Consider the following weighted no-intercept regression model: \(y_i=\beta x_i+\epsilon _i\), where \(\epsilon_i\sim N(0, \sigma^2 x_i)\) and \(cov(y_i,y_j)=0\) if \(i\ne j\).
Find the maximum likelihood estimators of \(\beta\) and \(\sigma^2\) directly, without the use of theorem (6.5.2).
Assuming we know \(\sigma\), find a \((1-\alpha)100\%\) confidence interval for \(\beta\).
For the case \(x=0:100/100\), \(\beta=\sigma=2\) and a 95% confidence interval, write a simulation in R to check whether the interval from part b has correct coverage.
Below are the values of the response variable for the following model: \(y_i= \alpha i/10 + \beta i^2/100 +\epsilon_i\), i=10,..,100.
\[H_0:\beta=0\text{ vs }H_a:\beta\ne 0\] that is we want to test whether a quadratic term is needed.
1.1 0.9 1.1 0.2 1.3 1.6 0.9 1.2 1.3 1.7 1.9 1.9 3.1 2.5 2.8 1.7 2.6 2.6 2.2 3.1 3.2 3.3 3.3 3.3 3.6 3.9 2.7 5.1 4 3.3 2.5 3.7 5 3.6 3.4 5.2 4.6 5 4.6 4.4 4.5 4.7 4.7 5.7 5.9 5.7 5.9 6.2 7.2 7.1 6.3 7.1 6.8 6.7 6.7 6.3 7.3 7.8 7.1 7.1 7.1 8.1 7.7 8 8.4 7.6 8 7.6 8.3 8.9 8.8 8.7 8.2 8.7 8.6 9.3 8.7 9 9.7 9.5 8.8 9.1 9.8 9.5 9.2 10.5 10.3 9.5 10 10.7 11.5