ N(µ, σ), σ known and T (XXX) = X̄. Then it can be shown that T
minimizes the mean square error.
Let’s consider the multidimensional version of this problem:
X1, ..Xn ∼ N(µ, σIII), where µ ∈ Rd, σ is known and III is the identity matrix. We want to
estimate µ.
Because the variance-covariance matrix is a diagonal matrix the covariances are zero, and
so the Xi are independent. It seems therefore natural that the estimator corresponding to
x̄ should be good estimator. It came therefore as shock to the Statisticians when in 1956
Stain showed that if d>2, this estimator is inadmissible, that is no matter what n, µ and σ
are, there exists an estimator with lower mean square error.
An example is the James-Stein estimator, given by

µ̂JS =
(

1− (d− 2)σ2

||x||2

)
x

Notice that it if (d− 2)σ2 < ||x||2, this shrinks the estimator towards 0. For this reason this
is an example of a class of estimators called shrinkage estimators.
A consequence of the above discussion is the following counter intuitive result: When three
or more unrelated parameters are measured, their total mean square error can be reduced by
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using a combined estimator such as the James–Stein estimator; whereas when each parameter
is estimated separately, the least squares (LS) estimator is admissible.
An example would be estimating the age of the Universe, the GPA of the undergraduate
students at the Colegio, and the average beer consumption in Germany, all together!

4.1.5 Sufficient Statistics

4.1.5.1 Definition (4.1.7) A statistic T is a sufficient statistic for θ if the conditional
distribution of the sample X given the value of T(X) does not depend on θ
The meaning of “sufficient statistic” is that all the information about the parameter θ is
contained in T, so any inference about θ (such as an estimator, a hypothesis test or a
confidence interval) can be based on T.

4.1.5.2 Theorem (4.1.8) If f(xxx|θ) is the joint density of X and q(t|θ) is the density of
T(X), then T(X) is a sufficient statistic for θ if, for every xxx in the sample space the ratio

f(xxx|θ)/q(t|θ)

is constant as a function of θ.

4.1.5.3 Example (4.1.9) say X1, ..., Xn ∼ Ber(p) (Here θ = p). Let T (xxx) = ∑
xi. T is the

number of “successes” in n independent Bernoulli trials, and so T ∼ Bin(n, p). Now

f(xxx|p) =
n∏
i=1

(
pxi(1− p)1−xi

)
=

p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi = pT (xxx)(1− p)n−T (xxx)

and

f(xxx|θ)/q(t|θ) = pT (xxx)(1− p)n−T (xxx)(
n

T (xxx)

)
pT (xxx)(1− p)n−T (xxx)

= 1
T (xxx)

We see that the ratio is a constant with respect to p and so T is a sufficient statistic for p.

4.1.5.4 Theorem (4.1.10) Factorization Theorem
Let f(xxx|θ) be the joint density of X. A statistic T(X) is a sufficient statistic for θ if and
only if there exist functions g(t|θ) and h(xxx) such that for every xxx in the sample space and
all values of the parameter we have

f(xxx|θ) = g(t|θ)h(xxx)
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4.1.5.5 Example (4.1.11) say X1, ..., Xn ∼ N(µ, σ) and we assume that σ is known, so
θ = µ. Then

f(xxx|µ) =
n∏
i=1

1√
2πσ2

exp
{
− 1

2σ2 (xi − µ)2
}

=

(2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

=

(2πσ2)−n/2 exp
{
− 1

2σ2

[
n∑
i=1

(xi − x̄)2 + n (µ− x̄)2
]}

=

(2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − x̄)2
}

exp
{
− n

2σ2 (µ− x̄)2
}

=

h(xxx)g(t|µ)

where

t = x̄

h(xxx) = (2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − t)2
}

g(t|µ) = exp
{
− n

2σ2 (µ− t)2
}

=

h(xxx)g(t|λ)

and we see that the sample mean is a sufficient statistic for the population mean µ, at least
if the variance is known.

4.1.5.6 Example (4.1.12) say X1, ..., Xn ∼ Pois(λ). Then

f(xxx|λ) =
n∏
i=1

λxi

xi!
e−λ =

λ
∑n

i=1 xi∏n
i=1 xi!

e−nλ =

=

where

t =
n∑
i=1

xi

h(xxx) = 1∏n
i=1 xi!

g(t|µ) = λte−nλ

so ∑xi is a sufficient statistic for λ .
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4.1.5.7 Example (4.1.13) Say X belongs to an exponential family, then

f(x; θ) = h(x) exp
{
θTT (x)− A(θ)

}
and clearly T(x) is a sufficient statistic.

4.1.6 Ancillary Statistics

4.1.6.1 Definition (4.1.14) A statistic S(X) whose distribution does not depend on θ is
called an ancillary statistic.

4.1.6.2 Example (4.1.15) say X1, ..., Xn ∼ U [θ, θ + 1] and let R be the range of the obser-
vations, that is R = max{xi} −min{xi}. It can be shown that R ∼ Beta(n− 1, 2) for all θ,
and so its distribution is independent of θ.

4.1.6.3 Example (4.1.16) say X1, ..., Xn ∼ N(µ, σ) and let s be the sample standard devi-
ation, then

(n− 1)s2/σ2 ∼ χ2(n− 1)

and is independent of µ.

The usefulness of an ancillary statistics lies in the fact that we need not worry about the
value of the unknown parameter when calculating probabilities.

4.1.7 Consistency

4.1.7.1 Definition (4.1.17) A sequence of estimators Tn = Tn(X1, .., Xn) is a consistent
sequence of estimators for θ if Tn → θ in probability. That is, for every ε > 0 and every θ
we have

limP (|Tn − θ| > ε)→ 0

4.1.7.2 Example (4.1.18) By the WLLN if µ = EX exists the sample mean is a consistent
estimator of µ.
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4.1.7.3 Example (4.1.19) say X1, .., Xn ∼ U [0, θ] and T1 = 2x̄ . By the WLLN X̄ →
E[X] = θ/2, so T1 = 2X̄ → θ in probability.
Let T (xxx) = n+1

n
max{x1, .., xn}. Now Xi/θ ∼ U [0, 1], and so M = max{X1, .., Xn}/θ ∼

Beta(n, 1). Now

P (|T − θ| < ε) =
P (θ − ε < T < θ + ε) =

P ( n

n+ 1 (1− ε/θ) < M/θ <
n

n+ 1 (1 + ε/θ)) =

P ( n

n+ 1 (1− ε/θ) < M) =

1− P (M <
n

n+ 1 (1− ε/θ)) =

1−
(

n

n+ 1 (1− ε/θ)
)n
→ 1− 0 = 1

if 1− ε/θ < 1 or ε < θ.

4.1.7.4 Example (4.1.20) say X1, ..., Xn ∼ Geom(p) and let T (xxx) = 1/x̄ Note E[X] = 1/p,
and so

P (|T − p| < ε) =
P (p− ε < 1/X̄ < p+ ε) =

P ( 1
p+ ε

< X̄ <
1

p+ ε
) =

P ( 1
p+ ε

− 1
p
< X̄ − 1

p
<

1
p+ ε

− 1
p

) =

P (− 1
p(p+ ε)ε < X̄ − 1

p
<

1
p(p− ε)ε)

Note that p− ε < p+ ε, and so 1
p+ε <

1
p−ε and

1
p(p+ε) <

1
p(p−ε) , therefore

P (|T − p| < ε) ≥

P (− 1
p(p+ ε)ε < X̄ − 1

p
<

1
p(p+ ε)ε)

P (|X̄ − 1
p
| < 1

p(p+ ε)ε)→ 1

by the weak law of large numbers, and so T is a consistent estimator of p.

4.1.7.5 Example (4.1.21) say X1, .., Xn iid N(µ, σ), σ known, and let M = median(xxx).
Assume wlog that n is odd. Let φ(x;µ) and Φ(x;µ) be the density and cdf of a normal
distribution with mean µ. Then from the theory of order statistics we know that
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fM(x;µ) =
n!

(n+1
2 − 1)!(n− n+1

2 ) !Φ(x;µ)n+1
2 −1(1− Φ(x;µ))n−n+1

2 φ(x;µ) =

n!
(n−1

2 )!2 Φ(x;µ)n−1
2 (1− Φ(x;µ))n−1

2 φ(x;µ)

now

P (|M − µ| > ε) =
1− P (µ− ε < M < µ+ ε) =

1−
∫ µ+ε

µ−ε

n!
(n−1

2 )!2 Φ(x;µ)n−1
2 (1− Φ(x;µ))n−1

2 φ(x;µ)dx

We use the change of variable t = Φ(x;µ), so t = φ(x;µ)dx. Also let Y be a random variable
with distribution Beta(n+1

2 , n+1
2 ), then

P (|M − µ| > ε) =

1− n!
(n−1

2 )!2
∫ Φ(µ+ε;µ)

Φ(µ−ε;µ)
t
n−1

2 (1− t)n−1
2 dt =

1− n!
(n−1

2 )!2
(n−1

2 !)2

n!

∫ Φ(µ+ε;µ)

Φ(µ−ε;µ)

Γ(n+1
2 + n+1

2 )
Γ(n+1

2 )Γ(n+1
2 )t

n−1
2 (1− t)n−1

2 dt =

1− P (Φ(µ− ε;µ) < Y < Φ(µ+ ε;µ))

Note that Φ(µ− ε;x) < 1
2 , so

δ = 1
2 − Φ(µ− ε;x) = Φ(µ+ ε;x)− 1

2 > 0

also note that
E[Y ] =

n+1
2

n+1
2 +n+1

2
= 1

2 and var(Y ) =
n+1

2
n+1

2
(n+1

2 +n+1
2 )2(n+1

2 +n+1
2 +1) = 1

4(n+2)

and so

P (|M − µ| > ε) =

1− P (1
2 − δ < Y <

1
2 + δ) =

P (|Y − 1
2 | > δ) ≤

V ar[Y ]
δ2 = 1

4(n+ 2)δ2 → 0

where the inequality follows from Chebyshev’s inequality,and so the median is a consistent
estimator of the mean
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4.1.8 Efficiency

4.1.8.1 Definition (4.1.22) Say we have a sample X1, ..., Xn with density f(x|θ), and we
have two unbiased estimators T1 and T2 of θ. The efficiency of T1 relative to T2 is defined by
eff(T1|T2) = var(T1)/Var(T2) and we say that T1 is more efficient than T2 if eff(T1|T2)<1.

4.1.8.2 Example (4.1.23) let’s look again at the example above: we have X1, ..., Xn ∼
U [0, θ]. We found that T1 = 2x̄ and T2 = (n + 1)/nmax{x1, .., xn} are unbiased estimators
of θ. Now

var(T1) = var(2X̄) = 4var(X1)/n = 4(θ2/12)/n = θ2/(3n)
and

var(T2) = var((n+ 1)θ
n

M/θ) =(
(n+ 1)θ

n

)2
n

(n+ 1)2(n+ 2) =

θ2

n(n+ 2)
and so

eff(T1|T2) = var(T1)/var(T2) = θ2/(3n)
θ2

n(n+2)
= n+ 2

3 > 1

for all n > 1. So we find that T2 is more efficient than T1 for every value of θ.
Let’s do a little simulation:

n <- 10; theta <- 1; B <- 1000
x <- matrix(runif(n * B, 0, theta), B, n)
T1 <- 2 * apply(x, 1, mean)
T2 <- (n + 1)/n * apply(x, 1, max)
df <- data.frame(

x = c(T1, T2),
y = c(rep(1, 1000), rep(2, 1000)))

ggplot(df, aes(x=x)) +
geom_histogram(data = subset(df, y == 1),

fill = "red", alpha = 0.2) +
geom_histogram(data = subset(df, y == 2),

fill = "blue", alpha = 0.2)
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print("Means")

## [1] "Means"

c(mean(T1), mean(T2))

## [1] 1.0046276 0.9970209

print("Relative Efficiency, estimated and true")

## [1] "Relative Efficiency, estimated and true"

c(var(T1)/var(T2), (n + 2)/3)

## [1] 3.64656 4.00000

4.1.8.3 Example (4.1.24) say X1, .., Xn ∼ N(µ, 1), and let T1 = median(xxx) and T2 = x̄
Then var(T2) = 1/n. var(T1) = E[T 2

1 ]− (E[T1])2. Now

fM(x) =
n!

(n+1
2 − 1)!(n− n+1

2 )!Φ(x)n+1
2 −1(1− Φ(x))n−n+1

2 φ(x)

n!
[(n− 1)/2]!2 [Φ(x)(1− Φ(x))](n−1)/2 φ(x)

E[Mk] =
∫ ∞
−∞

xkfM(x)dx
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and this seems a bit ugly. Let’s try and do this numerically:

fM <- function(x, n)
factorial(n)/factorial((n-1)/2)^2*
(pnorm(x)*(1-pnorm(x)))^((n-1)/2)*dnorm(x)

var.median <- function(n) {
E1 <- function(x) x*fM(x, n)
E2 <- function(x) x^2*fM(x, n)
integrate(E2, -3, 3)$value -

integrate(E1, -3, 3)$value^2
}
n <- 2*1:50+1
y <- 0*n
for (i in 1:50) y[i] = var.median(n[i])
df <- data.frame(n=n, y=y/(1/n))
ggplot(data=df, aes(n, y)) +

geom_point()

1.35

1.40

1.45

1.50

1.55

0 25 50 75 100
n

y

round(y[50]/(1/101), 3)

## [1] 1.564

It seems that for large n the relative efficiency is about 1.6.
Generally it is quite possible that one estimator is more efficient than another only for a
subset of the parameter space, and the other one is more efficient on the rest. Also, one
estimator might be more efficient if n is small but things are reversed if n is large.
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An interesting question is whether in a given problem there is an estimator that is more
efficient than any other (unbiased) estimator. At least in the sense of minimum variance,
such an estimator would be optimal. In order to answer this question we need the following:

4.1.8.4 Definition (4.1.25) Let X be a random variable with density f(x; θ). Then the
Fisher Information of θ is defined by

I(θ) = −E
[
d2 log f(X; θ)

dθ2

]

4.1.8.5 Theorem (4.1.26) Under suitable conditions

I(θ) = E

(d log f(X; θ)
dθ

)2


proof
We will do the proof for a continuous rv. Also we will assume that any interchange of integral
and derivative is ok

∂2

∂θ2 log f(x; θ) =

∂

∂θ

∂
∂θ
f(x; θ)
f(x; θ) =

( ∂2

∂θ2f(x; θ))f(x; θ)− ( ∂
∂θ
f(x; θ))2

f 2(x; θ) =

( ∂2

∂θ2f(x; θ))
f(x; θ) −

( ∂
∂θ
f(x; θ))2

f 2(x; θ) =

( ∂2

∂θ2f(x; θ))
f(x; θ) − ( ∂

∂θ
log f(x; θ))2

also
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E

( ∂2

∂θ2f(X; θ))
f(X; θ)

 =

∫ ( ∂2

∂θ2f(x; θ))
f(x; θ) f(x; θ)dx =

∫ ∂2

∂θ2f(x; θ)dx =

∂2

∂θ2

∫
f(x; θ)dx =

∂2

∂θ2 1 = 0

4.1.8.6 Theorem (4.1.27) Rao-Cramer
Let X1, ..., Xn be a sample from density f(x|θ), and let T be any estimator satisfying

1. d
dθ
E[T (X)] =

∫ d
dθ
T (x)f(x; θ)dx

2. var(T (X)) <∞

then

var(T (X)) ≥
( d
dθ
E[T (X)])2

nI(θ)
The right hand side of this inequality is called the Rao-Cramer Lower Bound.

Note that if T is an unbiased estimator of θ, we have E[T (XXX)] = θ and the numerator is
just 1.
Note that the Fisher Information is calculated for a single random variable. The sample
size comes in by multiplying with n.

Does it make sense that the second derivative of the log-likelihood should come into play?
Consider the following log-likelihood curves:

xbar <- mean(rnorm(100))
ybar <- mean(rnorm(100, 0, 0.1))
curve(dnorm(ybar, x, 0.1/10), -0.3, 0.3, ylab="")
curve(dnorm(xbar, x, 1/10), -0.3, 0.3,

add=TRUE, col="blue")
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so the more peaked the log-likelihood curve is, the smaller the variance of the estimator. But
the peakness of a curve is found via the second derivative!

4.1.8.7 Example (4.1.28) Let X1, ..., Xn ∼ N(µ, σ) and consider estimating the standard
deviation σ, where µ is unknown. The normal density satisfies the conditions of the theorem,
and in (3.2.7) we found

I(σ) = −E
[
d2 log f(x|θ)

dσ2

]
= 1/σ2

and so any unbiased estimator T of σ must satisfy

var(T ) ≥ 1
nI(σ) = σ2/n

4.1.8.8 Example (4.1.29) Let X1, ..., Xn ∼ Pois(λ). Now
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log f(x|λ) = log
(
λx

x! e
−λ
)

= x log λ− log x!− λ

d log(x|λ)
dλ

= x

λ
− 1

d2 log(x|λ)
dλ2 = − x

λ2

I(λ) = −E
[
d2 log(X|λ)

dλ2

]
=

− E
[
−X
λ2

]
= E[X]

λ2 = 1
λ

and so for any unbiased estimator T we have var(T ) ≥ λ/n.
Note that

var(X̄) = var(X1)/n = λ/n

and so the sample mean is a minimum variance unbiased estimator (UMVU) for λ.

4.1.8.9 Example (4.1.30) Again let’s look at the example of U [0, θ] above. There we have
f(x|θ) = 1/θ, 0 < x < θ. So

E

(∂ log f(X|θ)
∂θ

)2
 = E

(∂ log 1/θ
∂θ

)2
 = (−1/θ2) = 1/θ2

so it appears that the Rao-Cramer theorem says that for any unbiased estimator T we have
var(T ) ≥ θ2/n, but we have already seen that var(T2) = θ2/(n(n+ 2)) < θ2/n.
So, what goes wrong? Let’s check the condition of the theorem for n=1. Then T (X) = 2X,
d
dθ
E[T (X)] = d

dθ
θ = 1 but

∫ ∞
−∞

d

dθ
T (x)f(x|θ)dx =∫ ∞

−∞

d

dθ
(2xI[0,θ](x)1

θ
)dx =∫ θ

0

d

dθ
(2x1

θ
)dx =

− 1
θ2

∫ θ

0
2xdx =

− 1
θ2 θ

2 = −1

So here the first assumption of the theorem is not satisfied, something that happens quite
often, especially if the parameter is part of the boundary condition, such as 0 < x < θ

How about checking the theorem in a case where it does work?
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Say X1, .., Xn ∼ N(µ, σ), with σ known, and T (xxx) = x̄xx. Now

d

dµ
exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

=

exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}(

1
σ2

n∑
i=1

(xi − µ)
)

d

dµ
T (xxx)f(xxx|µ) =(

1
n

n∑
i=1

xi

)
(2πσ2)−n/2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2
}(

1
σ2

n∑
i=1

(xi − µ)
)

=

1
nσ2

(
n∑
i=1

xi

)(
n∑
i=1

(xi − µ)
)
f(xxx|µ) =

1
nσ2

 n∑
i,j=1

xi(xj − µ)
 f(xxx|µ) =

1
nσ2

 n∑
i=1

xi(xi − µ)f(xxx|µ) +
n∑
i 6=j

xi(xj − µ)f(xxx|µ)


Now

∫ ∞
−∞

...
∫ ∞
−∞

n∑
i=1

xi(xi − µ)f(xxx|µ)dxxx =

n∑
i=1

∫ ∞
−∞

...
∫ ∞
−∞

xi(xi − µ)f(xxx|µ)dxxx =

n∑
i=1

∫ ∞
−∞

xi(xi − µ)φ(xi|µ, σ)dxi =

n∑
i=1

(
E[X2

i ]− µE[Xi]
)

=

n∑
i=1

(
var(Xi) + E[Xi]2 − E[Xi]2

)
= nσ2

where φ(xi|µ, σ) is the density of a N(µ, σ).
Also
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∫ ∞
−∞

...
∫ ∞
−∞

n∑
i 6=j

xi(xj − µ)f(xxx|µ)dxxx =

n∑
i 6=j

∫ ∞
−∞

...
∫ ∞
−∞

xi(xj − µ)f(xxx|µ)dxxx =

n∑
i 6=j

∫ ∞
−∞

∫ ∞
−∞

xi(xj − µ)φ(xi|µ, σ)φ(xj|µ, σ)dxidxj =

n∑
i 6=j

∫ ∞
−∞

{∫ ∞
−∞

(xj − µ)φ(xi|µ, σ)dxi
}
xiφ(xj|µ, σ)dxj

n∑
i 6=j

∫ ∞
−∞
{E[Xi]− µ}xiφ(xj|µ, σ)dxj = 0

and so

∫ d

dµ
T (xxx)f(xxx|µ)dxxx = 1

nσ2nσ
2 = 1

4.1.9 Robustness

In point estimation we first start by assuming a parametric model for the data, such as
X1, ..., Xn ∼ N(µ, σ), and then try to estimate the parameters of the model. But what if
our model is wrong, for example if the true model is a t distribution instead of the Normal?
A robust estimator is one that does not depend to strongly on the assumed model.

4.1.9.1 Example (4.1.31) Let X1, ..., Xn ∼ N(µ, σ). It is known that the sample mean
is the best estimator of µ in the sense that it has the smallest variance of all unbiased
estimators. But what happens if our assumption of the normal distribution is wrong?
Let’s consider instead a model called the δ-contamination model:

Xi ∼
{
N(µ, σ) with probability δ
f(x) with probability 1− δ

for some other density f. Suppose first we let f be any density with mean θ and variance τ 2.
Let Zi ∼ Ber(δ), then
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E{Xi|Zi = 0} = θ;E{Xi|Zi = 1} = µ

E[Xi] = E [E{Xi|Zi}] =
E{Xi|Zi = 0}P (Zi = 0) + E{Xi|Zi = 1}P (Zi = 1) =
θδ + µ(1− δ)
E[X2

i ] = E
[
E{X2

i |Zi}
]

=
E{X2

i |Zi = 0}P (Zi = 0) + E{X2
i |Zi = 1}P (Zi = 1) =

(τ 2 + θ2)δ + (σ2 + µ2)(1− δ)
var(Xi) =
(τ 2 + θ2)δ + (σ2 + µ2)(1− δ)− (θδ + µ(1− δ))2 =
(1− δ)σ2 + δτ 2 + (1− δ)δ(µ− θ)2

and so

var(X̄) =
[
(1− δ)σ2 + δτ 2 + (1− δ)δ(µ− θ)2

]
/n

Now if f is a Cauchy density we have τ = ∞ and so the variance of the sample mean is
infinite as well!
One way to measure the robustness of an estimator is as follows:

4.1.9.2 Definition (4.1.32) Let Tn be a statistic. Tn has a breakdown value b if at most
b% of the values in the sample can be moved to infinity without Tn becoming infinite.

4.1.9.3 Example (4.1.33) Say Tn is the sample mean. Now

Tn = 1
n

∑
xi = 1

n

∑
x[i] →∞

if x[n] = x[(1−ε)n] →∞, and so the sample mean has a breakdown value of 0.

4.1.9.4 Example (4.1.34) Say Tn is the sample median. Now Tn has a breakdown value of
1/2.

4.2 Methods for Finding Estimators

4.2.1 Method of Moments

Let xxx = (x1, ..., xn) be a sample from a distribution with density f(x|θ1, ..., θk). Define the
ith sample moment by

mi = (xi1 + ..+ xin)/n
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Analogously define the ith population moment by

µi = E[X i]

Of course µi is a function of the θ1, ..., θk. So we can find estimators of θ1, ..., θk by solving
the system of k equations in k unknowns

mi = µi, i = 1, .., k

4.2.1.1 Example (4.2.1) say X1, ..., Xn ∼ N(µ, σ). Here θ1 = µ and θ2 = σ2. Then

µ1 = E[X] = µ = m1 = x̄

µ2 = E[X2] = σ2 + µ2 = m2 = x2 µ̂ = x̄

σ̂2 = x2 − x̄2

4.2.1.2 Example (4.2.2) say X1, ..., Xn ∼ Gamma(α, β). Then

E[Xk] = βk
k∏
i=1

(α + i− 1)

E[X] = αβ = x̄

E[X2] = (α + 1)αβ2 = x2

(αβ)2 + (αβ)β = x2

x̄2 + x̄β = x2

β̂ =
(
x2 − x̄2

)
/x̄

α̂ = x̄2/
(
x2 − x̄2

)
Here is an R calculation:

x <- rgamma(10000, 2.3, 1/5.6)
xbar <- mean(x)
x2bar <- mean(x^2)
round(c(xbar^2/(x2bar - xbar^2), x2bar/xbar - xbar), 2)

## [1] 2.29 5.65

4.2.2 Method of Least Squares

4.2.2.1 Example (4.2.3) say X1, .., Xn ∼ N(µ, σ), σ assumed known. Now µ is the mean
of the normal distribution, so any observations should be scattered around µ. If we estimate
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µ by say a, then εi = Xi− a is called the ith residual or error. Now a measure of the overall
error is

G(a) =
n∑
i=1

(xi − a)2

and an estimator of the parameter can be found as the value µ̂ that minimizes G:

dG(a)
da

= 2
n∑
i=1

(xi − a) = 2
n∑
i=1

xi − 2na = 0

µ̂ = 1
n

n∑
i=1

xi = x̄

Obviously we did not need to use G(a) = ∑(xi − a)2, other possible choices are

• G(a) = ∑ |xi − a|, which leads to a=median(X).

• G(a) = max{|xi − a|}, which leads to the mode.

4.2.3 Maximum Likelihood

The idea here is this: the likelihood function gives the likelihood (not the probability!) of a
value of the parameter given the observed data, so why not choose the value that “matches”
(gives the greatest likelihood) to the observed data.

4.2.3.1 Example (4.2.4) say X1, ..., Xn ∼ Ber(p). First notice that a function f has an
extremal point at x iff log(f) does as well because d/dx{log(f(x))}=f’(x)/f(x)=0 iff f’(x)=0.
Let y = sumxi, then

L(p|xxx) = f(xxx|p) = py(1− p)n−y

l(p) = logL(p|xxx) = log
(
py(1− p)n−y

)
= y log p+ (n− y) log(1− p)

dl

dp
= y

p
− n− y

1− p = 0

p̂ = y/n = x̄

the second derivative shows that this is indeed a maximum.

4.2.3.2 Example (4.2.5) say X1, n.., Xn ∼ U [0, θ], θ > 0. Then

L(θ|xxx) = f(xxx|θ) =
n∏
i=1

1
θ
I[0,θ](xi) =

θ−nI[0,θ](max{xi}) =
θ−nI[max{xi},∞](θ)
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Here is a graph of this function:

n=10
theta0=2
xmax=max(runif(n, 0, theta0))
round(c(xmax, 1/xmax), 3)

## [1] 1.96 0.51

L=function(t) ifelse(t>=xmax, 1, 0)/t^n
curve(L, 1.5, 2.5)
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So L(θ|xxx) is 0 on (0,max(xi)), at max(xi) it jumps to 1/(max(xi))n and then monotonically
decreases as θ gets bigger, so the maximum is obtained at θ = max{xi}, therefore the mle is
max{xi}.
Notice that here log f is of no use because f(x)=0 for values of x close to the point were the
maximum is obtained.

4.2.3.3 Example (4.2.6) say X1, .., Xn ∼ Bin(n, p), both p and n unknown. We want to
find the mle’s of p and n. We have
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L(p|xxx) = f(xxx|p) =
n∏
i=1

(
n

xi

)
pxi(1− p)n−xi

l(p) = logL(p|xxx) = log
(

n∏
i=1

(
n

xi

)
pxi(1− p)n−xi

)
=

k∑
i=1

log
(
n

xi

)
+
(

k∑
i=1

xi

)
log p+

(
nk −

k∑
i=1

xi

)
log(1− p)

now

dl

dp
=
(

k∑
i=1

xi

)
1
p
−
(
nk −

k∑
i=1

xi

)
1

1− p = 0

and so p̂ = (∑k
i=1 xi)/(nk), and so for any fixed value of n we have the mle for p. n has to be

an integer, and so we only need to search through the values of n for the overall mle. This
is done in mle.bin.n. We also need a routine that calculates log(n!) for any n. logfac does
this using Sterling’s formula.

logfac <- function(n)
ifelse(n<20, log(factorial(n)),

0.918938533205+(n+0.5)*log(n)-n+(1/12-1/(360*n^2))/n)

mle.bin.n <- function (x, Show = F)
{

k <- length(x)
xbar <- mean(x)
f <- function(n) {

phat <- xbar/n
f <- k*logfac(n) + n*k*(phat* log(phat) +

(1-phat)*log(1-phat))
for (i in 1:k) f <- f - logfac(n-x[i])
f

}
n <- max(max(x) + 2, floor(xbar + 2.5 * var(x)))
l <- c(0, 0)
l[1] <- f(n)
l[2] <- f(n + 1)
if (Show)

print(c(n, l[1], n+1, l[2]))
if (l[1] > l[2]) {

repeat {
n <- n-1
if (n == max(x))

return(c(n, mean(x)/n))
l[2] <- l[1]

139



l[1] <- f(n)
if (Show)

print(c(n, l[1], n+1, l[2]))
if (l[1] < l[2])

return(c(n + 1, xbar/(n + 1)))
}

}
repeat {

n <- n+1
l[2] <- f(n + 1)
if (Show)

print(c(n, l[1], n+1, l[2]))
if (l[1] > l[2])

return(c(n, xbar/n))
l[1] <- l[2]

}

}

x <- rbinom(1000, 67, 0.2)
mle.bin.n(x, Show = TRUE)

## [1] 39.00 21801.99 40.00 21803.02
## [1] 40.00 21801.99 41.00 21803.89
## [1] 41.00 21803.89 42.00 21804.63
## [1] 42.00 21804.63 43.00 21805.25
## [1] 43.00 21805.25 44.00 21805.77
## [1] 44.00 21805.77 45.00 21806.21
## [1] 45.00 21806.21 46.00 21806.57
## [1] 46.00 21806.57 47.00 21806.87
## [1] 47.00 21806.87 48.00 21807.12
## [1] 48.00 21807.12 49.00 21807.31
## [1] 49.00 21807.31 50.00 21807.47
## [1] 50.00 21807.47 51.00 21807.59
## [1] 51.00 21807.59 52.00 21807.68
## [1] 52.00 21807.68 53.00 21807.74
## [1] 53.00 21807.74 54.00 21807.78
## [1] 54.00 21807.78 55.00 21807.80
## [1] 55.0 21807.8 56.0 21807.8

## [1] 55.0000000 0.2465273

4.2.3.4 Example (4.2.7) X1, .., Xn ∼ N(µ, σ):
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l(µ, σ) = −n2 log(2π)− n log σ − 1
2σ2

∑
(xi − µ)2

dl(µ, σ)
dµ

= 1
σ2

∑
(xi − µ) = (

∑
xi − nµ)/σ2 = 0

µ̂ = x̄

dl(µ, σ)
dσ

= −n
σ

+ 1
σ3

∑
(xi − µ)2 = 0

σ̂ =
√

1
n

∑
(xi − x̄)2

4.2.3.5 Example (4.2.8) We have observations X1, ..., Xn which are independent. We know
that our population is made up of two groups (Men - Women, say) and each observation
comes from one or the other group but we don’t know which. Observations from group i
have a N(µi, σi), i=1,2, distribution. We want to estimate the parameters.
What we have here is called a mixture distribution. Say that proportion of members of
group 1 in the population is α. Let’s introduce a latent (unobservable) r.v. Zi, which is 1 if
observation Xi comes from group 1, and 2 if it comes from 2. Then

F (x) = P (Xi ≤ x) =
P (Xi ≤ x|Zi = 1)P (Zi = 1) + P (Xi ≤ x|Zi = 2)P (Zi = 2) =
Φ(x|µ1, σ1)α + Φ(x|µ2, σ2)(1− α)
f(x) = αφ(x|µ1, σ1) + (1− α)φ(x|µ2, σ2)

L(α, µ1, σ1, µ2, σ2|xxx) =
n∏
i=1

[αφ(x|µ1, σ1) + (1− α)φ(x|µ2, σ2)]

l(α, µ1, σ1, µ2, σ2|xxx) =
n∑
i=1

log [αφ(x|µ1, σ1) + (1− α)φ(x|µ2, σ2)]

where we use the notation Φ(x|µ, σ) for the cdf of a N(µ, σ) r.v and φ(x|µ, σ) for its density.
Unfortunately this expression does not simplify! Also, it is a function in 5 dimensions, so
just looking at it with a graph is difficult.
To start let’s keep it simple and assume we know µ1, σ1, µ2 and σ2 and we want to estimate
α. Then

dl

dα
=

n∑
i=1

φ(x|µ1, σ1)− φ(x|µ2, σ2)
αφ(x|µ1, σ1) + (1− α)φ(x|µ2, σ2) = 0

This is a non-linear equation, which can not be solved explicitly, so we will have to do it
numerically. A standard method in numerical analysis for solving equations of the form
h(x)=0 is Newton’s method:
pick a starting point x1, find
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xn+1 = xn −
h(xn)
h′(xn)

If the starting point is close enough to a solution of the equation, the sequence will converge
to it.
Let’s implement Newton’s method for this problem. To simplify the notation set φi =
φ(xi, µ2, σ2) and ψi = φ(xi, µ2, σ2)− φ(xi, µ1, σ1), then

h(a) =
n∑
i=1

ψi
αψ + φi

and

h′(a) = −
n∑
i=1

ψ2
i

(αψ + φi)2

Let’s implement this:

mixmle1 <- function(x, mu, sigma) {
phi <- dnorm(x, mu[2], sigma[2])
psi <- dnorm(x, mu[1], sigma[1]) - phi
anew <- 0.5
repeat {

aold <- anew
h <- sum(psi/(aold*psi+phi))
hprime <- -sum(psi^2/(aold*psi+phi)^2)
anew <- aold - h/hprime
if (abs(anew - aold) < 10^-5)

break
}
anew

}

n <- 1000; alpha <- 0.3
mu <- c(0, 5); sigma <- c(1, 1)
z <- sample(c(1, 2), size=n, replace=TRUE,

prob=c(alpha, 1-alpha))
x <- c(rnorm(n, mu[1], sigma[1])[z == 1],

rnorm(n, mu[2], sigma[2])[z == 2])
alphahat <- mixmle1(x, mu, sigma)
alphahat

## [1] 0.2857118
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f <- function(x)
alphahat*dnorm(x, mu[1], sigma[1]) +
(1-alphahat)*dnorm(x, mu[2], sigma[2])

df <- data.frame(x=x)
bw <- diff(range(x))/50
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

stat_function(fun = f, colour = "blue")
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Next let’s consider the case where we know α, σ1 and σ2 and want to estimate µ1 and µ2.
For this we need a multivariate extension of Newton’s method. Say h(xxx) is a real-valued
function in Rn, and we wish to find a maximum (or more generally an extremal point) of h.
Let ∆ h be the gradient of h, that is

∆hi(x) = ∂h(x)
∂xi

and let H be the Hessian matrix defined by

Hij(x) = ∂2h(x)
∂xi∂xj

then
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xn+1 = xn −H−1(xn)∆h(xn)

Here this means:

dφ

dµ
= d

dµ

[
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}]
=

1√
2πσ2

exp
{
−(x− µ)2

2σ2

}
x− µ
σ2 = x− µ

σ2 φ(x)

d2φ

dµ2 = −1
σ2 φ(x) +

(
x− µ
σ2

)2
φ(x) =(

(x− µ)2 − σ2

σ4

)
φ(x)

Again we use some short-cut notation: set φki = φ(xi, µk, σk) and ψi = φ(xi, µ1, σ1) −
φ(xi, µ2, σ2), then

h1(µ1, µ2) = α

σ2
1

n∑
i=1

(xi − µ1)φ1
i

ψi

h2(µ1, µ2) = (1− α)
σ2

2

n∑
i=1

(xi − µ2)φ2
i

ψi

H[1, 1] = α

σ4
1

n∑
i=1

[(xi − µ1)− σ2
1]φ1

iψi − α(xi − µ1)2(φ1
i )2

ψ2
i

H[1, 2] = H[2, 1] = α(1− α)
σ2

1σ
2
2

n∑
i=1

(xi − µ1)(xi − µ2φ
1
iφ

2
i

ψ2
i

H[2, 2] = 1− α
σ4

2

n∑
i=1

[(xi − µ2)− σ2
2]φ2

iψi − (1− α)(xi − µ2)2(φ2
i )2

ψ2
i

Also note that if

AAA =
(
a b
b c

)
then

AAA−1 = 1
ac− b2

(
c −b
−b a

)
and so we have

mixmle2 <- function (x, alpha, sigma) {
h <- c(0, 0)
H <- matrix(0, 2, 2)
munew <- c(1, 4)
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repeat {
muold <- munew
phi1 <- dnorm(x, muold[1], sigma[1])
phi2 <- dnorm(x, muold[2], sigma[2])
psi <- alpha*phi1 + (1-alpha)*phi2
print(round(c(munew, sum(log(psi))), 3))
h[1] <- alpha/sigma[1]^2*sum((x-muold[1])*phi1/psi)
h[2] <- (1-alpha)/sigma[2]^2*sum((x-muold[2])*phi2/psi)
H[1, 1] <- alpha/sigma[1]^4*sum(((x-muold[1]-sigma[1]^2) *

phi1 * psi - alpha * (x - muold[1])^2 * phi1^2)/psi^2)
H[1, 2] <- alpha*(1-alpha)/sigma[1]^2 * sigma[2]^2 *

sum((x - muold[1]) * (x - muold[2]) * phi1 * phi2/psi^2)
H[2, 1] <- H[1, 2]
H[2, 2] <- (1-alpha)/sigma[2]^4 * sum(((x-muold[2] -

sigma[2]^2)*phi2*psi-(1-alpha) * (x - muold[2])^2 * phi2^2)/psi^2)
Hinf <- cbind(c(H[2, 2], -H[1, 2]), c(-H[1, 2],

H[1, 1]))/(H[1, 1] * H[2, 2] - H[1, 2]^2)
munew <- muold - Hinf %*% h
if (sum(abs(munew - muold)) < 10^-5)

break
}
round(c(munew), 3)

}

mixmle2(x, alpha, sigma)

## [1] 1.000 4.000 -2522.596
## [1] 0.742 4.518 -2166.417
## [1] 0.510 4.846 -2037.091
## [1] 0.324 4.975 -2001.391
## [1] 0.190 5.026 -1989.504
## [1] 0.102 5.046 -1985.481
## [1] 0.050 5.053 -1984.220
## [1] 0.021 5.056 -1983.852
## [1] 0.006 5.056 -1983.749
## [1] -0.003 5.056 -1983.721
## [1] -0.007 5.056 -1983.713
## [1] -0.009 5.055 -1983.711
## [1] -0.010 5.055 -1983.710
## [1] -0.011 5.055 -1983.710
## [1] -0.011 5.055 -1983.710
## [1] -0.011 5.055 -1983.710
## [1] -0.012 5.055 -1983.710
## [1] -0.012 5.055 -1983.710
## [1] -0.012 5.055 -1983.710
## [1] -0.012 5.055 -1983.710
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## [1] -0.012 5.055 -1983.710

## [1] -0.012 5.055

How about the complete problem with 5 parameters? This can be done but is quite an effort.

4.2.3.6 Example (4.2.9) Say X1, .., Xn are iid with density h(x|β) = 0.95I[0,1](x) +
0.5I[β,β+0.1](x), so X ∼ U [0, 1] with probability 0.95 and X ∼ U [β, β + 0.1] with probability
0.05. Now

l(β|xxx) =
∑

log
[
0.95I[0,1](x) + 0.5I[β,β+0.1](x)

]
and here is what this looks like:

a <- 0.95; b <- 0.5
x <- c(runif(1000*a), runif(1000*(1-a), b, b+0.1))
z <- seq(0, 0.9, length = 100)
loglike <- function(b)

sum(log(a+(1-a)*10*ifelse(x>b & x<b+0.1, 1, 0)))
y <- z
for (i in 1:100) y[i] <- loglike(z[i])
df <- data.frame(x=x, y=y)
ggplot(data=df, aes(x, y)) +

geom_line()
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and we see that it has many local minima. Moreover, it is not differentiable as a function of
β. So finding the mle is a very difficult task.
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4.2.3.7 Example (4.2.10) say X has a multinomial distribution with parameters p1, .., pk
(we assume m is known), then if we simply find the derivatives of the log-likelihood we find

∂

∂pi
l(p1, ..pk) =

∂

∂pi

c+
k∑
j=1

xj log pj

 =

xi
pi

= 0

and this system has no solution. The problem is that we are ignoring the condition p1 + ..+
pk = 1. So we really have the problem
Minimize l(p1, .., pk) subject to p1 + ..+ pk = 1
One way to do this is with the method of Lagrange multipliers: minimize
l(p1, .., pk)− λ(p1 + ..+ pk − 1)

∂

∂pi
l(p1, ..pk) + λ(p1 + ..pk − 1) =

∂

∂pi

c+
k∑
j=1

xj log pj + λ(p1 + ..pk − 1)
 =

xi
pi
− λ = 0

xi = λpi

m =
k∑
j=1

xj = λ
k∑
j=1

pj = λ

p̂i = xi
m

4.2.4 Properties of mle’s

Maximum likelihood estimators have a number of nice properties. One of them is their
invariance under transformations. That is if θ̂ is the mle of θ, then g(θ̂) is the mle of g(θ).

4.2.4.1 Example (4.2.11) say X1, .., Xn ∼ Ber(p), so we know that the mle is X̄ . Say we
are interested in

θ = p− q = p− (1− p) = 2p− 1

the difference in proportions. Therefore 2X̄ − 1 is the mle of θ.
Let’s see whether we can verify that. First if θ = 2p−1 we have p = (1+θ)/2. Let y = ∑

xi,
so
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L(p|xxx) = py(1− p)n−y

L(θ|xxx) =
(

1 + θ

2

)y (
1− 1 + θ

2

)n−y
=(

1 + θ

2

)y (1− θ
2

)n−y
= (1 + θ)y(1− θ)n−y/2n

l(θ|xxx) = y log(1 + θ) + (n− y) log(1− θ)− n log 2
dl

dθ
= y

1 + θ
− n− y

1− θ = 0

θ̂ = 2(y/n)− 1 = 2x̄− 1

4.2.4.2 Example (4.2.12) say X1, .., Xn ∼ N(µ, σ). We found before that the mle of σ̂ =√
1
n

∑(xi − x̄)2. But then the mle of the variance is

σ2 = 1
n

∑
(xi − x̄)2

4.2.4.3 Theorem (4.2.13) Let X1, .., Xn be iid f(x|θ). Let θ̂ denote the mle of θ, and let
g(θ) be a continuous function of θ. Under some regularity conditions on f we have

√
n
[
g(θ̂)− g(θ)

]
→ N

(
0,
√
v(θ)

)

where v(θ) is the Rao-Cramer lower bound. That is, g(θ̂) is a consistent and asymptotically
efficient estimator of g(θ).

4.2.4.4 Example (4.2.14) say X1, .., Xn ∼ N(µ, σ), σ known. We know that the mle is x̄,
which is unbiased. Now

φ(x;µ) = 1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

log f(µ) = K − 1
2σ2 (x− µ)2

d log f
dµ

= 1
σ2 (x− µ)

d2 log f
dµ2 = − 1

σ2

v(µ) = 1
n 1
σ2

= σ2

n

and so
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X̄ − µ ∼ N(0, σ√
n

)

4.2.4.5 Example (4.2.15) say X1, .., Xn ∼ Ber(p) and we want to estimate θ = 2p− 1. We
saw above that the mle is given by 2X̄ − 1. We have

E[X̄ − 1] = 2p− 1 = θ

and so 2x̄− 1 is an unbiased estimator of θ. Now

var(2X̄ − 1) = 2var(X1)/n = 4p(1− p)/n =

4
(

1 + θ

2

)(
1− θ

2

)
/n = (1 + θ)(1− θ)/n

Note that E[X] = p = 1+θ
2 . Now

f(x|θ) =
(

1 + θ

2

)x (1− θ
2

)1−x

log f(x|θ) = x log(1 + θ) + (1− x) log(1− θ)− log 2
d log f(x|θ)

dθ
= x

1 + θ
− 1− x

1− θ
d2 log f(x|θ)

dθ2 = − x

(1 + θ)2 −
1− x

(1− θ)2

E

[
d2 log f(X|θ)

dθ2

]
= − E[X]

(1 + θ)2 −
E[1−X]
(1− θ)2 =

−
1+θ

2
(1 + θ)2 −

1−θ
2

(1− θ)2 =

− 1
(1 + θ)(1− θ)

so v(θ) = (1 + θ)(1− θ) and

2X̄ − 1 ∼ N
(
θ,
√

(1 + θ)(1− θ)/n
)

4.2.5 Bayesian Point Estimation

We have already seen how to use a Bayesian approach to do finding point estimators, namely
using the mean of the posterior distribution. Of course one could also use the median or
any other measure of central tendency. A popular choice for example is the mode of the
posterior distribution.
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4.2.5.1 Example (4.2.16) Let’s say we have X1, .., Xn ∼ Ber(p) and p~Beta(α, β), then we
already know that

p|x1, ..xn ∼ Beta(α +
∑

xi, n−
∑

xi + β)

and so we can estimate p as follows:

• Mean p̂ = α+
∑

xi
α+β+n

• Median p̂ = qbeta(0.5, α +∑
xi, n−

∑
xi + β)

• Mode

This is the point where the posterior density has its maximum, and it is easy to verify that
p̂ = α+

∑
xi−1

α+β+n+3

As k →∞ the posterior mean and mode clearly approach k/n. In fact so does the median,
though that is somewhat more complicated to show.

4.2.5.2 Example (4.2.17) Let’s say we have X1, .., Xn ∼ N(µ, σ) and we want to estimate
both µ and σ. So we need priors on both parameters:

• µ: we use the improper prior g(µ) = 1

• σ: we use Jeffrey’s prior pi(σ) = 1/σ

and we will assume that the priors for µ and σ are independent. We then get the joint prior
on (µ, σ) to be proportional to 1/σ. Therefore

f(xxx|µ, σ) = (2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

f(xxx, µ, σ) = (2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}
× 1
σ

=

(2π)−n/2σ−n−1 exp
{
− 1

2σ2

[
n∑
i=1

(xi − x̄)2 + n(x̄− µ)2
]}

=

(2π)−n/2σ−n−1 exp
{
−(n− 1)s2

2σ2

}
exp

{
−n(µ− x̄)2

2σ2

}

therefore

f(µ, σ|xxx) ∝ σ−n−1 exp
{
−(n− 1)s2

2σ2

}
exp

{
−n(µ− x̄)2

2σ2

}

f(µ|xxx, σ) ∝ exp
{
−n(µ− x̄)2

2σ2

}
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and so µ|xxx, σ ∼ N(x̄, σ2/n), and so if we use the mean of the posterior distributions we get
the sample mean as the estimator of the population mean.
How about σ? The marginal of σ2 turns out to be a scaled inverse-χ2 distribution, that is
the distribution of 1/Z where Z ∼ χ2 and its mean is the sample standard deviation s2.
We see that with these priors Bayesian and Frequentist (maximum likelihood) estimators
are the same. If we use these “flat” priors that often turns out to be the case.

4.3 A Longer Example - Estimation

Say X1, .., Xn are iid F with

f(x|a) = axa−1, 0 < x < 1, a > 0
(or simply X ∼ Beta(a, 1)). Note that the cdf is given by F (x) = xa; 0 < x < 1.
First let’s find the method of moments estimator and the maximum likelihood estimator of
a:

E[X] = a

a+ 1
so the method of moments estimator is â1 = x̄

1−x̄ .

f(xxx|a) =
n∏
i=1

(axa−1
i ) = an

n∏
i=1

(xa−1
i )

l(a|xxx) = n log a+ (a− 1)
n∑
i=1

log xi

dl

da
= n

a
+

n∑
i=1

log xi = 0

â2 = − n∑n
i=1 log xi

= n/T

where T = −∑ log xi.
Next we find the Bayes estimator of a if the prior is Exp(1).

f(xxx, a) = an
n∏
i=1

(xa−1
i )e−a =

an exp
{

(a− 1)
n∑
i=1

log xi − a
}

=

an exp {(a− 1)(−T )− a} =
an exp {T − (T + 1)a} =

the marginal is
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m(xxx) =
∫ ∞

0
an exp {T − (T + 1)a} da =

eT

(T + 1)n+1

∫ ∞
0

[(T + 1)a]n exp {−(T + 1)a} [(T + 1)da] =

eT

(T + 1)n+1

∫ ∞
0

xn exp {−x} dx =

eT

(T + 1)n+1 Γ(n+ 1)

and so the posterior distribution is

f(a|xxx) = an exp {T − (T + 1)a}
eT

(T+1)n+1 Γ(n+ 1)
= (T + 1)n+1

Γ(n+ 1) ane−(T+1)a

so a|xxx ∼ Gamma(n+ 1, 1
T+1)

Finally we need to “extract” on number from the posterior density. We can again use either

• mean: â = n+1
T+1

• median: â = qgamma(0.5, n+ 1, 1
T+1)

• mode â = n
T+1

Note that for this prior the estimators from the Bayesian method are essentially the same
as the mle.
Say instead we have some prior knowledge that a ∼ N(1, 1). Now

m(xxx) =
∫ ∞

0
an exp {T − (T + 1)a} 1√

2π
e−(a−1)2/2da

and this integral seems difficult to evaluate. There is a solution that still works, though:

d

da

[
log f(xxx, a)

m(xxx)

]
= d

da
log f(xxx, a) =

d

da
log

[
an exp {T − (T + 1)a} 1√

2π
e−(a−1)2/2

]
=

d

da

[
n log a− log

√
2π + (a− 1)T − 1

2(a− 1)2
]

=
n

a
+ T − (a− 1) = 0

so if we use the mode of the posterior density as our estimator we don’t need to find m(xxx).
What properties do these estimators have?
Unbiasedness
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is x̄/(1− x̄) unbiased for a? To find out we would need to first find the density of x̄, but in
this case that is not possible in this generality. Instead we can run a simulation:

n <- 20; a0 <- 5; B <- 10000
x <- matrix(rbeta(n*B, a0, 1), ncol=n)
xbar <- apply(x, 1, mean)
xhat <- xbar/(1-xbar)
round(mean(xhat), 2)

## [1] 5.24

this seems to suggest that the estimator is biased for larger a.
How about the mle? First note that

P (− logXi ≤ x) = P (Xi > e−x) = 1− e−ax

so − logXi ∼ Exp(a). and therefore

T = −
n∑
i=1

logXi ∼ Gamma(n, 1/a)

which means

E[â2] = E[n/T ] =∫ ∞
0

n

t

an

Γ(n)t
n−1e−atdt =

na

n+ 1

∫ ∞
0

an−1

Γ(n− 2)t
(n−1)−1e−atdt = na

n+ 1

so the mle is almost unbiased.
Sufficiency:

f(xxx|a) = ane−(a−1)T

so the mle is a sufficient statistic for a.
Ancillary Statistic

P (T < x) =
∫ x

0

an

Γ(n)t
n−1e−atdt =

∫ ax

0

1
Γ(n)z

n−1e−zdz

using the change of variables z=at. Therefore

P (aT < x) = P (X < x/a) =
∫ x

0

1
Γ(n)z

n−1e−zdz
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So the distribution of aT does not depend on a, it is an ancillary statistic.
Consistency:
From the WLLN we know that x̄→ E[X1] = a/(a+ 1), so

P

(
| X̄

1− X̄
− a| < ε

)
=

P

(
a− ε < X̄

1− X̄
< a+ ε

)
=

P
(

a− ε
1 + a− ε

< X̄ <
a+ ε

1 + a+ ε

)
=

P
(

a− ε
1 + a− ε

− a

a+ 1 < X̄ − a

a+ 1 <
a+ ε

1 + a+ ε
− a

a+ 1

)
=

P

(
−ε

(1 + a− ε)(a+ 1) < X̄ − a

a+ 1 <
ε

(1 + a+ ε)(a+ 1)

)
≥

P
(
−Maε < X̄ − a

a+ 1 < Maε
)

=

P
(
|X̄ − a

a+ 1 | < Maε
)
→ 1

as n→∞, where

Ma = max{ 1
(1 + a− ε)(a+ 1) ,

1
(1 + a− ε)(a+ 1)}

so we see that the method of moments estimator is a consistent estimator of a.

Note: it is in general not true that if Xn → x in probability then g(Xn) → g(x) for any
function g.

How about the mle? Again from the WLLN we have

−1/n
∑

logXi → E[− logX1] = 1/a

Now
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P (|â2 − a| < ε) =

P

(
a− ε < −n∑ logXi

< a+ ε

)
=

P
( 1
a+ ε

< − 1
n

∑
logXi <

1
a− ε

)
=

P
( 1
a+ ε

− 1
a
< − 1

n

∑
logXi −

1
a
<

1
a− ε

− 1
a

)
=

P

(
−ε

a(a+ ε) < −
1
n

∑
logXi −

1
a
<

ε

a(a− ε)

)
≥

P
(
−Maε < −

1
n

∑
logXi −

1
a
< Maε

)
=

P
(
| − 1

n

∑
logXi −

1
a
| < Maε

)
→ 1

as n→∞, where

Ma = max{ 1
a(a− ε) ,

1
a(a+ ε)}

and so the mle is a consistent estimator of a as well.
Relative Efficiency:
The relative efficiency of the two estimators is the ratio of their variances, unfortunately the
variance of the method of moments estimator can not be calculated directly. For any specific
case of n and a we could use simulation to find the variance.
As for the variance of the MLE we find

E[(â2)2] =
∫ ∞

0
(n
t

)2 an

Γ(n)t
n−1e−atdt = n2a2

(n− 1)(n− 2)

and so

var(n− 1
n

â2) = a2

n− 2

Rao-Cramer lower bound:

f(x|a) = axa−1

log f(x|a) = log a+ (a− 1) log x
d log f(x|a)

da
= 1/a+ log x

d2 log f(x|a)
da2 = −1/a2

− E
[
d2 log f(X|a)

da2

]
= 1/a2
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and so for any unbiased estimator T we have var(T ) ≥ a2/n, so the MLE does not achieve
the lower bound, although the MLE is asymptotically efficient.
Robustness: in this case 0 < x < 1, so robustness is not an issue.

5 Hypothesis Testing

5.1 Hypothesis Testing Basics

5.1.1 Basic Idea

For a more detailed discussions of issues arising in hypothesis testing see my page at academic.
uprm.edu/wrolke/esma3101/hyptest.html.
For a talk I gave in the Department seminar on the controversy of hypothesis testing see
academic.uprm.edu/wrolke/research/WhatiswrongwithHT.density
A hypothesis is a statement about a population parameter. In its most general form it is as
follows: we have data x1, .., xn from some density f(x|θ). We want to test

H0 : θ ∈ Θ0 vs Ha : θ /∈ Θ0

for some subset of the parameter space Θ0.

5.1.1.1 Example (5.1.1) X~Ber(p), Θ = [0, 1], Θ0 = {0.5}, so we are testing whether p=0.5

5.1.1.2 Example (5.1.2) X ∼ N(µ, σ), Θ = {(x, y) : x ∈ R, y > 0}, Θ0 = {(x, y) : x > 100, y > 0},
so we are testing whether µ > 100.

In addition to the null hypothesis we usually (but not always) also write down the alternative
hypotheses Ha, usually (but not always) the complement of Θ0. So a hypothesis test makes
a choice between H0 and Ha.
A hypothesis that “fixes” the parameter (θ = θ0) is called simple, otherwise it is called
composite (for example θ > θ0)

A complete hypothesis test should have all of the following parts:

1) Parameter

2) Method

3) Assumptions
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4) Type I error probability α

5) Null hypothesis H0

6) Alternative hypothesis Ha

7) Test statistic

8) Rejection region

9) Conclusion

5.1.1.3 Example (5.1.3) Over the last five years the average score in the final exam of a
course was 73 points. This semester a class with 27 students used a new textbook, and the
mean score in the final was 78.1 points with a standard deviation of 7.1.
Question: did the class using the new text book do (statistically significantly) better?
For this specific example the complete hypothesis test might look as follows:

1) Parameter: mean

2) Method: one-sample t

3) Assumptions: normal data or large sample

4) α = 0.05

5) H0 : µ0 = 73

6) Ha : µ0 > 73

7)

T =
√
n x̄−µ0

s
= 3.81

8) reject H0 if T > qt(1− 0.05, 26) = 1.706

9) T = 3.81 > 1.706, so we reject the null hypothesis, it appears that the mean score in
the final is really higher.

In the 9 parts of a hypothesis test, the first 6 (at least in theory) should be done before
looking at the data. The following is not allowed: say we did a study of students at the
Colegio. We asked them many questions. Afterwards we computed correlation coefficients
for all the pairs of variables and found a high correlation between “Income” and “GPA”.
Then we carried out a hypothesis test H0 : ρ = 0 vs Ha : ρ 6= 0.
The problem here is that this hypothesis test was suggested to us by the data, but (most
standard) hypothesis tests only work as advertised if the hypotheses are formulated without
consideration of the data.
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Go back to our example of the new textbook. Here we have the following:
Correct: we pick Ha : µ > 73 because we want to proof that the new textbook works better
than the old one.
Wrong: we pick Ha : µ > 73 because the sample mean score was 78.1, so if anything the
new scores are higher than the old ones.

5.1.2 Type I and Type II errors

When we carry out a hypothesis test in the end we always face one of the following situations:

State of Nature
H0 is true H0 is false

accept H0 OK type II error
reject H0 type I error OK

In statistics when we do a hypothesis test we decide ahead of time what we are willing to
accept as a type I error α, and then accept whatever the type II error β is. Generally, if
you make α smaller, thereby reducing the probability of falsely rejecting the null hypothesis
you make β larger, that is you increase the probability of falsely accepting a wrong null
hypothesis. The only way to make both α and β smaller is by increasing the sample size n.
How do you choose α? This in practice is a very difficult question. What you need to
consider is the consequences of the type I and the type II errors.
Many fields such as psychology, biology etc. have developed standards over the years. The
most common one is α = 0.05, and we will use this if nothing else is said.

5.1.3 p-value

In real live a frequentist hypothesis test is usually done by computing the p-value, that
is the probability to observe the data or something even more extreme given that the null
hypothesis is true.

5.1.3.1 Example (5.1.4) p=P(mean score on final exam > 78.2 | µ = 73)

1-pnorm(78.2, 73, 7.1/sqrt(27))

## [1] 7.072106e-05

Then the decision is made as follows:

• p < α→ reject H0

• p > α→ fail to reject H0
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The advantage of the p value approach is that in addition to the decision on whether or not
to reject the null hypothesis it also gives us some idea on how close a decision it was. If
p = 0.035 < α = 0.05 it was a close decision, if p = 0.0001 < α = 0.05 it was not.
The p-value depends on the observed sample, which is a random variable, so it in turn is a
random variable. What is its distribution?

5.1.3.2 Example (5.1.5) say X ∼ N(µ, 1) and we want to test

H0 : µ = 0 vs H1 : µ > 0

Note: this is in fact a general example for data from a normal distribution because if we have
a sample X1, .., Xn and want to do inference for µ, we immediately go to X̄ ∼ N(0, σ/

√
n).

We use the rejection region {X > cv} where cv = qnorm(1 − α). Now let Y ∼ N(µ, 1),
independent of X, and assume we observe X=x, then

p = p value = P (reject H0|H0 true)
P (Y > x|µ = 0) = 1− Φ(x)
Fp(t) = P (p < t) =
P (1− Φ(X) < t) =
P (Φ(X) > 1− t) =
P
(
X > Φ−1(1− t)

)
=

1− P
(
X < Φ−1(1− t)

)
=

1− Φ
(
Φ−1(1− t)

)
=

1− (1− t) = t

and so p ∼ U [0, 1].
So if the null hypothesis is true the distribution of the p-value is uniform [0,1]. Notice that
in this derivation we made no use of the fact that Φ is a normal cdf, except that Φ−1 exists.
So this turns out to be true in general for all continuous distributions.
Let’s do a simulation to see how the p values look when the null is false:

bw <- 1/50
pushViewport(viewport(layout = grid.layout(2, 2)))
df <- data.frame(pvalue=1-pnorm(rnorm(1000)))
print(ggplot(df, aes(pvalue)) +

geom_histogram(aes(y = ..density..),
color = "black", fill = "white", binwidth = bw) +

labs(title=expression(mu~"= 0.0")),
vp=viewport(layout.pos.row=1, layout.pos.col=1))

df <- data.frame(pvalue=1-pnorm(rnorm(1000, 0.5)))
print(ggplot(df, aes(pvalue)) +

159



geom_histogram(aes(y = ..density..),
color = "black", fill = "white", binwidth = bw)+

labs(title=expression(mu~"= 0.5")),
vp=viewport(layout.pos.row=1, layout.pos.col=2))

df <- data.frame(pvalue=1-pnorm(rnorm(1000, 1)))
print(ggplot(df, aes(pvalue)) +

geom_histogram(aes(y = ..density..),
color = "black", fill = "white", binwidth = bw)+

labs(title=expression(mu~"= 1.0")),
vp=viewport(layout.pos.row=2, layout.pos.col=1))

df <- data.frame(pvalue=1-pnorm(rnorm(1000, 2)))
print(ggplot(df, aes(pvalue)) +

geom_histogram(aes(y = ..density..),
color = "black", fill = "white", binwidth = bw)+

labs(title=expression(mu~"= 2.0")),
vp=viewport(layout.pos.row=2, layout.pos.col=2))
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or we can just calculate it. Say the true mean is µ1, and denote by φ(·;µ) the cdf of a normal
with mean µ. Then

P (p(Y ) < t) =
P (1− Φ(Y ;µ0) < t) =
P (Φ(Y ;µ0) > 1− t) =
P (Y > Φ−1(1− t;µ0)) =
1− P (Y < Φ−1(1− t;µ0)) =
1− Φ(Φ−1(1− t;µ0);µ1)
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this is the cdf, for the density we would need to differentiate this expression. Or we can use
numerical differentiation:

ppval <- function(t, mu)
1-pnorm(qnorm(1-t)-mu)

t <- seq(0.01, 1, length=250)
dpval <- function(t, mu, h=10^-6)

(ppval(t+h, mu=mu)-ppval(t, mu=mu))/h
df1 <- data.frame(p=c(t, t, t),

y=c(dpval(t, 1), dpval(t, 2), dpval(t, 3)),
mu=factor(rep(1:3, each=250)))

ggplot(df1, aes(p, y, color=mu)) +
geom_line(size=1.2)
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5.1.4 Bayesian Hypothesis Testing

Strictly speaking hypothesis testing is not a Bayesian concept. To begin with, if we wanted
to test the hypothesis H0 : θ = θ0 we would need to start with a prior that puts some
probability on the point {θ0}, otherwise the hypothesis will always be rejected. If we do that
we can simply compute P(H0 is true | data), and if this probability is smaller than some
thresh-hold (similar to the type I error) we reject the null hypothesis.
Instead of the probability P(H0 is true | data) we often compute the Bayes factor, given
as follows: say X1, .., Xn ∼ f(x|θ) and θ ∼ g, then the posterior density is

g(θ|xxx) ∼ L(θ)g(θ)

The belief about H0 before the experiment is described by the prior odds ratio
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P (θ ∈ Θ0)
P (θ ∈ Θ1)

and belief about H0 after the experiment is described by the posterior odds ratio
P (θ ∈ Θ0|xxx)
P (θ ∈ Θ1|xxx)

The Bayes factor is then the ratio of the posterior to the prior odds ratios (a ratio of ratios)

5.1.5 (Jeffreys-)Lindley Paradox

Say we have X1, .., Xn ∼ N(µ, 1) and we want to test H0 : µ = 0 vs Ha : µ 6= 0. Specifically,
say we have n=10 and x̄ = 0.75, then the p-value is

n <- 10; xbar <- 0.75
2*(1-pnorm(xbar, 0, 1/sqrt(n)))

## [1] 0.01770607

and so we would reject the null hypothesis at the 5% level.
Now for a Bayesian analysis. As a prior let’s use the following: with probability λ the null
is true. Otherwise µ ∼ N(0, 10). We can find the posterior probability that the null is true
via simulation:

JL <- function(B=1e6, n=10, xbar=0.75, lambda=1/2) {
mu <- c(rep(0, lambda*B), rnorm((1-lambda)*B, 0, 10))
x <- rnorm(B, mu, 1/sqrt(n))
mu <- mu[round(x, 2)==xbar]
sum(mu==0)/length(mu)

}
JL()

## [1] 0.6418384

and so there is a (slight) preference for the null!
So the answer from a Frequentist and from a Bayesian analysis differ. This is often called
the (Jeffrey’s-) Lindley paradox.

5.1.5.1 Example (5.1.6) Here is another example, due to Spanos (2013), from high energy
physics that has been cited in the literature: We have a very large number of collisions,
n=527135, which are either of type A or type B. We have k=106298 type A collisions.
Theory suggests P(A)=0.2. So we want to test

H0 : π = 0.2 vs H1 : π 6= 0.2
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• Frequentist: with such large numbers we can use a test based on the central limit
theorem:

p = 2P ( p̂− p0√
p0(1− p0)/n

>
k/n− 0.2√
0.2× 0.8/n

) =

P (Z > 2.999) = 0.0027
and so we have strong evidence that the null is false.

• Bayesian

We use the following priors on: P(H0)=1/2, and the other 1/2 is spread evenly on [0,1]. So
we have

P (k|H0) =
(
n

k

)
0.2k0.8n−k

P (k|H1) =
∫ 1

0

(
n

k

)
pk(1− p)n−kdp =∫ 1

0

n!
(n− k)!k!p

k(1− p)n−kdp =

1
(n+ 1)

∫ 1

0

Γ(n+ 2)
Γ(n− k + 1)Γ(k + 1)p

k+1−1(1− p)n−k+1−1dp =

1
n+ 1

so the Bayes factor is

P (k|H0)P (H1)
P (k|H1)P (H0)

n <- 527135; k <- 106298
p0 <- dbinom(k, n, 0.2)
p1 <- 1/(n+1)
(p0*0.5)/(p1*0.5)

## [1] 8.114854

A Bayes factor of 8.1 would be considered some evidence in favor of the null. So again we
have a disagreement!
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The paradox is often used as an indictment of Frequentist statistics: Bayes and Frequentist
disagree, Bayes is right, so Frequentist is wrong!
But who’s to say Bayes is right?
To start, Frequentist statistics and Bayesian statistics focus on different ideas, there is no
reason that they should agree (although we hope they often do).
Often whether or not there is a paradox depends on the λ:

JL(lambda=0.3)

## [1] 0.413442

and the alternative has the higher posterior!
Also is sometimes goes away when the sample size grows:

n <- 20
2*(1-pnorm(xbar, 0, 1/sqrt(n)))

## [1] 0.0007962302

JL(n=n)

## [1] 0.1

but there are examples where that doesn’t happen.

5.2 Evaluating Hypothesis Tests

5.2.1 The Power of a Test

In a hypothesis test the type I error probability α is defined by

α = P (reject H0|H0 is true)

and is chosen by the analyst at the beginning of the test. On the other hand the type II
error probability β is defined by

β = P (accept H0|H0 is false)
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5.2.1.1 Example (5.2.1) say we have X1, .., Xn ∼ Ber(p) and we want to test H0 : p = 0.5
vs Ha : p = 0.6.
Now if the null hypothesis is wrong we would expect more successes than the 50%, so it
seems reasonable to reject the null hypothesis if there are many successes, more than should
happen if p=0.5. This suggests to use a test with the rejection region

{S > cv}

where S is the number of successes. cv here is some thresh-hold value (57? 58?) and is
usually called the critical value. It is found as follows:
S is the number of successes in n independent Bernoulli trials with success parameter p, so
S~Ber(n,p). Now

α = P (S > cv|p = 0.5) =
1− P (S ≤ cv|p = 0.5) =
1− pbinom(cv, n, 0.5)

1− α = pbinom(cv, n, 0.5)
cv = qbinom(1− α, n, 0.5)

As a numerical example say α = 0.05 and n=100, then

qbinom(1-0.05, 100, 0.5)

## [1] 58

Now for the type II error probability β we have to calculate the probability to fail to reject
the null hypothesis if the alternative is right, that is if p=0.6:

β = P (S ≤ cv|p = 0.6) = pbinom(cv, n, 0.6) = pbinom(qbinom(1− α, n, 0.5), n, 0.6)

round(pbinom(qbinom(1-0.05, 100, 0.5), 100, 0.6), 4)

## [1] 0.3775

5.2.1.2 Example (5.2.2) say we have X1, .., Xn ∼ Ber(p) and now we want to test

H0 : p = 0.5 vs Ha : p > 0.5

Notice that the alternative hypothesis does not play a role in the calculation of the critical
value, so again we have
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cv = qbinom(1− α, n, 0.5)

but when we want to find β we have a problem, we don’t know what the p is. What we can
do is find β as a function of p:

β(p) = P (S ≤ cv|p) =
pbinom(cv, n, p) =
pbinom(qbinom(1− α, n, 0.5), n, p)

In real life we usually calculate the power of the test, defined by

Pow(p) = 1− β(p)

It has two advantages:

1) it gives the probability of correctly rejecting a false null hypothesis

2) Pow(p0) = α

The power curve for this test is drawn here

fun <- function(p)
1-pbinom(qbinom(1-0.05, 100, 0.5), 100, p)

ggcurve(fun=fun, A=0.5, B=0.7)
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5.2.1.3 Example (5.2.3) say we have X1, ..., Xn ∼ N(µ, σ), σ known, and we want to test

H0 : µ = µ0 vs Ha : µ 6= µ0

Again x̄ is the mle, and a reasonable test statistic is given by

Z =
√
n
X̄ − µ0

σ
∼ N(0, 1)

so a test might use the rejection region {|Z| > cv}:

α = P (|Z| > cv|µ0) =
1− P (−cv < Z < cv|µ0) =
1− (2Φ(cv)− 1) =
2(1− Φ(cv))
cv = Φ−1(1− α/2)

and now

β(µ1) = P (|Z| < cv|µ1) =
P (−cv < Z < cv|µ1) =

P

(
−cv <

√
n
X̄ − µ0

σ
< cv|µ1

)
=

P

(
−cv <

√
n
X̄ − µ1 + µ1 − µ0

σ
< cv|µ1

)
=

P

(
−cv <

√
n
X̄ − µ1

σ
+
√
n
µ1 − µ0

σ
< cv|µ1

)
=

P

(
−cv −

√
n
µ1 − µ0

σ
<
√
n
X̄ − µ1

σ
< cv −

√
n
µ1 − µ0

σ
|µ1

)
=

Φ
(
cv −

√
n
µ1 − µ0

σ

)
− Φ

(
−cv −

√
n
µ1 − µ0

σ

)
The power curve for this test looks like this

power.mean <- function(mu, mu0=0, sd=1, n=25, alpha=0.05) {
cv <- qnorm(1-alpha/2)
1-(pnorm(cv-sqrt(n)*abs(mu-mu0)/sd) -
pnorm(-cv-sqrt(n)*abs(mu-mu0)/sd))

}
ggcurve(fun=power.mean, A=-1, B=1)
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5.2.1.4 Example (5.2.4) Again we have X1, .., Xn ∼ N(µ, σ), σ known, and now we want
to test

H0 : µ = µ0 vs Ha : µ 6= µ0

but this time we will use the median M as an estimator of µ.
Again a reasonable rejection region is {|M − µ| > cv}.
if n is odd we have M = X[(n+1)/2], the (n+1)/2 order statistic of X1, ..., Xn, so

fM(x|µ) = n+ 1
2

(
n

(n+ 1)/2

)
φ(x|µ)Φ(x|µ)(n−1)/2(1− Φ(x|µ))(n−1)/2

where φ(x|µ) and Φ(x|µ) are the density and cdf of normal rv’s with mean µ (and sd σ).
Let’s see what the density looks like for n=99, and compare it to the one of the mean:

dmedian <- function(x, mu=0, sd=1, n) {
(n+1)/2*choose(n, (n+1)/2)*dnorm(x, mu, sd) *

pnorm(x, mu, sd)^((n-1)/2) *
(1-pnorm(x, mu, sd))^((n-1)/2)

}
x <- seq(-0.3, 0.3, length=250)
df <- data.frame(x=c(x, x),

y=c(dnorm(x, sd=1/sqrt(99)), dmedian(x, n=99)),
Method=rep(c("Mean", "Median"), each=250) )

ggplot(data=df, aes(x, y, color=Method)) +
geom_line()
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Now

α = P (|M − µ0| > cv|µ0) =
1− P (−cv < M − µ0 < cv|µ0) =
1− P (−cv + µ0 < M < cv + µ0|µ0) =

1−
∫ −cv+µ0

cv+µ0
fM(x|µ0)dx

and cv is the solution of this equation, which of course can not ne found analytically. Instead
we can find it numerically using the integrate function in R:

0. set cv=0
1. set cv=cv+0.01
2. find a=integrate(f,mu-cv,mu+cv)$value

3. if a > 1− α, done, otherwise go back to 1

Finally

β(µ1) = P (µ0 − cv < M < µ0 + cv|µ1)

which we can again find using the integrate function.

power.median <- function(mu, mu0=0, sd=1, n=25, alpha=0.05) {
cv <- 0
repeat {
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cv <- cv+0.01
a <- integrate(dmedian, -cv+mu0, cv+mu0,

mu=mu0, sd=sd, n=n)$value
if(a>1-alpha) break

}
y <- 0*mu
for(i in seq_along(mu))

y[i] <- 1-integrate(dmedian, mu0-cv, mu0+cv,
mu=mu[i], sd=sd, n=n)$value

y
}

x <- seq(-1, 1, length=250)
y1 <- power.mean(x)
y2 <- power.median(x)
df <- data.frame(x=c(x, x),

y=c(y1, y2),
which=rep(c("Mean", "Median"), each=250))

ggplot(data=df, aes(x, y, color=which)) +
geom_line()
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5.2.1.5 Example (5.2.5) Again we have X1, .., Xn ∼ N(µ, σ), σ known, and again we want
to test

H0 : µ = µ0 vs Ha : µ 6= µ0
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If we are worried about possible outliers we might decide to use a trimmed mean as our
estimator: the 100p% trimmed mean is defined by

Tp = 1
n− 2np

dn(1−p)e∑
i=bnpc

x[i]

In other words, to find the 100p% trimmed mean eliminate the 100p% smallest and largest
observations and find the mean of the rest.
Note: mean=0% trimmed mean and median~50% trimmed mean. In R use the mean(x,
trim=p) function.
Again a reasonable test has rejection region {|Tp − µ| > cv}. But what is the distribution
of Tp? This can not be done analytically for a general p, so either we do some heavy math
every time we want a different p, or we need a different solution. Here is one based on
simulation:
to find cv:

1) generate Y1, .., Yn ∼ N(µ0, σ), calculate Tp, call it Tp(1)

2) repeat 1. many times, say 10000 times

3) Find cv such that 100α% of the |Tp − µ0|’s are greater than cv

to find β(µ1):

1) generate Y1, .., Yn ∼ N(µ1, σ), calculate T ∗p , call it T ∗p (1)

2) repeat 1) many times, say 10000 times

3) Find β(µ1) as the proportion of T ∗p such that |T ∗p − µ0| > cv.

power.trim <- function(mu, p=0.25, mu0=0, sd=1,
n=25, alpha=0.05, B=10000) {

Tp <- matrix(rnorm(B*n, mu0, sd), ncol=n)
Z <- apply(Tp, 1, mean, trim = p)
cv <- quantile(abs(Z), 1-alpha)
out <- 0*mu
for(i in seq_along(mu)) {

Tp <- matrix(rnorm(B*n, mu[i], sd), ncol=n)
Z <- abs(apply(Tp, 1, mean, trim = p)-mu0)
out[i] <- sum(Z > cv)/B

}
out

}
df <- data.frame(x=c(x, x, x),
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y=c(y1, y2, y3=power.trim(x)),
which=rep(c("Mean", "Median", "Trim"), each=250))

ggplot(data=df, aes(x, y, color=which)) +
geom_line()
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as one would expect, the power of the 25% trimmed mean test is between those of the mean
and the median.

5.2.1.6 Example (5.2.6) say X1, .., Xn ∼ Ber(p), and we want to test

H0 : p = p0 vs. Ha : p > p0

As above a reasonable test can be based on {x̄ > cv}, which is equivalent to {∑xi ≥ k} for
some integer k. Say for example n=10, p0=0.5 and α = 0.1. Then

sum(dbinom(10, 10, 0.5))

## [1] 0.0009765625

sum(dbinom(9:10, 10, 0.5))

## [1] 0.01074219
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sum(dbinom(8:10, 10, 0.5))

## [1] 0.0546875

sum(dbinom(7:10, 10, 0.5))

## [1] 0.171875

so for k=8 P (reject H0|H0 is true) < α and for k=7 P (reject H0|H0 is true) > α.
Because of the discreteness of the random variable it is not actually possible to find a cv
such that P (reject H0|H0 is true) = α. In this case we use

min{k : P (reject H0|H0 is true) < α}

or k=8.
There is a way to achieve α exactly: If we get x > 7 we reject the null, if we get x < 7 we
fail to reject the null. If we get x = 7 we flip a coin that give success with probability 0.0047,
and if we get a success we reject the null, otherwise we fail to reject the null. It is easy to
see that now our test has exactly 0.05 as the type I error rate.
Such tests are called randomized. They play some role in the theory of statistics, but are
not really used in practice.

5.2.2 Neyman Pearson Theory

5.2.2.1 Definition (5.2.7) Any collection C of tests is called a class of tests

5.2.2.2 Example (5.2.8) let X1, .., Xn ∼ N(µ, σ), σ known, and assume we want to test

H0 : µ = µ0 vs Ha : µ > µ0

a. C = “reject H0 if {x̄ > cv}”

b. C = “reject H0 if {x̄ > cv} or reject H0 if {Median > cv}”

c. C= “let T be any unbiased estimator of µ, reject H0 if {T> cv}”

are all classes of tests.

5.2.2.3 Definition (5.2.9) a test is called a level α test if

P (reject H0|H0 true) ≤ α
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5.2.2.4 Definition (5.2.10) Let C be a class of tests for testing

H0 : θ ∈ Θ0 vs Ha : θ ∈ Θc
0

A test in C with power function Pow(θ) is a uniformly most powerful (UMP) class C test if

Pow(θ) ≥ Pow′(θ)

for all θ ∈ Θc
0 and every power function Pow’ for every test in C.

If the class C is the class of all tests with level α, it is called the UMP level α test.

5.2.2.5 Theorem (5.2.11) Neyman-Pearson lemma
Consider testing

H0 : θ = θ0 vs Ha : θ = θ1

using a test with rejection region R given by

x ∈ R if f(x|θ1)
f(x|θ0) > k

and

x ∈ Rc if f(x|θ1)
f(x|θ0) < k

for some k ≥ 0 and α = P (X ∈ R|θ0).
Then

a. (sufficiency) Any test of this form is a UMP level α test.

b. (necessity) If there exists a test of this form with k>0, then every UMP level α test is
of this form.

Note: we have written the theorem in terms of the f, but we could of course also have used
the likelihood function L.

5.2.2.6 Example (5.2.12) let X1, .., Xn ∼ N(µ, σ), σ known, and assume we want to test

H0 : µ = µ0 vs Ha : µ = µ1

Then
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f(xxx|µ) =

(2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

=

(2π)−n/2σ−n−1 exp
{
−(n− 1)s2

2σ2

}
exp

{
−n(µ− x̄)2

2σ2

}
so

f(xxx|µ1)
f(xxx|µ0) =

(2π)−n/2σ−n−1 exp
{
− (n−1)s2

2σ2

}
exp

{
−n(µ1−x̄)2

2σ2

}
(2π)−n/2σ−n−1 exp

{
− (n−1)s2

2σ2

}
exp

{
−n(µ0−x̄)2

2σ2

} =

exp
{
n(µ0 − x̄)2

2σ2 − n(µ1 − x̄)2

2σ2

}
=

exp
{
− n

2σ2

[
(µ1 − x̄)2 − (µ0 − x̄)2

]}
> k

if and only if

− n

2σ2

[
(µ1 − x̄)2 − (µ0 − x̄)2

]
> log k

if and only if

(µ1 − x̄)2 − (µ0 − x̄)2 < −2σ2

n
log k

if and only if

2x̄(µ0 − µ1) + µ2
1 − µ2

0 < −
2σ2

n
log k

if and only if

 x̄ < −σ2/n log k−µ2
1/2+µ2

0/2
µ0−µ1

if µ0 > µ1

x̄ > −σ2/n log k−µ2
1/2+µ2

0/2
µ0−µ1

if µ0 < µ1

here we kept track of the terms on the right, but in fact they don’t matter because we don’t
know k anyway. Therefore a UMP level α test is of the from x̄ < cv (if µ0 > µ1), where

α = P (X̄ < cv)
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Note

f(x|θ1)
f(x|θ0) = L(θ1|x)

L(θ0|x)

so a Neyman-Pearson type test is based on the ratio of the likelihood functions.

5.2.2.7 Example (5.2.13) H0 : λ = 1 vs Ha : λ = 2
Now

f(x;λ) = λx

x! e
−λ

f(x; 1)
f(x; 2) =

1x
x! e
−1

2x
x! e
−2 = e/2x

e/2x > k iff
e/k > 2x iff
x < log(e/k)/ log(2) = [1− log(k)]/ log(2)
α = P (X < cv|λ = 1)

We have

dpois(0, 1)

## [1] 0.3678794

is already larger than 0.05, so the test is to reject the null if we observe x>0.

The Neyman-Pearson lemma only discusses tests of simple vs simple hypotheses. These are
very rare. It can also be shown that the theorem fails in any more generality. However, in
most cases tests based on the likelihood ratio turn out to be very good, even so they are not
necessarily the best.

5.3 Methods for Finding Hypothesis Tests

5.3.1 Ad-hoc Methods

The idea here is to use some estimator of the parameter of interest and then derive a test
from there.
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5.3.1.1 Example (5.3.1) Say we have X1, ..., Xn ∼ Pois(λ) and we want to test

H0 : λ = λ0 vs. Ha : λ > λ0

We know that x̄ is the mle of λ , so a test based on x̄ seems reasonable.
Clearly large values of x̄ will indicate that the alternative is more likely to be true than the
null hypothesis, so a reasonable rejection region is {x̄ > cv}. To find cv we need to solve the
equation

α = P (X̄ > cv|λ = λ0) =
1− P (

∑
Xi ≤ n× cv|λ = λ0) =

but under the null hypothesis

∑
Xi ∼ Pois(nλ)

so we find cv with

cv <- qpois(1-alpha, n*lambda0)/n

The p-value of the test is

Y ∼ Pois(nλ0)
p = P (Y ≥

∑
xi)

n <- 10; lambda0 <- 3.0; alpha <- 0.05
x <- rpois(n, 4)
c(n*lambda0, sum(x))

5.3.1.2 Example (5.3.2)

## [1] 30 43

cat("Critical value cv: ", qpois(1-alpha, n*lambda0)/n)

## Critical value cv: 3.9

cat("p value: ", 1-ppois(sum(x)-1, n*lambda0))

## p value: 0.01481952
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Next we want to test
H0 : λ = λ0 vs. Ha : λ 6= λ0

H0 : λ = λ0 vs. H1 : λ 6= λ0

Now the critical region could be
x̄ < cv1 or x̄ > cv2

It turns out, though, that the choice of cv1 and cv2 is not unique. For example,
cv1 = 0 and cv3 = qpois(1− α, nλ0)/n
would work. One popular strategy is use α/2 on the left and on the right, so we find

cv1 <- qpois(alpha/2, n*lambda0)/n
cv2 <- qpois(1-alpha/2, n*lambda0)/n

The p-value now is found by

p =
{

2P (Y <
∑
xi|λ0) if ∑

xi < nλ0
2P (Y >

∑
xi|λ0) if ∑

xi > nλ0

The factor 2 is needed because the problem is “symmetric”.
The type II error probability for the one and two-sided tests are

• one-sided

β(λ1) = P (Y < cv|λ1)
- two-sided

β(λ1) = P (cv1 < Y < cv2|λ1)

power.pois <- function(n, lambda0, lrange, alpha=0.05) {
fun <- function(lambda) {

1-(ppois(qpois(1-alpha/2, n*lambda0), n*lambda) -
ppois(qpois(alpha/2, n*lambda0), n*lambda))

}
ggcurve(fun=fun, A=lrange[1], B=lrange[2])

}
power.pois(10, 3.0, c(0.5, 6))
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5.3.2 Likelihood Ratio Tests

Say we want to test
H0 : θ ∈ Θ0 vs H0 : θ ∈ Θc

0

Then the likelihood ratio test statistic is defined by

λ(xxx) = supΘ0 L(θ|xxx)
supL(θ|xxx)

A likelihood ratio test (LRT) is any test that has a rejection region of the form

{x : λ(x) ≤ c}

The constant c here is not important, it will be found once we decide on the type I error
probability α. It may be better to think of this as
“reject H0 if λ(xxx) is small”
Note that the supremum in the denominator is found over the whole parameter space, so
this is just like finding the mle, and then finding the corresponding value of the likelihood
function.
Note that in the numerator we find the supremum over a subset of the one used in the
denominator, so we always have

0 ≤ λ(xxx) ≤ 1

The logic of the LRT is this:
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• In the denominator we have the likelihood of observing the data we did observe, given
the most favorable parameters (the mle) possible.

• In the numerator we have the likelihood of observing the data we did observe, given the
most favorable parameters allowed under the null hypothesis.

• if their ratio is much smaller than 1, then there are parameters outside the null hypoth-
esis which are much more likely than any in the null hypothesis, and we would reject
the null hypothesis.

Notice the connection to the Neyman-Pearson theory: again a test is based on the likelihood
ratio. While we no longer have a theorem that guarantees optimality if the hypotheses are
composite, it is still reasonable to expect this type of test to be quite good.

5.3.2.1 Example (5.3.3) Let X1, ..., Xn ∼ N(µ, σ), σ known. Consider testing

H0 : µ = µ0 vs. H1 : µ 6= µ0

Here Θ0 = {µ0} and so the numerator of λ(xxx) is L(µ0|xxx). For the denominator we have to
find the mle, which we already know is x̄. Therefore using (5.2.12) we find

L(µ0|xxx) = (2π)−n/2σ−n−1 exp
{
−(n− 1)s2

2σ2

}
exp

{
−n(µ0 − x̄)2

2σ2

}

L(x̄|xxx) = (2π)−n/2σ−n−1 exp
{
−(n− 1)s2

2σ2

}
exp

{
−n(x̄− x̄)2

2σ2

}
=

(2π)−n/2σ−n−1 exp
{
−(n− 1)s2

2σ2

}
L(µ0|xxx)
L(x̄|xxx) = exp

{
−n(µ0 − x̄)2

2σ2

}

Now an LRT test rejects the null hypothesis if λ(xxx) < c for some constant c. c depends on
the choice of α. Again it is best to think of the test as rejecting H0 if " λ(xxx) is small". But

λ(xxx) = exp
{
−n(µ0 − x̄)2

2σ2

}

is small iff

−n(µ0 − x̄)2

2σ2

is small iff

(µ0 − x̄)2
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is large iff

|x̄− µ0|

is large, say

|x̄− µ0| > cv

In other words the LRT test rejects the null hypothesis if λ(xxx is small, which is equivalent
to |x̄− µ0| being large.
What is the constant cv? It depends on α, namely

α = P (reject H0|H0 true) =
P (|X̄ − µ0| > cv) =

P (|
√
n
X̄ − µ0

σ
| >
√
n · cv
σ

) =

2
(

1− Φ(
√
n · cv
σ

)
)

cv = Φ−1(1− α/2) σ√
n

= zα/2
σ√
n

for example

n <- 10; sigma=1; alpha <- 0.05
qnorm(1-alpha/2)*sigma/sqrt(n)

## [1] 0.619795

5.3.2.2 Example (5.3.4) Let X1, ..., Xn be a sample from a population with density

f(x|θ) = eθ−x

if x > θ and 0 otherwise. (This is an exponential r.v with rate 1, shifted by θ). The likelihood
function is given by

L(θ|xxx) =
∏

exp(θ − xi)I(θ,∞))(xi) =
exp(nθ −

∑
xi)I(−∞,x(1))(θ)

Here is an example of what this function looks like:

n <- 10; theta0 <- 5
x <- rexp(10, 1) + 7.5
fun <- function(t)

exp(n*t-sum(x))*ifelse(t<min(x), 1, 0)
ggcurve(fun=fun, A=6, B=8)
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so it is positive and increasing on −∞ < θ < x(1), and then drops to 0. So clearly the
mle of θ is x(1), the minimum. In this example it can not be found by differentiating the
log-likelihood!
Let’s say we want to test

H0 : θ ≤ θ0 vs. H1 : θ > θ0

For the maximum of the likelihood function under the null hypothesis we have to consider
two cases:

• if x(1) < θ0 the maximum is at x(1)

• if x(1) > θ0 the maximum is at θ0

Therefore the likelihood ratio statistic is given by

λ(xxx) = 1 if x(1) ≤ θ0

λ(xxx) = exp{nθ0 − nx(1)} if x(1) ≤ θ0

Here is an example of what this function looks like:

n <- 10; theta0 <- 2.5
x <- rexp(10, 1) + 7.5
fun <- function(t)

ifelse(t<theta0, 1, exp(-n*(t-theta0)))
ggcurve(fun=fun, A=1, B=4)
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An LRT rejects the null hypothesis if

λ(xxx) ≤ c

which is clearly equivalent to a test which rejects the null hypothesis if

X(1) ≥ c

To determine the value of c for some specific n and α we need the distribution of X(1):

f(x|θ) = exp {θ − x} I[θ,∞](x)

F (x|θ) =
∫ x

θ
exp {θ − t} dt =

− exp {θ − t} |xθ = 1− exp {θ − x}
and so

FX(1)(x) = P (X(1) ≤ x) = 1− P (X(1) > x) =
1− P (X1 > x, ..., Xn > x) =
1− P (X1 > x) · ... · P (Xn > x) =
1− [1− FX1(x)]n =
1− [exp {θ − x}]n =
1− exp {n(θ − x)}
fX(1)(x) = n exp {n(θ − x)} ;x > θ

so now
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α = P (X(1) > cv|θ0) = 1− FX(1)(cv) = exp {n(θ0 − x)}
cv = θ0 − log(α)/n

The p value is

p = P (Y > X(1)|θ0) = exp
{
n(θ0 −X(1))

}
n <- 10; theta0 <- 2.5
cat("cv: ", theta0-log(alpha)/n)

## cv: 2.799573

cat("p value: ", min(1, exp(n*(theta0-min(x)))))

## p value: 2.702004e-23

The power of the test is given by

Pow(θ1) = P (X(1) > cv|θ1) = exp {n(θ1 − θ0 + log(α)/n)}

5.3.3 Asymptotic Distribution of the LRT, Wilk’s Theorem

5.3.3.1 Theorem (5.3.5) Wilk
Suppose X1, ..., Xn are iid f(x|θ) and we wish to test

H0 : θ ∈ Θ0 vs. H1 : θ /∈ Θ0

Then under some regularity conditions the distribution of −2 log λ(XXX) converges to the
distribution of a χ2(p). Here p is difference of the number of free parameters in Θ and the
number of free parameters in Θ0.

Note Let θ̂ be the mle of θ, and denote by ˆ̂
θ the maximum under the null. Then

λ(xxx) = (−2) log L(ˆ̂
θ)

L(θ̂)
= 2

(
l(θ̂)− l(ˆ̂

θ)
)

where l is the log-likelihood function.
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5.3.3.2 Example (5.3.6) We flip a coin 1000 times and find 545 heads. Test at the 5%
whether this is a fair coin.
In general we have X1, .., Xn ∼ Ber(p) and we want to test

H0 : p = p0 vs H1 : p 6= p0

Let’s find the LRT test for this problem. First we have

L(p|xxx) = pk(1− p)n−k

where k = sumxi.
Therefore

l(p|xxx) = logL(p|xxx) = k log p+ (n− k) log(1− p)

We already know that the mle is p̂ = x̄ (see (4.2.4)), and so

λ(xxx) = 2 (k log p̂+ (n− k) log(1− p̂)− k log p0 − (n− k) log(1− p0)) =

2
(
k log p̂

p0
+ (n− k) log 1− p̂

1− p0

)

The lrt looks like this:

n <- 1000; p0 <- 0.5
k <- 400:600
lrt <- 2*(k*log(n*p0/k)+(n-k)*log(n*(1-p0)/(n-k)))
df <- data.frame(k=k, lrt=lrt)
ggplot(df, aes(k, lrt)) + geom_point()

185



−40

−30

−20

−10

0

400 450 500 550 600
k

lr
t

it is clear that

λ(xxx)
is small iff k much smaller or much larger than np0 iff

|k − np0|
is large
Now let Y = ∑

Xi, then Y ∼ Bin(n, p0) and

α = P (|Y − np0| > cv) =
1− P (|Y − np0| ≤ cv|p = p0) =
1− P (−cv ≤ Y − np0 ≤ cv) =
1− P (np0 − cv ≤ Y ≤ cv + np0) =

For our test we have n=1000, p0 = 0.5, so np0 = 500. Let’s say we want α = 0.05, then

1-diff(pbinom(500+c(-1,1)*20, 1000, 0.5))

## [1] 0.2061073

1-diff(pbinom(500+c(-1,1)*30, 1000, 0.5))

## [1] 0.05785052
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1-diff(pbinom(500+c(-1,1)*31, 1000, 0.5))

## [1] 0.04998452

and we find cv = 31, and so we reject the null hypothesis because

|k − np0| = |545− 1000 · 0.5| = 45 > 31
We conclude that the coin is not fair.
How about using the chisquare approximation? In that case

T = −2 log λ(XXX) ∼ χ2(1)

so

T = 2
(
k log p̂

p0
+ (n− k) log 1− p̂

1− p0

)
=

2
[
545 log(545

500 + (455) log(455
500)

]
= 8.11

α = P (T > cv)

qchisq(1-0.05, 1)

## [1] 3.841459

and again we reject H0, now because T=8.11>cv=3.84

Why do we have this approximation? If H0 is true X ∼ Bin(n, p0), so E[X] = np0, so
X ≈ np0.
Recall that the Taylor series expansion of log(x+1) at x=0 is

log(x+ 1) ≈ x− x2/2
and so (using k instead of x) we find
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− 2 log λ(xxx) =

2
(
k log p̂

p0
+ (n− k) log 1− p̂

1− p0

)
=

2
(
k log k/n

p0
+ (n− k) log 1− k/n

1− p0

)
=

2
(
k log k

np0
+ (n− k) log n− k

n(1− p0)

)
=

2
(
k log

[
( k

np0
− 1) + 1

]
+ (n− k) log

[
( n− k
n(1− p0) − 1) + 1

])
≈

2k
[
( k

np0
− 1)− ( k

np0
− 1)2/2

]
+

2(n− k)
[
( n− k
n(1− p0) − 1)− ( n− k

n(1− p0) − 1)2/2
]

=

2k(k − np0

np0
)− k(k − np0

np0
)2+

2(n− k)(n− k − n(1− p0)
n(1− p0) )− (n− k)(n− k − n(1− p0)

n(1− p0) )2 =

2k(k − np0

np0
)− k(k − np0

np0
)2+

2(n− k)( np0 − k)
n(1− p0))− (n− k)( np0 − k

n(1− p0))2 =

k − np0

np0(1− p0)

[
2k(1− p0)− k(1− p0)k − np0

np0
+ 2(n− k)p0 − (n− k)p0

k − np0

n(1− p0)

]
= (∗)

Now

2k(1− p0)− k(1− p0)k − np0

np0
− 2(n− k)p0 − (n− k)p0

k − np0

n(1− p0) =

2k − 2kp0 − k
k − np0

np0
+ kp0

k − np0

np0
− 2np0 + 2kp0 − np0

k − np0

n(1− p0) + kp0
k − np0

n(1− p0) =

2(k − n0)− kk − np0

np0
+ k

k − np0

n
− p0

k − np0

1− p0
+ kp0

k − np0

n(1− p0) =

(k − np0)
[
2− k 1

np0
+ k

1
n
− p0

1
1− p0

+ kp0
1

n(1− p0)

]

Noting that under the null hypothesis k ≈ np0, or k
np0
≈ 1, we have
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(∗) = (k − np0)2

np0(1− p0)

[
2− k

np0
+ k

n
− p0

1− p0
+ kp0

n(1− p0)

]
=

(k − np0)2

np0(1− p0)

[
2− k

np0
+ k

np0
p0 −

p0

1− p0
+ k

np0

p2
0

1− p0

]
≈

(k − np0)2

np0(1− p0)

[
2− 1 + p0 −

p0

1− p0
+ p2

0
1− p0

]
=

(k − np0)2

np0(1− p0)
1− p0 + p0(1− p0)− p0 + p2

0
1− p0

=

(k − np0)2

np0(1− p0) =
 k − np0√

np0(1− p0)

2

∼ χ(1)

5.3.3.3 Example (5.3.7) say X1, .., Xn ∼ Beta(α, β) and we want to test

H0 : α = β vs. H1 : α 6= β

Now

f(xxx|α, β) =
n∏
i=1

Γ(α + β)
Γ(α)Γ(β))nxα−1

i (1− xi)β−1 =(
Γ(α + β)
Γ(α)Γ(β)

)n
[
n∏
i=1

xi]α−1[
n∏
i=1

(1− xi)]β − 1 =

lα, β|xxx) =
n log Γ(α + β)− nΓ(α)− nΓ(β)+

(α− 1)
n∑
i=1

log xi + (β − 1)
n∑
i=1

log(1− xi)

For the numerator of the LRT statistic we assume the null hypothesis is true: α = β,
and estimate α using Newton’s method. We also make use of some functions built into R:
lgamma, digamma and trigamma compute the log of the gamma function and it’s first and
second derivative. So let g(x)=log(gamma(x)), Let A = ∑n

i=1 log xi and B = ∑n
i=1 log(1−xi),

then

h(t) = ng(2t)− 2ng(t) + (t− 1)(A+B)
h′(t) = 2ng′(2t)− 2ng′(t) + A+B

h′′(t) = 4ng′′(2t)− 2ng′′(t)

for the denominator we have
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h(t, s) = ng(t+ s)− ng(t)− ng(s) + (t− 1)A+ (s− 1)B
ht(t, s) = ng′(t+ s)− ng′(t) + A

hs(t, s) = ng′(t+ s)− ng′(s) +B

H[1, 1] = ng′′(t+ s)− ng′′(t)
H[1, 2] = H[2, 1] = ng′′(t+ s)
H[2, 2] = ng′′(t+ s)− ng′′(s)

After computing the suprema we can find the test statistic. All of this is implemented here:

lrt.beta <- function (x, n=100, alpha=1, beta=1,
Show=TRUE) {

l <- function(alpha, beta) {
n*(lgamma(alpha + beta) - lgamma(alpha) -

lgamma(beta)) + (alpha-1)*A+(beta-1)*B
}
if (missing(x))

x <- rbeta(n, alpha, beta)
else n <- length(x)
A <- sum(log(x))
B <- sum(log(1 - x))
real.alpha <- alpha
k <- 0
repeat {

k <- k + 1
alphaold <- alpha
h <- 2*n*(digamma(2*alpha)-digamma(alpha))+A+B
hprime <- 2*n*(2*trigamma(2*alpha) -

trigamma(alpha))
alpha <- alpha - h/hprime
if (abs(alpha - alphaold) < 10^(-5))

break
if (k > 50)

return(2)
}
if (Show) cat("Supremum under Null Hypothesis is at",

round(alpha, 3), "\n")
num <- l(alpha, alpha)
alpha <- real.alpha
h <- c(0, 0)
H <- matrix(0, 2, 2)
k <- 0
repeat {

k <- k + 1
xold <- c(alpha, beta)
h[1] <- n*(digamma(alpha+beta) -
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digamma(alpha)) + A
h[2] <- n*(digamma(alpha + beta) -

digamma(beta)) + B
H[1, 1] <- n*(trigamma(alpha + beta) -

trigamma(alpha))
H[1, 2] <- n*trigamma(alpha+beta)
H[2, 1] <- H[1, 2]
H[2, 2] <- n*(trigamma(alpha+beta) -

trigamma(beta))
xnew <- xold - solve(H) %*% cbind(h)
if (sum(abs(xnew - xold)) < 10^(-5))

break
if (k > 50)

return(2)
alpha <- xnew[1]
beta <- xnew[2]

}
if (Show) {

cat("MLE’s are: ", round(c(alpha, beta), 3), "\n")
}
denom <- l(alpha, beta)
T <- -2 * (num - denom)
if (Show)

cat("-2log(LRT)=", round(T, 3), " crit val=",
round(qchisq(0.95, 1), 3), "\n")

ifelse(T > qchisq(0.95, 1), 1, 0)

}
lrt.beta()

## Supremum under Null Hypothesis is at 1.148
## MLE’s are: 1.084 1.26
## -2log(LRT)= 2.013 crit val= 3.841

## [1] 0

lrt.beta(alpha=1.0, beta=1.5)

## Supremum under Null Hypothesis is at 1.272
## MLE’s are: 1.185 1.687
## -2log(LRT)= 11.804 crit val= 3.841

## [1] 1
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5.3.3.4 Example (5.3.8) Let X1, ..., Xn be a sample from a population with density

f(x|θ) = eθ−x

if x > θ and 0 otherwise. We saw before in (5.3.4) that

λ(xxx) =
{ 1 f x(1) ≤ θ0

n exp
{
−n(x(1) − θ0)

}
f x(1) > θ0

therefore

−2 log λ(xxx) =
{

0 f x(1) ≤ θ0
2n(x(1) − θ0) f x(1) > θ0

and so

P (−2 log λ(XXX) < x) =
P (2n(X(1) − θ0) < x) =
P (X(1) < x/2n+ θ0) =
1− exp {n[θ − (x/2n+ θ0)]} =
1− e−x/2

or −2 log λ(XXX) ∼ Exp(1/2) = χ2(2) 6= χ2(1), and so here we have a case where Wilk’s
theorem fails.

Let’s consider the following general problem: we have data X1, .., Xn are iid f(x|θ) where θ
is a one-dimensional parameter. We wish to use the LRT for testing

H0 : θ = θ0 vs H1 : θ 6= θ0

Now for the denominator we need to find the mle of θ, that is we have to find the maximum
of

∏
f(xi; θ)

or as we usually do, the maximum of

∑
log{f(xi; θ)}

Usually we find the mle analytically, but if the density f is nice enough we can do this
completely automatically:
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lrtfun <- function (x, df, theta0, Int) {
g <- function(theta) sum(log(df(x,theta)))
thetahat <- optimize(g, Int, maximum =TRUE)$maximum
chi <- 2*(g(thetahat)-g(theta0))
1-pchisq(chi,1)

}

5.3.3.5 Example (5.3.9) X1, ..., Xn ∼ N(µ, σ), σ known

H0 : µ = µ0 vs H1 : µ 6= µ0

x <- rnorm(50)
lrtfun(x, df=dnorm, theta0=0, Int=c(-5,5))

## [1] 0.1691898

lrtfun(x, df=dnorm, theta0=0.25, Int=c(-5,5))

## [1] 0.001674667

5.3.3.6 Example (5.3.10) X1, ..., Xn ∼ N(µ, σ), µ known,

H0 : σ = σ0 vs H1 : σ 6= σ0

x <- rnorm(50, 0, 4)
lrtfun(x,

df=function(x, sig) {dnorm(x, 0, sig)},
theta0=4, Int=c(0, 10))

## [1] 0.3967211

lrtfun(x,
df=function(x, sig) {dnorm(x, 0, sig)},
theta0=5, Int=c(0, 10))

## [1] 0.004906238

5.3.3.7 Example (5.3.11) X1, ..., Xn ∼ Gamma(α, β), α known,

H0 : β = β0 vs H1 : β 6= β0
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x <- rgamma(25, 1, 2)
lrtfun(x,

df=function(x, b) {dgamma(x, 1, b)},
theta0=2, Int=c(0, 5))

## [1] 0.2536346

lrtfun(x,
df=function(x, b) {dgamma(x, 1, b)},
theta0=2.5, Int=c(0, 5))

## [1] 0.0167621

Does this actually work? Let’s do a small simulation, testing for the standard deviation of
a normal distribution:

pvals <- rep(0, 10000)
for(i in 1:10000)

pvals[i] <- lrtfun(x=rnorm(50, 0, 4),
df=function(x, sig) {dnorm(x, 0, sig)},
theta0=4, Int=c(0, 10))

df <- data.frame(x=pvals)
bw <- 1/50
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density")
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Histogram appears flat (uniform), so the test achieves the nominal type I error probability.
And a case where the null is false:

pvals <- rep(0, 10000)
for(i in 1:10000)

pvals[i] <- lrtfun(x=rnorm(50, 0, 4.5),
df=function(x, sig) {dnorm(x, 0, sig)},
theta0=4, Int=c(0, 10))

df <- data.frame(x=pvals)
bw <- 1/50
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density")
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5.3.4 Large Sample Tests based on the CLT

Suppose we wish to test a hypothesis about a real-valued parameter θ, and Tn is a point
estimator of θ. Say σn is the standard deviation of Tn. Now if some form of the CLT shows
that

(Tn − θ)/σn

converges in distribution to N(0,1) we can use this as a basis for a test.
Sometimes σn also depends on unknown parameters. In that case we can use an estimate of
σn such as Sn instead.
A test based on

Zn = (Tn − θ)/Sn

is often called a Wald test.

5.3.4.1 Example (5.3.12) Let X1, ..., Xn ∼ Ber(p).
Consider testing

H0 : p = p0 vs H1 : p 6= p0

The MLE of p is p̂ = x̄,so the CLT applies and states that for any p
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√
n

x̄− p√
p(1− p)

→ N(0, 1)

Of course we don’t know p, but again we can estimate the p’s in the denominator by p̂ and
so we get a test with the test statistic

Z1 =
√
n

p̂− p0√
p̂(1− p̂)

and we reject the null hypothesis is |Z1| > zα/2.
Instead of replacing the p’s in the denominator by p̂ we could also have used its value under
the null hypothesis, p0. Then another test is based on

Z2 =
√
n

p̂− p0√
p0(1− p0)

which rejects the null hypothesis if |Z2| > zα/2.
Which of these tests is better? Well, that depends on the power function.

bernoulli.power <- function(n=100, p0=0.2,
B=10000, alpha=0.05) {

crit <- qnorm(1-alpha/2)
p <- seq(0.01, 0.39, length = 100)
Pow1 <- 0*p
for (i in 1:100) {

x <- rbinom(B, size = n, prob = p[i])
z <- sqrt(n)*(x/n-p0)/sqrt(x/n*(1-x/n))
Pow1[i] <- mean(ifelse(abs(z)>crit, 1, 0))

}
Pow2 <- 1-(pbinom(n*p0+ crit*sqrt(n*p0*(1-p0)), n, p) -

pbinom(n*p0-crit*sqrt(n*p0*(1-p0)), n, p))
df <- data.frame(p=c(p, p),

Power=c(Pow1, Pow2),
which=rep(c("Z1", "Z2"), each=100))

df
}
df <- bernoulli.power()
ggplot(data=df, aes(p, Power, color=which)) +

geom_line()
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Here the Z1 curve is found via simulation, whereas the Z2 power curve can be calculated
directly.
As we see the power curves cross, so it depends on the true value of p which test is better.
If we suspect that p>0.2 we might prefer the Z2 test, otherwise the Z test.

5.3.5 Bayesian Hypothesis Testing

In the Bayesian framework hypothesis tests are based on

P (H0 is true |xxx)

and

P (H1 is true |xxx)

In many ways these probabilities are exactly what a researcher desires to know, but they
can only be found at the price of a prior distribution.
A Bayesian hypothesis test might then reject the null hypothesis if

P (H1 is true|xxx) > 1− α

5.3.5.1 Example (5.3.13) Let X1, ..., Xn ∼ N(µ, σ) and let the prior distribution on µ be
N(µ0, τ), where σ, µ0 and τ are known.
Say we wish to test
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H0 : µ = µ0 vs H1 : µ 6= µ0

It can be shown that then the posterior distribution π(µ|xxx) is

N(nτ 2x̄+ σ2µ)/(nτ 2 + σ2), στ
√

(nτ 2 + σ2))

Say we decide to accept
H0 if

P (H1 is true|xxx) > P (H1 is true|xxx)

and reject H0 otherwise. So we reject H0 if

P (µ ≤ µ0|xxx) ≥ 1/2

Since π(µ|xxx) is symmetric, this is true iff the mean of π(µ|xxx) is less than or equal to µ0.
Therefore H0 is accepted if

x̄ ≤ µ0 + σ2(µ0 − µ)/(nτ 2)

5.3.6 Tests based on Simulation

The idea here is very simple: generate lots of simulated data from the same distribution as
the real data, assuming the null hypothesis is true. For each run compute the corresponding
test statistic, and then compare these values to the one from the data.

5.3.6.1 Example (5.3.14) Say X1, .., Xn are iid Pois(λ). We wish to test

H0 : λ = λ0 vs H1 : λ 6= λ0

We know that the sample mean x̄ is the mle of λ, and so we can base a test on x̄ and we
reject H0 if x̄ is to far from λ.
For this we compute B simulated data sets X ′1, ..., X ′n ∼ Pois(λ0), compute their sample
means and find the α/2 and the 1− α/2 quantiles.
This will give us the critical values cv1 and cv2, and we reject H0 if either
x̄ < cv1 or x̄ > cv2
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poissim.power <- function(lambda0=10, n=50,
B=1000, alpha=0.05) {

xbar <- apply(matrix(rpois(n*B, lambda0), B, n), 1, mean)
cv <- as.numeric(quantile(xbar, c(alpha/2, 1-alpha/2)))
lambda <- seq(max(0, lambda0-5*sqrt(lambda0/n)),

lambda0+5*sqrt(lambda0/n), length = 100)
Pow1 <- 0*lambda
for(i in 1:100) {

xbar <- apply(matrix(rpois(n*B, lambda[i]), B, n),
1, mean)

Pow1[i] <- sum(ifelse(xbar<cv[1] | xbar>cv[2], 1, 0))/B
}
Pow2 <- 1-(ppois(qpois(1-alpha/2, n*lambda0), n*lambda) -

ppois(qpois(alpha/2, n*lambda0), n*lambda))
df <- data.frame(lambda=c(lambda, lambda),

Power=c(Pow1, Pow2),
which=rep(c("Simulation", "Exact"), each=100))

df
}
df <- poissim.power()
ggplot(data=df, aes(lambda, Power, color=which)) +

geom_line()
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The blue curve is the exact test we discussed earlier, and we see that the simulation test is
just about as good.
There are also some tests already built on simulation. Say we have X1, .., Xn from some
distribution f(x) with mean µ1 and Y1, .., Ym from the same distribution f(x) with mean µ2.
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We wish to test

H0 : µ1 = µ2 vs H1 : µ1 6= µ2

Now under the null hypothesis the two samples come from the exact same distribution with
the same mean. So their order is completely random, and if we find the test statistic

T = x̄− ȳ

it should have a mean of 0. We could now proceed as above, generating data from f etc.,
but here is another idea:

• put the x’s and the y’s in one vector of length n+m

• find a random permutation of this vector

• split it up into the first n and the last m numbers, calling them x’ and y’

Because under H0 any rearrangement of the data is just as likely as any other, this new
data set is just as good as the original one. So we can now find T’ from these observations.
Because we have completely mixed the X’s and the Y’s we have ET’=0 for sure. Generating
many T’s we get an idea of “likely” values of T, and can compare the one in the real data
set to them.
This is called a permutation test.

5.3.6.2 Example (5.3.15) Say we have X1, ..., Xn ∼ N(µ1, σ) and Y1, ..., Ym ∼ N(µ2, σ).
Now the LRT test for this is based on

T = x̄− ȳ
s
√

1/n+ 1/m

where

s2 =
(n− 1)s2

x + (m− 1)s2
y

n+m− 2

which has a t distribution with n+m-2 degrees of freedom, and we reject H0 if |T | > qt(1−
α/2, n+m− 2).
Let’s compare this test (which is known to be optimal) to a permutation test.
The 2-sample t test is already implemented in R in t.test, and we can find its power either
via simulation or analytically. The permutation test is implemented in

201



perm.test <- function (x, y, alpha=0.05, B = 1000) {
n <- length(x)
m <- length(y)
Tdata <- mean(x) - mean(y)
Tsim <- rep(0, B)
for (i in 1:B) {

xy <- sample(c(x, y), size = n + m)
Tsim[i] <- mean(xy[1:n]) - mean(xy[(n + 1):(n + m)])

}
length(Tsim[abs(Tsim) > abs(Tdata)])/B

}

as an example:

x <- rnorm(50, 10, 2)
y <- rnorm(40, 10, 2)
t.test(x, y)$p.value

## [1] 0.6053234

perm.test(x, y)

## [1] 0.614

y <- rnorm(40, 11, 2)
t.test(x, y)$p.value

## [1] 0.006282209

perm.test(x, y)

## [1] 0.004

perm.power <- function(mu=c(0, 0), sigma=c(1, 1),
n=c(50, 50), alpha=0.05, B=1000) {

pvals <- matrix(0, B, 2)
for(i in 1:B) {

x <- rnorm(n[1], mu[1], sigma[1])
y <- rnorm(n[2], mu[2], sigma[2])
pvals[i, 1] <- t.test(x, y)$p.value
pvals[i, 2] <- perm.test(x, y)

}
c(sum(pvals[, 1]<alpha), sum(pvals[, 2]<alpha))/B
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}
mu <- seq(0, 0.8, length=10)
power <- matrix(0, 10, 3)
colnames(power) <- c("mu2", "t-test", "permutation")
power[, 1] <- mu
for(i in 1:10)

power[i, 2:3] <- perm.power(mu=c(0, mu[i]))
power <- round(power, 3)

kable.nice(power, do.row.names = FALSE)

mu2 t-test permutation
0.000 0.056 0.057
0.089 0.065 0.069
0.178 0.154 0.149
0.267 0.259 0.259
0.356 0.443 0.441
0.444 0.616 0.617
0.533 0.760 0.760
0.622 0.878 0.879
0.711 0.936 0.938
0.800 0.972 0.971

and we see that the permutation test has a power quite similar to the t test.

5.4 A Simple Example (Exponential)

say X1, ..., Xn iid with

f(x) = β exp(−βx), x > 0

and we want to test

H0 : β = β0 vs Ha : β 6= β0

5.4.1 Wald test

we can often find such a test by first finding the method of moments estimator:
E[X] = 1/β, so β̂1 = 1/x̄
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so if 1/x̄ is close to β0 we should accept the null hypothesis, otherwise we should reject it.
This is of course equivalent to x̄ is close to 1/β0. Now var(X) = 1/β2 and so

√
n
X̄ − 1/β0

1/β0
=
√
n(β0X̄ − 1) ∼ N(0, 1)

and we reject H0 if

√
n|β0x̄− 1| > zα/2

5.4.2 LRT test (5.4.1)

f(xxx|β) =
n∏
i=1

βe−βxi = βne−β
∑

xi

l(β|xxx) = n log β − β
∑

xi

dl(β|xxx)
dβ

= n

β
−
∑

xi = 0

β̂ = 1/x̄
for the likelihood ratio test statistic we find

λ(xxx) = βn0 e
−β0

∑
xi

(1/x̄)ne−(1/x̄)
∑

xi
= (β0x̄)n en(1−β0x̄)

− 2 log λ(xxx) = −2 [n log (β0x̄) + n(1− β0x̄]
=

and we reject H0 if

(−2) [n log(β0x̄) + n− β0x̄] > qchisq(1− α, 1)

How about using the LRT without the chisquare approximation? As always we have
“reject H0 if λ(xxx) is small”
iff
“reject H0 if −2 log λ(xxx) is large”"
iff
“reject H0 if x̄ is small or large”"
this can be seen by drawing the graph of the lrt as a function of x̄:

n <- 100; beta0 <- 1
fun <- function(xbar)

(-2)*(n*log(xbar*beta0)+n-beta0*n*xbar)
ggcurve(fun=fun, A=0.1, B=5)
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so we reject H0 if x̄ < cv1 or x̄ > cv2.
Now under the null hypothesis Xi ∼ Exp(β0), so ∑n

i=1Xi ∼ Gamma(n, 1/β0) and we have

α/2 = P (X̄ < cv1) = P (
n∑
i=1

Xi < n× cv1) = pgamma(n× cv1, n, β0)

and so cv1 = qgamma(α/2, n, β0)/n. And also clearly we have cv2 = qgamma(1 −
α/2, n, β0)/n.
This solution only works because we know the distribution of a sum of exponential variables
(gamma), in another example we might be stuck with using the chisquare approximation.

5.4.3 Which test is better?

for that we need to find the power of the tests:

• Wald test:
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PowA(β1) = P
(√

n|β0X̄ − 1| > zα/2|β1
)

=

1− P
(
−zα/2 <

√
n(β0X̄ − 1) < zα/2|β1

)
=

1− P
(
−zα/2 +

√
n <
√
nβ0X̄) < zα/2β0|β1

)
=

1− P
(

[−zα/2 +
√
n]β0

β1
<
√
nβ0X̄) < [zα/2 +

√
n]β0

β1
|β1

)
=

=1− P
(

[−zα/2 +
√
n]β0

β1
−
√
n <
√
n(β0X̄ − 1) < [zα/2 +

√
n]β0

β1
−
√
n|β1

)
=

Φ([zα/2 +
√
n]β0

β1
−
√
n)− Φ([−zα/2 +

√
n]β0

β1
−
√
n)

• likelihood ratio test:

PowB(β1) = P (cv1 < X̄ < cv2|β1) =
P (n · cv1 <

∑
Xi < n · cv2|β1) =

pgamma(n · cv2;n; β1)− pgamma(n · cv1;n; β1)
here are the power graphs:

alpha <- 0.05
beta1 <- seq(0.7, 1.5, length = 250)
Pow1 = 1-(pnorm((qnorm(1-alpha/2) + sqrt(n)) * beta1/beta0 -

sqrt(n)) - pnorm((-qnorm(1 - alpha/2) + sqrt(n)) *
beta1/beta0 - sqrt(n)))

cv <- qgamma(c(alpha/2, 1 - alpha/2), n, beta0)/n
Pow2 <- 1-(pgamma(n*cv[2], n, beta1) -

pgamma(n*cv[1], n, beta1))
df <- data.frame(beta=c(beta1, beta1),

Power=c(Pow1, Pow2),
Test=rep(c("Wald", "Lrt"), each=250))

ggplot(data=df, aes(beta, Power, color=Test)) +
geom_line()

206



0.25

0.50

0.75

1.00

0.8 1.0 1.2 1.4
beta

P
ow

er

Test

Lrt

Wald

and so we see that it depends on the true value of β. Of course the big advantage of the
LRT test here is that we were able to turn it into an exact test and so don’t have to worry
about the sample size.

5.5 A Longer Example - Testing

Say X1, .., Xn ∼ Beta(a, 1)
We want to test

H0 : a = a0 vs H1 : a 6= a0

5.5.1 Case n=1

We already know that E[X]=a/(a+1), so x ≈ a/(a+ 1) or a ≈ x/(1− x). So a test could be
based on the rejection region

x/(1− x) < c1 or x/(1− x) > c2

But the function x/(1-x) is monotonically increasing on [0, 1], so this rejection region is
equivalent to one with

x < c1 or x > c2

Now
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α/2 = P (X < c1) = ca0
1

c1 = (α/2)1/a0

α/2 = P (X > c2) = ca0
2

c2 = (1− α/2)1/a0

For example if we wish to test a0=0.5 at the 5% level we reject the null hypothesis if

a0=0.5;alpha=0.05
round(c(alpha/2,1-alpha/2)^(1/a0), 5)

## [1] 0.00063 0.95062

5.5.2 Case n=2

say x and y. Again we might try to use the fact that E[(X+Y)/2] = a/(1+a) But eventually
we would need to find the density of X+Y. Using the convolution formula if 0 < t < 1 this
would mean finding the integral

∫ t

t−1
[x(1− x)]a−1dx

and this integral does not exist analytically. What can we do? One idea is to find the integral
numerically:

dbeta2 <-function (x, a=1) {
f <- function(x, t) {(x*(t-x))^(a-1)}
y <- 0*x
for(i in 1:length(x)) {

if(x[i] <1) y[i] <- integrate(f, 0, x[i], t=x[i])$value
else y[i] <- integrate(f,x[i]-1, 1, t=x[i])$value

}
a^2*y

}
pbeta2 <- function(x, a=1) {

y <- x
for(i in 1:length(x))

y[i] <- integrate(dbeta2, 0, x[i], a=a)$value
y

}
qbeta2 <- function (p, a=1) {

pbeta2 <- function(x) {integrate(dbeta2, 0, x, a=a)$value}
low <- 0
high <- 2
repeat {
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mid <- (low+high)/2
fmid <- pbeta2(mid)
if(abs(fmid-p) <0.001) break
if(fmid<p) low <- mid
else high <- mid

}
mid

}
round(c(qbeta2(0.025, 1/2), qbeta2(0.975, 1/2)), 3)

## [1] 0.031 1.594

Alternatively we can use simulation to find the null distribution:

B <- 1e4
xy <- matrix(rbeta(2*B, 0.5, 1), ncol=2)
z <- apply(xy, 1, sum)
round(quantile(z,c(0.025,0.975)), 3)

## 2.5% 97.5%
## 0.035 1.628

This of course works equally well for n=3, 4, . . . whereas the numerical solution gets much
harder quickly.

5.5.3 Case large n

From the CLT we know that

√
n
x̄− µ0

σ0
→ N(0, 1)

where

µ0 = a0

a0 + 1

and

σ2
0 = a0

(a0 + 1)2(a0 + 2)
therefore

cv = µ0 ± zα/2σ0/
√
n = 1

a0 + 1

(
a0 ± zα/2

√
a0

n(a0 + 2)

)
So we have the following test: reject H_0 if x̄ <cv_1 or x̄ >cv_2.
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5.5.4 One-sided tests

above we tested

H0 : a = a0 vs H1 : a 6= a0

Often we want to test instead alternatives of the form

H0 : a = a0 vs H1 : a < a0

or

H0 : a = a0 vs H1 : a > a0

In that case choose the appropriate rejection region, with α instead of α/2

5.5.5 p-value

if we want to quote the p-value of this test we calculate it as follows: say we observed x̄ = t in
our experiment. The p-value is the probability of repeating the experiment and observing a
value of the test statistic as “unlikely” (given the null hypothesis) as that seen in the original
experiment.
Say we observed t > a0 and let ȳ be the sample mean of the new experiment, then

p = 2P (Ȳ > t) = 2− 2Φ(
√
n
t− µ1

σ0
)

the “2” is because we do a two-sided test.

5.5.6 Likelihood ratio test

we saw before that the mle was given by

â2 = n/T

where T = −∑ log xi. So using the results of section 4.3 we have
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− 2 log λ(xxx) =
2 [l(â2)− l(a0)] =

2
[
n log â2 + (â2 − 1)

n∑
i=1

log xi − n log a0 − (a0 − 1)
n∑
i=1

log xi
]

=

2
[
n log â2

a0
− (â2 − a0)

n∑
i=1

log xi
]

=

2
[
n log â2

a0
− (â2 − a0)(−n/â2)

]
=

2n
[
log â2

a0
+ a0

â2
− 1

]

and we reject H_0 if

−2 log λ(xxx) > qchisq(1− α, 1)

One problem with both these methods is that they are large sample methods, they rely
on the CLT. Can we derive a method that also works for small samples? The basic idea of
the LRT is to reject the null hypothesis if λ(xxx) is small, which is the same as (−2) log λ(xxx)is
large. Now consider this:

h(a) = log a

a0
+ a0

a
− 1

dh

da
= 1
a
− a0

a2 = a− a0

a2 > 0

if a > a0. So h is decreasing on (0, a0) and increasing on (a0,∞), and so h is large for small
or large values of a.
Now â2 = n/T , and so
â2 is small or large
iff
T is small or large
If H0 is true T ∼ Γ(n, 1/a0) and if we use α/2 on the left and the right we find

α/2 = P (T < x) = pgamma(x, n, a0)

x = qgamma(1− α/2, n, a0)

Similarly α/2 = P (T > y) yields T > qgamma(1− α/2, n, a0).
Note
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pgamma(x, n, a) =∫ x

0

an

(n− 1)!t
n−1e−atdt =∫ ax

0

1
(n− 1)!y

n−1eydy =

pgamma(ax, n, 1)
and so

qamma(y, n, a) = x

y = pamma(x, n, a) = gamma(ax, n, 1)
qamma(y, n, 1) = ax

qamma(y, n, a) = qamma(y, n, 1)/a
so we reject H_0 if
a0T < qgamma(α/2, n, 1) or a0T > qgamma(1− α/2, n, 1)

5.5.7 One-sided tests

Say we want to test Ha : a < a0. Then we have the rejection region a0T < qgamma(α, n, 1)

5.5.8 p-value

p = 2P (T > t|a = a0) = 2(1− pgamma(t, n, a0))
if t > a0.

5.5.9 Bayesian analysis

Let’s use again the prior Exp(1), then we know that a|x ∼ Γ(n+ 1, T + 1). A test could be
designed as follows: reject H_0 if
a0 < qgamma(α/2, n+ 1, T + 1) or a0 > qgamma(1− α/2, n+ 1, T + 1)
But from the above we know that

a0 < qgamma(alpha/2, n+ 1, T + 1) = qgamma(α/2, n+ 1, 1)/(T + 1)

iff

a0(T + 1) < qgamma(α/2, n+ 1, 1)

and we see that this is essentially the same as the test based on the mle. (except with n+1
instead of n and T+1 instead of T)
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5.5.10 Power

Let’s go back to the two tests based on the sample mean and the likelihood ratio. Which of
these is best? That depends on the power of the test. First we have

• Wald test

x = µ+ σ√
n

Φ−1(α/2)

y = µ+ σ√
n

Φ−1(1− α/2)

µ1 = a1

a1 + 1
σ2

1 = a1

(a1 + 1)2(a1 + 2)
1− Pow(a1, n) = P (x < X̄ < y|a1) =

P

(
√
n
x− µ1

σ1
<
√
n
X̄ − µ1

σ1
<
√
n
y − µ1

σ1

)
=

Φ(
√
n
y − µ1

σ1
)− Φ(

√
n
x− µ1

σ1
)

• lrt test

P (qgamma(α/2, n, 1) < a0T < qgamma(1− α/2, n, 1)|a1) =

P
(
qgamma(α/2, n, 1)a1

a0
< a1T < qgamma(1− α/2, n, 1)a1

a0
|a1

)
=

pgamma(qgamma(α/2, n, 1)a1

a0
, n, 1)− pgamma(qgamma(α/2, n, 1)a1

a0
, n, 1)

so

a0 <- 1; n <- 50; alpha <- 0.05
a <- seq(a0/3, 2*a0, length=250)
mu <- a0/(a0+1)
sigma <- sqrt(a0/(a0+1)^2/(a0+2))
mu1 <- a/(a+1)
sigma1 <- sqrt(a/(a+1)^2/(a+2))
xy <- mu+sigma/sqrt(n)*qnorm(c(alpha/2, 1-alpha/2))
Pow1 <- 1-(pnorm(sqrt(n)/sigma1*(xy[2]-mu1)) -

pnorm(sqrt(n)/sigma1*(xy[1]-mu1)))
Pow2 <- 1-(pgamma(a/a0*qgamma(1-alpha/2, n, 1), n, 1) -

pgamma(a/a0*qgamma(alpha/2, n, 1), n, 1))
df <- data.frame(a=c(a, a),

Power=c(Pow1, Pow2),
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Test=rep(c("Wald", "Lrt"), each=250))
ggplot(data=df, aes(a, Power, color=Test)) +

geom_line()
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Of course the Wald type test only works for large samples. A difficult question is how large
n needs to be. Simulation can help to decide that.
We also have two tests for the case n=1. How do they relate to each other? For the test
based on the likelihood ratio statistic we reject H0 if
T < qgamma(α/2, n, a0) or T > qgamma(1− α/2, n, a0)
but now T = − logX so
− log x < qgamma(α/2, n, a0) or − log x > qgamma(1− α/2, n, a0)
iff
x < exp[−qgamma(1− α/2, n, a0)] or x > exp[−qgamma(α/2, n, a0)]
for the direct test we reject H_0 if
x < (α/2)1/a0 or x > (1− α/2)1/a0

Let’s find some of these critical values

a0 <- seq(0.1, 10, length=10)
cv1 <- (alpha/2)^(1/a0)
cv2 <- (1-alpha/2)^(1/a0)
cv1a <- exp(-qgamma(1-alpha/2, 1, a0))
cv2a <- exp(-qgamma(alpha/2, 1, a0))
kable.nice(round(cbind(a0,cv1,cv1a,cv2,cv2a), 4),

do.row.names = FALSE)
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a0 cv1 cv1a cv2 cv2a
0.1 0.0000 0.0000 0.7763 0.7763
1.2 0.0462 0.0462 0.9791 0.9791
2.3 0.2011 0.2011 0.9891 0.9891
3.4 0.3379 0.3379 0.9926 0.9926
4.5 0.4405 0.4405 0.9944 0.9944
5.6 0.5175 0.5175 0.9955 0.9955
6.7 0.5766 0.5766 0.9962 0.9962
7.8 0.6232 0.6232 0.9968 0.9968
8.9 0.6607 0.6607 0.9972 0.9972

10.0 0.6915 0.6915 0.9975 0.9975

and we see they are the same! Here is why:
qgamma(y, 1, a) is the solution to the equation

y =
∫ x

0

a1

(1− 1)!t
1−1e−atdt =∫ x

0
ae−aydy = 1− e−ax

e−x = (1− y)1/a

How about n=2? This is much trickier because one test is based on x+y, the other one on
log(x)+log(y).
Here is a little simulation:

B <- 1e4
r <- matrix(0, B, 2)
for(i in 1:B) {

xy <- rbeta(2, 1/2, 1)
if(sum(xy)<0.03125 | sum(xy)>1.593) r[i,1] <- 1
if(-sum(log(xy))<0.484 | -sum(log(xy))>11.14) r[i,2] <- 1
if(r[i, 1]!=r[i, 2]) break

}
xy

## [1] 0.026905593 0.002043601

which shows that sometime one test rejects H0 while the other does not.
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So then which is better? We do have a formula for the power of the likelihood ratio test, the
other one needs to be done via simulation. Here is the result for a0 = 0.5:

a0 <- 1; B <- 1e4
xy <- matrix(rbeta(2*B, a0, 1), ncol=2)
z <- apply(xy, 1, sum)
cv <- quantile(z, c(0.025,0.975))
a <- seq(0.1, 10,length=250)
Pow1 <- rep(0, 250)
for(i in 1:250) {

xy <- matrix(rbeta(2*B, a[i],1), ncol=2)
z <- apply(xy, 1, sum)
z1 <- z[z<cv[1]]
z2 <- z[z>cv[2]]
Pow1[i] <- length(c(z1, z2))/B

}
Pow2 <- 1-(pgamma(a/a0*qgamma(0.975,2,1),2,1)-

pgamma(a/a0*qgamma(0.025,2,1),2,1))
df <- data.frame(a=c(a, a),

Power=c(Pow1, Pow2),
Test=rep(c("Wald", "Lrt"), each=250))

ggplot(data=df, aes(a, Power, color=Test)) +
geom_line()
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and we see that the two tests have very similar power.
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6 Interval Estimation

6.1 Interval Estimation - Basics

In real life point estimates are rarely enough, usually we also need some estimate of the
error in our estimate.

6.1.0.1 Example (6.1.1) A census of all the students at the Colegio 10 years ago showed a
mean GPA of 2.75. In our survey of 150 students we find today a mean GPA of 2.53. How
much (if at all) has the GPA changed?
The problem of course is that the sample mean GPA depends on the sample, if we repeated
our survey tomorrow with a different sample of 150 students, their mean GPA will not again
be 2.53. But how far away from 2.53 might it be? Could it actually be higher than 2.75?
One way to answer such questions is to find an interval estimate rather than a point
estimate.

6.1.1 Frequentist Solution: Confidence Intervals

6.1.1.1 Definition (6.1.2) Say we have X1, ..., Xn iid f(x|θ). Then (L(XXX), U(XXX)) is a
100(1− α)% confidence interval for θ iff

P (L(XXX) < θ < U(XXX)) ≥ 1− α
for all θ.
Note: in a confidence interval it is the endpoints that are random variables!

6.1.1.2 Example (6.1.3) say X1, .., Xn ∼ N(µ, σ), then a 100(1 − α)% confidence interval
for the population mean is given by

x̄± tn−1,α/2
s√
n

Here tn−1,α is the 1− α critical value of a t distribution with n degrees of freedom.
Note that this interval is given in the form point estimate ± error, which is quite often
true in Statistics, although not always.

We know that
√
n X̄−µ

s
∼ t(n− 1). Denote the cdf of a t(n) by F, then
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P

(
X̄ − tn−1,α/2

s√
n
< µ < X̄ + tn−1,α/2

s√
n

)
=

P

(
µ− tn−1,α/2

s√
n
< X̄ < µ+ tn−1,α/2

s√
n

)
=

P

(
−tn−1,α/2 <

√
n
X̄ − µ
s

< tn−1,α/2

)
=

2P
(
√
n
X̄ − µ
s

< tn−1,α/2

)
− 1 =

2F (tn−1,α/2)− 1 =
2F (F−1(1− α/2))− 1 =
2(1− α/2)− 1 = 1− α

As a numerical example consider the case of the new text book:

n <- 150; xbar <- 2.53; s <- 0.65; alpha <- 0.05
round(xbar+c(-1,1)*qt(1-alpha/2, n-1)*s/sqrt(n), 3)

## [1] 2.425 2.635

What does that mean: a 90% confidence interval for the mean is (2.425, 2.635)? The
interpretation is this: suppose that over the next year statisticians (and other people using
statistics) all over the world compute 100,000 90% confidence intervals, many for the mean,
others maybe for medians or standard deviations or . . . , than about 90% or about 90,000
of those intervals will actually contain the parameter that is supposed to be estimated, the
other 10,000 or so will not.
It is tempting to interpret the confidence interval as follows: having found our 90% confidence
interval of (2.425, 2.635), we are now 90% sure that the true mean GPA (the one for all the
students at the Colegio) is somewhere between 2.425 and 2.635.
Strictly speaking this interpretation is not correct because once we have computed the in-
terval (2.425, 2.635) the true mean GPA is either in it or not. There is now no longer a
frequentist interpretation of probability.

6.1.2 Coverage

The main property of confidence intervals is their coverage, that is just the equation above.

6.1.2.1 Example (6.1.4) say X1, .., Xn ∼ Ber(p), then by the CLT

X̄ ∼ N
(
p,
√
p(1− p)/n

)
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so we have a candidate for a 100(1− α)% CI:

x̄± z1−α/2

√
x̄(1− x̄)/n

But this is based on the CLT, so there is a question how large n needs to be for this to work.
Let’s see:

n <- 10; alpha <- 0.05; B <- 1000
p <- seq(0.1, 0.9, length = 100)
cov <- 0*p
crit <- qnorm(1 - alpha/2)
for (i in 1:100) {

xbar <- rbinom(B, size = n, prob = p[i])/n
L <- xbar-crit*sqrt(xbar*(1-xbar)/n)
U <- xbar+crit*sqrt(xbar*(1-xbar)/n)
cov[i] <- sum(L < p[i] & U > p[i])/B

}
ggplot(data.frame(p=p, Coverage=cov), aes(p, Coverage)) +

geom_line() +
geom_hline(yintercept=0.95)
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As we can see, it does not work very well at all.
Notice the ragged appearance of the coverage graph. This is typical for discrete rv’s like the
Bernoulli.
Here we find the coverage using simulation, which is fine and even uses the spirit of confidence
intervals.
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Because this is a discrete random variable we can however also calculate the coverage exactly,
using R : say we want to find the coverage for the case n=10, p=0.43. In this case x is one
of 0, 1, 2.., 10, so x̄ can only have values 0/10, 1/10, . . . , 10/10, and so we can find all the
possible intervals:

n <- 10; xbar <- 0:n/n
LU <- matrix(0, n+1, 2)
LU[, 1] <- xbar-crit*sqrt(xbar*(1-xbar)/n)
LU[, 2] <- xbar+crit*sqrt(xbar*(1-xbar)/n)
df <- round(data.frame(x=0:n, xbar=xbar, L=LU[, 1], U=LU[, 2]), 3)
kable.nice(df, do.row.names = FALSE)

x xbar L U
0 0.0 0.000 0.000
1 0.1 -0.086 0.286
2 0.2 -0.048 0.448
3 0.3 0.016 0.584
4 0.4 0.096 0.704
5 0.5 0.190 0.810
6 0.6 0.296 0.904
7 0.7 0.416 0.984
8 0.8 0.552 1.048
9 0.9 0.714 1.086

10 1.0 1.000 1.000

Notice that for x=2 to x=7 we have intervals that contain p=0.43, so the true coverage is

Coverage = P (L(X) < p < U(X)|p = 0.43) =
P (2 ≤ X ≤ 7|p = 0.43) =

7∑
i=2

(
10
i

)
0.43i(1− 0.43)10−i

round(sum(dbinom(2:7, n, 0.43)), 4)

## [1] 0.9489

Let’s redo the coverage graph above, now using exact calculations:

n <- 10; alpha <- 0.05
xbar <- 0:n/n
p <- seq(0.01, 0.99, length = 250)
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cov <- 0*p
crit <- qnorm(1 - alpha/2)
LU <- matrix(0, n+1, 2)
LU[, 1] <- xbar-crit*sqrt(xbar*(1-xbar)/n)
LU[, 2] <- xbar+crit*sqrt(xbar*(1-xbar)/n)
for (i in 1:250) {

m <- (0:n)[LU[, 1]<p[i] & p[i]<LU[, 2]]
cov[i] <- sum(dbinom(m, n, p[i]))

}
ggplot(data.frame(p=p, Coverage=cov), aes(p, Coverage)) +

geom_line()+
geom_hline(yintercept=0.95)
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A much better method was invented by Clopper and Pearson in 1934. It is implemented in
R in the binom.test command. Let’s check its coverage:

n <- 10; alpha <- 0.05
p <- seq(0.01, 0.99, length = 250)
cov <- 0*p
LU <- matrix(0, n+1, 2)
for(x in 0:n) LU[x+1, ] <- binom.test(x, n)$conf.int
for (i in 1:250) {

m <- (0:n)[LU[, 1]<p[i] & p[i]<LU[, 2]]
cov[i] <- sum(dbinom(m, n, p[i]))

}
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ggplot(data.frame(p=p, Coverage=cov), aes(p, Coverage)) +
geom_line()+
geom_hline(yintercept=0.95)
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Now this method has some over-coverage. It is said to be conservative, that is its intervals
are a bit larger than they need to be. This is not nice but often acceptable, whereas under-
coverage is not.

6.1.2.2 Example (6.1.5) sayX ∼ N(µ, 1) and we are told that the routine norm1 calculates
95% confidence intervals for µ. Let’s check its coverage.
Again we can use simulation:

mu <- 0.76; B <- 1e4
x <- rnorm(B, mu)
LU <- norm1(x)
head(round(cbind(x, LU), 3))

## x
## [1,] 1.607 -0.353 3.567
## [2,] 0.350 -1.610 2.310
## [3,] -0.102 -2.062 1.858
## [4,] 0.142 -1.818 2.102
## [5,] 2.112 0.152 4.072
## [6,] 0.283 -1.677 2.243
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sum(LU[, 1]<mu & mu<LU[, 2])/B

## [1] 0.9468

Can we do this here as well without simulation?

x <- seq(-3, 3, 0.01)
LU <- norm1(x)
df <- data.frame(x=c(x, x),

y=c(LU[, 1], LU[, 2]),
Limit=rep(c("L", "U"), each=length(x)))

ggplot(data=df, aes(x, y, color=Limit)) +
geom_line()
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shows that the limits are strictly increasing. This need not be the case in general! So say
we want to check coverage for µ. Then there exists x1 such that L(x1) = µ and x2 such that
L(x2) = µ. For example, if µ = 0.5 we find

x1 <- x[abs(LU[, 1]-0.5)==min(abs(LU[, 1]-0.5))]
x2 <- x[abs(LU[, 2]-0.5)==min(abs(LU[, 2]-0.5))]
ggplot(data=df, aes(x, y, color=Limit)) +

geom_line() +
geom_hline(yintercept = 0.5) +
geom_vline(xintercept = c(x1, x2))
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and clearly

cov(µ) =
∫ x2

x1
f(x;µ)dx

round(diff(pnorm(c(x2, x1), 0.5)), 4)

## [1] 0.95

6.1.3 Bayesian Solution: Credible Intervals

6.1.3.1 Definition (6.1.6) Say we have X1, .., Xn iid f(x|θ). Then (L(xxx), U(xxx)) is a 100(1−
α)% credible interval for θ iff

P (L(xxx) < θ < U(xxx)|xxx) = 1− α

Notice now the data appears in the conditional part, so this is a probability based on the
posterior distribution of θ|xxx.
Also note that now the upper and lower limits are not random variables.

6.1.3.2 Example (6.1.7) say X1, .., Xn ∼ N(µ, σ)
To keep things simple we will assume that σ is known, so we just need a prior on µ. Let’s
say we use µ ∼ N(µ0, τ), then we have previously seen that µ|xxx ∼ N(a, b) where
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c2 = n

σ2 + 1
τ 2

a = (∑xi)/σ2 + µ2
0/τ

2

c2

b = 1/c

is again a normal.
How can we get a credible interval from this? The definition above does not determine a
unique interval, essentially we have one equation for two unknowns, so we need an additional
condition. Here are some standard solutions:

• equal tail probability intervals: choose L and U such that

P (θ < L(xxx)|xxx) = α/2P (θ > U(xxx)|xxx) = α/2

• highest posterior density intervals (HPD). Here we choose the limits in such a way that
the density has the same value. That is, we have the solution to the system of equations

P (L(xxx) < θ < U(xxx)|xxx) = 1− α
f(L(xxx)|xxx) = f(U(xxx)|xxx)

• quantiles from simulated data

Let’s consider as a numerical example the text book data:
First we need to choose σ, µ0 and τ . Let’s use σ = 0.65, µ0 = 3.0, τ = 1.0, then

• equal tail probability intervals

n <- 150; mu0 <- 3.0; sigma <- 0.65; tau <- 1.0
c2 <- n/sigma^2+1/tau^2
a <- (150*2.53/sigma^2+mu0^2/tau^2)/c2
b <- 1/sqrt(c2)
round(qnorm(c(0.025, 0.975), a, b), 2)

## [1] 2.44 2.65

• highest posterior density interval. In our case this yields the same interval as above
because the normal density is symmetric around the mean.

• quantiles from simulated data.

round(quantile(rnorm(1e4, a, b), c(0.025, 0.975) ), 2)
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## 2.5% 97.5%
## 2.44 2.65

The main property of credible intervals is just the equation that defines them.

6.1.3.3 Example (6.1.8) say X1, .., Xn ∼ Ber(p), and let’s use as a prior on p the U[0,1].
Then we saw before that the posterior distribution is Beta(∑xi + 1, n+ 1−∑xi).

• with the equal tail probabilities method we find

L(x) = qbeta(α/2, 1 +
∑

x, n+ 1−
∑

x)

U(x) = qbeta(1− α/2,
∑

x, n+ 1−
∑

x)

• HPD

Let y = ∑
xi, then we need to solve the system of equations

∫ b

a

(n+ 1)!
y!(n− y)!t

y(1− t)n−ydt = 1− α

ay(1− a)n−y = by(1− b)n−y

and this has to be done numerically.

6.1.4 Multidimensional Estimates

6.1.4.1 Example (6.1.9) say X1, .., Xn ∼ N(µ, σ) and we are interested in estimating µ and
σ simultaneously. So we want to find a region A(xxx) ∈ R× R such that

P (A(X)) = 1− α

We already know that x̄ and s are good point estimators of µ and σ. Moreover it can be
shown that x̄ and s are independent, so
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P

(
X̄ − tn−1,w/2

s√
n
< µ < X̄ + tn−1,w/2

σ√
n
,

(n− 1)s2

qχ2(1− w/2) < σ2 <
(n− 1)s2

qχ2(w/2)

)
=

P

(
X̄ − tn−1,w/2

s√
n
< µ < X̄ + tn−1,w/2

σ√
n

)
·

P

(
(n− 1)s2

qχ2(1− w/2) < σ2 <= (n− 1)s2

qχ2(w/2)

)
=

(1− w/2)2

so if we want a (1− α)100% confidence region we need to use

w = 1−
√

1− α
What does this region look like?

n <- 100; mu0 <- 0; sigma <- 1
x <- rnorm(100, mu0, sigma)
xbar <- mean(x)
s <- sd(x)
w <- 1 - sqrt(1 - 0.05/2)
a <- qnorm(1 - w/2)/sqrt(n)
cv1 <- xbar + c(-1, 1)*qnorm(1-w/2)*sigma/sqrt(n)
cv2 <- c((n-1)*s^2/qchisq(1-w/2, n-1),

(n-1)*s^2/qchisq(w/2, n-1))
mu <- seq(cv1[1]-0.5, cv1[2]+0.5, length = 250)
sigma <- seq(0.9*cv2[1]^0.5, 1.1*cv2[2]^0.5, length = 250)
xy <- expand.grid(mu, sigma)
I <- rep(FALSE, dim(xy)[1])
for(i in 1:dim(xy)[1]) {

if(xbar-a*xy[i, 2] < xy[i, 1] &
xy[i, 1] < xbar+a*xy[i, 2] &
cv2[1] < xy[i, 2]^2 &
xy[i, 2]^2 < cv2[2]) I[i] <- TRUE

}
df <- data.frame(x=xy[I,1], y=xy[I, 2])
ggplot(data=df, aes(x, y)) +

geom_point(alpha=0.3)
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Say we have some density f(.;a,b) and a 95% confidence region for (a, b) that looks like this:
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But actually, we want a 95% confidence interval for a. So how about
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about (1.8, 6.3). But this will clearly overcover badly because it would be the same one-
dimensional interval as we would get if the confidence regions were a square:
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but of course the region of the square is much larger. There is in fact no known way to get
confidence intervals from confidence regions!
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6.2 Methods for Finding Interval Estimates

6.2.1 Inverting a Hypothesis Test

Hypothesis testing and confidence intervals are closely related, in fact, a hypothesis test can
always be turned into a confidence interval and vice versa. Say we have a hypothesis test
with type I error probability α and we define the acceptance region of the test A(θ0) as the
complement of the critical region when testing H0 : θ = θ0. That is A consists of all those
points in Rn that would have lead to a failure to reject the null hypothesis.
Define the set C(xxx) in the parameter space by

C(xxx) = {θ : xxx ∈ A(θ)}

In other words, the confidence interval is the set of all parameters for which the hypothesis
test would have accepted H0.

6.2.1.1 Example (6.2.1) Let X1, .., Xn ∼ N(µ, σ). Say we want to find a confidence interval
for µ. To do this we first need a hypothesis test for

H0 : µ = µ0 vs H1 : µ 6= µ0

Of course we have the 1-sample t-test with the test statistic

T =
√
n
x̄− µ0

s

which rejects the null if |T | > tα/2,n−1. So it accepts H0 if |T | ≤ tα/2,n−1 and we have the
acceptance region

A(µ0) =
{
xxx||T | ≤ tα/2,n−1

}
Now

1− α = P
(
|T | < tn−1,α/2

)
=

P

(
|
√
n
X̄ − µ
s
| < tn−1,α/2

)
=

P

(
−tn−1,α/2 <

√
n
X̄ − µ
s

< tn−1,α/2

)
=

P

(
µ− tn−1,α/2

s√
n
< X̄ < µ+ tn−1,α/2

s√
n

)
=

P

(
X̄ − tn−1,α/2

s√
n
< µ < X̄ + tn−1,α/2

s√
n

)

and so a 100(1− α)% confidence interval for µ is given by x̄± tn−1,α/2
s√
n
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6.2.1.2 Example (6.2.2) Let’s look at another example to illustrate the important point
here. Let’s say we have X1, .., Xn ∼ Ber(p) and we want to find a 100(1− α)% CI for p. To
do so we first need to find a test for

H0 : p = p0 vs Ha : p 6= p0

Let x = ∑
xi be the number of successes. We have previously found the likelihood ratio test

to be: reject H0 if |x− np0| > c.
What is c? We have

α = Pp=p0(reject H0) =
Pp=p0(|X − np0| > c) =
1− Pp=p0(|X − np0| ≤ c) =
1− Pp=p0(np0 − c ≤ X ≤ np0 + c)

so

1− α = pbinom(np0 + c, n, p0)− pbinom(np0 − c− 1, n, p0)

Let’s use R and a simple search to find c:

find.c <- function(p, n=100, alpha=0.05) {
k <- 0
repeat {

k <- k + 1
if(pbinom(n*p+k, n, p) -

pbinom(n*p-k-1, n, p) > 1 - alpha)
break

}
k
cv <- k
x <- 0:n
y <- pbinom(n*p+x, n, p) - pbinom(n*p-x-1, n, p)
reject <- ifelse(x<n*p-cv | x>n*p+cv, TRUE, FALSE)
data.frame(x, y, p=rep(p, n+1), reject)

}
df <- find.c(0.4)
ggplot(data=df[1:20, ], aes(x, y)) +

geom_point() +
geom_vline(xintercept = 10) +
geom_hline(yintercept = 0.95) +
xlab("c") + ylab("")
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Notice that the actual probability is a bit higher than 0.95. This is again because we have
a discrete random variable.
So for p0 = 0.4 and n=100 we find c=10. Therefore the test is as follows: reject the null
hypothesis if |x− 40| > 10. This is the same as x < 30 or x > 50.
We can illustrate this acceptance region as follows:

ggplot(data=df, aes(x, p, color=reject)) +
geom_point() + ylim(c(0,1))
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This plots a dot for each possible observation x (0-n), in red if observing this value leads to
accepting the null hypothesis, in blue if it means rejecting H0.
Let’s do this now for other values of p as well:

p <- seq(0.01, 0.99, length=50)
df <- find.c(p[1])
for(i in 2:50)

df <- rbind(df, find.c(p[i]))
ggplot(data=df, aes(x, p, color=reject)) +

geom_point() + ylim(c(0,1))
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This graph tells us everything about the test (for a fixed n).
For example, say we wish to test H0 : p = 0.25 and we observe x = 31, then

ggplot(data=df, aes(x, p, color=reject)) +
geom_point() +
geom_hline(yintercept = 0.25, size=2) +
geom_vline(xintercept = 31, size=2)
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shows that we should accept the null hypothesis because the intersection of the two lines is
in the red (acceptance) region.
The idea of inverting the test is now very simple: for a fixed (observed) x0, what values of p
lead to accepting the null hypothesis? That is, for a given vertical line which p’s are in the
red region?

x0 <- 31
z <- rep(FALSE, dim(df)[1])
z[df$x==x0 & !df$reject] <- TRUE
p0 <- range(df$p[z])
ggplot(data=df, aes(x, p, color=reject)) +

geom_point() +
geom_segment(x=x0, y=p0[1],xend=x0, yend=p0[2],

size=2, color="black")
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## [1] 0.23 0.41

here is the same graph as before, but now finding those values of p which lead to accepting
the null hypothesis. This gives us the 95% confidence interval of (0.23, 0.41).
In essence we have the following:

• to do a hypothesis test fix p0 on the y axis and scan across the graph horizontally.

• to find a confidence interval fix x0 on the x axis and scan across the graph vertically.

6.2.1.3 Example (6.2.3) Suppose we have X1, .., Xn ∼ Exp(β) and we want a confidence
interval for β. Again we start by considering a hypothesis test:

H0 : β = β0 vs. H1 : β 6= β0

In (5.4.1) we found the LRT for this problem to be

(−2) log λ(xxx) = (−2) [n log(β0x̄) + n− β0x̄]
and so the acceptance region is given by

A(β) = {xxx : n log(β0x̄) + n− β0x̄ ≥ c}
Let’s draw the graph:
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n <- 50; beta <- 1
xbar <- mean(rexp(n, 1/beta))
lrt <- function(x, b=1) n*log(x*b)-n*b*x
ggcurve(fun=lrt, A=0.5, B=1.75) +

scale_y_continuous(labels = NULL) +
geom_hline(yintercept = lrt(1/xbar)-3, size=1.2) +
ylab("C(x)")

0.50 0.75 1.00 1.25 1.50 1.75
x

C
(x

)

and so we reject the null if x̄ is either small or large. To invert the test we can do the graph
again, but now as a function of beta with x̄ fixed:

lrt <- function(b, x=xbar) n*log(x*b)-n*b*x
ggcurve(fun=lrt, A=0.4, B=1.5) +

scale_y_continuous(labels = NULL) +
geom_hline(yintercept = lrt(xbar)-3, size=1.2) +
ylab(expression("A("*beta*")"))
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The expression defining the confidence interval depends on xxx only through x̄ . So we can
write it in the form

C(x) = {β : L(x̄) ≤ β ≤ U(x̄)}

for some functions L and U which are determined so that the interval has probability 1−α.
Also note that the height of the curve at the left and the right confidence interval limit is
the same, so

(L(x̄)x̄)n exp (−nL(x̄)x̄) = (U(x̄)x̄)n exp (−nU(x̄)x̄)
Let’s denote a = L(x̄)x̄ and b = U(x̄)x̄, then we have the equation

ane−a = bne−b

Now note that

∑
Xi ∼ Γ(n, 1/β)

and it is easy to show that then

β
∑

Xi ∼ Γ(n, 1)

and so
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1− α = P
(
a/X̄ < β < b/X̄

)
=

P
(
a < βX̄ < b

)
=

P
(
na < β

∑
X < nb

)
=

pgamma(nb, n, 1)− pgamma(na, n, 1)

So the confidence interval becomes

{β : a/x̄ ≤ β ≤ b/x̄}

where a and b satisfy

ane−a = bne−b

1− α = pgamma(nb, n, 1)− pgamma(na, n, 1)

This system of nonlinear equations will of course have to be solved numerically.

6.2.1.4 Example (6.2.4) Say X1, .., Xn ∼ Pois(λ). Let Y = ∑
Xi, than Y ∼ Pois(nλ).

Say we observe Y = y0. We have previously found a hypothesis test for

H0 : λ = λ0 vs Ha : λ 6= λ0

It had the acceptance region

A(λ0) = {qpois(α/2, nλ0)/n ≤ x̄ ≤ qpois(1− α/2, nλ0)/n}

Inverting this test means solving the equations

y0∑
i=0

(nL)i
i! e−nL = α

2
∞∑
i=y0

(nU)i
i! e−nU = α

2

In general this might have to be done numerically. Here, though, we can take advantage of
the equation linking the Poisson and the Gamma distributions:
If X ∼ Gamma(n, β) and Y ∼ Pois(x/β) then P (X ≤ x) = P (Y ≥ n).
Using β = 2, n = y0 + 1, x = 2nλ we have

238



α

2 = P (Y ≤ y0) =

P (Y < y0 + 1) =
1− P (Y ≥ y0 + 1) =

1− P (Y ≥ 2(y0 + 1)
2 ) =

P (X ≤ 2nλ) =
P (X > 2nλ)

and so

λ = qchisq(α/2, 2(y0 + 1)/(2n)

Using a similar calculation for the lower bound we find

qchisq(1− α/2, 2(y0 + 1)/(2n) < λ = qchisq(α/2, 2(y0 + 1)/(2n)
where if y0 = 0 we have χ2(1− α/2, 0) = 0
Let’s implement this method:

poisci <- function(x, alpha = 0.05) {
c(qchisq(alpha/2, 2*sum(x)),

qchisq(1-alpha/2, 2*(sum(x)+1))
)/2/length(x)

}
round(poisci(rpois(30, 5.8)), 3)

## [1] 5.217 7.015

This method was first invented by Garwood in 1932.
This confidence interval has correct coverage by construction, so we don’t need to worry
about that as we would if our method used some approximation, say. Nevertheless, let’s do
a coverage study of our method. As before we can do this without simulation:

n <- 10; alpha = 0.05
X <- matrix(0, 30*n+1, 3)
X[, 1] <- 0:(30*n)
X[, 2] <- qchisq(alpha/2, 2*X[, 1])/2/n
X[, 3] <- qchisq(1-alpha/2, 2*(X[, 1]+1))/2/n
lambda <- seq(5, 10, length=250)
Coverage = 0*lambda
for(i in 1:250) {

tmp <- X[X[, 2]<lambda[i] & lambda[i]<X[, 3], ]
Coverage[i] = sum(dpois(tmp, n*lambda[i]))
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}
df <- data.frame(x=lambda, y=Coverage)
ggplot(df, aes(x, y)) +

geom_line() + geom_hline(yintercept = 0.95)
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so again we see this ragged appearance typical for coverage graphs of discrete random vari-
ables.

6.2.2 Using the Large Sample Theory of Maximum Likelihood Estimators

From our previous discussion we know (under some regularity conditions) that the mle has
an (approximate) normal distribution. This can be used to derive confidence intervals:

6.2.2.1 Example (6.2.5) Let’s say we have X1, .., Xn ∼ N(µ, σ)
first we consider the case where σ is fixed but unknown. Let’s assume we have not done
anything yet with this model, and we want to estimate µ using the maximum likelihood
estimator. Moreover we will use Newton’s method for finding it. So we need the first two
derivatives of the log likelihood function:
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f(x|µ, σ) = 1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

l(µ, σ|xxx) = −1
2 log(2π)− n log σ − 1

2σ2

∑
(xi − µ)2

dl

dµ
= 1
σ2

∑
(xi − µ)

d2l

dµ2 = − n

σ2

and so Newton’s method yields

µn+1 = µn −
( 1
σ2

∑
(xi − µ)

)
/
(
− n

σ2

)
= µn +

∑
(xi − µ)/n

and this will converge to the sample mean.
Now what can we say about the mle? Because of the large sample theorem for mle’s we
know that

E

[
d2 log f(X|µ, σ)

dµ2

]
= E[− 1

σ2 ] = − 1
σ2

v(µ) = − 1
nE

[
d2 log f(X|µ,σ)

dµ2

] = σ2

n

µ̂ ∼ N
(
µ,
√
v(µ)

)
= N(µ, σ/

√
n)

one problem: we don’t know σ, so what can we do to find the variance of the mle? But
notice that:

v(µ) = σ2/n = −
(
d2f

dµ2

)−1

and we already have d2l
dµ2 from when we ran Newton’s method! So all we have to do is use

the last value from the iterations and we immediately have an estimate of the variance!
Now we have

fµ̂(x) =
√
n√

2πσ2
exp

{
− n

2σ2 (x− µ)2
}

= L(µ|x)

logL(µ|x) = K − n

2σ2 (µ− x)2

2 logL(µ|µ̂) = K − n

σ2 (µ− µ̂)2

so if we use the mle for x, 2 log-likelihood as a function of µ is a quadratic. Let’s call this
function ψ:
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ψ(µ) = K − n(µ− µ̂)2

σ2

Let’s say we want to find a (1− α)100% confidence interval. We already know one solution,
from our previous discussion:

(
µ̂− zα/2s/

√
n, µ̂+ zα/2s/

√
n
)

What can we say about those point(s) on the 2 log-likelihood curve? We find

ψ(µ̂)− ψ(µ̂− zα/2s/
√
n) =

(K − n(µ̂− µ̂)2

σ2 )− (K − n(µ̂− zα/2s/
√
n− µ̂)2

σ2 ) = z2
α/2

and so an (at this point admittedly very weird!) way to find the confidence interval is to
find the points where the 2log-likelihood curve drops down by z2

α/2 from its maximum!
Let’s do the graph:

alpha <- 0.95; n <- 100; mu0 <- 0; sigma0 <- 1
crit <- qnorm(1-(1-alpha)/2)
x <- rnorm(n, mu0, sigma0)
muhat <- mean(x)
shat <- sqrt(sum((x-muhat)^2)/n)
K <- 2*sum(log(dnorm(x, muhat, sigma0)))
mu <- seq(-5*sigma0/sqrt(n), 5*sigma0/sqrt(n), length=500)
y <- 0*mu
for(i in 1:500)

y[i] <- 2*sum(log(dnorm(x, mu[i], sigma0)))
Hess <- (-n)/sigma0^2
v <- 1/sqrt(-Hess)
L <- (mu[1:250])[which.min(abs(y[1:250]-K+crit^2))]
U <- (mu[250:500])[which.min(abs(y[250:500]-K+crit^2))]
df <- data.frame(x=mu, y=y, yquad=K-(mu-muhat)^2/v^2)
ggplot(df) +

geom_line(aes(x, y), linetype="solid") +
geom_line(aes(x, yquad),

linetype = "dashed", color="lightblue") +
geom_hline(yintercept = K-crit^2, size=1.2) +
geom_vline(xintercept = c(L, U), size=1.2)
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c(L, U)

## [1] -0.1212425 0.2695391

of course the 2 log-likelihood curve and the quadratic are the same.

Let’s turn next to the case where we know µ but want to find a confidence interval for σ.
Following along the same arguments as for the mean we find

f(x|µ, σ) = 1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

l(µ, σ|xxx) = −1
2 log(2π)− n log σ − 1

2σ2

∑
(xi − µ)2

dl

dσ
= −n

σ
+ 1
σ3

∑
(xi − µ)2

dl

dσ
= n

σ2 −
3
σ4

∑
(xi − µ)2
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E

[
d2 log f(X|µ, σ)

dσ2

]
=

E
[ 1
σ2 −

3
σ4 (X − µ)2

]
=

1
σ2 −

3
σ4E(X − µ)2 =

1
σ2 −

3
σ4σ

2 = − 2
σ2

v(σ) = − 1
nE

[
d2 log f(X|µ,σ)

dσ2

] = σ2

2n

σ̂ ∼ N
(
σ,
√
v(σ)

)
= N(σ, σ/

√
2n)

and so we find the (approximate) confidence interval

(
σ̂ − zα/2

σ̂√
2n
, σ̂ + zα/2

σ̂√
2n

)

Let’s illustrate this:

alpha <- 0.95; n <- 100; mu0 <- 0; sigma0 <- 1
crit <- qnorm(1-(1-alpha)/2)
x <- rnorm(n, mu0, sigma0)
muhat <- mean(x)
shat <- sqrt(sum((x-muhat)^2)/n)
K <- 2*sum(log(dnorm(x, mu0, shat)))
sig <- seq(sigma0*0.7, sigma0*1.25, length=500)
y <- 0*mu
for(i in 1:500)

y[i] <- 2*sum(log(dnorm(x, mu0, sig[i])))
Hess <- n/shat^2-3/shat^4*sum((x-mu0)^2)
v <- 1/sqrt(-Hess)
L <- (sig[1:150])[which.min(abs(y[1:150]-K+crit^2))]
U <- (sig[250:500])[which.min(abs(y[250:500]-K+crit^2))]
df <- data.frame(x=sig, y=y, yquad=K-(sig-shat)^2/v^2)
ggplot(df) +

geom_line(aes(x, y), linetype="solid", size=1.1) +
geom_line(aes(x, yquad),

linetype = "dashed", color="lightblue",
size=1.1) +

geom_hline(yintercept = K-crit^2, size=1.2) +
geom_vline(xintercept = c(L, U), size=1.2)
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## [1] 0.8212425 1.0835671

Now the parabola and the 2 log-likelihood curve are not exactly the same, because the true
distribution of the mle is not (for this sample size) a normal. So now we could use the
approximating parabola to find intervals (black line) or the exact 2 log-likelihood curve.
Which one is better? It depends which one has correct coverage, and the only way to tell is
by running a simulation study.
One advantage of the parabola solution is that we can find the interval points explicitly:

t = ŝ± zα/2v

6.2.2.2 Example (6.2.6) Let’s say we have X1, .., Xn ∼ Γ(α, β), both α,β unknown. We
want to find confidence intervals for both.
Now we could do the math, but let’s try to use R as much as possible. To find the mle we
need a routine that maximizes a function of a vector and allows for restricting the range of
the variables (because α, β > 0). One such routine is nlminb.

mle.gamma <- function(dens="gamma", alpha=1, beta=1, n=100) {
library(numDeriv)
rdens <- get(paste0("r", dens))
ddens <- get(paste0("d", dens))
crit <- qnorm(1-0.05)
dta <- rdens(n, alpha, beta)
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loglike <- function(x, dta)
(-2)*sum(log(ddens(dta, x[1], x[2])))

z <- nlminb(c(alpha, beta), loglike,
lower=c(0, 0), dta=dta)

mle <- z$par
K <- (-z$objective)
Hess <- hessian(loglike, x=mle, dta=dta)
a <- seq(mle[1]*0.75, mle[1]*1.25, length=500)
y <- 0*a
for(i in 1:500)

y[i] <- (-loglike(c(a[i], mle[2]), dta))
y1 <- y[a<mle[1]]
alphaL <- a[a<mle[1]]
alphaL <- alphaL[abs(y1-K+crit^2)==min(abs(y1-K+crit^2))]
y1 <- y[a>mle[1]]
alphaR <- a[a>mle[1]]
alphaR <- alphaR[abs(y1-K+crit^2)==min(abs(y1-K+crit^2))]
v <- sqrt(solve(Hess)[1,1])
alpha2 <- mle[1]+c(-1,1)*v*crit
df <- data.frame(x=a, y=y, yquad=K-(a-mle[1])^2/v^2)
plt1 <- ggplot(df) +

geom_line(aes(x, y)) +
geom_line(aes(x, yquad), color="blue") +
geom_hline(yintercept=K-crit^2, size=1.2) +
geom_vline(xintercept = c(alphaL, alphaR)) +
geom_vline(xintercept = alpha2, color="blue") +
labs(x=expression(alpha), y="")

b <- seq(mle[2]*0.75, mle[2]*1.25, length=500)
y <- 0*b
for(i in 1:500) y[i] <- (-loglike(c(mle[1], b[i]), dta))
v <- sqrt(solve(Hess)[2,2])
beta2 <- mle[2] + c(-1, 1)*v*crit
y1 <- y[b<mle[2]]
betaL <- b[b<mle[2]]
betaL <- betaL[abs(y1-K+crit^2)==min(abs(y1-K+crit^2))]
y1 <- y[b>mle[2]]
betaR <- b[b>mle[2]]
betaR <- betaR[abs(y1-K+crit^2)==min(abs(y1-K+crit^2))]
df <- data.frame(x=b, y=y, yquad=K-(b-mle[2])^2/v^2)
plt2 <- ggplot(df) +

geom_line(aes(x, y)) +
geom_line(aes(x, yquad), color="blue") +
geom_hline(yintercept=K-crit^2, size=1.2) +
geom_vline(xintercept = c(betaL, betaR)) +
geom_vline(xintercept = beta2, color="blue") +
labs(x=expression(beta), y="")
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pushViewport(viewport(layout = grid.layout(1, 2)))
print( plt1,

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print( plt2,

vp=viewport(layout.pos.row=1, layout.pos.col=2))

}
mle.gamma()
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How about the parabola solution? For this we need the Hessian matrix, which we can find
also using numerical methods. This can be done using the hessian function in the numDeriv
library.
Also new: now we have a two-dimensional problem , so

vi =
√
H−1
i,i

6.2.2.3 Example (6.2.7) Let’s say we have X1, .., Xn ∼ Beta(α, β), both α, β unknown.
We want to find confidence intervals for both.
actually, the routine mle.gamma works just as is, we only need to call it with

mle.gamma("beta", alpha=2, beta=3)
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In some way what we have here is a fully automatic confidence interval calculator! Of course
it is based on a large sample theorem, so to what degree it works (aka the resulting intervals
have coverage) needs to be checked in each case.

6.2.3 One-sided Confidence Intervals

Sometimes one is interested in an upper or a lower bound for a parameter, so what we need
(for an upper bound) is a function U(xxx) such that P (θ < U(X)) = 1 − α. We can again
derive such an interval by inverting a hypothesis test, this time a test with an alternative of
> or <.

6.2.3.1 Example (6.2.8) Say we have observations X1, .., Xn ∼ N(µ, 1). We want a 90%
upper bound for µ.
We will derive the LRT test for

H0 : µ ≥ µ0 vs Ha : µ < µ0

We already know that the mle is x̄. Now under the null we find the maximum to also x̄ if x̄
is allowed, that is if x̄ ≥ µ0, or the maximum is at µ0. of course L(x̄)/L(x̄) = 1, So

LRT (xxx) = L(ˆ̂µ)
L(µ̂) =

{
L(µ0)
L(x̄) if x̄ < µ0

1 if x̄ > µ0

Here is an example what this might look like:
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so clearly “LRT is small” means “x̄ is small”. So

α = P (X̄ < c) =
P (
√
n(X̄ − µ0) <

√
n(c− µ0)) = Φ(

√
n(c− µ0))

√
n(c− µ0) = zα

c = µ0 + 1√
n
zα

1− α = P (X̄ > µ0 + 1√
n
zα) =

P (µ0 < X̄ − 1√
n
zα) =

P (µ0 < X̄ + z1−α√
n

)

6.3 Inference for Binomial p

We have data Z1, .., Zn ∼ Ber(p) and we want to develop a confidence interval for p.
First we need a corresponding hypothesis test:

H0 : p = p0 vs Ha : p 6= p0

If half-open intervals (“upper or lower limits”) are desired use the corresponding alternative
hypotheses.
Let X = ∑n

i=1 Zi, then X ∼ Bin(n, p)
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Note: in this example X is the obvious choice to base a test on because z̄ = x/n is an
unbiased, sufficient and consistent estimator of p.
Next we need a rejection region, that is we need to decide what values of S will lead us to
reject the null hypothesis.
And we get to the first fork in the road:

6.3.1 Testing Idea 1:

Let Y ∼ Bin(n, p0), reject H0 if

P (Y < x|p0) < α/2

or if

P (Y > x|p0) < α/2

n <- 20; p0 <- 0.3; alpha=0.05
x <- 3
pbinom(x-1, n, p0)

6.3.1.1 Example (6.4.1)

## [1] 0.03548313

0.0354 > 0.025 and so we fail to reject the null hypothesis.

x <- 2
pbinom(x-1, n, p0)

## [1] 0.00763726

0.0076 < 0.025 and so we reject the null hypothesis.

6.3.2 Testing Idea 2:

Let TS = x−np0√
np0(1−np0)

and reject H0 if |T | > zα/2. This idea is obviously based on the central
limit theorem.
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x <- 0:20
TS <- round((x-n*p0)/sqrt(n*p0*(1-p0)), 3)
df <- data.frame(x=x, a=abs(TS),

b=ifelse(abs(TS)>qnorm(1-alpha/2), "Yes", "No"),
Decision=ifelse(abs(TS)>qnorm(1-alpha/2),

"Reject", "Fail to reject"))
colnames(df)[2:3] <- c(’|TS|’, ’|TS|>crit’)
# critical value
qnorm(1-0.05/2)

6.3.2.1 Example (6.4.2)

## [1] 1.959964

kable.nice(df, do.row.names = FALSE)

x |TS| |TS|>crit Decision
0 2.928 Yes Reject
1 2.440 Yes Reject
2 1.952 No Fail to reject
3 1.464 No Fail to reject
4 0.976 No Fail to reject
5 0.488 No Fail to reject
6 0.000 No Fail to reject
7 0.488 No Fail to reject
8 0.976 No Fail to reject
9 1.464 No Fail to reject

10 1.952 No Fail to reject
11 2.440 Yes Reject
12 2.928 Yes Reject
13 3.416 Yes Reject
14 3.904 Yes Reject
15 4.392 Yes Reject
16 4.880 Yes Reject
17 5.367 Yes Reject
18 5.855 Yes Reject
19 6.343 Yes Reject
20 6.831 Yes Reject
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and so we reject H0 if x < 2 or x > 10.
Now we have some tests. To get to a confidence interval we have to “invert” these tests.
The interval will contain all the parameter values that would have lead to accepting the null
hypothesis given the observed data.

6.3.3 Interval Idea 1:

For a fixed x find p1 so that

P (Y < x|p1) = 1− α/2

and p2 so that

P (Y > x|p2) = 1− α/2

or

P (Y ≤ x|p2) = α/2

then (p1, p2) is the confidence interval.

x <- 3; n <- 20; alpha <- 0.05
p <- seq(0.01, 0.4, length=1000)
y1 <- pbinom(x-1, n, p)
y2 <- pbinom(x, n, p)
df <- data.frame(p=c(p, p), y=c(y1, y2),

which=rep(c("Lower", "Upper"), each=1000))
ggplot(df, aes(p, y, coloer=which)) +

geom_line()

6.3.3.1 Example (6.4.3)
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we saw that the curves are strictly decreasing, so we can find the solutions with

round(c(p[y1<1-alpha/2][1], p[y2<alpha/2][1]), 4)

## [1] 0.0323 0.3793

This method is called the Clopper-Pearson method. It was invented in 1934.
Above we found p1 and p2 via a grid search. One could also write a numerical routine to do
that.
Or we can use a theorem from probability theory: if Z ∼ Beta(x, n − x + 1) and Y ∼
Bin(n, p), then

P (Z < p) = P (Y < x)
so with n=x and m=n-x+1 we have

1− α/2 = P (Y < x|p) =
P (Z < p|x, n− x+ 1) =
p = qbeta(1− α/2|x, n− x+ 1)

round(c(qbeta(0.025, 3, 18), qbeta(0.975,4,17)), 4)

## [1] 0.0321 0.3789

This is already implemented in the base R routine
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round(c(binom.test(3, 20)$conf.int), 4)

## [1] 0.0321 0.3789

6.3.4 Innterval Idea 2:

the acceptance region is

−zα/2 <
x− np0√

np0(1− np0)
< zα/2

so we need to solve these equations for p0. Again we have choices:
Option 1:
x/n is an estimator of p0 so let’s replace the p0 in the denominator with x/n:

p = x/n± zα/2
√
x/n(1− x/n)

x <- 3; n <- 20; alpha <- 0.05
round(x/n + c(-1, 1)*qnorm(1-alpha/2)*sqrt(x/n*(1-x/n)), 4)

6.3.4.1 Example (6.4.4)

## [1] -0.5498 0.8498

This is called a Wald type interval (because we replace var(X) with an estimate). It was
invented in 1948.
We already see one obvious “bad” feature: the lower bound is negative. First of all p can
never be negative. More than that because we observed x=3 we know p must be positive.
Option 2
Work a little harder
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x− np√
np(1− p)

= ±zα/2

(x− np)2

np(1− p) = ±z2
α/2 =: z

(x− np)2 = znp(1− p)
n(n+ z)p2 − n(2x+ z)p+ x2 = 0

p1,2 = 1
2n(n+ z)

(
n(2x+ z)±

√
[n(2x+ z)]2 − 4n(n+ z)x2

)
=

1
n+ z

(
x+ z/2±

√
zx+ z2/4− zx2/n

)

x <- 3; n <- 20; alpha <- 0.05
z <- qnorm(1-alpha/2)^2
round( (x+z/2+c(-1, 1)*sqrt(z*x+z^2/4-z*x^2/n))/(n+z), 4)

6.3.4.2 Example (6.4.5)

## [1] 0.0524 0.3604

This is called a Wilson interval. It was invented in 1927.

6.3.5 Ad-Hoc Adjustments

There have been a number of adjustments suggested for a variety of these. Here is one
example:
we are approximating a discrete rv by a continuous one, so maybe it is a good idea to correct
for that a bit by subtracting (for lower bound) and adding (for upper bound) 1/2 to x.
This can be applied to both the Wald and the Wilson type intervals. For the Wald test this
already done in the built-in function prop.test.
Note there is a similar adjustment for Clopper-Pearson intervals called mid-p intervals, which
we won’t have time to discuss.

6.3.6 How to choose:

How do we pick between these? First we need to make sure that the methods have coverage
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6.3.6.1 Example (6.4.6) say we have n=20 and p=3, so x/n=0.15, so the true p is probably
between 0.05 and 0.3 . Let’s do the coverage graphs:

so the only two that “work” are Clopper-Pearson and Wilson with continuity correction.
How do we choose between these two? One possible criterion is the expected length of the
interval:

e(p) = E [U(X)− L(X)] =
n∑
i=0

(u(i)− l(i))
(
n

i

)
pi(1− p)n−i

drawn here:
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so for p around 0.15 they are pretty much the same.

6.4 A Longer Example - Intervals

X1, .., Xn ∼ Beta(a, 1), and we want to find a (1− α)100% confidence interval for a.

6.4.1 Frequentist Intervals

Let’s again first consider the case n=1. Previously we had the following hypothesis test for

H0 : a = a0 vs Ha : a 6= a0
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reject the null hypothesis if
x < (α/2)1/a0 or x > (1− α/2)1/a0

therefore we find

x = (1− α/2)1/a log x = 1
a

log(1− α/2)a = log(1− α/2)
log x

and so we have the interval

(
log(1− α/2)

log x ,
log(α/2)

log x

)

x <- 0.45;alpha <- 0.05
round(c(log(1-alpha/2), log(alpha/2))/log(x), 3)

## [1] 0.032 4.620

Here we split α 50-50 on the left and the the right. Is this optimal? Let’s put λα on the left
and (1− λ)α on the right for some 0 ≤ λ ≤ 1. Then

λα = P (X < c1) = ca1, so c1 = (λα)1/a

a = log(λα)/ log x
(1− λ)α = P (X < c2) = 1− P (X < c2) = 1− ca2
c2 = [1− (1− λ)α)]1/a

a = log(1− (1− λ)α)/ log x

so the interval is of the form

(log(λα), log(1− (1− λ)α))) / log x
say we want to find a shortest interval. Let’s draw the length of the interval as a function of
λ:

fun <- function(lambda, alpha=0.05)
log(1-(1-lambda)*alpha)-log(lambda*alpha)

ggcurve(fun=fun, A=0, B=1)
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so this is strictly decreasing, so it is minimized at λ = 1, and we find the optimal interval to
be

(0, log(1− α)) / log x

and now if we observe X=0.45 a 95% CI for a is

round(c(0, log(alpha))/log(x), 3)

## [1] 0.000 3.752

Note that these intervals always start at 0, which might not be a good idea for some exper-
iments if it is known that a > 0.
How about the case n=2?
We have qbeta2(α/2, a)=x which is equivalent to pbeta2(x,a)=α/2, and we need to solve
this for a. Again this needs to be done numerically:

invbeta2 <- function (x, alpha=0.05) {
x <- sum(x)
a <- 0
repeat {

a <- a+0.001
if(pbeta2(x, a)<1-alpha/2)

break
}
L <- a
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repeat {
a <- a+0.001
if(pbeta2(x, a)<alpha/2)

break
}
c(L, a)

}
invbeta2(c(0.31, 0.59))

## [1] 0.078 3.043

For example, say we observe (x,y) = (0.31, 0.59) note that (x+y)/2 = 0.45, same as above
with n=1. Then we find a 95% CI for a to be (0.078, 3.043).

Previously we also used simulation to estimate pbeta2(x,a). If we could not calculate it
numerically we could use this as well, but clearly we are going to get routines that take take
rather a long time to run.

Finally for the case of large n we had the Wald test: reject H0 if

x̄ <
1

a0 + 1

(
a0 − zα/2

√
a0

n(a0 + 2)

)

or

x̄ >
1

a0 + 1

(
a0 + zα/2

√
a0

n(a0 + 2)

)
so the acceptance region of the test is

1
a0 + 1

(
a0 − zα/2

√
a0

n(a0 + 2)

)
< x̄ <

1
a0 + 1

(
a0 + zα/2

√
a0

n(a0 + 2)

)

to get a confidence interval we need to “invert the test”. This means solving the double-
inequality in the acceptance region for a (which now replaces a0). The next graph shows the
left and the right side of the double-inequality as a function of a:

n <- 50; xbar <- 0.45; alpha <- 0.05
crit <- qnorm(1-alpha/2)
a <- seq(0, 2, length=500)
y1 <- (a-sqrt(a/(n*(a+2)))*crit)/(a+1)
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y2 <- (a+sqrt(a/(n*(a+2)))*crit)/(a+1)
R <- a[which.min(abs(y1-xbar))]
L <- a[which.min(abs(y2-xbar))]
df <- data.frame(a=c(a, a), y=c(y1, y2),

which=rep(c("L", "U"), each=500))
ggplot(df, aes(a, y, color=which)) +

geom_line() +
geom_hline(yintercept = xbar) +
geom_vline(xintercept = c(L, R))
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round(c(L, R), 3)

## [1] 0.581 1.118

Formally we need to solve the equation

x = 1
a+ 1

(
a± z

√
a

n(a+ 2)

)

doing the arithmetic yields the cubic equation

n(x− 1)2a3 + 2n(2x− 1)(x− 1)a2 + [nx(5x− 4)− z2]a+ 2nx4 = 0

so now we have a cubic equation, which we can solve. In R this is done by the routine
polyroot:
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z <- qnorm(alpha/2)
cf <- c(n*(xbar-1)^2, 2*n*(2*xbar-1)*(xbar-1),

n*xbar*(5*xbar-4)-z^2, 2*n*xbar^2)
round(Re(polyroot(cf[4:1])), 3)

## [1] 0.579 -2.063 1.120

Of course there are generally three roots, but one of them is negative and the other two are
our solutions.

How about the mle? This one is easy: recall that T = −∑ log xi, and

1− α =
P ((qgamma(α/2, n, 1) < aT < qgamma(1− α/2, n, 1))) =
P ((qgamma(α/2, n, 1)/T < a < qgamma(1− α/2, n, 1)/T ))

6.4.2 Bayesian Interval

Previously we saw that if we use a prior Exp(1) we get a posterior distribution

a|xxx ∼ Γ(n+ 1, 1/(T + 1))

using this we can find the equal-tail probability interval by solving

α/2 = P (a < l|xxx) = pgamma(T l, n+ 1, 1/(T + 1))
so we have

l = qgamma(α/2, n+ 1, 1/(T + 1))u = qgamma(1− α/2, n+ 1, 1/(T + 1))

which is (almost) the same as the confidence interval based on the LRT test.

6.4.3 Which Interval is Better?

First of frequentist confidence intervals and Bayesian credible intervals can not really be
compared directly. We will just compare the two confidence intervals.
First we need to check that the two methods yield proper confidence intervals, that is that
they have coverage. So if we calculate a 90% interval it really contains the true parameter
90% of the time. This is true for the LRT interval by construction because we could find
the exact distribution of the LRT statistic and invert the interval analytically. The other
test is a large sample test and needs to be checked via simulation. Here are some results
(red=MM, blue=LRT)
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wald.test <- function(x, alpha=0.05 ) {
Ts=-sum(log(x))
n=length(x)
tmp=qgamma(1-alpha/2, n, 1)/Ts
crit <- qnorm(1-alpha/2)
a <- seq(0, 2*tmp, length=500)
n <- length(x)
xbar <- mean(x)
y1 <- (a-sqrt(a/(n*(a+2)))*crit)/(a+1)
y2 <- (a+sqrt(a/(n*(a+2)))*crit)/(a+1)
R <- a[which.min(abs(y1-xbar))]
L <- a[which.min(abs(y2-xbar))]
round(c(L, R), 3)

}
lrt.test <- function(x, alpha=0.05 ) {

Ts=-sum(log(x))
n=length(x)
round(c(qgamma(alpha/2, n, 1)/Ts, qgamma(1-alpha/2, n, 1)/Ts), 3)

}

coverage <- function(n, a, B=1e4) {
A=rep(0,B)
for(i in 1:B) {

x=rbeta(n, a, 1)
tmp=wald.test(x)
if(tmp[1]<a & a<tmp[2]) A[i]=1

}
sum(A)/B

}
a=seq(0.2, 2, length=25)
out=a
for(i in seq_along(a))

out[i]=coverage(10, a[i])

rbind(a,out)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## a 0.2000 0.2750 0.3500 0.4250 0.5000 0.5750 0.6500 0.7250 0.8000 0.8750 0.9500 1.0250
## out 0.9519 0.9562 0.9517 0.9549 0.9503 0.9513 0.9502 0.9536 0.9515 0.9503 0.9522 0.9516
## [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24]
## a 1.1000 1.1750 1.2500 1.3250 1.4000 1.4750 1.5500 1.6250 1.7000 1.7750 1.8500 1.925
## out 0.9506 0.9518 0.9539 0.9496 0.9542 0.9526 0.9511 0.9479 0.9522 0.9518 0.9547 0.949
## [,25]
## a 2.0000
## out 0.9541
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df=data.frame(a=c(a,a),
Coverage=c(100*out, rep(95,length(out))),
Method=rep(c("Wald", "LRT"), each=length(out)))

ggplot(data=df, aes(a, Coverage, color=Method)) +
geom_point() +
geom_hline(yintercept = 95) +
lims(y=c(93,97))
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so we see that the Wald method has some over-coverage. Over-coverage is acceptable but
not really desirable because it generally means larger intervals.
How can we choose between the two? We need a measure of performance for a confidence
interval. Again we can consider the mean length of the interval E[U(X)-L(X)]. In the case of
the MM method this will need to be found via simulation. As for the LRT method, we have

E [U(xxx)− L(xxx)] =
[qgamma(1− α/2, n, 1)− qgamma(α/2, n, 1)]E[1/T ] =

[qgamma(1− α/2, n, 1)− qgamma(α/2, n, 1)] 1
n
E[n/T ] =

[qgamma(1− α/2, n, 1)− qgamma(α/2, n, 1)] 1
n

na

n− 1 =

[qgamma(1− α/2, n, 1)− qgamma(α/2, n, 1)] a

n− 1

Here is a graph of the mean lengths:
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expected.length <- function(n, a, B=1e3) {
A=rep(0,B)
for(i in 1:B) {

x=rbeta(n, a, 1)
A[i]=diff(wald.test(x))

}
mean(A)

}
a=seq(0.2, 4, length=25)
out=a
for(i in seq_along(a))

out[i]=expected.length(10, a[i])

el.lrt=(qgamma(0.975,10,1)-qgamma(0.025,10,1))*a/9

df=data.frame(a=c(a,a),
Exp.Lenght=c(out, el.lrt),
Method=rep(c("Wald", "LRT"), each=length(out)))

ggplot(data=df, aes(a, Exp.Lenght, color=Method)) +
geom_point()
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and the Wald test is a bit better if a < 2, otherwise the LRT test is better.
Above we used the fact that aT has distribution that does not depend on the parameter a.
We then found the interval by dividing the error probability α equally on the left and the
right. But is that the best option? If we are interested in shortest-length intervals, can we
find the intervals that are optimal? That is can we find L(T) and U(T) such that
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minimize E[U(T )− L(T )] subject to P (L(T ) < a < U(T )) = 1− α
Let’s set q(z) = qgamma(z, n, 1) and let’s consider intervals of the form L(T ) = q(z1)/T and
U(T ) = q(1− z2)/T .
Clearly we need z1 + z2 = 1− α , so we have z2 = 1− α-z_1$ or we just write
L(T ) = q(z)/T and U(T ) = q(1− α− z)/T
This has length

E [U(xxx)− L(xxx)] = [q(1− α− 1, n, 1)− q(z, n, 1)] a

n− 1

This can not be done analytically, and so again we need to resort to a numerical solution. It
turns out that assigning a smaller part of α to the left side leads to shorter intervals.
How much better are these intervals? Here are the mean lengths (for a=1)
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For example if n=2 (and a=1) the mean length of the equal-tail intervals is 5.33 but for the
“optimal” length intervals it is 4.72, an improvement of about 10%.

7 Some Standard Problems

7.1 Sample Size

Among the more important issues in Statistics are questions concerning the sample size
required to achieve an answer of a certain quality. In this section we will study these issues.
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7.1.1 Sample Size for Confidence Intervals

When we find an interval estimate of a parameter the width of the interval is an indicator of
how well we are estimating the parameter. Specifically one consider 1/2 of the width, which
is then called the error E.

7.1.1.1 Example (7.1.1) Normal Mean
A (1−α)100% confidence interval for the normal mean with unknown standard deviation is
given by x̄± t1−α/2,n−1s/

√
n, so we have E = t1−α/2,n−1s/

√
n.

Notice that E here is a random variable as it depends on the sample standard deviation s.
It might therefore be better to consider E[E] = E[t1−α/2,n−1s/

√
n] = t1−α/2,n−1σ/

√
n

7.1.1.2 Example (7.1.2) Binomial p
We previously found the the Clopper-Pearson intervals for a Binomial p to be

L(x) = qbeta(α/2, x, n− x+ 1)
U(x) = qbeta(1− α/2, x, n− x+ 1)

so

E = (qbeta(1− α/2, x, n− x+ 1)− qbeta(α/2, x, n− x+ 1)) /2

Notice that one of the items in the calculation of the estimation error is the sample size n. So
one can turn this around ask the question: what sample size is needed to achieve a specified
error E?

7.1.1.3 Example (7.1.3) Normal Mean

We have E = t1−α/2,n−1s/
√
n, so we have n = t21−α/2,n−1s

2

E2 . However, we can not find the right
side because it includes n twice:

• in t1−α/2,n−1. Here one generally assumes that n will be sufficiently large so that
t1−α/2,n−1 ≈ z1−α/2, which means n > 30 or so.

• in s2. Here we will need some idea of the population standard deviation. Generally
one needs to have some information from similar experiments, or one has to do a pilot
study.

What should E be? This depends on the experiment and what kind of error is acceptable to
still have a useful.
**Numerical example*: say we know σ2 = 12.7, we want E = 0.5 and find a 90% confidence
interval, the the required sample size is
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round(qnorm(1-0.1/2)^2*12.7/0.5^2)

## [1] 137

7.1.1.4 Example (7.1.4) Binomial p
We wish to check the parts in a shipment for faulty ones. Typically about 1 in 20 will be
faulty. We want to find a 95% confidence interval with an error no more than 0.03.

E=function(n) {
x=round(n/20)
(qbeta(1-0.05/2, x, n-x+1)-qbeta(0.05/2, x, n-x+1))/2

}
n=20
repeat {

n=n+1
if(n%%10==0) cat(n," ",round(E(n), 4),"\n")
if(E(n)<0.03) break

}

## 30 0.082
## 40 0.0627
## 50 0.0508
## 60 0.0524
## 70 0.0522
## 80 0.046
## 90 0.041
## 100 0.0414
## 110 0.0413
## 120 0.038
## 130 0.0352
## 140 0.0353
## 150 0.0352
## 160 0.0331
## 170 0.0312
## 180 0.0313

n

## [1] 189

7.1.2 Sample Size when Testing

In this section we will consider the question of sample size if we plan on doing a hypothesis
test. In this context the role of the estimation error is played by the power of the test. In

269



other words we want a sufficiently large sample size so that the power of the test is reasonably
large. This often means a power of at least 80%.
Of course the power of a test also depends on how wrong the null hypothesis is, that is the
difference between the value of the parameter under the null hypothesis θ0 and the true value
θ1. However, we do not know the true value θ1! In this case the expert in the subject matter
needs to decide on an effect size, that is the smallest difference between θ0 and θ1 that is of
practical importance. For example, say we test a new medication for a disease that using
current treatments is cured in 10 day. If our new treatment cures the disease in 8 days, that
seems quite important, but if it does it in 9.8 days, maybe not. So maybe the doctors tell
us that anything less than a 1 day improvement is not enough.

7.1.2.1 Example (7.1.5) Normal Mean
We previously found a test based on the test statistic T =

√
n(x̄ − µ0)/s and a rejection

region |T | > t1−α/2,n−1. So we know

P (reject H0|H0 is true) =
P
(
|
√
n(X̄ − µ0)/s| > t1−α/2,n−1

∣∣∣µ = µ0) = 1− α

now

Power = P (reject H0|H0 is false) =
Pµ1

(
|
√
n(X̄ − µ0)/s| > t1−α/2,n−1

)
=

1− Pµ1

(
|
√
n(X̄ − µ0)/s| < t1−α/2,n−1

)
=

1− Pµ1

(
−t1−α/2,n−1 <

√
n(X̄ − µ0)/s < t1−α/2,n−1

)
=

1− Pµ1

(
−t1−α/2,n−1 <

√
n(X̄ − µ1 + µ1 − µ0)/s < t1−α/2,n−1

)
=

1− Pµ1

(
−t1−α/2,n−1 <

√
n(X̄ − µ1)/s+

√
n(µ1 − µ0)/s < t1−α/2,n−1

)
=

1− Pµ1

(
−t1−α/2,n−1 −

√
n(µ1 − µ0)/s <

√
n(X̄ − µ1)/s < t1−α/2,n−1 −

√
n(µ1 − µ0)/s

)
=

1−
(
Φ(t1−α/2,n−1 −

√
n(µ1 − µ0)/s)− Φ(−t1−α/2,n−1 −

√
n(µ1 − µ0)/s)

)
pwr.normal=function(n, mu0=0,mu1=1,sigma=1,alpha=0.05) {

crit=qt(1-alpha/2, n-1)
tmp=sqrt(n)*(mu1-mu0)/sigma
100*(1-(pnorm(crit-tmp)-pnorm(-crit-tmp)))

}
mu1=seq(-1, 1, length=250)
plot(mu1, pwr.normal(20, mu1=mu1), type="l", lwd=2,col="blue", ylab="Power")
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If we now fix mu1 we can also find n:

n=2
repeat {

n=n+1
if(pwr.normal(n, mu1=1)>80) break

}
cat(n, " ", round(pwr.normal(n, mu1=1)),"\n")

## 10 82

and so here a sample of size 10 is required for a power of 80%.

7.1.2.2 Example (7.1.6) Binomial p
We saw before that a test can be based on Z = X−np0√

np0(1−p0)
∼ N(0, 1) and we reject the null

hypothesis if |Z| > z1−α/2. Let’s use this to find the sample size required if p0 = 0.25, p1 = 0.3
and α = 0.05.

Power = P (reject H0|H0 is false) =

P

| X − np0√
np0(1− p0)

| > z1−α/2|p = p1

 =

1− P
−z1−α/2 <

X − np0√
np0(1− p0)

< z1−α/2|p = p1


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Now

P

 X − np0√
np0(1− p0)

< z

 =

P

 X − np0√
np1(1− p1))

< z

√√√√p1(1− p1))
p0(1− p0))

 =

P

 X − np1√
np1(1− p1)

< z

√√√√p1(1− p1))
p0(1− p0) + n(p0 − p1)√

np1(1− p1)

 =

Φ(z

√√√√p1(1− p1))
p0(1− p0) + n(p0 − p1)√

np1(1− p1)
)

and so

pwr.binomial=function(n, p0=0.5,p1=0.6,alpha=0.05) {
tmp1=-qnorm(1-alpha/2)*sqrt(p1*(1-p0)/p0/(1-p1))+

n*(p0-p1)/sqrt(n*p1*(1-p1))
tmp2=qnorm(1-alpha/2)*sqrt(p1*(1-p0)/p0/(1-p1))+

n*(p0-p1)/sqrt(n*p1*(1-p1))
100*(1-(pnorm(tmp2)-pnorm(tmp1)))

}
p1=seq(0.1, 0.99, length=250)
plot(p1, pwr.binomial(20, p1=p1), type="l", lwd=2,col="blue", ylab="Power")
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Also, if p1 = 0.6 the sample size required is
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n=10
repeat{

n=n+1
if(pwr.binomial(n, p1=0.6)>80) break

}
cat(n, " ", round(pwr.binomial(n, p1=0.6)),"\n")

## 253 80

Notice that this problem is not symmetric in p0 − p1:

n=10
repeat{

n=n+1
if(pwr.binomial(n, p1=0.4)>80) break

}
cat(n, " ", round(pwr.binomial(n, p1=0.4)),"\n")

## 144 80

7.2 Difference in Proportions

7.2.0.1 Example (7.2.1) In a survey of 1000 likely voters 523 said they will vote for party
A, the other 477 for party B. Find a 95% CI for the lead of one party over the other.
First we need a probability model for this experiment. Here this is clearly as follows: let
Xi = 1 if vote is for A, 0 if it is for B, then Xi ∼ Ber(p). We can assume that X1, .., Xn are
independent. The parameter of interest is the difference in proportions θ = p−(1−p) = 2p−1.

7.2.1 Frequentist Analysis

we already know that the mle of p is x̄, so the mle of θ is 2x̄− 1 , here 2× 0.523− 1 = 0.046.
Of course if θ = 2p− 1 we have p = [1 + θ]/2. Let y = ∑

xi, then

L(p|xxx)f(xxx|p) = py(1− p)n−y

L(θ|xxx) =
(

1 + θ

2

)y (
1− 1 + θ

2

)y
= (1 + θ)y(1− θ)n−y/2n

λ(xxx) = L(θ0|xxx)
L(θ̂|xxx)

= (1 + θ0)y(1− θ0)n−y
(1 + [2x̄− 1]))y(1− [2x̄− 1])n−y

(1 + θ0)y(1− θ0)n−y
2n(y/n)y(1− y/n)n−y

It is easy to show that λ(xxx) is large if and only if |y/n||.

273



Now

X̄ − p√
p(1− p)/n

∼ N(0, 1)

1
2

θ̂ − θ0√
p(1− p)/n

= 1
2

(2X̄ − 1)− (2p− 1)√
p(1− p)/n

∼ N(0, 1)

=
and so a (1− α)100% confidence interval fot θ is given by

(
2x̄− 1− 2zα/2

√
x̄(1− x̄)/n, 2x̄− 1 + 2zα/2

√
x̄(1− x̄)/n

)
Notice that the estimation error is twice the one for a Binomial p.
For our numbers we get the interval

x <- 523; n <- 1000; alpha <- 0.05
round(2*x/n-1 +

c(-1, 1)*2*qnorm(1-alpha/2)*sqrt(x/n*(1-x/n)/n), 3)

## [1] -0.016 0.108

7.2.2 Bayesian Analysis

Our parameter is θ with values in [-1,1], so we need a prior with values in this interval. For
p we usually use Beta(α, β), and then we have

p|xxx ∼ Beta(α + y, n− y + β)
Fθ|xxx(t) = P (θ < t|xxx) =
P (2p− 1 < t|xxx) =

P
(
p <

t+ 1
2 |xxx

)
and so we find the posterior distribution to be

fθ|xxx(t) = fp|xxx(
t+ 1

2 )1
2 =

Γ(α + β + n)
Γ(α + y)Γ(β − y + n)

(
t+ 1

2

)α+y−1 (
1− t+ 1

2

)β−y+n−1 1
2 =

Γ(α + β + n)
Γ(α + y)Γ(β − y + n)(1 + t)α+y−1(1− t)β−y+n−12α+β+n+3

for −1 < t < 1.
For a credible interval we can use α/2 on the left and right, and so we find
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α/2 = P (θ < t|xxx) = P
(
p <

t+ 1
2 |xxx

)
and so l = 2qbeta(α/2, α + y, β − y + n)− 1 and u = 2qbeta(1− α/2, α + y, β − y + n)− 1

round(2*qbeta(c(alpha/2, 1-alpha/2), 1+x, n-x+1)-1, 3)

## [1] -0.016 0.108

7.3 Equal Variance

7.3.0.1 Example (7.3.1) say we have samples X1, .., Xn iid N(µx, σx) and Y1, .., Ym iid
N(µy, σy) and we want to test

H0 : σx = σy vs H1 : σx 6= σy

We will assume µx and µy are known, in which case we can assume µx = µy = 0.
Let’s derive the likelihood ratio test. We will do this in terms of the variances vx = σ2

x and
vy = σ2

y , which is of course the same test.
First we find the joint density, using (2.3.14)

f(xxx,yyy|vx, vy) =

(2πvx)−n/2 exp
{
− 1

2vx
∑

x2
i

}
(2πvy)−m/2 exp

{
− 1

2vy
∑

y2
i

}
=

(2πvx)−n/2 exp
{
−ntx2vx

}
(2πvy)−m/2 exp

{
−mty2vy

}

where we define tx = 1
n

∑
x2
i and ty = 1

m

∑
y2
i .

Now

l(vx, vy) = −n2 log(2πvx)−
ntx
2vx
− m

2 log(2πvy)−
nty
2vy

dl

dvx
= − n

2vx
+ tx

2v2
x

= 0

yields v̂x = tx, and similarly v̂y = ty

Under H0 we have vx = vy =: v, and so

L(v, v) = (2πv)−n/2 exp
{
−ntx2v

}
(2πv)−m/2 exp

{
−mty2v

}
= (2πv)−(n+m)/2 exp

{
−ntx +mty

2v

}

l(v, v) = −n+m

2 log(2πv)− ntx +mty
2v
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and so v̂ = ntx+mty
n+m .

λ(xxx,yyy) = L(v̂, v̂)
L(v̂x, v̂y)

=

(2πv̂)−(n+m)/2 exp
{
−ntx+mty

2v̂

}
(2πv̂x)−n/2 exp

{
−ntx

2v̂x

}
(2πv̂y)−m/2 exp

{
−mty

2v̂y

} =

(2π ntx+mty
n+m )−(n+m)/2 exp

{
− ntx+mty

2ntx+mty
n+m

}
(2πtx)−n/2 exp

{
−ntx

2tx

}
(2πty)−m/2 exp

{
−mty

2ty

} =

(ntx+mty
n+m )−(n+m)/2 exp

{
−n+m

2

}
(tx)−n/2 exp

{
−n

2

}
(ty)−m/2

exp
{
−m2

}
=

(n+m)(n+m)/2 (ntx +mty)−(n+m)/2

(tx)−n/2(ty)−m/2
=

(n+m)(n+m)/2
(
ntx +mty

tx

)−n/2 (ntx +mty
ty

)−m/2
=

(n+m)(n+m)/2 (n+m(ty/tx))−n/2 (n(tx/ty) +m)−m/2 =
(n+m)(n+m)/2 (n+ n(mty/ntx))−n/2 (m(ntx/mty) +m)−m/2 =
(n+m)(n+m)/2

nn/2mm/2 (1 + 1/F ))−n/2 (1 + F )−m/2

where F = (ntx)/(mty)
Now LRT is small is equivalent to F is small or large, as we can see here:

n<-10; m<-15
fun <- function(x)

(n+m)^((n+m)/2)/n^(n/2)/m^(m/2)*
(1+1/x)^(-n/2)*(1+x)^(-m/2)

ggcurve(fun=fun, A=0.1, B=3)
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and so under the null hypothesis

Xi ∼ N(0, σ)
Xi/σ ∼ N(0, 1)
X2
i /v ∼ χ2(1) =

ntx/v =
n∑
i=1

X2
i /v ∼ χ2(n)

F = (ntx/v)/(mty/v) ∼ F (n,m)

and we reject the null if F < qf(α/2, n,m) or F > qf(1− α/2, n,m).

n <- 10; m <- 14
x <- rnorm(n, 0, 1)
y <- rnorm(m, 0, 1)
tx <- mean(x^2)
ty <- mean(y^2)
(n*tx)/(m*ty)

## [1] 1.131456

qf(c(0.025, 0.975), n, m)

## [1] 0.2816576 3.1468612
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n <- 10; m <- 14
x <- rnorm(n, 0, 1)
y <- rnorm(m, 0, 3)
tx <- mean(x^2)
ty <- mean(y^2)
(n*tx)/(m*ty)

## [1] 0.2153921

7.4 Analysis of Variance (ANOVA)

7.4.0.1 Example (7.4.1) Chasnoff and others obtained several measures and responses for
newborn babies whose mothers were classified by degree of cocaine use. The study was
conducted in the Perinatal Center for Chemical Dependence at Northwestern University
Medical School. The measurement given here is the length of the newborn. Each baby
was classified by the cocaine use of the mother: Free-no drugs of any kind, Trimester-
mothers used cocain but stopped during the first trimester (three month of pregnancy and
Throughout-mother used cocaine until birth.
Is there a statistically significant difference between the groups?
Source: Cocaine abuse during pregnancy: correlation between prenatal care and perinatal
outcome Authors: SN MacGregor, LG Keith, JA Bachicha, and IJ Chasnoff Obstetrics &
Gynecology 1989;74:882-885

kable.nice(mothers[c(1:2, 40:41, 80:81), ])

Status Length
1 Drug Free 44.3
2 Drug Free 45.3
40 First Trimester 45.1
41 First Trimester 45.7
80 Throughout 48.5
81 Throughout 49.0

What is a probability model here? In it’s most general form it is as follows: we have
observations

Xij ∼ Fi, i = 1, .., k, j = 1, .., ni
that is each group has it’s own distribution. A look at the boxplot and the normal probability
plots makes it appear, though, as if each of the distributions were actually normal:

ggplot(mothers, aes(Status, Length)) +
geom_boxplot()
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ggplot(data=mothers, aes(sample=Length)) +
geom_qq() + geom_qq_line()
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So we can write the probability model:

Xij ∼ N(µi, σi), i = 1, .., k, j = 1, .., ni
Especially the boxplot strongly suggests a further simplification of the model, namely that
the standard deviations are the same, so we have
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Xij ∼ N(µi, σ), i = 1, .., k, j = 1, .., ni

Standard ANOVA terminology would write this model as follows:

Xij = µi + εijεij ∼ N(0, σ)
where the εij are called the residuals.
The basic ANOVA test is then
H0 : µ1 = µ2 = µ3 vs Ha : µi 6= µj for some i and j.

7.4.1 Frequentist Solution

Let’s derive the likelihood ratio test for this problem:

f(x11, .., xknk |µµµ) =
k∏
i=1

ni∏
j=1

1√
2πσ2

exp
{
− 1

2σ2 (xij − µi)2
}

=

(2πσ2)−n/2 exp
− 1

2σ2

k∑
i=1

ni∑
j=1

(xij − µi)2


l(µµµ|xxx) = n

2 log(2πσ2)− 1
2σ2

k∑
i=1

ni∑
j=1

(xij − µi)2

dl(µµµ|xxx)
dµi

= 1
σ2

ni∑
j=1

(xij − µi) = 0

µ̂i = 1
ni

ni∑
j=1

xij =: xi.

dl(µµµ|xxx)
d(σ2) = − n

σ2 + 1
2(σ2)2

k∑
i=1

ni∑
j=1

(xij − µi)2 = 0

σ̂2 = 1
n

k∑
i=1

ni∑
j=1

(xij − xi.)2

under the null hypothesis

H0 : µ1 = ... = µk = µ

and so
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f(x11, .., xknk |µ) = L(µµµ, σ2|xxx)

(2πσ2)−n/2 = exp
− 1

2σ2

k∑
i=1

ni∑
j=1

(xij − µ)2


l(µ|xxx) = n

2 log(2πσ2)− 1
2σ2

k∑
i=1

ni∑
j=1

(xij − µ)2

dl(µ|xxx)
dµ

= 1
σ2

k∑
i=1

ni∑
j=1

(xij − µ) = 0

ˆ̂µ = 1
n

k∑
i=1

ni∑
j=1

xij =: x..

dl(µµµ|xxx)
d(σ2) = − n

σ2 + 1
2(σ2)2

k∑
i=1

ni∑
j=1

(xij − µ)2 = 0

̂̂
σ2 = 1

n

k∑
i=1

ni∑
j=1

(xij − x..)2

Now we find the likelihood ratio test statistic:

λ(xxx) = L(̂̂µ, ̂̂σ2|xxx)
L(µ̂µµ, σ̂2|xxx)

=

(2π̂̂σ2)−n/2 exp
{
− 1

2 ̂̂σ2

∑k
i=1

∑ni
j=1 (xij − x..)2

}
(2πσ̂2)−n/2 exp

{
− 1

2σ̂2

∑k
i=1

∑ni
j=1 (xij − xi.)2

} =

(̂̂σ2)−n/2 exp
{
− 1

2 ̂̂σ2
n
̂̂
σ2
}

(σ̂2)−n/2 exp
{
− 1

2σ̂2
nσ̂2

} =

 σ̂2̂̂
σ2

n/2

you can now see why this is called the analysis of variance although it really is a method
concerned with means. Now as always
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ni∑
j=1

(xij − xi.)2 =

ni∑
j=1

(xij − x.. + x.. − xi.)2 =

ni∑
j=1

[
(xij − x..)2 + 2 (xij − x..) (x.. − xi.) + (x.. − xi.)2

]
=

ni∑
j=1

(xij − x..)2 + 2 (x.. − xi.)
ni∑
j=1

(xij − x..) + ni (x.. − xi.)2 =

ni∑
j=1

(xij − x..)2 + 2 (x.. − xi.)
 ni∑
j=1

xij − nix..

+ ni (x.. − xi.)2 =

ni∑
j=1

(xij − x..)2 + 2 (x.. − xi.) (nixi. − nix..) + ni (x.. − xi.)2 =

ni∑
j=1

(xij − x..)2 − 2ni (x.. − xi.)2 + ni (x.. − xi.)2 =

ni∑
j=1

(xij − x..)2 − ni (x.. − xi.)2

summing over k yields

σ̂2 = ̂̂
σ2 − 1

n

k∑
i=1

ni (xi. − x..)2

and so

λ(xxx) =
 σ̂2̂̂
σ2

n/2 =

 σ̂2

σ̂2 + 1
n

∑k
i=1 ni (xi. − x..)

2

n/2 =

 1

1 +
1
n

∑k

i=1 ni(xi.−x..)
2

σ̂2


n/2

=

 1

1 +
∑k

i=1 ni(xi.−x..)
2∑k

i=1

∑ni
j=1(xij−xi.)2


n/2

and it can be shown that λ(xxx) is large if and only if
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∑k
i=1 ni (xi. − x..)

2∑k
i=1

∑ni
j=1 (xij − xi.)2

is large.
In the numerator we have an estimate of the variance between the group means and the
overall mean, and in the denominator an estimate of the variance within the groups. It is
easy to show that this test statistic (when properly scaled) has an F distribution with k-1
and n-k degrees of freedom.
Let’s find all the relevant numbers for our data set:

x.. <- mean(mothers$Length)
sum((mothers$Length-x..)^2)

## [1] 1066.955

round(x.., 2)

## [1] 49.55

n <- tapply(mothers$Length, mothers$Status, length)
n

## Drug Free First Trimester Throughout
## 39 19 36

x. <- tapply(mothers$Length, mothers$Status, mean)
round(x., 2)

## Drug Free First Trimester Throughout
## 51.1 49.3 48.0

num <- sum(n*(x.-x..)^2)
num

## [1] 181.3749

residuals <- 0*mothers$Length
st <- unique(mothers$Status)
for(i in 1:3)

residuals[mothers$Status==st[i]] <-
mothers$Length[mothers$Status==st[i]]-x.[i]

denom <- sum(residuals^2)
denom
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## [1] 885.58

mean.square <- c(num/2, denom/91)
round(mean.square, 2)

## [1] 90.69 9.73

Fs <- mean.square[1]/mean.square[2]
round(Fs, 3)

## [1] 9.319

1-pf(Fs, 2, 91)

## [1] 0.0002080747

now the information is usually summarized in an ANOVA table:

df <- data.frame(DF=c(2, 9),
SS=c(181.375, 885.58),
Mean=c(90.69, 9.73),
F=c(9.318, ""),
p.value=c(0.002, ""))

rownames(df) <- c("Status", "Residuals")
kable.nice(df)

DF SS Mean F p.value
Status 2 181.375 90.69 9.318 0.002
Residuals 9 885.580 9.73

or of course we can use R:

summary(aov(Length~Status, data=mothers))

## Df Sum Sq Mean Sq F value Pr(>F)
## Status 2 181.4 90.69 9.319 0.000208
## Residuals 91 885.6 9.73

The basic F test is rarely of great interest, ANOVA becomes more interesting when we test
more specific hypotheses.
A contrast is an expression of the form
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∑
aiµi

where (a1, .., ak) is such that ∑ ai = 0.
With this notation we can write many interesting hypotheses:

• basic F test:

H0 : ∑ aiµi = 0
for all (a1, .., ak) is such that ∑ ai = 0

• multiple comparison test:

H0 : ∑ aiµi = 0 for (1,-1,0) (1,0,-1) and (0,1,-1)

• a test of interest in a specific situation:

H0 : ∑ aiµi = 0 for (1/2,1/2,1)
tests whether
(µ1 + µ2)/2 = µ3

To test H0 : ∑ aiµi = 0 vs Ha : ∑ aiµi 6= 0 use the test statistic

T = |∑k
i=1 aixi

sp
√∑k

i=1 a
2
i /ni

where

s2
p = 1

n− k
∑
i

∑
j

(xij − xi.)2

then T ∼ t(n− k)

7.4.1.1 Example (7.4.2) We have

H0 :
∑

aiµi = 0 vs Ha :
∑

aiµi 6= 0

for a=(0,1,-1)
so

a <- c(0, 1, -1)
Ts <- abs(sum(x.*a))/sqrt(mean.square[2]*(1/n[2]+1/n[3]))
out <- round(c(Ts, 1-pt(Ts, sum(n)-2)), 3)
names(out) <- c("T", "p-value")
out
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## T p-value
## 1.470 0.073

One important point to remember here is that the classical ANOVA method is just a straight-
forward application of the likelihood ratio test.

7.4.2 Bayesian Inference

This will of course always depend on the priors on (µ1, .., µk, σ). If we choose noninfomative
priors, for example proportional to 1/σ2, then we recover essentially the classical ANOVA
above.

7.5 Two-way Tables

7.5.1 Categorical Data

7.5.1.1 Example (7.5.1) Psychological and social factors can influence the survival of pa-
tients with serious diseases. One study examined the relationship between survival of patients
with coronary heart disease and pet ownership. Each of 92 patients was classified as having
a pet or not, and whether they survived one year.
Here is the data, from Erika Friedmann et al., “Animal companions and one-year survival
of patients after discharge from a coronary care unit.”:

Status Alive Dead
1 Owns a Pet 50 3
2 Does not own a Pet 28 11

Question: is there a statistically significant relationship (association) between Ownership
and Survival?
What is an appropriate probability model here? For each patient in the population there
are four possibilities: owns a pet-alive, owns a pet-dead, does not own a pet-alive, does not
own a pet-dead. We can model this using a multinomial distribution: (X,Y) takes values
(1,1), (1,2), (2,1), (2,2) with P ((X, Y ) = (i, j)) = pij. Of course we have
0 ≤ pij ≤ 1 and ∑ij pij = 1.
The math that follows get’s a little easier if we reparametrize the problem as follows: a
discrete random vector with finitely many values is always equivalent to a multinomial dis-
tribution. So let Z be a rv with values 1-4 and probabilities p1, .., p4.

7.5.2 Frequentist Analysis

Let’s begin by finding the mle’s of the pi’s. Let zi = ∑
I[Z = i], then
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f(zzz|ppp) =
∏
pzii

l(ppp) =
∑
i

zi log pi

Now we need to be careful because we need to maximize this function with the additional
condition∑ pi = 1 (otherwise the maxima is at infinity anyway), so we need to use Lagrange
multipliers:

h(ppp) =
∑
i

zi log pi − λ(
∑
i

pi − 1)

dh

dpi
= zi
pi
− λ = 0

zi = λpi

n =
∑

zi = (
∑

pi)λ = λ

and so we find p̂i = zi
pi
.

What does our question mean in terms of the pi’s? If there is no relationship between
Ownership and Survival then X and Y are independent and we should have

P ((X, Y ) = (i, j)) = P (X = i)P (Y = j)

for i,j=1,2, Or
p1 = (p1 + p2)(p1 + p3)
p2 = (p1 + p2)(p2 + p4)
p3 = (p1 + p3)(p3 + p4)
p4 = (p2 + p4)(p3 + p4)
It’s easy to see why if you think in terms of marginals:

Status Alive Dead Total
1 Owns a Pet p1 p3 p1+p3
2 Does not own a Pet p2 p4 p2+p4
3 Total p1+p2 p3+p4

So let’s do the LRT test for this problem:
H0: X independent of Y equivalent to H0: above equations hold
we already found the mle’s, so now we need to find the numerator. First note that:

p1 = (p1 + p2)(p1 + p3) =
p2

1 + p1(p2 + p3) + p2p3 =
p2

1 + p1(1− p1 + p4) + p2p3 =
p1 − p1p4 + p2p3
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so we find

p1p4 − p2p3 = 0
In the same way we can verify that the other equations also lead to this one. So we need to
maximize

max
{∑

zi log(pi)|pi ≥ 0;
∑

pi = 1; p1p4 − p2p3 = 0
}

Again we use Lagrange multipliers:

h(ppp) =
∑
i

zi log pi − λ1(
∑
i

pi − 1) + λ2(p1p4 − p2p3)

dh

dp1
= zi
pi
− λ1 + λ2p4 = 0

dh

dp2
= zi
pi
− λ1 − λ2p3 = 0

dh

dp3
= zi
pi
− λ1 − λ2p2 = 0

dh

dp4
= zi
pi
− λ1 + λ2p1 = 0

which has the solution

ˆ̂p1 = z1 + z2

n

z1 + z3

n

ˆ̂p2 = z2 + z1

n

z2 + z4

n

ˆ̂p3 = z3 + z1

n

z3 + z4

n

ˆ̂p4 = z4 + z2

n

z4 + z3

n

Now let E1 = (z1 + z2)(z1 + z3)/n, and so on, then
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λ(xxx) =
∏ (Ei/n)zi

(zi/n)zi

− 2 log λ(xxx) = −2
∑

zi log Ei
zi

=

− 2
∑

zi

(
log 1 + (Ei

zi
− 1)

)
=

=

− 2
∑

zi

[
(Ei
zi
− 1)− 1

2(Ei
zi
− 1)2

]
=

− 2
∑[

Ei − zi −
1
2

(Ei − zi)2

zi

]
≈

∑ (zi − Ei)2

Ei
because Ei ≈ zi.
which shows how one eventually ends up with the famous chisquare statistic:

X2 =
∑ (O − E)2

E
for our data we have

O <- c(50, 28, 3, 11)
n <- sum(O)
E <- c((O[1]+O[2])*(O[1]+O[3]),

(O[1]+O[2])*(O[2]+O[4]),
(O[3]+O[4])*(O[1]+O[3]),
(O[3]+O[4])*(O[2]+O[4]))/n

Status Alive Dead
1 Owns a Pet 50 (44.9) 3 (5.9)
2 Does not own a Pet 28 (33.1) 11 (8.1)

chi2 <- sum((O-E)^2/E)
round(c(chi2, 1-pchisq(chi2, 1)), 3)

## [1] 8.851 0.003

this has a chisquare distribution with 1(=(r-1)(c-1)) df.
So again we see that one of the famous methods in Statistics can be derived from the
likelihood ratio test (plus some extra approximations).

We have done this for a 2x2 table, but the generalization to an RxC table is straight forward.
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7.5.3 Bayesian Analysis

as always this starts with a prior. If we again use the parametrization (p1, .., p4) then Z =
(z1, .., z4) has a multinomial distribution (n, p1, .., p4) where n is assumed to be known.
A conjugate prior for the multinomial is the Dirichlet distribution with density

π(p) ∝
∏
pαi−1
i

and then π(p|z) ∼ D(n, α1 + z1, .., α4 + z4).
The choice of α1 = .. = α4 = 1 is a non-informative prior (pi = 1/k). The null hypothesis of
independence then means independence of the posterior distribution, same as above. Indeed,
under the non-informative prior we could again recover the chisquare test.

7.6 Ordinary Linear Regression

7.6.0.1 Example (7.6.1) Consider the the data set hubble. In 1929 Edwin Hubble pub-
lished a paper showing a relationship between the distance and radial velocity away from
Earth of “extra-galactic nebulae” (galaxies). His findings revolutionized astronomy. The
“Hubble constant,” the slope of the regression of velocity (Y) on distance (X), is still a
subject of research and debate. The data here are those Hubble published in his original
paper.
Question: If it is true there is a linear relationship between Velocity (Y) and Distance (X),
what is the slope of the line?
If there is a linear relationship, there exist β0 and β1 such that

Yi = β0 + β1Xi + εi

i=1,..,n
where the εi are (again) called the residuals.
In the problem above the main task is to find a interval estimate for β1. In other problems it
might be to estimate Y for a specific value of x, to estimate E[Y] for some x, to see whether
β0 or β1 are zero (or some other value) etc.
Another version of the regression problem is

Yi = β0 + β1xi + εi

i=1,..,n
that is the x’s are not random but fixed. For example the income (y) and the number of
years of service (x) of randomly selected employees in a company. In practice these two
versions are usually treated the same way.
First we need a probability model. Again this will depend on the problem, but one often
used is to assume that (X,Y) are bivariate normal with parameters
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(µx,µy,σx,σy,ρ)
If we think in terms of predicting Y from a fixed value of X=x we need the conditional
distribution of Y|X=x, which is

Y |X = x ∼ N(µy + ρσy/σx(x− µx), σy
√

1− ρ2)

Therefore we have

E[Y |X = x] = µy + ρσy/σx(x− µx) = µy − µxρσy/σx + ρσy/σxx

so we find that under this probability model we have a natural linear relationship between
X and Y with

β0 = µy − µxρσy/σx

and

β1 = ρσy/σx

Generally in a regression context the analysis is carried out using the conditional distribution
of (Y1, .., Yn) given X1 = x1, .., Xn = xn, in which case we can consider the x’s as fixed and
known. The probability model then becomes

Yi = β0 + β1xi + εi

εi ∼ N(0, σ), i = 1, .., n
Notice that we are assuming equal variance. If this is not reasonable, the analysis is still
possible but somewhat more difficult.
In linear regression it is common to use the method of least squares for estimation, that is
to find β̂0 and β̂1 that minimize

n∑
i=1

(yi − β0 − β1xi)2

Instead let’s find the mle’s of β0, β1 and σ:
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f(xxx|β0β1, σ) = (2πσ2)−n/2 exp
{
− 1

2σ2

∑
] [yi − β0 − β1xi]2

}
l(β0β1, σ) = n

2 log(2πσ2)− 1
2σ2

∑
[yi − β0 − β1xi]2

dl

dβ0
= − 1

σ2

∑
[yi − β0 − β1xi] = − 1

σ2

[∑
yi − nβ0 − β1

∑
xi
]

= 0

nβ̂0 =
∑

yi − β1
∑

xi

dl

dβ1
= − 1

σ2

∑
[yi − β0 − β1xi]xi = − 1

σ2

[∑
xiyi − β0

∑
xi − β1

∑
x2
i

]
= 0

β0
∑

xi =
∑

xiyi − β1
∑

x2
i

and this system of equations has the solution

β̂1 =
∑
xiyi − (∑xi)(

∑
yi)/n∑

x2
i − (∑xi)/n

β̂0 = ȳ − β̂1x̄

which are of course the standard least squares regression estimates!
For σ2 we find

dl

dσ2 = −nσ2 + 1
2(σ2)2

∑
[yi − β0 − β1xi]2 = 0

σ̂2 = 1
n

∑[
yi − β̂0 − β̂1xi

]2
What are the sampling distributions? First we can write

β̂0 =
∑[

1
n
− xi − x̄∑

x2
i − (∑xi)/n

]
yi

and so β0 is a linear combination of normal rv’s, and therefore normal itself. Moreover

E[β̂0] =
∑[

1
n
− xi − x̄∑

x2
i − (∑xi)/n

]
E[yi] =

∑[
1
n
− xi − x̄∑

x2
i − (∑xi)/n

]
(β0 + β1xi) = β0

var(β̂0) = σ2
∑
x2
i

n(∑x2
i − (∑xi)/n)

similarly we can show that

β̂1 ∼ N(β1, σ/

√∑
x2
i − (

∑
xi)/n)(n− 2)ŝ2/σ2 ∼ χ2(n− 2)
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A confidence interval for the slope can be found as follows:

β̂1 ± qt(1− α/2, n− 1)

√√√√ σ̂2∑
x2
i − (∑xi)/n

alpha <- 0.05
x <- hubble$Distance
y <- hubble$Velocity
n <- length(x)
xbar <- mean(x)
ybar <- mean(y)
Sxx <- sum(x^2) - sum(x)^2/n
Sxy <- sum(x*y) - sum(x)*sum(y)/n
beta1 <- Sxy/Sxx
beta0 <- ybar - beta1*xbar
fits <- beta0 + beta1*x
e <- y - fits
sse <- sum(e^2)/(n-2)
round(beta1 + c(-1, 1)*qt(1-alpha/2, n-2)*sqrt(sse/Sxx), 1)

## [1] 298.1 610.2

or with R function lm:

fit <- lm(Velocity~Distance, data=hubble)
summary(fit)

##
## Call:
## lm(formula = Velocity ~ Distance, data = hubble)
##
## Residuals:
## Min 1Q Median 3Q Max
## -397.96 -158.10 -13.16 148.09 506.63
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -40.78 83.44 -0.489 0.63
## Distance 454.16 75.24 6.036 4.48e-06
##
## Residual standard error: 232.9 on 22 degrees of freedom
## Multiple R-squared: 0.6235, Adjusted R-squared: 0.6064
## F-statistic: 36.44 on 1 and 22 DF, p-value: 4.477e-06
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round(confint(fit)[2, ], 1)

## 2.5 % 97.5 %
## 298.1 610.2

7.6.0.2 Example (7.6.2) Say x1, .., xn are fixed numbers and Yi = α + βxi + εi, where
εi ∼ N(0, σ). We want to predict y = α + βx for some x. Specifically we want to find a
(1− α)100% confidence interval for Y = α + βx+ ε.
Using least squares we find the estimators of α and β

Sxy =
∑

(x− x̄)(y − ȳ)
α̂ = Sxy/Sxx

β̂ = ȳ − α̂x̄

From here one can show that for a fixed x (not necessarily one of the xi’s) a (1 − α)100%
confidence the interval for µx = E[Y ] = E[α + βx] is given by

α̂ + β̂x± tn−1,α/2σ̂

√
1
n

+ (x− x̄)2

Sxx

where σ̂2 = 1
n−2

∑(
yi − α̂− β̂x

)
. So this is a confidence interval for the mean response at

some given x. If we want a confidence interval for an individual response we have to use

α̂ + β̂x± tn−1,α/2σ̂

√
1 + 1

n
+ (x− x̄)2

Sxx

7.6.0.3 Example (7.6.3) Consider the wine data set from Resma3:

ggplot(data=wine, aes(Wine.Consumption, Heart.Disease.Deaths)) +
geom_point()
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Say we want a 90% confidence interval for the heart disease rate of a country with a wine
consumption of 5 liters.

xnew=5
x=wine$Wine.Consumption
y=wine$Heart.Disease.Deaths
n=length(x)
sxx=sum((x-mean(x))^2)
syy=sum((y-mean(y))^2)
sxy=sum((x-mean(x))*(y-mean(y)))
alphahat=sxy/sxx
betahat=mean(y)-alphahat*mean(x)
yhat=betahat+alphahat*x
sigmahat=sqrt(sum((y-yhat)^2)/(n-2))
round(c(n, betahat, alphahat, sigmahat), 2)

## [1] 19.00 260.56 -22.97 37.88

round(betahat+alphahat*xnew+c(-1,1)*qt(1-alpha/2,n-1)*sigmahat*sqrt(1+1/n+(xnew-mean(x))^2/sxx), 1)

## [1] 62.8 228.7

or using R:

fit=lm(y~x)
summary(fit)
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##
## Call:
## lm(formula = y ~ x)
##
## Residuals:
## Min 1Q Median 3Q Max
## -62.95 -25.91 -12.35 26.97 55.52
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 260.563 13.835 18.833 7.97e-13
## x -22.969 3.557 -6.457 5.91e-06
##
## Residual standard error: 37.88 on 17 degrees of freedom
## Multiple R-squared: 0.7103, Adjusted R-squared: 0.6933
## F-statistic: 41.69 on 1 and 17 DF, p-value: 5.913e-06

predict(fit,newdata=data.frame(x=5), se.fit=TRUE, interval="prediction")

## $fit
## fit lwr upr
## 1 145.7195 62.39922 229.0399
##
## $se.fit
## [1] 11.17192
##
## $df
## [1] 17
##
## $residual.scale
## [1] 37.87858

7.7 Goodness of Fit Tests

7.7.1 Chisquare Goodness-of-fit Test

7.7.1.1 Example (7.7.1) Experiments in Plant Hybridization (1865) by Gregor Mendel is
one of the most famous papers in all of Science. His theory of genetics predicted that the
number of smooth yellow, wrinkled yellow, smooth green and wrinkled green peas would be
in the proportions 9:3:3:1. In one of his experiments he observed 315, 101, 108 and 32. Does
this agree with his theory?
Again we use the likelihood ratio test. As with the test for independence we have a multi-
nomial distribution Z with parameters (n, p1,..,pk) and we assume n is known. The mles are
the same as before, zi/n.
Under the null hypothesis the proportions should be 9:3:3:1, so
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H0 : p = (9/16, 3/16, 3/16, 1/16)

in this application the null hypothesis fixes the probabilities completely. Again we can do
the Taylor approximation to -2log(LRT) and we find the chisquare statistic

X2 =
k∑
i=1

(O − E)2

E

which has a chisquare distribution with 3 (4-1) degrees of freedom (-1 because of ∑ pi = 1)
For Mendels’ data we find

O <- c(315, 101, 108, 32)
E <- sum(O)*c(9/16, 3/16, 3/16, 1/16)
chi2 <- sum((O-E)^2/E)
round(c(chi2, 1-pchisq(chi2, 3)), 2)

## [1] 0.47 0.93

The chisquare statistic was already known in the mid 19th century but its distribution was
derived by Karl Pearson in 1900. His argument was as follows:

• O is the sum of indicator random variables (X_i is of type i or not), so O has a binomial
distribution

• if n is large enough (O − E)/
√
E ≈ N(0, 1)

• therefore (O − E)2/E ≈ χ2(1)
• finally ∑n

1 (O − E)2/E ∼ χ2(n− 1) because there is one restriction, namely ∑O = n.

We have also seen in the section on the large sample theory of LRT’s that the chisquare
statistic is asymptotically equivalent to the likelihood ratio test statistic.
Often in Statistics we assume that the data was generated by a specific distribution, for
example the normal. If we are not sure that such an assumption is justified we would like
to test for this.

7.7.1.2 Example (7.7.2) Say we have X1, .., Xn iid F, and we wish to test

H0 : F = N(0, 1)

First notice that here the alternative hypothesis is

H0 : F 6= N(0, 1)

or even simply left out. Either way it is a HUGE set, made up of all possible distributions
other than N(0,1). This makes assessing the power of a test very difficult.
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7.7.1.3 Example (7.7.3) Another famous data set in statistics is the number of deaths from
horsekicks in the Prussian army from 1875-1894:

kable.nice(head(horsekicks))

Year Deaths
1 1875 3
2 1876 5
3 1877 7
4 1878 9
5 1879 10
6 1880 18

It has been hypothesized that this data follows a Poisson distribution. Let’s carry out a
hypothesis test for this.
First of a Poisson distribution has a parameter, λ . Clearly even if the assumption of a
Poisson distribution is correct it will be correct only for some values of λ . We reject the
null if the the chi-square statistic is small, so if we reject it for the value of λ that minimizes
the chi-square statistic, we would also reject it for any other value of λ .
The chisquare goodness-of-fit test is a large-sample test, it has the assumption that none of
the expected numbers be to small. We deal with this by combining some categories. We will
consider the cases 0-6, 7-9, 10-12 and Over 12. Then

cells <- c(0:6, 7:9, 10:12, 13:100)
O <- c(6, 4, 5, 5)
chi2 <- function(l) {

y <- 0*l
p <- rep(0, 4)
for(i in seq_along(l)) {

p[1] <- sum(dpois(0:6, l[i]))
p[2] <- sum(dpois(7:9, l[i]))
p[3] <- sum(dpois(10:12, l[i]))
p[4] <- sum(dpois(13:100, l[i]))
E <- sum(O)*p
y[i] <- sum((O-E)^2/E)

}
y

}
l <- seq(9, 10, length=1000)
y <- chi2(l)
lhat <- l[which.min(y)]
ggplot(data.frame(l=l, y=y), aes(l, y)) +

geom_line(color="blue") +
geom_vline(xintercept = lhat)
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## [1] 9.37037

round(c(chi2(lhat), 1-pchisq(chi2(lhat), 2)), 3)

## [1] 4.713 0.095

Under the null hypothesis the χ2 statistic has a χ2 distribution with m-k-1 degrees of freedom,
where m is the number of classes and k is the number of parameters estimated from the data.
So here we have m-k-1 = 4-1-1 = 2 d.f.
In the binning we have used, some E are a bit small. We could of course bin even further,
but then we also loose even more information.
Notice that here we used an unusual estimation method, called minimum chi-square. Often
in practice people use maximum likelihood, this however is wrong!
The adjustment of the degrees of freedom for the number of estimated parameters has an
interesting history. It does not appear in Pearson’s original derivation. In fact, following
Pearson’s logic there should be no need for this adjustment, because if the sample size is
large enough any parameter should be estimated with sufficiently high precision. The need
for the adjustment was recognized only 20 years after the original publication of Pearson by
none other than Karl Fisher and is now sometimes called the Fisher-Pearson statistic.
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7.7.1.4 Example (7.7.4) Let’s study this question for a bit. Say we want to test

H0 : F = Bin(m, p)

The following graphs show the histograms of the p values of 10000 simulated experiments.
Clearly the test without the adjustment is wrong, even for large sample size.

X2 <- function(B=1e4,n=100,m=5,p=0.4) {
A=rep(0,B)
for(i in 1:B) {

x=rbinom(n,m,p)
E=n*dbinom(0:m, m, mean(x)/m)
O=table(x)
if(length(O)<6) O=c(O,0)
A[i]=sum((O-E)^2/E)

}
A

}
A=X2()
df=data.frame(p1=1-pchisq(A, 6-1),

p2=1-pchisq(A, 6-1-1))

A[1:5]

## [1] 1.880161 2.587287 7.847604 4.226324 3.489151

bw <- 1/50
ggplot(df, aes(p1)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

labs(title = "No Adjustment")
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7.7.1.5 Example (7.7.5) Say we have X1, ..Xn ∼ Pois(λ).
The following is the histogram of 5000 simulated data sets with n=10000, λ = 1.0, and bins
x=0, .., x=5, x>5. In each run λ is estimated by minimum chi-square.
The red curve is dchisq(x,7-1) and the blue one is dchisq(7-1-1)

7.7.1.6 Example (7.7.6) Say we have a data set and we want to test whether is comes from
a normal distribution. In order to use the χ2 test we first need to bin the data. There are
two basic strategies:

• use equal size bins (with the exception of the first and the last)

• use adaptive bins chosen so that each bin has roughly the same number of observations.

Testing for normality is a very important problem, although because of simulation not quite
as important today as it used to be. There are a number of test available for this problem,
most of them much better (that is with higher power) than the chisquare test. Look for
example for the Shapiro-Wilks test and the Anderson-Darling test.
A very good way to assess the distribution of a sample (such as normality) is to draw a graph
specifically designed for this purpose, the probability plot. It plots the sample quantiles
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vs. the quantiles of the hypothesized distribution. If the data follows that distribution the
resulting plot should be linear.

7.7.2 Kolmogorov-Smirnov Test

Say we have X1, .., Xn which are continuous and independent r.v. and we wish to test

H0 : Xi ∼ F

for all i
Above we talked about graphs that give us some idea whether the data really comes from a
certain distribution. Now let’s use the empirical distribution function. If the null hypothesis
is true, than the empirical cdf should be close to the true one, that is the “distance” between
the two curves should be small.
How can we define this “distance”? in mathematics there are a number of possible definitions:

• L1 norm

∫ ∞
−∞
|F (x− F̂ (x)|dx

• L2 norm

∫ ∞
−∞

(
F (x− F̂ (x)

)2
dx

• L∞ norm

max
{
|F (x− F̂ (x)| : x ∈ R

}
We are going to consider the L∞ norm here, so we have the test statistic

D = max
{
|F (x)− F̂ (x)| : x ∈ R

}
This is called the Kolmogorov-Smirnov statistic.
At first glance it appears that computing D is hard: it requires finding a maximum of a
function which is not differentiable. But inspection of the graphs (and a little calculation)
shows that the maximum has to occur at one of the jump points, which in turn happen at
the observations. So all we need to do is find F(Xi)-Fhat(Xi) for all i.
Next we need the null distribution, that is the distribution of D if the null hypothesis is
true. The full derivation is rather lengthy and won’t be done here, but see for example J.D
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Gibbons, Nonparametric Statistical Inference. The main result is that if F is continuous and
X ~ F, then F(X) ~ U[0,1], and therefore D does not depend on F, it is called a distribution-
free statistic. It’s distribution can be found by simply assuming that F is U[0,1].
The method is implemented in R in the routine ks.test where x is the data set and y specifies
the null hypothesis, For example y=“pnorm” tests for the normal distribution. Parameters
can be given as well. For example ks.test(x,“pnorm”,5,2) tests whether X~N(5,2).
Note that this implementation does not allow us to estimate parameters from the data.
Versions of this test which allow such estimation for some of the standard distributions are
known, but not part of R. We can of course use simulation to implement such tests.
It is generally recognized that the Kolmogorov-Smirnov test is much better than the
Chisquare test.
For our general discussion this test is interesting because it does not derive from any specific
principle such as the likelihood principle. It is simply an idea (let’s compare the cdf under
H0 with the empirical cdf) and a lot of heavy probability theory. Such methods are quite
common in Statistics.

7.8 Nuisance Parameters

7.8.0.1 Example (7.8.1) say X ∼ Pois(µ + b). We have previously studied this problem
under the assumption that b is known. Now let’s consider what we can do if b is unknown.
In order to do anything we need another measurement, so say we also have Y~Pois(b), X
and Y independent
Let’s say we want to find interval estimates µ.
First note that the problem does not say anything about b. In such a situation b is called a
nuisance parameter.
Whether (or which) parameter is a nuisance parameter is entirely dependent on the interest
of the investigator, it could just as well have been µ, or none of the two.

7.8.1 Frequentist Inference

Let’s derive and then invert the likelihood ratio test for this problem. First we have the joint
density of X and Y:

f(x, y|µ.b) = (µ+ b)x
x! e−µ−b

by

y!e
−b

so we find the mle’s as:
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l(µ, b|x, y) = x log(µ+ b)− log x!− µ− b+ y log b− log y!− b
dl

dµ
= x

µ+ b
− 1 = 0

µ̂ = x− b
dl

db
= x

µ+ b
− 1− y

b
− 1 = 0

x

x− b+ b
− y

b
= 2

b̂ = y

Under the null hypothesis we have H0 : µ = µ0, and so

dl(µ0, b|x, y)
db

= x

µ0 + b
− y

b
− 2 = 0

xb− y(µ0 + b)− 2(µ0 + b)b = 0
− 2b2 + (x+ y − 2µ0)b+ yµ0 = 0

b1,2 =
(
−(x+ y − 2µ0)b±

√
(x+ y − 2µ0)2 − 4(−2)yµ0

)
/[2(−2)]

ˆ̂
b =

(
x+ y − 2µ0 ±

√
(x+ y − 2µ0)2 + 8yµ0

)
/4

λ(x, y) =
(µ0+ˆ̂

b)x
x! e−µ0−ˆ̂

b
ˆ̂
by

y! e
−ˆ̂
b

(µ̂+b̂)x
x! e−µ̂−b̂ b̂

y

y! e
−b̂

=

2µ0 − x− y ±
√

(x+ y − 2µ0)2 + 8yµ0

4xxyy ·

exp
{(
x+ y − 2µ0 ±

√
(x+ y − 2µ0)2 + 8yµ0

)
/4
}

=

=

This is called the method of profile likelihood.
Now intervals can be found using the chisquare approximation to the likelihood ratio statistic.
The resulting limits are called the Rolke-Lopez-Conrad limits

7.8.2 Bayesian Solution

Here we need priors for µ and b. Let’s use µ ∼ 1 and b ∼ 1. Then
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m(x, y) =
∫ ∞

0

∫ ∞
0

f(x, y|µ, b)π(µ)π(b)dµdb =
1
x!y!

∫ ∞
0

bye−2b
[∫ ∞

0
(µ+ b)xe−µdµ

]
db

∫ ∞
0

(t+ b)xe−tdt =∫ ∞
0

x∑
n=0

(
x

n

)
bxtx−ne−tdt =

x∑
n=0

(
x

n

)
bx
∫ ∞

0
tx−ne−tdt =

x∑
n=0

(
x

n

)
bx
∫ ∞

0
t(x−n+1)−1e−tdt =

x∑
n=0

(
x

n

)
bxΓ(x− n+ 1)

m(x, y) =
1
x!y!

∫ ∞
0

bye−2b
[

x∑
n=0

(
x

n

)
bxΓ(x− n+ 1)

]
db =

1
x!y!2y+n+1

x∑
n=0

(
x

n

)
Γ(x− n+ 1)

∫ ∞
0

(2b)(y+n+1)−1e−2b(2db) =

1
x!y!2y+n+1

x∑
n=0

(
x

n

)
Γ(x− n+ 1)Γ(y + n+ 1)

and so the posterior distribution is given by

f(µ, b|x, y) = f(x, y, µ, b)
m(x, y)

and for the parameter of interest we can find the marginal

f(µ|x, y) =
∫
f(µ, b|x, y)db =

1
x!y!2x+y−n+1m(x, y)

x∑
n=0

(
x

n

)
(x+ y − n)!µne−µ

and now intervals can be derived from the posterior distribution, for example via the highest
posterior density method.
In a paper in 2015 I could show that intervals derived in this way but then treated as
frequentist confidence intervals actually have good coverage properties. If one uses the prior
µ~1/ µ, though, they do not.
Notice an important distinction between the way nuisance parameters are treated by fre-
quentists and by Bayesians: in one case we use differentiation (to find the profile likelihood),
in the other integration (to find the marginal distribution).
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7.9 Inference for Stochastic Processes

Note Here I discuss topics like Poisson process and Markov chains. If you are not familiar
with these don’t worry!
Most of the basic methods from Statistics apply to stochastic processes as well.

7.9.0.1 Example (7.9.1) The data set ex1 has 1000 observations from some discrete-time
discrete-state space Markov chain:

ex1[1:20]

## [1] 1 4 1 4 1 4 5 5 3 4 5 3 4 5 5 5 3 2 3 2

ex1[981:1000]

## [1] 2 3 2 4 5 3 4 5 5 2 4 4 5 2 4 1 5 5 2 2

We want to estimate the transition matrix. Let’s use maximum likelihood. Let pij = P (X2 =
j|X1 = i) be the transition probabilities, and let nij be the number of times the chain went
from i to j, then the likelihood function is given by

L(p11, .., p55) =
∏

1≤i,j≤5
p
nij
ij

and we need to maximize this subject to the conditions ∑5
j=1 pij = 1, i=1,..,5.

As always we use the log-likelihood, and then using Lagrange multipliers we have

∑
1≤i,j≤5

nij log pij +
5∑
i=1

λi

 5∑
j=1

pij − 1


.
Now

d

dpij
= nij
pij
−

5∑
i=1

λi = 0

pij = nij/
5∑
i=1

λi

1 = (
5∑
j=1

nij)/
5∑
i=1

λi

5∑
i=1

λi = ni.

p̂ij = nij/ni.
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n <- matrix(0, 5, 5)
for(i in 2:1000) {

n[ex1[i-1], ex1[i]] <- n[ex1[i-1], ex1[i]]+1
}
n. <- apply(n, 1, sum)
phat <- round(n/n., 2)
dimnames(phat) <- list(1:5, 1:5)
kable.nice(phat)

1 2 3 4 5
1 0.11 0.34 0.00 0.36 0.19
2 0.00 0.36 0.19 0.45 0.00
3 0.00 0.36 0.17 0.46 0.00
4 0.33 0.00 0.09 0.11 0.46
5 0.10 0.28 0.24 0.00 0.37

Above we started with the assumption that this sequence is from a Markov chain. Can we
test this? To do so we have to carry out the following hypothesis test. Let

p(i,j)k = P (X3 = k|X1 = i,X2 = j)

then the Markov property (plus stationarity) imply

p(i,j)k = pjk

Applying the likelihood ratio test and the usual Taylor approximation to the logarithm yields
the chi-square test statistic

X2 =
∑
i,j,k

(nijk − eijk)2 /eijk

where nijk is the number of transitions from i to j to k and eijk = nij.njk./nj.. Under the
null hypothesis of a Markov chain we X2 will have a chi-square distribution with c3 degrees
of freedom.
The test is implemented in the markovchain library:

library(markovchain)
verifyMarkovProperty(ex1)

## Testing markovianity property on given data sequence
## Chi - square statistic is: 37.57234
## Degrees of freedom are: 50
## And corresponding p-value is: 0.9024476
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Could this sequence actually come from independent observations? We can of course do the
basic test for independence, but notice that we never saw a transition from 3 to 1, which is
impossible under independence!

7.9.0.2 Example (7.9.2) A store wants to find out about the times when customers entered
the store. They open at 8am and close at 6pm. For 20 working days they record the times
and find

## [1] 483.1900 485.7712 504.1513 511.2431 533.9519 556.3276 564.5901 600.1509
## [9] 601.2124 613.2977 615.0961 656.5382 672.0500 678.0181 691.2101 738.8729
## [17] 742.7525 751.9882 767.3979 782.9098 816.6775 832.7054 840.4809 861.4346
## [25] 869.5839 894.2626 925.1999 997.7035 998.6705 999.6550 1011.9642 1028.8511
## [33] 1049.1714

Day[[1]]

[1] "8-03-11" "8-05-46" "8-24-09" "8-31-14" "8-53-57" "9-16-20" "9-24-35" "10-00-09"
[9] "10-01-13" "10-13-18" "10-15-06" "10-56-32" "11-12-03" "11-18-01" "11-31-13" "12-18-52"

[17] "12-22-45" "12-31-59" "12-47-24" "13-02-55" "13-36-41" "13-52-43" "14-00-29" "14-21-26"
[25] "14-29-35" "14-54-16" "15-25-12" "16-37-42" "16-38-40" "16-39-39" "16-51-58" "17-08-51"
[33] "17-29-10"

so on day 1 the first customer came in at 8h03m11s and the last one at 17h29m10s.
Do the arrivals follow a Poisson distribution?
We will assume that from the details of this store we know that the arrivals of customers
have independent and stationary increments, so what we need to do is test whether the
interarrival times come from an exponential distribution. For this we can use the Lilliefors
test. It is implemented in the package KScorrect.
First, though we need the interarrival times:

inter.arrival.times <- NULL
for(i in 1:20) {

tmp <- strsplit(Day[[i]], "-")
hours <- as.numeric(unlist(tmp)[ c(TRUE, FALSE, FALSE) ])
minutes <- as.numeric(unlist(tmp)[ c(FALSE, TRUE, FALSE) ])
seconds <- as.numeric(unlist(tmp)[ c(FALSE, FALSE, TRUE) ])
tmp <- c(8*60, hours*60+minutes+seconds/100)
inter.arrival.times <- c(inter.arrival.times,

diff(tmp))
}

Let’s look at a graph:
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df <- data.frame(x=inter.arrival.times)
bw <- diff(range(inter.arrival.times))/50
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

stat_function(fun = dexp, colour = "blue", args=list(rate=1/mean(df$x)))
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This looks ok. Now for the test:

library(KScorrect)
LcKS(inter.arrival.times, "pexp")$p.value

## [1] 0.9096

and so it seems the interarrival times do come from an exponential distribution.
Can we also test for the other conditions of a Poisson process, for example stationary incre-
ments? This implies that the number of arrivals over equal length time periods has the same
distribution. Let’s check that for time periods of on hour:

N <- NULL
for(i in 1:20) {

tmp <- strsplit(Day[[i]], "-")
hours <- as.numeric(unlist(tmp)[ c(TRUE, FALSE, FALSE) ])
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N <- c(N, as.numeric(table(hours)))
}

df <- data.frame(x=1:length(N), N=N)
ggplot(data=df, aes(x, N)) +

geom_point()
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and it does not appear that there is a change in the distribution over time.

7.10 Approximation Methods

7.10.1 Taylor Approximations

Say we have a r.v. X with density f, a function h and we want to know var(h(X)). Of course
by definition we have

var(X) =
∫ ∞
−∞

x2f(x)dx−
(∫ ∞
−∞

xf(x)dx
)2

but sometimes these integrals (sums) are very difficult to evaluate. In this section we discuss
some methods for approximating the variance.
Recall: If a function h(x) has derivatives of order r, that is if g(r)(x) exists, then for any
constant a the Taylor polynomial of order r is defined by

Tr(x) =
r∑

n=0

h(n)(a)
n! (x− a)n
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One of the most famous theorems in mathematics called Taylor’s theorem states that the
remainder of the approximation h(x)-Tr(x) goes to 0 faster than the highest order term:

7.10.1.1 Theorem (8.10.1) Taylor’s theorem

lim
x→a

h(x)− Tr(x)
(x− a)r = 0

There are various formulas for the remainder term, but we won’t need them here.

7.10.1.2 Example (8.10.2) say h(x) = log(x + 1) and we want to approximate h at x=0.
Then we have

h(0) = log(1) = 0
dh

dx
|x=0 = 1

x+ 1 |x=0 = 1

d2h

dx2 |x=0 = − 1
(x+ 1)2 |x=0 = −1

d3h

dx3 |x=0 = 2
(x+ 1)3 |x=0 = 2

d(r)h

dxr
|x=0 = (−1)r−1(r − 1)!

(x+ 1)r |x=0 = (−1)r−1(r − 1)!

and so

T0(x) = h(0) = 0

T1(x) = T0(x) + dh

dx
|x=0 · (x− 0) = x

T2(x) = T1(x) + d2h

dx2 |x=0 · (x− 0)2 = x− x2/2

T3(x) = T2(x) + d3h

dx3 |x=0 · (x− 0)3 = x− x2/2 + x3/2

Tr(x) =
r∑

n=0

(−1)n−1(n− 1)!
n! xn =

r∑
n=0

(−1)n−1xn

n

The approximation is illustrated here:

a <- 0; r <- 3
x <- seq(-0.9, 0.9, length = 250)
h <- rep(0, r+1)
h[1] <- log(a+1)
for (n in 1:r) h[n+1] <- (-1)^(n+1)/n/(a+1)^n
y <- matrix(0, 250, r+1)
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y[, 1] <- rep(log(a+1), 250)
for (k in 1:r) y[ , k+1] <- y[, k] + h[k+1]*(x-a)^k
df <- data.frame(x=x, ly=log(x+1))
plt <- ggplot(df, aes(x, ly)) +

geom_line(size=1.2) + ylab("")

for (k in 1:(r + 1))
plt <- plt +

geom_line(data=data.frame(x=x, y=y[, k]), aes(x, y), color=k)
plt
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1
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x

One application of this is the

7.10.2 Delta Method

7.10.2.1 Theorem (8.10.3) Let Yn be a sequence of rv’s that satisfies

√
n(Yn − θ)→ N(0, σ)

in distribution. For a given function g and a specific value of θ, suppose that g′(θ) exist and
and is not 0. Then

√
n (g(Yn)− g(θ))→ N(0, σg′(θ))

proof
the Taylor expansion of g(Yn) around Yn = θ is
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g(Yn) = g(θ) + g′(θ)(Yn − θ) +R

where R→ 0 as Yn → θ. Now
√
n[g(Yn)− g(θ)] =
√
n[g(θ) + g′(θ)(Yn − θ) +R− g(θ)] =

g′(θ)
√
n(Yn − θ) +

√
nR→ g′(θ)X

where X ∼ N(0, σ)

7.10.2.2 Example (8.10.4) say X1, .., Xn iid Exp(1), so E[X]=var(X)=1, then by the CLT
√
n(X̄ − 1)→ N(0, 1)

Let g(x)=xp, so g’(x)=pxp-1 and by the delta method
√
n(X̄p − 1)→ N(0, p)

n <- 100; p <- 2; B <- 10000
x <- matrix(rexp(n*B, 1), ncol=n)
xbar <- apply(x, 1, mean)
print(mean(xbar))

## [1] 0.9999839

y <- sqrt(n)*(xbar^p-1)
bw <- diff(range(y))/50
df <- data.frame(x=y)
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

stat_function(fun = dnorm,
colour = "blue",
args=list(mean=0, sd=p))
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say we have a sequence of iid rv’s X1, .., Xn, each with mean µ 6= 0 and standard deviation
σ. We know from the law of large numbers that
√
n(X̄ − µ)→ N(0, σ)

Now let g(x)=1/x, then g’(x)=-1/x2 and we get
√
n(1/X̄ − 1/µ)→ N(0, σ/µ2)

say for example Xi ∼ U [0, 1], then µ = 1/2 and σ = 1/
√

12, so according to the delta method
√
n(1/X̄ − 1/µ) ∼ N(0, σ/µ2) = N(0, 2/

√
3)

n <- 100; B <- 10000
x <- matrix(runif(n*B), ncol=n)
xbar <- apply(x, 1, mean)
y <- sqrt(n)*(1/xbar - 1/0.5)
bw <- diff(range(y))/50
df <- data.frame(x=y)
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

stat_function(fun = dnorm,
colour = "blue",
args=list(mean=0, sd=2/sqrt(3)))
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7.10.3 Variance Approximations based on Taylor’s Theorem

For our purposes we will need only first-order approximations (that is using the first deriva-
tive) but we will need a multivariate extension as follows: say X1, ..,Xn are r.v. with means
µ1, .., µn and define X=(X1, ..,Xn) and µµµ = (µ1, .., µn). Suppose there is a differentiable
function h(X) for which we want an approximate estimate of the variance. Define

h′i(µµµ) = ∂h(ttt)
∂ti
|t=µt=µt=µ

Then first order Taylor expansion of h about µµµ is

h(ttt) = h(µµµ) +
n∑
i=1

h′i(µµµ)(ti − µi) + Remaindeer

Forgetting about the remainder we have

E[h(XXX)] ≈ E[h(µµµ) +
n∑
i=1

h′i(µµµ)(Xi − µi)] =

h(µµµ) +
n∑
i=1

h′i(µµµ)(E[Xi]− µi) = h(µµµ)
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var(h(XXX)) ≈ E[(h(XXX)− h(µµµ)2] ≈

E

( n∑
i=1

h′i(µµµ)(Xi − µi)
)2
 =

E

 n∑
i,j=1

h′i(µµµ)(Xi − µi)h′j(µµµ)(Xj − µj)
 =

E

[
n∑
i=1

(h′i(µµµ))2(Xi − µi)2
]

+

2E
 n∑
i<j=1

h′i(µµµ)h′j(µµµ)(Xi − µi)(Xj − µj)
 =

n∑
i=1

(h′i(µµµ))2E
[
(Xi − µi)2

]
+

2
n∑

i<j=1
h′i(µµµ)h′j(µµµ)E [(Xi − µi)(Xj − µj)] =

n∑
i=1

(h′i(µµµ))2var(Xi) + 2
n∑

i<j=1
h′i(µµµ)h′j(µµµ)cov (Xi, Xj)

7.10.3.1 Example (8.10.5) Say we have just one rv X, then the formula simplifies to

var(h(X)) ≈ (h′(µ))2var(X)

say X ∼ N(µ, 1) with µ large enough so that P(X>0)=1. We want to find var(log(X)). Set
h(x)=log(x), then h’(x)=1/x and

var(log(X)) ≈ ( 1
µ

)2 × 1 = 1
µ2

check with

var(log(rnorm(10000, 10)))

## [1] 0.0103564

7.10.3.2 Example (8.10.6) say we have a sample X1, ..,Xn from a Bernoulli r.v. with
success parameter p, that is P(X=1)=p=1-P(X=0). One popular measure of the probability
of winning a game is the odds p/(1-p). For example when you roll a fair die the odds of
getting a six are (1/6)/(1-(1/6) = 1:5.
An obvious estimator for p is p̂, the sample mean, or here the proportion of “successes” in
the n trials. Then an obvious estimator for the odds is p̂/(1 − p̂). The question is, what is
the variance of this estimator?

317



First note that

var(p̂) =
var(1/n

∑
Xi) =

1
n2

∑
var(Xi) =

1
n
var(X1) =

p(1− p)/n
Using the above approximation we get the following: let h(p)=p/(1-p), so h’(p)=1/(1-p)2

and

var( p̂

1− p̂) ≈ (h′(p))2var(p̂) =[
1

(1− p)2

]2
p(1− p)

n
= p

n(1− p)3

p <- 0.25; n <- 25; B <- 10000
x <- matrix(rbinom(B, 1, p), ncol=n)
phat <- apply(x, 1, mean)
odds <- phat/(1 - phat)
round(c(var(odds), p/n/(1 - p)^3), 4)

## [1] 0.0279 0.0237

Say we have two rv’s X and Y and X ⊥ Y , then the formula simplifies to

var(h(X, Y )) ≈ h2
x(µx, µy)var(X) + h2

y(µx, µy)var(Y )

7.10.3.3 Example (8.10.7) say X and Y have a geometric distribution with parameters p
and r, respectively. We want to approximate the variance of

√
X2 + Y 2

Now µX = 1/p, var(X) = (1− p)/p2, µY = 1/r, var(Y ) = (1− r)/r2

let h(x, y) =
√
x2 + y2, then
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dh

dx
= x

x2 + y2

dh

dy
= y

x2 + y2

var(
√
X2 + Y 2) =(

µx
µ2
x + µ2

y

)2

var(X) +
(

µy
µ2
x + µ2

y

)2

var(Y ) =
(

1/p
1/2 + 1/r2

)2 1− p
p2 +

(
1/r

1/2 + 1/r2

)2 1− r
r2 =

1− p
p2(1 + (p/r)2) + 1− r

r2(1 + (r/p)2)

p <- 0.2; r <- 0.3; B <- 10000
x <- rgeom(B, p)+1
y <- rgeom(B, r)+1
round(c(var(sqrt(x^2+y^2)),

(1-p)/(p^2*(1+(p/r)^2))+(1-r)/(r^2*(1+(r/p)^2))), 3)

## [1] 19.882 16.239

7.10.3.4 Example (8.10.8) let’s consider the random vector with joint density f(x, y) = 1,
0 < x, y < 1.
Say we want to find var(X/Y). Of course X, Y ∼ U [0, 1] and independent, so we know
E[X]=E[Y]=1/2 and var(X)=var(Y)=1/12.
If we consider the function h(x,y) = x/y we have hx(x, y) = 1/y and hy(x, y) = −x/y2 and
so

var(X/Y ) ≈ h2
x(µx, µy)var(X) + h2

y(µx, µy)var(Y ) =

( 1
1/2)2 1

12 + (− 1/2
(1/2)2 )2 1

12 = 2
3

How good is this approximation?

var(runif(10000)/runif(10000))

## [1] 4782.344

shows that it is actually very bad! The reason is that occasionally the denominator is very
small, so the ratio is very big.
Let’s change the problem a little: now f(x, y) = 1, 1 < x, y < 2.
that is X, Y ∼ U [1, 2], so E[X]=E[Y]=3/2, var(X)=var(Y)=1/12. Now
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var(X/Y ) ≈ h2
x(µx, µy)var(X) + h2

y(µx, µy)var(Y ) =

( 1
3/2)2 1

12 + (− 3/2
(3/2)2 )2 1

12 = 2
27

and this is actually quite good:

round(c(2/27, var(runif(10000,1,2)/runif(10000,1,2))), 4)

## [1] 0.0741 0.0849

Generally ratios are often trouble!

7.10.3.5 Example (8.10.9) let’s consider the random vector with joint density f(x, y) = 6x,
0 < x < y < 1
Say we want to find car(X/Y)
First we have

fx(x) =
∫ 1

x
6xdy = 6x(1− x); 0 < x < 1

X ∼ Beta(2, 2)
E[X] = 1/2

var(x) = 2 · 2
(2 + 2)2(2 + 2 + 1) = 1

20

fy(y) =
∫ y

0
6xdx = 3y2; 0 < y < 1

X ∼ Beta(3, 1)
E[X] = 3/4

var(x) = 3 · 1
(3 + 1)2(3 + 1 + 1) = 3

80

E[XY ] =
∫ 1

0

∫ y

0
xy6xdydxdy2

5
cov(X, Y ) = E[XY ]− E[X]E[Y ] = 1

40
so

var(X/Y ) ≈
h2
x(µx, µy)var(X) + h2

y(µx, µy)var(Y ) + 2hx(µx, µy)hy(µx, µy)cov(X, Y ) =

( 1
3/4)2 1

20 + (− 1/2
(3/4)2 )2 3

80 + 2( 1
3/4)(− 1/2

(3/4)2 ) 1
40 = 0.058
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and this is quite good:

x <- rbeta(10000, 2, 2)
y <- runif(10000, x, 1)
round(var(x/y), 4)

## [1] 0.0561

7.10.3.6 Example (8.10.10) Let (X, Y, Z) be a multivariate normal with mean vector (1,
1, 1) and variance-covariance matrix

 1 0.5 0.8
0.5 1 −0.2
0.8 −0.2 1


Find an approximation to var(

√
X2 + Y 2 + Z2)

h(x, y, z) =
√
x2 + y2 + z2

∂h

∂x
(1, 1, 1) = x√

x2 + y2 + z2 = 1√
3

and by symmetry the same holds for the other derivatives. So

var(
√
X2 + Y 2 + Z2) ≈

( 1√
3

)2

∑ var(Xi) + 2
∑
i<j

cov(Xi, Xj)
 =

1
3 (1 + 1 + 1 + 2(0.5 + 0.8− 0.2)) = 1.7

library(mvtnorm)
mu <- rep(1, 3)
vc <- cbind(c(1, 0.5, 0.8),

c(0.5, 1, -0.2),
c(0.8, -0.2, 1))

x <- rmvnorm(1e4, mu, vc)
var(sqrt(x[, 1]^2+x[, 2]^2+x[, 3]^2))

## [1] 1.098052
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8 The Bootstrap

8.1 The Bootstrap - Introduction

8.1.0.1 Example (8.1.1) say we have rv’s X where X ∼ N(µ, σ) (σ known), and we are
interested in estimating µ. We can use the sample mean x̄. What is the standard error of
this estimate? Of course it is σ/

√
n.

Let’s instead say we want to use the median. Now what is the standard error? To find it we
would first have to find the distribution of the sample median and then its variance.
Instead we can of course use simulation:

B <- 10000; n <- 50; mu <- 2.5; sigma <- 1
x <- matrix(rnorm(B*n, mu, sigma), ncol=n)
xbar <- apply(x, 1, mean)
M <- apply(x, 1, median)
round(c(sigma/sqrt(n), sd(xbar), sd(M)), 3)

## [1] 0.141 0.144 0.177

Now let’s say that the xi’s come from some unknown distribution F (.; θ). We can no longer
do the simulation because we do not know what to simulate from. Instead we can use a
method called the bootstrap.
It starts of very strangely: instead of sampling from a distribution as in a standard Monte
Carlo study, we will now resample the data itself, that is if the data is n observations x1,
.., xn, then the bootstrap sample is also n numbers with replacement from x1, .., xn, that
is x∗1 is any of the original x1, .., xn with probability 1/n.
In any one bootstrap sample an original observation, say x1, may appear once, several
times, or not at all.

8.1.0.2 Example (8.1.2) say the data is (5.1, 2.3, 6.4, 7.8, 4.6), then one possible bootstrap
sample is (6.4, 4.6, 2.3, 6.4, 5.1).
Say we have a sample x1, .., xn from some unknown distribution F and we wish to estimate
some parameter θ = t(F ). For this we find some estimate

θ̂ = s(x)

How accurate is θ̂?

8.1.0.3 Example (8.1.3) X1, ..., Xn ∼ F ; θ = E(X1) so
t(F ) =

∫
xf(x)dx

and
s(x) = X̄
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8.1.0.4 Example (8.1.4) X1, ..., Xn ∼ F ; θ = var(X1), so
t(F ) =

∫
(x− µ)2f(x)dx

and
s(xxx) = 1/(n− 1)∑(xi − x̄)2

Here is the algorithm to find the bootstrap estimate of the standard error in θ̂:

1) Select B independent bootstrap samples x∗1, ..,x∗B, each consisting of n data values drawn
with replacement from x. Here B is usually on the order 2000.

2) Evaluate the bootstrap replication corresponding to each bootstrap sample, θ̂∗b = s(x∗b),
b=1,..,B

3) Estimate the standard error sef (θ̂) by the sample standard deviation of the bootstrap
replications.

8.1.0.5 Example (8.1.5) say the data is (5.1, 2.3, 6.4, 7.8, 4.6) and we want to estimate
the mean µ, then

x <- c(5.1, 2.3, 6.4, 7.8, 4.6)
B <- 500
thetastar <- rep(0, B)
for(i in 1:B) {

xstar <- sample(x, size=length(x), replace = TRUE)
# with replacement!

thetastar[i] <- mean(xstar)
}
sd(thetastar)

## [1] 0.8179605

R has a library to do most of the work for us:

library(bootstrap)
sd(bootstrap(x, 2000, mean)$thetastar)

## [1] 0.8308119

8.1.0.6 Example (8.1.6) say the following is a sample from some distribution F:

cat(x[c(1:10, 491:500)])

0.76 0.92 1.11 1.34 1.35 1.44 1.51 1.52 1.52 1.58 5.72 5.79 5.81 5.85 5.89 5.91 5.94 5.96 6.49 6.92
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and we want to find 95% confidence intervals for θ = E[X].
Now this distribution is not a normal:

bw <- diff(range(x))/50
ggplot(data.frame(x=x), aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density")
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but we can use the bootstrap instead:

thetastar <- bootstrap(x, 2000, mean)$thetastar

Notice that in fact the thetastar’s do have a normal distribution:

bw <- diff(range(thetastar))/50
ggplot(data.frame(x=thetastar), aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density")
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and so we can find the confidence interval:

round(mean(x) +c(-1, 1)*qnorm(0.975)*sd(thetastar), 2)

## [1] 3.22 3.39

Note there is no
√
n because sd(thetastar) is already the standard error of the estimate, not

of the original data.
Here the bootstrap estimates are normal, which is quite often the case. If they are not we
could use a CI based on the percentiles:

round(quantile(thetastar, c(0.025, 0.975)), 2)

## 2.5% 97.5%
## 3.22 3.39

This idea of the bootstrap is very strange: at first it seems we are getting more out of the
data than we should. It is also a fairly new idea, invented by Bradley Efron in the 1980’s.
Here is some justification why it works:
Let’s say we have X1, ..., Xn ∼ F for some cdf F, and we want to investigate the properties
of some parameter θ of F, for example its mean or its median. We have an estimator of θ,
say s(x1, .., xn), for example x̄ in the case of the mean.
What is the error in s(x1, .., xn)? In the case of the mean this is very easy and we already
know that the answer is sd(x1)/

√
n.

But what if we don’t know it and we want to use Monte Carlo simulation to find out?
Formally what this means is the following:
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1) generate X ′1, ..., X ′n ∼ F
2) find the θ′ = s(x′1, .., x′n)

3) repeat 1 and 2 many times (say 1000 times)

4) Study the MC estimates of θ, for example find their standard deviation.

But what do we do if we don’t know that our sample came from F?
A simple idea then is to replace sampling from the actual distribution function by sampling
from the next best thing, the empirical distribution function. So the idea of the bootstrap
is simple: replace F in the simulation above with Fhat:

1) generate X ′1, ..., X ′n ∼ F̂

2) find the θ′ = s(x′1, .., x′n)

3) repeat 1 and 2 many times (say 1000 times)

4) Study the MC estimates of θ, for example find their standard deviation.

What does it mean, generate X ′1, .., X ′n from the empirical distribution function of X1, .., Xn?
Actually it means finding a bootstrap sample as described above.

8.1.0.7 Example (8.1.7) Let’s return to the experiment on mice we discussed at the begin-
ning of the class. Below we have the results of a small experiment, in which 7 out of 16 mice
were randomly selected to receive a new medical treatment, while the remaining 9 mice were
assigned to the control group. The treatment was intended to prolong survival after surgery:

Treatment Control
1 94 52
2 197 104
3 16 146
4 38 10
5 99 50
6 141 31
7 23 40
8 27
9 46

How can we answer the question on whether this new treatment is effective? First of course
we can find the within group means and standard deviations:
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round(unlist(lapply(mice, mean)), 1)

## treatment control
## 86.9 56.2

round(unlist(lapply(mice, sd))/sqrt(unlist(lapply(mice, length))), 2)

## treatment control
## 25.24 14.14

so we see that the mice who received the treatment lived on average 30.63 days longer. But
unfortunately the standard error of the difference is 28.93 =

√
(25.242 + 14.142), so we see

that the observed difference 30.63 is only 30.63/28.93 = 1.05 standard deviations above 0.
Let’s say next that instead of using the mean we wish to use the median to measure average
survival. We find the following:

round(unlist(lapply(mice, median)), 1)

## treatment control
## 94 46

Now we get a difference in median survival time of 48 days, but what is the standard error
of this estimate? Of course there is a formula for the standard error of the median, but it
is not simple and just finding it in a textbook would be some work. On the other hand we
can use the bootstrap method to find it very easily:

treatstar <- bootstrap(mice$treatment, 1000, median)$thetastar
contstar <- bootstrap(mice$control, 1000, median)$thetastar
sds <- round(c(sd(treatstar), sd(contstar)), 2)
sds

## [1] 35.61 12.44

sqrt(sum(sds^2))

## [1] 37.72036

round(48/sqrt(sum(sds^2)), 3)

## [1] 1.273

So the difference is 1.15 standard deviations larger than 0.
This is larger than the one for the mean, but still not statistically significant.
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8.2 Some Applications of the Bootstrap

library(bootstrap)

Let’s revisit some of the examples we discussed earlier, and analyze them using the bootstrap:

8.2.0.1 Example (8.2.1) In a survey of 1000 likely voters 523 said they will vote for party
A, the other 477 for party B. Find a 95% CI for the lead of one party over the other.

B <- 10000
x <- c(rep(1, 523), rep(0, 477))
lead <- abs(sum(x) - sum(1 - x))/1000
lead.boot <- rep(0, B)
for (i in 1:B) {

xstar <- sample(x, size = 1000, replace = T)
lead.boot[i] <- abs(sum(xstar) - sum(1 - xstar))/1000

}
cat("Bootstrap Estimate")

## Bootstrap Estimate

as.numeric(quantile(lead.boot, c(0.025, 0.975)))

## [1] 0.002 0.106

x <- 523; n <- 1000; alpha <- 0.05
cat("Likelihood Ratio")

## Likelihood Ratio

round(2*x/n-1 +
c(-1, 1)*2*qnorm(1-alpha/2)*sqrt(x/n*(1-x/n)/n), 3)

## [1] -0.016 0.108

8.2.0.2 Example (8.2.2) Recall the pet ownership and survival data:

Status Alive Dead
1 Owns a Pet 50 3
2 Does not own a Pet 28 11

Question: is there a statistically significant association between Ownership and Survival?
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First we need a measure of association, that is a number we can calculate from the data that
tells us something about the relationship (or lack thereof) between our variables. Previously
we used the chisquare statistic, so let’s use it again. Only now we don’t need the chisquare
approximation, we can just study the distribution of the chisquare values for the bootstrap
sample.

z <- c(50, 28, 3, 11)
A <- matrix(0, 92, 2)
A[79:92, 1] <- 1
A[c(51:78, 82:92), 2] <- 1
O <- c(table(A[, 1], A[, 2]))
E <- c((O[1]+O[2])*(O[1]+O[3]),

(O[1]+O[2])*(O[2]+O[4]),
(O[1]+O[3])*(O[3]+O[2]),
(O[2]+O[4])*(O[3]+O[4]))/92

chi <- sum((O-E)^2/E)
chistar <- rep(0, B)
for (i in 1:B) {

a1 <- A[sample(1:92, size=92, replace=TRUE), 1]
a2 <- A[sample(1:92, size=92, replace=TRUE), 2]
O <- c(table(a1, a2))
E <- c((O[1]+O[2])*(O[1]+O[3]),

(O[1]+O[2])*(O[2]+O[4]),
(O[1]+O[3])*(O[3]+O[2]),
(O[2]+O[4])*(O[3]+O[4]))/92

chistar[i] <- sum((O-E)^2/E)
}
bw <- diff(range(chistar))/50
ggplot(data.frame(x=chistar), aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

geom_vline(xintercept = chi)

329



0.00

0.25

0.50

0.75

0 5 10
x

D
en

si
ty

length(chistar[chistar > chi])/B

## [1] 0.0036

Here we take bootstrap samples of the owns and of survives independently, calculate the
corresponding chisquare statistics and repeat that B times. Finally we find the percentage
of bootstrap runs larger than the observed chisquare, which is essentially the p-value of our
test.

8.2.0.3 Example (8.2.3) the effect of the mother’s cocaine use on the length of the newborn.
Let’s use the bootstrap to find 95% confidence intervals for the means and medians of the
lengths.

A <- matrix(0, 3, 4)
Status <- c("Drug Free", "First Trimester", "Throughout")
dimnames(A) = list(Status,

c("Low Mean", "High Mean", "Low Median", "High Median"))
for (i in 1:3) {

x <- mothers$Length[mothers$Status==Status[i]]
thetastar <- bootstrap(x, 1000, mean)$thetastar
A[i, 1:2] = mean(x) + c(-1, 1)*qnorm(0.975)*sd(thetastar)
thetastar <- bootstrap(x, 1000, median)$thetastar
A[i, 3:4] = median(x) + c(-1, 1)*qnorm(0.975)*sd(thetastar)

}
A <- round(A, 1)
kable.nice(A)
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Low Mean High Mean Low Median High Median
Drug Free 50.2 52.0 50.6 52.0
First Trimester 48.2 50.4 47.6 50.2
Throughout 46.8 49.2 47.2 49.1

head(hubble)

8.2.0.4 Example (8.2.4)

## Velocity Distance Galaxy.NGC. velocity.km.s Distance.Mpc.
## 1 170 0.032 925 553 9.70
## 2 290 0.034 1326A 1831 15.81
## 3 -130 0.214 1365 1636 18.48
## 4 -70 0.263 1425 1510 20.83
## 5 -185 0.275 2090 921 11.57
## 6 -220 0.275 2541 548 12.06

B <- 1000; alpha = 0.05
coef <- lm(Velocity~Distance, data=hubble)$coef
print("coefficients for data")

## [1] "coefficients for data"

print(as.numeric(coef))

## [1] -40.78365 454.15844

coef.boot <- matrix(0, B, 2)
for (i in 1:B) {

Index <- sample(1:24, size=24, replace = TRUE)
coef.boot[i, ] <- lm(Velocity~Distance,

data=hubble[Index, ])$coef
}
print("CI for constant:")

## [1] "CI for constant:"

print(as.numeric(quantile(coef.boot[, 1], c(alpha/2, 1 -
alpha/2))))

## [1] -206.9136 118.0921
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print("CI for slope:")

## [1] "CI for slope:"

print(as.numeric(quantile(coef.boot[, 2], c(alpha/2, 1 -
alpha/2))))

## [1] 325.9313 610.3808

8.2.0.5 Example (8.2.5) Consider Gregor Mendel’s pea experiment:

O <- c(315, 101, 108, 32)
B <- 1000
E <- sum(O)*c(9, 3, 3, 1)/16
chi <- sum((O-E)^2/E)
print("Chisquare Statistic of Data")

## [1] "Chisquare Statistic of Data"

print(chi)

## [1] 0.470024

chi.boot <- rep(0, B)
x <- rep(1:4, E)
for (i in 1:B) {

xstar <- sample(x, size = 556, replace = TRUE)
chi.boot[i] = sum((table(xstar) - E)^2/E)

}
print("% of Bootstrap runs > Data")

## [1] "% of Bootstrap runs > Data"

length(chi.boot[chi.boot > chi])/B

## [1] 0.927

8.2.0.6 Example (8.2.6) Hidalgo stamps
A well known data set in statistics has the thicknesses (espesor) in millimeters of 485 Mexican
stamps (sello) printed in 1872-1874, from the 1872 Hidalgo issue.
It is thought that the stamps from this issue are a “mixture” of different types of paper, of
different thicknesses. Can we determine from the data how many different types of paper
were used?
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kable.nice(matrix(stamps[1:50], nrow=10))

0.060 0.069 0.07 0.070 0.071
0.064 0.069 0.07 0.070 0.071
0.064 0.069 0.07 0.070 0.071
0.065 0.070 0.07 0.070 0.071
0.066 0.070 0.07 0.070 0.071
0.068 0.070 0.07 0.070 0.071
0.069 0.070 0.07 0.070 0.071
0.069 0.070 0.07 0.070 0.071
0.069 0.070 0.07 0.070 0.071
0.069 0.070 0.07 0.071 0.071

Let’s start with

bw <- diff(range(stamps))/50
df <- data.frame(Thickness=stamps)
ggplot(df, aes(Thickness)) +
geom_histogram(color = "black",

fill = "white",
binwidth = bw) +
labs(x = "x", y = "Counts")
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which seems to have at least two modes. This judgment however is tricky because it depends
on the number of bins we use.
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An alternative is to use a frequency polygon

ggplot(df, aes(Thickness)) +
geom_freqpoly()
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which seems to suggest a much larger number of modes.
Let’s instead draw the graph using a nonparametric density estimate:

ggplot(df, aes(Thickness)) +
stat_density(geom="line")
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here it seems again like there are two modes, but this depends largely on the chosen band-
width:

pushViewport(viewport(layout = grid.layout(1, 2)))
print(ggplot(df, aes(Thickness)) +

stat_density(geom="line", bw=0.01) ,
vp=viewport(layout.pos.row=1, layout.pos.col=1))

print(ggplot(df, aes(Thickness)) +
stat_density(geom="line", bw=0.001) +ylab("") ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))
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stat_density implements a kernel density estimator. In what follows we will need to explicitly
calculate these estimates and use the density routine.
From the above it is clear that the number of modes depends on the choice of h. It is possible
to show that the number of modes is a non-increasing function of h. At the extremes we
would have a simple normal distribution with one mode (h large) and on the other a sharply
peaked mode at each observation (h tiny).
Let’s say we want to test

H0 : number of modes = 1 vs. H1 : number of modes > 1

Because the number of modes is a non-increasing function of h there exists an h1 such that
the density estimator has one mode for h < h1 and two or more modes for h > h1. Playing
around with

fhat <- function(h, t, dta=stamps) {
tmp <- density(dta, bw=h)
df <- data.frame(x=tmp$x, y=tmp$y)
if(missing(t)) return(df)
out <- approx(df, xout=t)$y
out[!is.na(out)]

}
draw.fhat <- function(h)

ggplot(fhat(h), aes(x, y)) + geom_line()

pushViewport(viewport(layout = grid.layout(2, 2)))
print(draw.fhat(0.01) ,

vp=viewport(layout.pos.row=1, layout.pos.col=1))
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print(draw.fhat(0.005) ,
vp=viewport(layout.pos.row=1, layout.pos.col=2))

print(draw.fhat(0.0075) ,
vp=viewport(layout.pos.row=2, layout.pos.col=1))

print(draw.fhat(0.0068) ,
vp=viewport(layout.pos.row=2, layout.pos.col=2))
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we find h1 ∼ 0.0068.
Is there a way to calculate the number of modes for a given h? here is one:

• calculate yi = f̂(ti;h) on a grid t1, ..tk

• calculate zi = yi−1−yi and note that at a mode z will change from positive to negative

• number of modes = ∑
I[zi > 0 and zi+1 < 0]

Let’s write a simple routine that automates the process. It uses a bisection algorithm.

x.points <- seq(min(stamps), max(stamps), length = 250)
calc.num.mode = function(y) {

m <- length(y) - 1
z <- diff(y)
sum(ifelse(z[-m] >= 0 & z[-1] < 0, 1, 0))

}
find.h <- function(num.modes, h=0.007, Show=FALSE) {

repeat {
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h <- h-0.001
if(Show)

cat("h =", h, " modes=",
calc.num.mode(fhat(h, x.points)), "\n")

if(calc.num.mode(fhat(h, x.points)) >= num.modes) break
}
low <- h
high <- h + 0.001
repeat {

h <- (low+high)/2
if(Show)

cat("h =", h, " modes=",
calc.num.mode(fhat(h, x.points)), "\n")

if(calc.num.mode(fhat(h, x.points)) < num.modes)
high <- h

else
low <- h

if(high-low<10^-7)
break

}
h

}

h1 <- find.h(1, Show = TRUE)

## h = 0.006 modes= 2
## h = 0.0065 modes= 2
## h = 0.00675 modes= 1
## h = 0.006875 modes= 1
## h = 0.0069375 modes= 1
## h = 0.00696875 modes= 1
## h = 0.006984375 modes= 1
## h = 0.006992188 modes= 1
## h = 0.006996094 modes= 1
## h = 0.006998047 modes= 1
## h = 0.006999023 modes= 1
## h = 0.006999512 modes= 1
## h = 0.006999756 modes= 1
## h = 0.006999878 modes= 1
## h = 0.006999939 modes= 1

h5 <- find.h(5)

pushViewport(viewport(layout = grid.layout(1, 2)))
print(draw.fhat(h1) ,
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vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(draw.fhat(h5) ,

vp=viewport(layout.pos.row=1, layout.pos.col=2))
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So, how we can test

H0 : number of modes = 1 vs. Ha : number of modes > 1
Here it is:

• draw B bootstrap samples of size n from fhat(h1)
• for each find h∗1, the smallest h for which this bootstrap sample has just 1 mode

• approximate p-value of test is the proportion of h∗1 > h1.

the idea is this; if there is indeed just one mode, then in the bootstrap samples h∗1 should be
around h1 and so this proportions shouldn’t be to small.
Notice we don’t actually need h∗1, we just need to check if h∗1 > h1, which is the case if
f̂(x∗;h∗1) has at least two modes.
Note that we are not drawing bootstrap samples from “stamps” but from a density estimate,
f̂ . So this is an example of the smooth bootstrap mentioned above.
How do we draw from fhat? It can be shown that if y∗1, .., y∗n is a bootstrap sample from the
data, then a smooth bootstrap sample is given by

x∗i = ȳ∗ + (1 + h∗1/s
2)−1/2(y∗i − ȳ∗ + h∗1εi)

where εi ∼ N(0, 1)
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test.modes <- function(k) {
h <- find.h(k+1)
q <- 1/sqrt((1 + h^2/var(stamps)))
B <- 1000
hstar <- rep(0, B)
for (i in 1:B) {

ystar <- sample(stamps, size = 485, replace = TRUE)
xstar <- mean(ystar) + q*(ystar-mean(ystar) +

h*rnorm(485))
y <- fhat(h, x.points, dta=xstar)
if (calc.num.mode(y) > k)

hstar[i] <- 1
}
length(hstar[hstar > h])/B

}
test.modes(1)

## [1] 0.001

and so we find strong evidence against the null, there are more than one modes.
The same method works for testing

H0 : number of modes = k vs. Ha : number of modes > k

and we find

for(k in 2:9)
cat("k =", k, ", p =", test.modes(k),"\n")

## k = 2 , p = 0.313
## k = 3 , p = 0.058
## k = 4 , p = 0.006
## k = 5 , p = 0.001
## k = 6 , p = 0
## k = 7 , p = 0.332
## k = 8 , p = 0.781
## k = 9 , p = 0.543

So there are certainly more than one mode, with a chance for as many 7.
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