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1 R

For a detailed introduction to R you can read the material of my course Computing with R

1.1 Installation and Updating

1.1.1 Installing R

You can get a free version of R for your computer from a number of sources. The download
is about 70MB and setup is fully automatic. Versions for several operating systems can be
found on the R web site
https://cran.r-project.org
Note

• the one item you should change from the defaults is to install R into a folder under the
root, aka C:\R

• You might be asked at several times whether you want to do something (allow access,
run a program, save a library, . . . ), always just say yes!

• You will need to connect to a reasonably fast internet for these steps.
• This will take a few minutes, just wait until the > sign appears.

FOR MAC OS USERS ONLY
There are a few things that are different from MacOS and Windows. Here is one thing you
should do:
Download XQuartz - XQuartz-2.7.11.dmg
Open XQuartz
Type the letter R (to make XQuartz run R)
Hit enter Open R Run the command .First()
Then, every command should work correctly.

1.1.2 RStudio

We will run R using an interface called RStudio. You can download it at RStudio.

1.1.3 Updating

R releases new versions about every three months or so. In general it is not necessary to
get the latest version every time. Every now and then a package won’t run under the old
version, and then it is time to do so. In essence this just means to install the latest version
of R from CRAN. More important is to now also update ALL your packages to the latest
versions. This is done simply by running
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update.packages(ask=FALSE, dependencies=TRUE)

1.2 R Markdown

R Markdown is a program for making dynamic documents with R. An R Markdown document
is written in markdown, an easy-to-write plain text format with the file extension .Rmd. It
can contain chunks of embedded R code. It has a number of great features:

• easy syntax for a number of basic objects

• code and output are in the same place and so are always synced

• several output formats (html, latex, word)
In recent years I (along with many others) who work a lot with R have made Rmarkdown
the basic way to work with R. So when I work on a new project I immediately start a
corresponding R markdown document.

1.2.1 Get Started

to start writing an R Markdown document open RStudio, File > New File > R Markdown.
You can type in the title and some other things.
The default document starts like this:
---
title: “My first R Markdown Document”
author: “Dr. Wolfgang Rolke”
date: “April 1, 2018”
output: html_document
---
This follows a syntax called YAML (also used by other programs). Everything between the
three dashes (which are needed) is YAML code. There are other things that can be put here
as well, or you can erase all of it.
YAML stands for Yet Another Markup Language. It has become a standard for many
computer languages to describe different configurations. For details go to yaml.org.
Then there is other stuff you should erase. Next File > Save. Give the document a name
with the extension .Rmd
I have a number of things that I need in (almost) all of my Rmd files, and I am to lazy
to erase the stuff that the default starting document comes with. So I have a file called
blank.Rmd which already has everything as I (usually) want it. All I need to do is rename it
and put it in the right folder.
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1.2.2 Basic R Markdown Syntax

Markdown has simple keyboard shortcuts for many basic editing features. For example, #,
##, ### are for chapter and section headers. Subscripts are done with beginning and
ending ~, so for X1 you need to type X~1~. For superscripts use Xˆ1ˆ.
For a complete list of the basic syntax go to https://rmarkdown.rstudio.com/articles_intro.
html or to https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet

1.2.3 Embedded Code

There are two ways to include code chunks (yes, that’s what they are called!) into an R
Markdown document:
a. stand alone code

simultaneously enter CTRL-ALT-i and you will see this:
“‘{r}
“‘
Here ‘ is a back tick, on Windows keyboards found on the upper left key, below ~.
you can now enter any R code you like:
“‘{r}
x <- rnorm(10)
mean(x)
“‘
which will appear in the final document as
x <- rnorm(10)
mean(x)

Actually, it will be like this:
x<-rnorm(10)
mean(x)

## [1] -0.03853522

so we can see the result of the R calculation as well. The reason it didn’t appear like this
before was that I added the argument eval=FALSE:
“‘{r eval=FALSE}
which keeps the code chunk from actually executing (aka evaluating). This is useful if the
code takes along time to run, or if you want to show code that is actually faulty, or for any
number of other reasons.
there are several useful arguments:

• eval=FALSE (shows but doesn’t run the code)

8

https://rmarkdown.rstudio.com/articles_intro.html
https://rmarkdown.rstudio.com/articles_intro.html
https://github.com/adam-p/markdown-here/wiki/Markdown-Cheatsheet


• eval=2:5 (shows all the code but only runs lines 2 to 5)
• echo=FALSE (the code chunk is run but does not appear in the document)

• echo=2:5 (shows only code on lines 2 to 5)

• warning=FALSE (warnings are not shown)

• message=FALSE (messages are not shown)

• cache=TRUE (code is run only if there has been a change, useful for lengthy calculations)

• error=TRUE (if there are errors in the code R normal terminates the parsing (executing)
of the markdown document. With this argument it will ignore the error, which helps
with debugging)

• engine=‘Rcpp’ (to include C++ code)
Many of these options can be set globally, so they are active for the whole document. This is
useful so you don’t have to type them in every time. I have the following code chunk at the
beginning of all my Rmd:
library(knitr)
opts_chunk$set(fig.width=6, fig.align = "center",

out.width = "70%", warning=FALSE, message=FALSE)

We have already seen the message and warning options. The other one puts any figure in the
middle of the page and sizes it nicely.
If you have to override these defaults just include that in the specific chunk.
b. inline code.

here is a bit of text:
and the mean was -0.0385352.
Now I didn’t type in the number, it was done with the chunk
## `r mean(x)`

1.2.4 Creating Output

To create the output you have to “knit” the document. This is done by clicking on the knit
button above. If you click on the arrow you can change the output format.

1.2.4.1 HTML, Latex(Pd), Word, PowerPoint etc. One of the great features of Markdown
is that its syntax is independent of the eventual document format, so the same markdown
file can immediately produce an HTML file of a pdf or or. . .
In this class we will only use the HTML format, which is the easiest.
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In order to knit to pdf you have to install a latex interpreter. My suggestion is to use Miktex,
but if you already have one installed it might work as well.
There are several advantages / disadvantages to each output format:

• HTML is much faster

• HTML looks good on a webpage, pdf looks good on paper

• HTML needs an internet connection to display math, pdf does not

• HTML can use both html and latex syntax, pdf works only with latex (and a little bit
of html)

I generally use HTML when writing a document, and use pdf only when everything else is
done. There is one problem with this, namely that a document might well knit ok to HTML
but give an error message when knitting to pdf. Moreover, those error messages are weird!
Not even the line numbers are anywhere near right. So it’s not a bad idea to also knit to pdf
every now and then.

1.2.5 Tables

One of the more complicated things to do in R Markdown is tables. For a nice illustration
look at
https://stackoverflow.com/questions/19997242/simple-manual-rmarkdown-tables-that-
look-good-in-html-pdf-and-docx
My preference is to generate a data frame and the use the kable function:
Gender <- c("Male", "Male", "Female")
Age <- c(20, 21, 19)
df <- data.frame(Gender, Age)
knitr::kable(df)

Gender Age
Male 20
Male 21
Female 19

I have written my own kable routine which improves a bit on the basic version:
kable.nice <- function (x,

do.row.names = TRUE,
col.names = NA, font.size = 15)

{
library(tidyverse)
library(kableExtra)
kable(x, row.names = do.row.names,

col.names = col.names) %>%
kable_styling(bootstrap_options = "striped",
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full_width = FALSE,
font_size = font.size)

}
kable.nice(df)

Gender Age
1 Male 20
2 Male 21
3 Female 19

which I am sure you agree is nice! You can use it yourself, just copy paste the function code
into an R chunk of your document.
It is also possible to use HTML code to make a table:
## <table border="1">
## <tr><th>Gender</th><th>Age</th></tr>
## <tr><td>Male</td><td>20</td></tr>
## <tr><td>Male</td><td>21</td></tr>
## <tr><td>Female</td><td>19</td></tr>
## </table>

It will look like this in HTML:
Gender
Age
Male
20
Male
21
Female
19
but won’t look like anything in pdf.
The corresponding latex table will look good in pdf but not in HTML!
So what do you do if you don’t know yet what the output will be, or if you want your routine
to produce nice output either way? The solution is this: the document can check what the
output format is at run time, and then insert the corresponding code. This works as follows.
Say we want to include some code to print a piece of text in red, say for highlighting it. Now
in html we would need the code <font color=“red”>, then the text and finally </font>
to get back to black. In latex however we need \textcolor{red}{our text}. Here is a little
routine that will do it:
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fontcolor <- function (txt) {
library(knitr)
output.format <- opts_knit$get("rmarkdown.pandoc.to")

# this figures out what the output format is
if(output.format == "latex")

out <- paste0("\\textcolor{red}{", txt, "}")
else

out <- paste0("<font color='red'>", txt, "</font>")
out

}

and now if we have
## `r fontcolor("this is in red")`

it will appear as this is in red in either html or latex.

1.2.6 LATEX

You have not worked with latex (read: latek) before? Here is your chance to learn. It is well
worthwhile, latex is the standard document word processor for science. And once you get
used to it is WAY better and easier than (say) Word.
Because latex code will generally display correctly in an html document but html will not in
a latex document I suggest to stick as much as possible with latex.
Latex has a HUGE list of symbols for just about anything. A nice list of common symbols is
found on https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols. Often when I
need one I don’t remember I just google it. For example, say I want to use the symbol for
the real numbers: R. So I google “latex real numbers symbol”, and the first document tells
me the code is \mathbf{R}!
Latex code is usually used in two ways: as part of a sentence or as stand-alone. In the first
case use a single dollar sign at the beginning and the end. For example the code
We want to integrate the function
$f(x)=\exp(-x^2)$

will display as
We want to integrate the function
f(x) = exp(−x2).
Exercise
Does anyone know how I displayed the code and not the formula the first time?

The other way to display math in latex is via

12

https://artofproblemsolving.com/wiki/index.php/LaTeX:Symbols


1.2.6.1 Multiline math say you want the following in your document:

E[X] =
∫ ∞
−∞

xf(x)dx =∫ 1

0
xdx = 1

2x
2|10 = 1

2

for this to display correctly in HTML and PDF you need to use the format
## $$
## \begin{aligned}
## &E[X] = \int_{-\infty}^{\infty} xf(x) dx=\\
## &\int_{0}^{1} x dx = \frac12 x^2 |_0^1 = \frac12
## \end{aligned}
## $$

so a multiline expression starts and ends with double dollar signs.
By default when you knit to pdf the intermediate latex file is deleted. If you want to keep it,
maybe so you can change it in a latex editor, use the following in the YAML header:
output:
pdf_document:
keep_tex: true

notice the spaces before the text, they are needed!

1.2.7 snippets

A snippet is a short piece of code that one uses quite often, and so it would be nice not to
have to type it in every time. RStudio has a number of them pre-defined. Go to Tools >
Global Options > Code > Edit Snippets.
There are snippets for various languages, including R Markdown. To use a snippet, simply
type the code and then Shift+Tab.
You can even wright your own! For example, I have one called mta that has all the basics to
start a multi-line latex math expression.

1.3 R Basics I

To start run
ls()

This shows you a “listing”" of the files (data, routines etc.) in the current project. (Likely
there is nothing there right now)
Everything in R is either a data set or a function. It is a function if it is supposed to do
something (maybe calculate something, show you something like a graph or something else
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etc. ). If it is a function is ALWAYS NEEDS (). Sometimes the is something in between the
parentheses, like in
mean(x)

## [1] 6

Sometimes there isn’t like in the ls(). But the () has to be there anyway.
If you have worked for a while you might have things you need to save, do that by clicking on
File > Save
RStudio has a nice recall feature, using the up and down arrow keys. Also, clicking on the
History tab shows you the recently run commands. Finally, typing the first three letters
of a command in the console and then typing CTRL-ˆ shows you a list of when you ran
commands like this the last times.
R is case-sensitive, so a and A are two different things.
Often during a session you create objects that you need only for a short time. When you no
longer need them use rm to get rid of them:
x <- 10
x^2

## [1] 100
rm(x)

the <- is the assignment character in R, it assigns what is on the right to the symbol on the
left. (Think of an arrow to the left)

1.3.1 Data Entry

For a few numbers the easiest thing is to just type them in:
x <- c(10, 2, 6, 9)
x

## [1] 10 2 6 9

c() is a function that takes the objects inside the () and combines them into one single object
(a vector).

1.3.2 Data Types in R

the most basic type of data in R is a vector, simply a list of values.
Say we want the numbers 1.5, 3.6, 5.1 and 4.0 in an R vector called x, then we can type
x <- c(1.5, 3.6, 5.1, 4.0)
x

## [1] 1.5 3.6 5.1 4.0
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Often the numbers have a structure one can make use of:
1:10

## [1] 1 2 3 4 5 6 7 8 9 10
10:1

## [1] 10 9 8 7 6 5 4 3 2 1
1:20*2

## [1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
c(1:10, 1:10*2)

## [1] 1 2 3 4 5 6 7 8 9 10 2 4 6 8 10 12 14 16 18 20

Sometimes you need parentheses:
n <- 10
1:n-1

## [1] 0 1 2 3 4 5 6 7 8 9
1:(n-1)

## [1] 1 2 3 4 5 6 7 8 9

The rep (“repeat”) command is very useful:
rep(1, 10)

## [1] 1 1 1 1 1 1 1 1 1 1
rep(1:3, 10)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
rep(1:3, each=3)

## [1] 1 1 1 2 2 2 3 3 3
rep(c("A", "B", "C"), c(4,7,3))

## [1] "A" "A" "A" "A" "B" "B" "B" "B" "B" "B" "B" "C" "C" "C"

what does this do?
rep(1:10, 1:10)

1.3.3 Commands for Vectors

To find out how many elements a vector has use the length command:
x <- c(1.4, 5.1, 2.0, 6.8, 3.5, 2.1, 5.6, 3.3, 6.9, 1.1)
length(x)
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## [1] 10

The elements of a vector are accessed with the bracket [ ] notation:
x[3]

## [1] 2
x[1:3]

## [1] 1.4 5.1 2.0
x[c(1, 3, 8)]

## [1] 1.4 2.0 3.3
x[-3]

## [1] 1.4 5.1 6.8 3.5 2.1 5.6 3.3 6.9 1.1
x[-c(1, 2, 5)]

## [1] 2.0 6.8 2.1 5.6 3.3 6.9 1.1

Instead of numbers a vector can also consist of characters (letters, numbers, symbols etc.)
These are identified by quotes:
c("A", "B", 7, "%")

## [1] "A" "B" "7" "%"

A vector is either numeric or character, but never both (see how the 7 was changed to “7”).
You can turn one into the other (if possible) as follows:
x <- 1:10
x

## [1] 1 2 3 4 5 6 7 8 9 10
as.character(x)

## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"
x <- c("1", "5", "10", "-3")
x

## [1] "1" "5" "10" "-3"
as.numeric(x)

## [1] 1 5 10 -3

A third type of data is logical, with values either TRUE or FALSE.
x <- 1:10
x

## [1] 1 2 3 4 5 6 7 8 9 10
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x > 4

## [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

these are often used as conditions:
x[x>4]

## [1] 5 6 7 8 9 10

This, as we will see shortly, is EXTREMELY useful!

1.3.4 Data Frames

data frames are the basic format for data in R. They are essentially vectors of equal length
put together as columns.
A data frame can be created as follows:
df <- data.frame(

Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21),
GPA=c(3.5, 3.7, 2.9, 2.8, 3.1)

)
df

## Gender Age GPA
## 1 M 23 3.5
## 2 M 25 3.7
## 3 F 19 2.9
## 4 F 22 2.8
## 5 F 21 3.1

1.3.5 Lists

The most general data structures are lists. They are simply a collection of objects. There are
no restrictions on what those objects are.

lst <- list(
Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21, 26, 34),
f=function(x) x^2,
list(A=c(1, 1), B=c("X", "X", "Y"))

)
lst

1.3.5.1 Example
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## $Gender
## [1] "M" "M" "F" "F" "F"
##
## $Age
## [1] 23 25 19 22 21 26 34
##
## $f
## function(x) x^2
##
## [[4]]
## [[4]]$A
## [1] 1 1
##
## [[4]]$B
## [1] "X" "X" "Y"

A data frame is a list with an additional requirement, namely that the elements of the list be
of equal length.

1.3.5.2 Case Study: UPR Admissions consider the upr data set . This is the application
data for all the students who applied and were accepted to UPR-Mayaguez between 2003
and 2013.
dim(upr)

## [1] 23666 16

tells us that there were 23666 applications and that for each student there are 16 pieces of
information.
colnames(upr)

## [1] "ID.Code" "Year" "Gender" "Program.Code" "Highschool.GPA"
## [6] "Aptitud.Verbal" "Aptitud.Matem" "Aprov.Ingles" "Aprov.Matem" "Aprov.Espanol"
## [11] "IGS" "Freshmen.GPA" "Graduated" "Year.Grad." "Grad..GPA"
## [16] "Class.Facultad"

shows us the variables
head(upr, 3)

## ID.Code Year Gender Program.Code Highschool.GPA Aptitud.Verbal Aptitud.Matem
## 1 00C2B4EF77 2005 M 502 3.97 647 621
## 2 00D66CF1BF 2003 M 502 3.80 597 726
## 3 00AB6118EB 2004 M 1203 4.00 567 691
## Aprov.Ingles Aprov.Matem Aprov.Espanol IGS Freshmen.GPA Graduated Year.Grad. Grad..GPA
## 1 626 672 551 342 3.67 Si 2012 3.33
## 2 618 718 575 343 2.75 No NA NA
## 3 424 616 609 342 3.62 No NA NA
## Class.Facultad
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## 1 INGE
## 2 INGE
## 3 CIENCIAS

shows us the first three cases.
Let’s say we want to find the number of males and females. We can use the table command
for that:
table(Gender)

## Error: object 'Gender' not found

What happened? Right now R does not know what Gender is because it is “hidden” inside
the upr data set. Think of upr as a box that is currently closed, so R can’t look inside and
see the column names. We need to open the box first:
attach(upr)
table(Gender)

## Gender
## F M
## 11487 12179

there is also a detach command to undo an attach, but this is not usually needed because
the attach goes away when you close R.
Note: you need to attach a data frame only once in each session working with R.
Note: Say you are working first with a data set “students 2016” which has a column called
Gender, and you attached it. Later (but in the same R session) you start working with a
data set “students 2017” which also has a column called Gender, and you are attaching this
one as well. If you use Gender now it will be from “students 2017”.

1.3.6 Subsetting of Data Frames

Consider the following data frame (not a real data set):
students

## Age GPA Gender
## 1 22 3.1 Male
## 2 23 3.2 Male
## 3 20 2.1 Male
## 4 22 2.1 Male
## 5 21 2.3 Female
## 6 21 2.9 Male
## 7 18 2.3 Female
## 8 22 3.9 Male
## 9 21 2.6 Female
## 10 18 3.2 Female
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Here each single piece of data is identified by its row number and its column number. So for
example in row 2, column 2 we have “3.2”, in row 6, column 3 we have “Male”.
As with the vectors before we can use the [ ] notation to access pieces of a data frame, but
now we need to give it both the row and the column number, separated by a ,:
students[6, 3]

## [1] "Male"

As before we can pick more than one piece:
students[1:5, 3]

## [1] "Male" "Male" "Male" "Male" "Female"
students[1:5, 1:2]

## Age GPA
## 1 22 3.1
## 2 23 3.2
## 3 20 2.1
## 4 22 2.1
## 5 21 2.3
students[-c(1:5), 3]

## [1] "Male" "Female" "Male" "Female" "Female"
students[1, ]

## Age GPA Gender
## 1 22 3.1 Male
students[, 2]

## [1] 3.1 3.2 2.1 2.1 2.3 2.9 2.3 3.9 2.6 3.2
students[, -3]

## Age GPA
## 1 22 3.1
## 2 23 3.2
## 3 20 2.1
## 4 22 2.1
## 5 21 2.3
## 6 21 2.9
## 7 18 2.3
## 8 22 3.9
## 9 21 2.6
## 10 18 3.2

another way of subsetting a data frame is by using the $ notations:
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students$Gender

## [1] "Male" "Male" "Male" "Male" "Female" "Male" "Female" "Male" "Female"
## [10] "Female"

1.3.7 Subsetting of Lists

The double bracket and the $ notation also work for lists:

lst <- list(
Gender=c("M", "M", "F", "F", "F"),
Age=c(23, 25, 19, 22, 21, 26, 34),
f=function(x) x^2,
list(A=c(1, 1), B=c("X", "X", "Y"))

)
lst[[4]][[2]]

1.3.7.1 Example

## [1] "X" "X" "Y"
lst$Gender

## [1] "M" "M" "F" "F" "F"

1.3.8 Vector Arithmetic

R allows us to apply any mathematical functions to a whole vector:
x <- 1:10
2*x

## [1] 2 4 6 8 10 12 14 16 18 20
x^2

## [1] 1 4 9 16 25 36 49 64 81 100
log(x)

## [1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101 2.0794415
## [9] 2.1972246 2.3025851
sum(x)

## [1] 55
y <- 21:30
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x+y

## [1] 22 24 26 28 30 32 34 36 38 40
x^2+y^2

## [1] 442 488 538 592 650 712 778 848 922 1000
mean(x+y)

## [1] 31

Let’s try something strange:
c(1, 2, 3) + c(1, 2, 3, 4)

## [1] 2 4 6 5

so R notices that we are trying to add a vector of length 3 to a vector of length 4. This
should not work, but it actually does!
When it runs out of values in the first vector, R simply starts all over again.
In general this is more likely a mistake by you, check that this is what you really wanted to
do!

1.3.9 apply

A very useful routine in R is apply, and its brothers.
Let’s say we have the following matrix:
Age <- matrix(sample(20:30, size=100, replace=TRUE), 10, 10)
Age[1:5, 1:5]

## [,1] [,2] [,3] [,4] [,5]
## [1,] 20 27 27 20 29
## [2,] 25 23 26 25 27
## [3,] 25 26 20 21 24
## [4,] 25 30 23 22 20
## [5,] 23 26 30 30 26

and we want to find the sums of the ages in each column. Easy:
sum(Age[, 1])

## [1] 249
sum(Age[, 2])

## [1] 263

. . .
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sum(Age[, 10])

## [1] 269

or much easier
apply(Age, 2, sum)

## [1] 249 263 252 226 251 248 271 252 271 269

There are a number of apply routines for different data formats.

1.3.9.1 Case Study: upr admissions Let’s say we want to find the mean Highschool GPA:
mean(Highschool.GPA)

## [1] 3.65861

But what if we want to do this for each year separately? Notice that apply doesn’t work here
because the Years are not in separated columns. Instead we can use
tapply(Highschool.GPA, Year, mean)

## 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
## 3.646627 3.642484 3.652774 3.654729 3.628072 3.648552 3.642946 3.665298 3.685485 3.695046
## 2013
## 3.710843

1.4 R Basics II - Writing Functions

1.4.1 General Information

In R/RStudio you have several ways to write your own functions:
• In the R console type

myfun <- function(x) {
out <- x^2
out

}

• RStudio: click on File > New File > R Script. A new empty window pops up. Type
fun, hit enter, and the following text appears:

name <- function(variables) {
}
change the name to myfun, save the file as myfun.R with File > Save. Now type in the code.
When done click the Source button.

• fix: In the R console run
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fix(myfun)

now a window with an editor pops up and you can type in the code. When you are done
click on Save. If there is some syntax error DON’T run fix again, instead run
myfun <- edit()

myfun will exist only until you close R/RStudio unless you save the project file.
• Open any code editor outside of RStudio, type in the code, save it as myfun.R, go to

the console and run
source('../some.folder/myfun.R')

Which of these is best? In large part that depends on your preferences. In my case, if I expect
to need that function just for a bit I use the fix option. If I expect to need that function
again later I start with the first method, but likely soon open the .R file outside RStudio
because most code editors have many useful features not available in RStudio.
If myfun is open in RStudio there are some useful keyboard shortcuts. If the curser is on
some line in the RStudio editor you can hit

• CTRL-Enter run current line or section

• CTRL-ALT-B run from beginning to line

• CTRL-Shift-Enter run complete chunk
• CTRL-Shift-P rerun previous

1.4.2 Testing

As always you can test whether an object is a function:
x <- 1
f <- function(x) x
is.function(x)

## [1] FALSE
is.function(f)

## [1] TRUE

1.4.3 Arguments

There are several ways to specify arguments in a function:
calc.power <- function(x, y, n=2) x^n + y^n

here n has a default value, x and y do not.
if the arguments are not named they are matched in order:
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calc.power(2, 3)

## [1] 13

If an argument does not have a default it can be tested for
f <- function(first, second) {

if(!missing(second))
out <- first + second

else out <- first
out

}
f(1)

## [1] 1
f(1, s=3)

## [1] 4

There is a special argument . . . , used to pass arguments on to other functions:
f <- function(x, which, ...) {

f1 <- function(x, mult) mult*x
f2 <- function(x, pow) x^pow
if(which==1)

out <- f1(x, ...)
else

out <- f2(x, ...)
out

}
f(1:3, 1, mult=2)

## [1] 2 4 6
f(1:3, 2, pow=3)

## [1] 1 8 27

This is one of the most useful programming structures in R!
Note this example also shows that in R functions can call other functions. In many computer
programs there are so called sub-routines, in R this concept does not exist, functions are just
functions.

1.4.4 Return Values

A function can either return nothing or exactly one thing. It will automatically return the
last object evaluated:
f <- function(x) {

x^2
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}
f(1:3)

## [1] 1 4 9

however, it is better programming style to have an explicit return object:
f <- function(x) {

out <- x^2
out

}
f(1:3)

## [1] 1 4 9

There is another way to specify what is returned:
f <- function(x) {

return(x^2)
}
f(1:3)

## [1] 1 4 9

but this is usually used to return something early in the program:
f <- function(x) {

if(!any(is.numeric(x)))
return("Works only for numeric!")

out <- sum(x^2)
out

}
f(1:3)

## [1] 14
f(letters[1:3])

## [1] "Works only for numeric!"

If you want to return more than one item use a list:
f <- function(x) {

sq <- x^2
sm <- sum(x)
list(sq=sq, sum=sm)

}
f(1:3)

## $sq
## [1] 1 4 9
##
## $sum
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## [1] 6

1.4.5 Basic Programmming Structures in R

R has all the standard programming structures:

f <- function(x) {
if(x>0) y <- log(x)
else y <- NA
y

}
f(c(2, -2))

1.4.5.1 Conditionals (if-else)

## [1] 0.6931472 NaN

A useful variation on the if statement is switch:
centre <- function(x, type) {

switch(type,
mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
centre(x, "mean")

## [1] 6.000776
centre(x, "median")

## [1] 1.300273
centre(x, "trimmed")

## [1] 1.166

special R construct: ifelse
x <- sample(1:10, size=7, replace = TRUE)
x

## [1] 5 2 10 9 4 3 5
ifelse(x<5, "Yes", "No")

## [1] "No" "Yes" "No" "No" "Yes" "Yes" "No"
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1.4.5.2 Loops there are two standard loops in R:
• for loop

y <- rep(0, 10)
for(i in 1:10) y[i] <- i*(i+1)/2
y

## [1] 1 3 6 10 15 21 28 36 45 55

sometimes we don’t know the length of y ahead of time, then we can use
for(i in seq_along(y)) y[i] <- i*(i+1)/2
y

## [1] 1 3 6 10 15 21 28 36 45 55

If there is more than one statement inside a loop use curly braces:
for(i in seq_along(y)) {

y[i] <- i*(i+1)/2
if(y[i]>40) y[i] <- (-1)

}
y

## [1] 1 3 6 10 15 21 28 36 -1 -1

You can nest loops:
A <- matrix(0, 4, 4)
for(i in 1:4) {

for(j in 1:4)
A[i, j] <- i*j

}
A

## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 2 4 6 8
## [3,] 3 6 9 12
## [4,] 4 8 12 16

• repeat loop
k <- 0
repeat {

k <- k+1
x <- sample(1:6, size=3, replace=TRUE)
if(length(table(x))==1) break

}
k

## [1] 92
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Notice that a repeat loop could in principle run forever. I usually include a counter that
ensures the loop will eventually stop:
k <- 0
counter <- 0
repeat {

k <- k+1
counter <- counter+1
x <- sample(1:6, size=3, replace=TRUE)
if(length(table(x))==1 | counter>1000) break

}
k

## [1] 102

1.5 Important Commands

In the section I will list the most important commands in base R. The list is taken in large
part from Hadley Wickham’s book Advanced R. Most of them we already discussed. Those
we have not you can read up on yourself.

1.5.1 The first functions to learn

? str

1.5.2 Important operators and assignment

%in%, match
=, <-, «-
$, [, [[, head, tail, subset
with
assign, get

1.5.3 Comparison

all.equal, identical
!=, ==, >, >=, <, <=
is.na, complete.cases
is.finite

1.5.4 Random variables

(q, p, d, r) * (beta, binom, cauchy, chisq, exp, f, gamma, geom, hyper, lnorm, logis, multinom,
nbinom, norm, pois, signrank, t, unif, weibull, wilcox, birthday, tukey)
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1.5.5 Matrix algebra

crossprod, tcrossprod
eigen, qr, svd
%*%, %o%, outer
rcond
solve

1.5.6 Workspace

ls, exists, rm
getwd, setwd
q
source
install.packages, library, require

1.5.7 Help

help, ?
help.search
apropos
RSiteSearch
citation
demo
example
vignette

1.5.8 Debugging

traceback
browser
recover
options(error = )
stop, warning, message
tryCatch, try

1.5.9 Output

print, cat
message, warning
dput
format
sink, capture.output
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1.5.10 Reading and writing data

data
count.fields
read.csv, write.csv
read.delim, write.delim
read.fwf
readLines, writeLines
readRDS, saveRDS
load, save
library

1.5.11 Files and directories

dir
basename, dirname, tools::file_ext
file.path
path.expand, normalizePath
file.choose
file.copy, file.create, file.remove, file.rename, dir.create
file.exists, file.info
tempdir, tempfile
download.file,

2 Introduction

2.1 Identifying Students at Risk

At UPRM (and all other Universities) a big problem is retaining the students from year to
year. That is, many first-year students never return for the second year, and so on. Some
years ago our Chancellor put together a group of professors and asked us to find ways to
improve the situation. Among other things we tried to see whether it was possible to identify
those students that were at a high risk of not returning for the second year and those at risk
for not graduating. We asked the Registrars office for some data and received the data set
upr (now part of RESMA3.RData). Let’s see what is in there:
dim(upr)

## [1] 23666 16

so the data set has 23666 records and 16 variables. Those are
colnames(upr)

## [1] "ID.Code" "Year" "Gender" "Program.Code" "Highschool.GPA"
## [6] "Aptitud.Verbal" "Aptitud.Matem" "Aprov.Ingles" "Aprov.Matem" "Aprov.Espanol"
## [11] "IGS" "Freshmen.GPA" "Graduated" "Year.Grad." "Grad..GPA"
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## [16] "Class.Facultad"

• Id.Code: a random code assigned to each student for purpose of privacy

• Year: the year a student applied (2003-2013)

• Gender: coded as F and M

• Program.Code: a random code assigned to each program for purpose of privacy

• Highschool.GPA

• Results of various aptitude tests

• IGS: the number used for acceptance or rejection

• Freshman.GPA

• Graduated, Year.Grad, Grad..GPA, CLass.Faculty
So, how could this data be used to tell us something about students at risk? Here are some
ideas:
a. compare the high school and freshman gpa’s

ggplot(data=upr, aes(Highschool.GPA, Freshmen.GPA)) +
geom_point() +
geom_smooth(method = "lm", se=FALSE)
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It appears there is a positive correlation between these two. Of course we can find the least
squares regression:
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summary(lm(Freshmen.GPA~Highschool.GPA, data=upr))

##
## Call:
## lm(formula = Freshmen.GPA ~ Highschool.GPA, data = upr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.0675 -0.3826 0.0864 0.4985 2.1763
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.85869 0.04897 -17.54 <2e-16
## Highschool.GPA 0.98155 0.01332 73.67 <2e-16
##
## Residual standard error: 0.7022 on 23449 degrees of freedom
## (215 observations deleted due to missingness)
## Multiple R-squared: 0.188, Adjusted R-squared: 0.1879
## F-statistic: 5428 on 1 and 23449 DF, p-value: < 2.2e-16

b. Why just use one predictor? Why not use more? We can do a multiple regression
analysis:

summary(lm(Freshmen.GPA~Highschool.GPA+Aptitud.Verbal+Aptitud.Matem, data=upr))

##
## Call:
## lm(formula = Freshmen.GPA ~ Highschool.GPA + Aptitud.Verbal +
## Aptitud.Matem, data = upr)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.2938 -0.3700 0.0881 0.4825 2.0421
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.860e+00 5.663e-02 -32.84 <2e-16
## Highschool.GPA 8.960e-01 1.328e-02 67.48 <2e-16
## Aptitud.Verbal 1.604e-03 6.893e-05 23.26 <2e-16
## Aptitud.Matem 6.023e-04 5.541e-05 10.87 <2e-16
##
## Residual standard error: 0.6862 on 23447 degrees of freedom
## (215 observations deleted due to missingness)
## Multiple R-squared: 0.2245, Adjusted R-squared: 0.2244
## F-statistic: 2262 on 3 and 23447 DF, p-value: < 2.2e-16

c. It might well be that what puts a student in Arts at risk is not a big problem in the
sciences. So one might do an ANOVA analysis
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summary(aov(Highschool.GPA~Class.Facultad, data = upr))

## Df Sum Sq Mean Sq F value Pr(>F)
## Class.Facultad 4 630.7 157.68 1714 <2e-16
## Residuals 23661 2176.7 0.09

d. of course the ultimate success in college is graduating, so one might be interested in the
relationship of the high school GPA and whether or not somebody graduated. Of course
people do need some time to do that, so we should only include the years 2003-2008
(say):

dta <- upr[upr$Year<=2008,
c("Highschool.GPA", "Graduated")]

dta$GradInd <- ifelse(dta$Graduated=="Si", 1, 0)
plt <- ggplot(dta, aes(Highschool.GPA, GradInd)) +

geom_jitter(width=0, height=0.1)
plt
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Here the outcome variable is discrete, so a simple regression won’t work. Instead one can try
to predict the probability of success:
fit <- glm(GradInd~Highschool.GPA,

family=binomial,
data=dta)

x <- seq(2, 4, length=100)
df <- data.frame(x=x,

y=predict(fit, data.frame(Highschool.GPA=x),
type="response"))

plt +
geom_line(data=df, aes(x, y),
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color="blue", size=1.2)
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Now it turns out that all of these analyses (and many more) are all special cases of a general
approach to statistics called the Linear Model!

2.2 A Simple Example

Let’s consider the following problem: we have y1, .., yn ∼ N(µ, σ2), and we want to find a
confidence interval for µ.
Let’s first find a point estimate, and for that we will use the method of least squares, that is
we will find µ̂ that minimizes

G(a) =
n∑
i=1

(yi − a)2

We find

dG(a)
da

= 2
n∑
i=1

(yi − a) = 2
n∑
i=1

yi − 2na = 0

µ̂ = 1
n

n∑
i=1

yi = ȳ

We want to find a confidence interval, and a standard method for that is to first find a
hypothesis test and then invert the test. So now we want to test H0 : µ = µ0. Again using
the least squares criteria we have ∑n

i=1(yi − µ0)2, and a reasonable test statistic is given by
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∑n
i=1(yi − µ0)2∑n
i=1(yi − µ̂)2

Now

n∑
i=1

(yi − µ0)2 =

n∑
i=1

(yi − µ̂+ µ̂− µ0)2 =

n∑
i=1

[
(yi − µ̂)2 + 2(yi − µ̂)(µ̂− µ0) + (µ̂− µ0)2

]
=

n∑
i=1

(yi − µ̂)2 + 2(µ̂− µ0)
n∑
i=1

(yi − µ̂) +
n∑
i=1

(µ̂− µ0)2 =

n∑
i=1

(yi − µ̂)2 + 2(µ̂− µ0)(
n∑
i=1

yi − nµ̂) + n(µ̂− µ0)2 =

n∑
i=1

(yi − µ̂)2 + n(µ̂− µ0)2

because ∑n
i=1 yi − nµ̂ = 0 by the definition of µ̂.

So now we have

∑n
i=1(yi − µ0)2∑n
i=1(yi − µ̂)2 =

∑n
i=1(yi − µ̂)2 + n(µ̂− µ0)2∑n

i=1(yi − µ̂)2 = 1 + n(µ̂− µ0)2∑n
i=1(yi − µ̂)2

so we can just as well use the test statistic

F = n(µ̂− µ0)2∑n
i=1(yi − µ̂)2

Now we need to know the distribution of F. We know

E[µ̂] = µ0

var(µ̂) = var

(
1
n

n∑
i=1

yi

)
= 1
n2

n∑
i=1

var(yi) = σ2

n

so
√
n(µ̂− µ0)/σ ∼ N(0, 1), and

√
n(µ̂− µ0)2/σ2 ∼ χ2(1)

Also if the null hypothesis is true

yi − µ0

σ
∼ N(0, 1)

1
σ2

n∑
i=1

(yi − µ0)2 =
n∑
i=1

(
yi − µ0

σ

)2
∼ χ2(n)
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and from above we have

1
σ2

n∑
i=1

1
σ2 (yi − µ0)2 = 1

σ2

n∑
i=1

(yi − µ̂)2 + n

σ2 (µ̂− µ0)2

Now the distribution of a sum of independent chi-square random variables is again chi-square,
the term on the left is χ(n), the term on the right is χ2(1), so we could conclude that

1
σ2

n∑
i=1

(yi − µ̂)2 ∼ χ(n− 1)

IF we knew that ∑n
i=1(yi − µ̂)2 is independent of µ̂. This however is a well known fact from

Statistics.
Now the ratio of two independent chi-square random variables has an F distribution, and so
we find

F = n(µ̂− µ0)2∑n
i=1(yi − µ̂)2 = n(µ̂− µ0)2/σ2∑n

i=1(yi − µ̂)2/σ2 ∼ F (1, n− 1)

Also, if T ∼ t(k), then T 2 ∼ F (1, k), therefore

1− α = P

 √
n|µ̂− µ0|√∑n
i=1(yi − ȳ)2

< t1−α/2,n−1

 =

P

(
ȳ − t1−α/2,n−1

s√
n
µ0 < ȳ + t1−α/2,n−1

s√
n

)

where s2 = ∑n
i=1(yi − ȳ)2, and this is of course the standard confidence interval for a normal

mean with unknown standard deviation.
The crucial steps in this derivation where

• the use of the least squares criterion

• the equation

n∑
i=1

(yi − µ0)2 =
n∑
i=1

(yi − µ̂)2 + n(µ̂− µ0)2

which we will write as SST=SSE+SSH (total sum of squares = error sum of squares +
hypothesis sum of squares)
- the fact that SSE/σ2 and SSH/σ2 have χ2 distributions
- the fact that SSE and SSH are independent.
In this course we will first show that these facts are true in great generality, and then we will
apply that to many different situations.
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2.3 Notation, Formulas

2.3.1 Notation

Throughout this course we will use the following notational conventions, unless otherwise
indicated:

• small letters a, b, c, ..: numbers (or scalars)

• small letters i,j, k, n, m: integers

• greek letters α, β, γ, ..: parameters

• small letters x, y, z, u, v, . . . : variables

• bold face small letters a, b, ..a, b, ..a, b, ..: column vectors of numbers

• bold face large letters A,B, ..A,B, ..A,B, ..: matrices of numbers

• bold face greek letters α, β, ..α, β, ..α, β, ..: column vectors of parameters

• bold face large letters X, Y, ..X, Y, ..X, Y, ..: column vectors or matrices of random variables
• exception 1: we will also use bold small letter yyy for vectors of random variables, rather

than just YYY
• exception 2: bold large XXX for design matrix, a matrix of constants

2.3.2 Formulas (2.2.1)

Here are some formulas which we will eventually derive that then will be used extensively:
• least squares estimator of βββ:

β̂̂β̂β = (X ′X)(X ′X)(X ′X)−1X ′yX ′yX ′y

• sums of squares errors

SSE =
∑

(yi − ŷ)2 =
∑

(yi − xxx′iβ̂̂β̂β)2
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3 Probability and Statistics

3.1 Probability - Introduction

3.1.1 Basics

The probability of rain tomorrow is 0.3. What does that mean?
We usually find probabilities in one of three ways:

• empirically through many repetitions of an experiment - relative frequency interpretation

• through reasoning about outcomes etc. - classical interpretation

• by using our intuition and experience - subjective interpretation

3.1.1.1 Example (3.1.1) coin tossing
what is the probability of getting “heads” when tossing a fair coin?

• relative frequency interpretation: take a coin and flip it! the South African mathemati-
cian Jon Kerrich, while in a German POW camp during WWII tossed a coin 10000
times. Result 5067 heads, for a probability of 0.5067

• classical interpretation: This experiment has two possible outcomes - heads and tails.
Fair means they are equally likely, so p=P(“heads”)=P(“tails”)=0.5

• subjective interpretation: I think it’s 1/2.
An experiment is a well-defined procedure that produces a set of outcomes. For example,
“roll a die”; “randomly select a card from a standard 52-card deck”; “flip a coin” and “pick
any moment in time between 10am and 12 am” are experiments.
A sample space is the set of outcomes from an experiment. Thus, for “flip a coin” the
sample space is {H, T}, for “roll a die” the sample space is {1, 2, 3, 4, 5, 6} and for “pick
any moment in time between 10am and 12 am” the sample space is [10, 12].
An event is a subset, say A, of a sample space S. For the experiment “roll a die”, an event is
“obtain a number less than 3”. Here, the event is {1, 2}.
If all the outcomes of a sample space S are equally likely and if A is an event, then the
probability of A is:

P (A) = #{events in A}
#{events in S}

So, the probability of an event, say A, is the ratio of success to total.
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3.1.1.2 Example (3.1.2) flipping a coin what is the probability of a heads?
The total number of outcomes is 2 and the number of ways to be successful is 1. Thus,
P(heads) = 1/2.

3.1.1.3 Example (3.1.3) consider randomly selecting a card from a standard 52-card deck:
what is the probability of getting a king?
the total number of outcomes is 52 and of these outcomes 4 would be successful. So, P(king)
= 4/52.

3.1.1.4 Example (3.1.4) What is the probability of a sum of 8 when rolling two fair dice?
Solution 1: Sample space is

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

There are 5 pairs that have a sum of 8, so P(sum of 10)=5/36=0.1389
Solution 2: The sum can be any number from 2 to 12, the sample space is {2,3,4,..,11,12}.
There are 11 numbers in the sample space, one of them is 8, so P(sum of 10)=1/11=0.091
Which is right, and why?
Let’s do a simulation to see which answer is correct. use command “sample” to randomly
pick an element from a set
args(sample) shows you the correct syntax of the "sample command
sample(1:6, 2, TRUE) picks two numbers from 1 to 6 with repetition
sum(sample(1:6, 2, TRUE)) finds their sum, just what we want
z <- rep(0, 10000) #generates a vector of length 10000
for(i in 1:10000)

z[i] <- sum(sample(1:6, 2, TRUE)) #repeats our experiment 10000 times
length(z[z==8])/10000 #finds the proportion of "8's" in z

## [1] 0.1381

But why is it right?
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3.1.2 Fundamentals

The definition above works well as long as S is finite but breaks down if S is infinite. Instead
modern probability, like geometry, is built on a small set of basic rules called axioms, derived
in the 1930’s by Kolmogorov. They are:

Axiom 1: 0 ≤ P (A) ≤ 1
Axiom 2: P (S) = 1

Axiom 3: P (∪ni=1Ai) =
n∑
i=1

P (Ai)

if A1, ..., An are mutually exclusive

3.1.3 Some useful formulas

3.1.3.1 Theorem (3.1.5) Complement: P (A) = 1− P (Ac)

3.1.3.2 Example (3.1.6) A fair coin is tossed 5 times. What is the probability of at least
one “Heads”?
Sample Space S={(H,H,H,H,H), (H,H,H,H,T), . . . , (T,T,T,T,T)}
S has 25 = 32 elements
P(at least one “Heads”) =
1 - P(“No Heads”) =
1 - P({(T,T,T,T,T)}) =
1 - 1/36 = 35/36

3.1.3.3 Theorem (3.1.7) Addition Formula: P (A ∪B) = P (A) + P (B)− P (A ∩B)

3.1.3.4 Example (3.1.8) We roll two fair dice. What is the probability of a sum of 5 or 8,
or highest number on either die is a 3?
Sample Space is above.
Event A = {(1,4), (2,3), (3,2), (4,1), (2,6), (3,5), (4,4), (5,3), (6,2)}, n(A) = 9
Event B = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}, n(B) = 9
Event A ∩B = {(2, 3), (3, 2)}, n(A ∩B) = 2
P (A ∪B) = P (A) + P (B)− P (A ∩B) =
9/36 + 9/36− 2/36 = 16/36 = 4/9
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3.2 Conditional Probability and Independence

3.2.1 Conditional Probability

3.2.1.1 Example (3.2.1) Say we pick two cards from a standard deck of 52. What is the
probability both are Aces? The answer is

(
4
2

)
(

52
2

) = 4!50!2!
2!2!52! = 4× 3

52× 51 = 0.0045

Now assume we know that one of the cards is an Ace. What is the probability that the other
one is also an Ace? Clearly it is 3/51 = 0.0588.
This kind of probability is called a conditional probability.

3.2.1.2 Definition (3.2.2) if P(B)>0 we have

P (A|B) = P (A ∩B)
P (B)

3.2.2 Multiplication Rule

A simple manipulation of the equation above yields

P (A ∩B) = P (A|B)P (B)

3.2.2.1 Example (3.2.3) You draw two cards from a standard 52-card deck. What is the
probability to draw 2 Aces?
Solution:
Let A = “First card drawn is an ace”
Let B = “Second card drawn is an ace”
Then

P (A ∩B) = P (A)P (B|A) = 4
52

3
51

It’s easy to extend this to more than two events: What is the probability of drawing 4 aces
when drawing 4 cards?
Let Ai = ith card drawn is an ace"
Then

P (A1 ∩ A2 ∩ A3 ∩ A4) =
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P (A1)P (A2|A1)P (A3|A1, A2)P (A4|A1, A2, A3) =
4
52

3
51

2
50

1
49

3.2.3 Law of Total Probability and Bayes Rule

3.2.3.1 Definition (3.2.4) A set of events {Ai} is called a partition of the sample space if

Ai ∩ Aj = ∅ if i 6= j
n⋃
i=1

Ai = S

3.2.3.2 Example (3.2.5) a student is selected at random from all the undergraduate students
at the Colegio
A1 = “Student is female”, A2 = “Student is male”
or maybe
A1 = “Student is freshman”, .., A4 = “Student is senior”

3.2.3.3 Theorem (3.2.6) law of total probability
Let B be any event and {Ai} a partition, then

P (B) =
n∑
i=1

P (B|Ai)P (Ai)

3.2.3.4 Example (3.2.7) A company has 452 employees, 210 men and 242 women. 15% of
the men and 10% of the women have a managerial position. What is the probability that a
randomly selected person in this company has a managerial position?
Let A1 = “person is female”, A2 = “person is male”
Let B = “person has a managerial position”
Then P(A1)=242/452, P(A2)=210/452, P(B|A1)=0.1 and P(B|A2)=0.15, so

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) =
0.1× 242/452 + 0.15× 210/452 = 0.123
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3.2.3.5 Theorem (3.2.8) Bayes’ Formula
Let B be any event and {Ai} a partition, then

P (Ak|B) = P (B|Ak)P (Ak)∑n
i=1 P (B|Ai)P (Ai)

Notice that the denominator is just the law of total probability.

3.2.3.6 Example (3.2.9) In the company above a person is randomly selected, and that
person is in a managerial position. What is the probability the person is female?

P (A1|B) = P (B|A1)P (A1)
P (B|A1)P (A1) + P (B|A2)P (A2) =

0.1× 242/452
0.123 = 0.434

Bayes’ Rule plays a very important role in Statistics and in Science in general. It provides a
natural method for updating you knowledge based on data.

3.2.4 Independence

Sometimes knowing that one event occurred does not effect the probability of another event.
For example if you throw a red and a blue die, knowing that the red die shows a “6” will not
change the probability that the blue die shows a “2”.

3.2.4.1 Theorem (3.2.10) Say A and B are two events, then A and B are said to be
independent iff

P (A ∩B) = P (A)P (B)

3.2.4.2 Example (3.2.11) Say you flip a fair coin 5 times. What is the probability of 5
“heads”?
Let Ai = ith flip is heads
Now it is reasonable to assume that the Ai’s are independent and so

P (A1 ∩ .. ∩ A5) =
P (A1)× ..× P (A5) =
1
2 × ..×

1
2 = 1

25
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3.3 Random Variable, Distribution Function, Density and Random Vectors

3.3.1 Random Variables

3.3.2 Random Variable

3.3.2.1 Definition (3.3.1) A random variable (r.v.) X is set-valued function from the
sample space into the real numbers.

3.3.2.2 Example (3.3.2) We roll a fair die, X is the number shown on the die

3.3.2.3 Example (3.3.3) We roll a fair die, X is 1 if the die shows a six, 0 otherwise.

3.3.2.4 Example (3.3.4) We roll a a fair die until the the first “6”, X is the number of rolls
needed.

3.3.2.5 Example (3.3.5) We randomly pick a time between 10am and 12 am, X is the
minutes that have passed since 10am.

3.3.2.6 Definition (3.3.6)

• If X takes countably many values, X is called a discrete r.v.
• If X takes uncountably many values, X is called a continuous r.v.

There are also mixtures of these two.
In the first three examples above X is discrete, in the last one X is continuous.
There are some technical difficulties when defining a r.v. on a sample space like R, it turns
out to be impossible to define it for every subset of R without getting logical contradictions.
The solution is to define a σ-algebra on the sample space and then define X only on that
σ-algebra. We will ignore these technical difficulties.
Almost everything to do with r.v.’s has to be done twice, once for discrete and once for
continuous r.v.’s. This separation is only artificial, it goes away once a more general definition
of “integral” is used (Riemann-Stilties or Lebesgue)

3.3.3 (Commulative) Distribution Function

3.3.3.1 Definition (3.3.7) The distribution function of a r.v. X is defined by
F (x) = P (X ≤ x) ∀x ∈ R
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3.3.3.2 Example (3.3.8) We roll a fair die, X is the number shown on the die. Say x=2.2,
then
F (2.2) = P (X ≤ 2.2) = P (1, 2) = 2/6 = 1/3

3.3.3.3 Example (3.3.9) We randomly pick a time between 10am and 12 am, X is the
minutes that have passed since 10am. Say x=67.5, then
F (67.5) = P (X ≤ 67.5) = P(we chose a moment between 10am and 11h7.5min am) =
67.5/120 = 0.5625

3.3.3.4 Theorem (3.3.10) Some features of cdf’s:
1. cdf’s are standard functions on R

2. 0 ≤ F (x) ≤ 1

3. cdf’s are non-decreasing

4. cdf’s are right-continuous

5.

F (x)→ 0 as x→ −∞
F (x)→ 1 as x→∞

3.3.3.5 Example (3.3.11) We roll a a fair die until the the first “6”, X is the number of rolls
needed. Let’s find the cdf F.
note X ∈ {1, 2, 3, ...}
let Ai be the event “a six on the ith roll”, i=1,2,3, . . . . Then
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P (X = k) = P (Ac1 ∩ .. ∩ Ack−1 ∩ Ak) =
P (Ac1)× ..× P (Ack−1)P (Ak) ==
5
6 × ..×

5
6

1
6 = (5

6)k−1 1
6

P (X ≤ k) =
k∑
i=1

P (X = i) =

k∑
i=1

(5
6)i−1 1

6 =

1
6

k−1∑
j=0

(5
6)j =

1
6

1− (5/6)k−1+1

1− 5/6 = 1− (5/6)k

so for k ≤ x < k + 1 we have F (x) = 1− (5/6)k

3.3.4 Density

3.3.4.1 Definition (3.3.12) The probability density function of a discrete r.v. X is defined
by f(x) = P (X = x)
Note:
f(x) = P (X = x) = P (X ≤ x)− P (X ≤ x− 1) = F (x)− F (x− 1)

3.3.4.2 Example (3.3.13) the pdf of X in the example above is given by
f(x) = 1/6 ∗ (5/6)x−1 if x ∈ {1, 2, ..}, 0 otherwise.
Note that it follows from the definition and the axioms that for any density we have

f(x) ≥ 0∑
x

f(x) = 1

3.3.4.3 Definition (3.3.14) f is the of a continuous random variable with cdf F if
F (x) =

∫ x
−∞ f(t)dt

Again it follows from the definition and the axioms that for any density f we have

f(x) ≥ 0∫ ∞
−∞

f(x)dx = 1
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3.3.4.4 Example (3.3.15) Show that f(x) = λ exp(−λx) if x>0, 0 otherwise defines a pdf,
where λ > 0.
clearly f(x) ≥ 0 for all x.

∫ ∞
−∞

f(x)dx =∫ ∞
0

λ exp(−λt)dt =

− exp(−λt)|∞0 = 0− (−1) = 1

This r.v. X is called an exponential r.v. with rate λ.

3.3.5 Random Vectors

A random vector is a multi-dimensional random variable.

3.3.5.1 Example (3.3.16) we roll a fair die twice. Let X be the sum of the rolls and let Y
be the absolute difference between the two roles. Then (X,Y) is a 2-dimensional random
vector. The joint of (X,Y) is given by:

0 1 2 3 4 5
2 1 0 0 0 0 0
3 0 2 0 0 0 0
4 1 0 2 0 0 0
5 0 2 0 2 0 0
6 1 0 2 0 2 0
7 0 2 0 2 0 2
8 1 0 2 0 2 0
9 0 2 0 2 0 0
10 1 0 2 0 0 0
11 0 2 0 0 0 0
12 1 0 0 0 0 0

where every number is divided by 36.
All definitions are straightforward extensions of the one-dimensional case.

3.3.5.2 Example (3.3.17) for a discrete random vector we have the f(x, y) = P (X = x, Y =
y).
Say above
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f(4,0) =
P(X=4, Y=0) =
P({(2,2)}) = 1/36
or
f(7,1) =
P(X=7,Y=1) =
P({(3,4),(4,3)}) = 1/18

3.3.5.3 Example (3.3.18) Say f(x, y) = cxy, 0 ≤ x < y ≤ 1 is a pdf. Find c.

∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdy =∫ 1

0

∫ y

0
cxydxdy =∫ 1

0
cy
[
x2/2|y0

]
dy =∫ 1

0
cy
[
y2/2

]
dy =∫ 1

0
cy3/2dy =

cy4/8|10 = c/8 = 1

so c=8.

3.3.5.4 Definition (3.3.19) Say (X,Y) is a discrete (continuous) r.v. with joint density
f. Then the marginal density fX is given by

fX(x) =
∑
y

f(x, y) if Y is discete

fX(x) =
∫ ∞
−∞

f(x, y)dy if Y is continuous

3.3.5.5 Example (3.3.20) For the discrete example above we find
fX(2) = f(2, 0) + f(2, 1) + ..+ f(2, 5) = 1/36
or
fY (3) = 6/36

3.3.5.6 Example (3.3.21) Say f(x, y) = 8xy, 0 ≤ x < y ≤ 1, find fY (y)
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fX(x) =
∫ ∞
−∞

f(x, y)dy =∫ 1

x
8xydy =

4xy2|1x = 4x− 4x3; 0 < x < 1

Note that fX is s proper density.

3.3.6 Conditional R.V.’s

3.3.6.1 Definition (3.3.22) let (X,Y) be a discrete r.v. with joint f(x,y) and marginals fX
and fY . For any x such that fX(x) > 0 the conditional fY |X=x(y|x) is defined by

fY |X=x(y|x) = f(x, y)
fY (y)

3.3.6.2 Example (3.3.23) For the example above find fX|Y=y(x|y)

fX|Y=y(x|y) =
f(x, y)
fY (y) =

8xy
4y3 = 2x

y2

for 0 ≤ x ≤ y.
Here y is a fixed number!
Note that a conditional density requires a specification for a value of the random variable on
which we condition, something like fX|Y=y. An expression like fX|Y is not defined!

3.3.7 Independence

3.3.7.1 Definition (3.3.24) Two r.v. X and Y are said to be independent iff
fX,Y (x, y) = fX(x)fY (y)

3.4 Expectation

3.4.1 Expectation of a Random Variable

3.4.1.1 Definition (3.4.1) The expectation (or expected value) of a random variable g(X) is
defined by
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∑
x

g(x)f(x) if X discrete∫ ∞
−∞

g(x)f(x)dx if X continuous

We use the notation E[g(X)]

3.4.1.2 Example (3.4.2) we roll fair die until the first time we get a six. What is the
expected number of rolls?
We saw that f(x) = 1/6*(5/6)x-1 if
Here we just have g(x)=x, so

E[X] =
∞∑
i=1

g(xi)f(xi) =
∞∑
i=1

i
1
6(5

6)i−1

How do we compute this sum? Here is a “standard” trick:

∞∑
k=1

ktk−1 =

∞∑
k=1

dtk

dt
=

d

dt

∞∑
k=1

tk =

d

dt

[ ∞∑
k=0

tk − 1
]

=

d

dt

[ 1
1− t − 1

]
=

1
(1− t)2

and so we find

E[X] = 1
6

1
(1− 5/6)2 = 6

3.4.1.3 Example (3.4.3) X is said to have a uniform [A,B] distribution if f(x)=1/(B-A) for
A<x<B, 0 otherwise.
Find E[Xk] (this is called the kth moment of X).
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E[Xk] =
∫ ∞
−∞

xkf(x)dx =∫ B

A
xk

1
B − A

dx =

1
B − A

xk+1

k + 1 |
B
A =

Bk+1 − Ak+1

(k + 1)(B − A) =

(B − A)∑k
i=0A

iBk−i

(k + 1)(B − A) =∑k
i=0A

iBk−i

k + 1

some special expectations are the mean of X defined by µ = EX and the variance defined
by σ2 = V (X) = E(X − µ)2. Related to the variance is the standard deviation σ, the
square root of the variance.

3.4.1.4 Theorem (3.4.4)

i. E[aX+b]=aE[X]+b

ii. E[X+Y]=E[X]+E[Y]

iii. var(aX+b)=a2var(X)

iv. var(X)=E[X2]-(E[X])2

the last one is a useful formula for finding the variance and/or the standard deviation.

3.4.1.5 Example (3.4.5) find the mean and the standard deviation of a uniform [A,B] r.v.

E[X] =
∑1
i=0A

iBk−i

1 + 1 = A+B

2

E[X2] =
∑2
i=0A

iBk−i

2 + 1 = A2 + AB +B2

3

var(X) = A2 + AB +B2

3 − (A+B

2 )2 = (B − A)2

12

and so σ = (B − A)/
√

12

3.4.1.6 Example (3.4.6) Find the mean and the standard deviatiton of an exponential rv
with rate λ.
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E[Xk] =
∫ ∞
−∞

xkf(x)dx =∫ ∞
0

xkλe−λxdx =

− xke−λx|∞0 −
∫ ∞

0
−kxk−1e−λxdx =

k
∫ ∞

0
xk−1e−λxdx =

k

λ

∫ ∞
0

xk−1λe−λxdx =
k

λ
E[Xk−1]

µ = E[X] = 1
λ
E[X0] = 1

λ

E[X2] = 2
λ
E[X] = 2

λ2

var(X) = E[X2]− (E[X])2 =
2
λ2 − ( 1

λ
)2 = 1

λ2

One way to “link” probabilities and expectations is via the indicator function I_A defined as

IA(x) =
{

1 if x ∈ A
0 if x /∈ A

because with this we have for a continuous r.v. X with f:

E[IA(X)] =
∫ ∞
−∞

IA(x)f(x)dx =
∫
A
f(x)dx = P (X ∈ A)

3.4.2 Expectations of Random Vectors

The definition of expectation easily generalizes to random vectors:

3.4.2.1 Example (3.4.7) Let (X,Y) be a discrete random vector with
f(x, y) = 8xy, 0 ≤ x ≤ y ≤ 1
Find E[XY ]
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E[XY ] =
∫ ∞
−∞

∫ ∞
−∞

xyf(x, y)dxdy =∫ 1

0

∫ y

0
8xyxydxdy =∫ 1

0

∫ y

0
8x2y2dxdy =∫ 1

0
8y2

[
x3/3|y0

]
dy =∫ 1

0
8y2

[
y3/3

]
dy =∫ 1

0
8y5/3dy =

4y6/9|10 = 4/9

3.4.3 Covariance and Correlation

3.4.3.1 Definition (3.4.8) The covariance of two r.v. X and Y is defined by
cov(X, Y ) = E[(X − µX)(Y − µY )]
The correlation of X and Y is defined by
cor(X, Y ) = cov(X,Y )

σXσY

Note cov(X,X) = var(X)
As with the variance we have a simpler formula for actual calculations:

3.4.3.2 Theorem (3.4.9) cov(X, Y ) = E(XY )− (EX)(EY )

3.4.3.3 Example (3.4.10) take the example of the sum and absolute value of the difference
of two rolls of a die. What is the covariance of X and Y?
So we have
µX = E[X] = 2 ∗ 1/36 + 3 ∗ 2/36 + ...+ 12 ∗ 1/36 = 7.0
µY = E[Y ] = 0 ∗ 6/36 + 1 ∗ 12/36 + ...+ 5 ∗ 2/36 = 70/36
E[XY ] = 0 ∗ 2 ∗ 1/36 + 1 ∗ 2 ∗ 0/36 + .2 ∗ 2 ∗ 0/36..+ 5 ∗ 12 ∗ 0/36 = 490/36
and so
cov(X, Y ) = EXY − EXEY = 490/36− 7.0 ∗ 70/36 = 0
Note that we previously saw that X and Y are not independent, so we here have an example
that a covariance of 0 does not imply independence! It does work the other way around,
though:
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3.4.3.4 Theorem (3.4.11) If X and Y are independent, then cov(X,Y) = 0 ( = cor(X,Y))
proof (in the case of X and Y continuous):

E[XY ] =
∫∫

R2
xyf(x, y)d(x, y) =∫ ∞

−∞

∫ ∞
−∞

xyf(x, y)dxdy =∫ ∞
−∞

∫ ∞
−∞

xyfX(x)fY (y)dxdy =∫ ∞
−∞

yfY (y)
(∫ ∞
−∞

xfX(x)dx
)
dy =(∫ ∞

−∞
xfX(x)dx

)(∫ ∞
−∞

yfY (y)dy
)

=

E[X]E[Y ]

and so cov(X,Y) = EXY-EXEY = EXEY - EXEY = 0

3.4.3.5 Example (3.4.12) we have continuous rv’s X and Y with joint
f(x, y) = 8xy, 0 ≤ x < y ≤ 1
Find the covariance and the correlation of X and Y.

E[XkY j] =
∫ ∞
−∞

∫ ∞
−∞

xkyjf(x, y)dxdy =∫ 1

0

∫ y

0
8xkyjxydxdy =∫ 1

0

∫ y

0
8xk+1yj+1dxdy =∫ 1

0
8yj+1

[
xk+2/(k + 2)|y0

]
dy =∫ 1

0
8yj+1

[
yk+2/(k + 2)

]
dy =∫ 1

0
8yj+k+3/(k + 2)dy =

8yj+k+4/(k + 2)/(j + k + 4)|10 =
8

(k + 2)(j + k + 4)
therefore
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E[X] = E[X1Y 0] = 8
(1 + 2)(1 + 0 + 4) = 8

15

E[X2] = E[X2Y 0] = 8
(2 + 2)(2 + 0 + 4) = 1

3

var(X) = E[X2]− (E[X])2 = 1
3 − ( 8

15)2 = 11
225

E[Y ] = E[X0Y 1] = 8
(0 + 2)(0 + 1 + 4) = 4

5

E[Y 2] = E[X0Y 2] = 8
(0 + 2)(0 + 2 + 4) = 2

3

var(Y ) = E[Y 2]− (E[Y ])2 = 2
3 − (5

5)2 = 12
75

E[XY ] = E[X1Y 1] = 8
(1 + 2)(1 + 1 + 4) = 4

9

cov(X, Y ) = E[XY ]− E[X]E[Y ] = 4
9 −

8
15

4
5 = 12

675

cor(X, Y ) = cov(X, Y )√
var(X)var(Y )

= 0.492

We saw above that E[X+Y] = E[X] + E[Y]. How about var(X+Y)?

3.4.3.6 Theorem (3.4.13)

var(X + Y ) = var(X) + var(Y ) + 2cov(X, Y )

if X ⊥ Y we have var(X+Y) = var(X) + var(Y)
proof

var(X + Y ) = E[(X + Y )2]− (E[X + Y ])2 =
E[X2 + 2XY + Y 2]− (E[X]2 + 2E[X]E[Y ] + E[Y ]2) =
E[X2] + 2E[XY ] + E[Y 2]− E[X]2 − 2E[X]E[Y ]− E[Y ]2 =
(E[X2]− E[X]2) + (E[Y 2]− E[Y ]2) + 2E([XY ]− 2E[X]E[Y ]) =
var(X) + var(Y ) + 2cov(X, Y )

3.4.4 Conditional Expectation and Variance

3.4.4.1 Definition (3.4.14) Say X|Y=y is a conditional r.v. with density f. Then the
conditional expectation of X|Y=y is defined by
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E[g(X)|Y = y] =
∑
x

g(x)fX|Y=y(x|y) if X discrete

E[g(X)|Y = y] =
∫ ∞
−∞

g(x)fX|Y=y(x|y)dx if X continuous

Let E[X|Y] denote the function of the random variable Y whose value at Y=y is given by
E[X|Y=y]. Note then Z=E[X|Y] is itself a random variable.

3.4.4.2 Example (3.4.15) An urn contains 2 white and 3 black balls. We pick two balls
from the urn. Let X be denote the number of white balls chosen. An additional ball is drawn
from the remaining three. Let Y equal 1 if the ball is white and 0 otherwise.
For example
f(0, 0) = P (X = 0, Y = 0) = 3/5 ∗ 2/4 ∗ 1/3 = 1/10.
The complete is given by:

x=0 x=1 x=2
y=0 0.1 0.4 0.1
y=1 0.2 0.2 0.0

The marginals are given by

x P(X=x)
1 x=0 0.3
2 x=1 0.6
3 x=2 0.1

y P(Y=y)
1 y=0 0.6
2 y=1 0.4

The conditional distribution of X|Y=0 is

x P(X=x|Y=0)
1 0 1/6
2 1 2/3
3 2 1/6

and so E[X|Y = 0] = 0 ∗ 1/6 + 1 ∗ 2/3 + 2 ∗ 1/6 = 1.0.
The conditional distribution of X|Y=1 is

57



x P(X=x|Y=1)
1 0 1/2
2 1 1/2
3 2 0

and so E[X|Y = 1] = 0 ∗ 1/2 + 1 ∗ 1/2 + 2 ∗ 0 = 1/2.
Finally the conditional r.v. Z = E[X|Y] has

z P(Z=z)
1 1 3/5
2 1/2 2/5

with this we can find E[Z] = E[E[X|Y ]] = 1 ∗ 3/5 + 1/2 ∗ 2/5 = 4/5.
How about using simulation to do these calculations? - program urn1
urn1 <- function (n = 2, m = 3, draws = 2, B = 10000) {

u <- c(rep("w", n), rep("b", m))
x <- rep(0, B)
y <- x
for (i in 1:B) {

z <- sample(u, draws + 1)
y[i] <- ifelse(z[draws + 1] == "w", 1, 0)
for (j in 1:draws)

x[i] <- x[i] + ifelse(z[j] == "w", 1, 0)
}
print("Joint pdf:")
print(round(table(y, x)/B, 3))
print("pdf of X:")
print(round(table(x)/B, 3))
print("pdf of Y:")
print(round(table(y)/B, 3))
print("pdf of X|Y=0:")
x0 <- table(x[y == 0])/length(y[y == 0])
print(round(x0, 3))
print("E[X|Y=0]:")
print(sum(c(0:draws) * x0))
print("pdf of X|Y=1:")
x1 <- table(x[y == 1])/length(y[y == 1])
print(round(x1, 3))
print("E[X|Y=1]:")
print(sum(c(0:1) * x1))

}
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urn1()

## [1] "Joint pdf:"
## x
## y 0 1 2
## 0 0.098 0.401 0.103
## 1 0.197 0.202 0.000
## [1] "pdf of X:"
## x
## 0 1 2
## 0.294 0.603 0.103
## [1] "pdf of Y:"
## y
## 0 1
## 0.601 0.399
## [1] "pdf of X|Y=0:"
##
## 0 1 2
## 0.163 0.666 0.171
## [1] "E[X|Y=0]:"
## [1] 1.008314
## [1] "pdf of X|Y=1:"
##
## 0 1
## 0.493 0.507
## [1] "E[X|Y=1]:"
## [1] 0.5067737

3.4.4.3 Example (3.4.16) We have continuous rv’s X and Y with joint f(x, y) = 8xy, 0 ≤
x < y ≤ 1. We have found fY (y) = 4y3, 0 < y < 1, and fX|Y=y(x|y) = 2x/y2, 0 ≤ x ≤ y. So

fY (y) =
∫ y

0
8xydx = 4x2y|y0 = 4y3; 0 < y < 1

fX|Y=y(x|y) = f(x, y)
fY )y = 8xy

4y3 = 2x
y2 ; 0 < x < y

E[X|Y = y] =
∫ ∞
−∞

xfX|Y=y(x|y)dx =
∫ y

0
x

2x
y2 dx =

2
y2

∫ y

0
x2dx = 2

4y2 [x3/3|y0 = 2y3

3y2 = 2y
3

Throughout this calculation we treated y as a constant. Now, though, we can change our
point of view and consider E[X|Y = y] = 2y/3 as a function of y:
g(y) = E[X|Y = y] = 2y/3
What are the values of y? Well, they are the observations we might get from the rv. Y, so
we can also write
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g(Y ) = E[X|Y = Y ] = 2Y/3
but Y is a rv, then so is 2Y/3, and we see that we can define a rv Z=g(Y)=E[X|Y].
Recall that the expression fX|Y does not make sense. Now we see that on the other hand the
expression E[X|Y] makes perfectly good sense!
There are very useful formulas for the expectation and variance of conditional r.v.s:

3.4.4.4 Theorem (3.4.17) We have
i. $E[X] = E{E[X|Y}] $
ii. var(X) = E[var(X|Y )] + var(E[X|Y ])

3.4.4.5 Example (3.4.18) Say Y ∼ U [0, 1] and X|Y = y ∼ Exp(y + 1), then

E[X|Y = y] = 1
y + 1

E[X] = E{E[X|Y }] = E[ 1
Y + 1] =∫ 1

0

1
y + 1dy = log(y + 1)|10 = log 2

var(X|Y = y) = 1
(y + 1)2

var(X) = E[var(X|Y )] + var(E[X|Y ]) =

E[ 1
(Y + 1)2 ] + var( 1

Y + 1) =

E[ 1
(Y + 1)2 ] + E[( 1

Y + 1)2]− (E[ 1
Y + 1])2 =

2E[ 1
(Y + 1)2 ]− (log 2)2 =

2
∫ 1

0

1
(y + 1)2dy − (log 2)2 =

2[− 1
y + 1 |

1
0 − (log 2)2 =

2[1− 1
2]− (log 2)2 =

1− (log 2)2 = 0.52

let’s check:
y=runif(1e5)
x=rexp(1e5, y+1)
round(c(log(2), mean(x)), 3)

## [1] 0.693 0.692

60



round(c(1-log(2)^2,var(x)), 3)

## [1] 0.520 0.514

3.5 Inequalities and Limit Theorems

3.5.1 Two very useful inequalities

3.5.1.1 Theorem (3.5.1) Markov’s Inequality
If X takes on only nonnegative values, then for any a>0

P (X ≥ a) ≤ EX

a

proof omitted

3.5.1.2 Theorem (3.5.2) Chebyshev’s Inequality:
If X is a r.v. with mean µ and variance σ2, then for any k>0:

P (|X − µ| ≥ kσ) ≤ 1/k2

proof

P (|X − µ| ≥ kσ) =
P ((X − µ)2 ≥ k2σ2) ≤
E(X − µ)2

k2σ2 = σ2

k2σ2 = 1/k2

3.5.1.3 Example (3.5.3) Consider the uniform random variable with f(x) = 1 if 0 < x < 1,
0 otherwise. We already know that µ = 0.5 and σ = 1/

√
12 = 0.2887. Now Chebyshev says

P (|X − 0.5| > k0.2887) ≤ 1/k2

For example
P (|X − 0.5| > 0.2887) ≤ 1 (rather boring!)
or
P (|X − 0.5| > 3× 0.2887) ≤ 1/9
actually P (|X − 0.5| > 0.866) = 0, so this is not a very good upper bound.
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3.5.2 Law of Large Numbers, Convergence in Probability

3.5.2.1 Theorem (3.5.4) (Weak) Law of Large Numbers
Let X1, X2, ... be a sequence of independent and identically distributed (iid) r.v.’s having
mean µ. Then for all ε > 0

P (| 1
n

∑
Xi − µ| > ε)→ 0

proof (assuming in addition that V (Xi) = σ2 <∞

E[ 1
n

∑
Xi] = 1

n

∑
E[Xi] = µ

V [ 1
n

∑
Xi] = 1

n2

∑
V [Xi] = σ2

n

P (| 1
n

∑
Xi − µ| > ε) =

P (| 1
n

∑
Xi − µ| >

ε

σ/
√
n
σ/
√
n) ≤

1/( ε

σ/
√
n

) = σ

ε
√
n
→ 0

This theorem forms the bases of (almost) all simulation studies: say we want to find a
parameter θ of a population. We can generate data from a random variable X with pdf ()
f(x|θ) such that Eh(X) = θ. Then by the law of large numbers

1
n

∑
h(Xi)→ θ

3.5.2.2 Example (3.5.5) in a game a player rolls 5 fair dice. He then moves his game piece
along k fields on a board, where k is the smallest number on the dice + largest number on
the dice. For example if his dice show 2, 2, 3, 5, 5 he moves 2+5 = 7 fields. What is the
mean number of fields θ a player will move?
To do this analytically would be quite an exercise. To do it via simulation is easy:
Let X be an independent random vector of length 5, withX[j] ∈ 1, .., 6 and P (X[j] = k) = 1/6.
Let h(x) = min(x) + max(x), then Eh(X) = θ.
Let X1, X2, .. be iid copies of X, then by the law of large numbers
B <- 1e5
z <- rep(0, B)
for (i in 1:B) {

x <- sample(1:6, size = 5, replace = TRUE)
z[i] <- min(x)+max(x)

}
mean(z)
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## [1] 6.98824

3.5.3 Central Limit Theorem

This is one of the most famous theorems in all of mathematics / statistics. Without it,
Statistics as a science would not have existed until very recently:
We first need the definition of a normal (or Gaussian) r.v.:
A random variable X is said to be normally distributed with mean µ and standard deviation
σ if it has :

f(x) = 1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

If µ = 0 and σ = 1 we say X has a standard normal distribution.
We use the symbol Φ for the distribution function of a standard normal r.v.

3.5.3.1 Theorem (3.5.6) Let X1, X2, .. be an iid sequence of r.v.’s with mean µ and standard
deviation σ. Let X̄ = 1

n

∑
X. Then

P (X̄ − µ
σ/
√
n
≤ z)→ Φ(z)

3.5.3.2 Example (3.5.7) Let’s do a simulation to illustrate the CLT: we will use the most
basic r.v. of all, called a Bernoulli r.v. which has P (X = 0) = 1 − p and P (X = 1) = p.
(Think indicator function for the coin toss}. So we sample n Bernoulli r.v. with “success
parameter p” and find their sample mean. Note that

E(X) = p

V (X) = p(1− p)

cltexample1 <- function (p, n, B=1000) {
xbar <- rep(0, n)
for (i in 1:B) {

xbar[i] <- mean(sample(c(0, 1), n, TRUE, prob=c(1-p, p)))
}

df <- data.frame(x=sqrt(n)*(xbar-p)/sqrt(p*(1-p)))
bw <- diff(range(df$x))/50
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "") +
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stat_function(fun = dnorm, colour = "blue",
args=list(mean=0, sd=1))

}
cltexample1(0.5, 500)

0.0
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0.2

0.3

0.4

0.5

−2.5 0.0 2.5 5.0
x

3.6 Functions of a R.V. - Transformations

3.6.0.1 Example (3.6.1) say X ∼ U [0, 1] and λ > 0. What is the pdf of the random variable
Y = −λ log(X)?
Solution: we first find the cdf and then the pdf as follows:

FY (y) = P (Y < y) =
P (−λ logX < y) =
P (logX > −y/λ) =
P (X > exp(−y/λ)) =
1− P (X < exp(−y/λ)) =
1− exp(−y/λ)

fY (y) = dFY
dy

= λ exp(−y/λ)

if y>0. For y<0 note that P (− logX < y) = 0 because 0 < X < 1, so logX < 0, so
− logX > 0 always.
This is an example of a function (or transformation) of a random variable. These transforma-
tions play a major role in probability and statistics. We will see how to find their pdf’s on a
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few examples.

3.6.0.2 Example (3.6.2) Say X is the number of roles of a fair die until the first six. We
have already seen that P (X = x) = 1/6 ∗ (5/6)x−1, x=1,2,.. Let Y be 1 if X is even, 0
otherwise. Find the density of Y.
Note: here both X and Y are discrete.
let’s do this a little more general, with p instead of 1/6. Also let q=1-p=5/6. Then

P (Y = 0) = P (X ∈ {1, 3, 5, ..}) =
∞∑
k=0

pq(2k+1)−1 = p
∞∑
k=0

q2k =

p
∞∑
k=0

(q2)k = p
1

1− q2 =

p
1

(1 + q)(1− q) = 1
1 + q

so P (Y = 0) = 1/(1 + 5/6) = 6/11 and P (Y = 1) = 1− P (Y = 1) = 5/11.

3.6.0.3 Example (3.6.3) Say we have a fair coin. We flip the coin until the first “Heads”.
What is the probability this will happen on an even-numbered flip?
Now we have the same as above, with p=0.5, so
P(Y=0)=0.5/(1+0.5)=1/3.
Is there a loaded coin with probability of heads p so that the probability of “first heads on
even-numbered flip” is 1/2?
Now P(Y=1)=q/(1+q)=1/2, so 2q=1+q or q=1 or p=0, but if p=0 we never get “heads”, so
no such coin exists!

3.6.0.4 Example (3.6.4) say X is a continuous r.v with pdf fX(x) = 1/2 exp(−|x|). This is
called a double exponential random variable. Let Y = I[−1,1](X). Find the density of Y.
Note: here X is continuous and Y is discrete.

P (Y = 1) = P (I[−1,1](X) = 1) = P (−1 < X < 1) =∫ 1

−1
1/2 exp(−|x|)dx =∫ 1

0
exp(−x)dx =

− e−x|10 = 1− 1/e
P (Y = 0) = 1− P (Y = 1) = 1/e
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3.6.0.5 Example (3.6.5) again let X have pdf fX(x) = 1/2 exp(−|x|). Let Y = X2. Then
for y < 0 we have P (Y ≤ y) = 0. So let y > 0. Then

FY (y) = P (Y < y) = P (X2 < y) =
P (−√y < X <

√
y)∫ √y

−√y
1/2 exp(−|x|)dx =∫ √y

0
exp(−x)dx =

− e−x|
√
y

0 = 1− e−
√
y

fY (y) = F ′Y (y) = 1
2√ye

−√y; y > 0

Next up some examples of functions of random vectors:

3.6.0.6 Example (3.6.6) say (X,Y) is a bivariate standard normal r.v, that is it has joint
given by

f(x, y) = 1
2π exp

{
−1

2(x2 + y2)
}

Let the r.v. (U,V) be defined by U = X+Y and V = X-Y. Find the joint pdf of (U,V)
To start let’s define the functions g1(x, y) = x+ y and g2(x, y) = x− y, so that U = g1(X, Y )
and V = g2(X, Y ).
For what values of u and v is f(U,V )(u, v) positive? Well, for any values for which the system
of 2 linear equations in two unknowns u=x+y and u=x-y has a solution.
These solutions are

x = h1(u, v) = (u+ v)/2
y = h2(u, v) = (u− v)/2

From this we find that for any (u,v) there is a unique (x,y) such that u=x+y and v=x-y. So
the transformation (x, y)→ .png)(u, v) is one-to-one and therefore has a Jacobian given by

JJJ =
∣∣∣∣∣∂x∂u ∂x

∂v
∂y
∂u

∂y
∂v

∣∣∣∣∣ =
∣∣∣∣∣12 1

21
2 −

1
2

∣∣∣∣∣ = −1
2

Now from multivariable calculus we have the following:

66



fU,V (u, v) = fX,Y (h1(x, y), h2(x, y))|J | =
1

2π exp
{
−1

2

[
(u+ v

2 )2 + (u− v2 )2
]}
| − 1

2 | =
1

4π exp
{
−1

4
[
u2 + v2

]}
Note that the density factors into a function of u and a function of v. This is not only a
necessary but also a sufficient condition for U and V to be independent.

3.6.0.7 Example (3.6.7) say X and Y are independent standard normal r.v.’s. Let Z = X +
Y. Find the pdf of Z.
Note: Z = X + Y = U in the example above, so the pdf of Z is just the marginal of U and
we find

fZ(z) =
∫ ∞
−∞

1
4π exp

{
−1

4
[
z2 + v2

]}
dv =

1√
2π2

e−
z2

2×2

∫ ∞
−∞

1√
2π2

e−
v2

2×2dv =

1√
2π2

e−
z2

2×2

3.6.0.8 Theorem (3.6.8) convolution formula
Say X and Y are two continuous independent r.v with pdf f’s fX and fY, and let Z = X+Y.

fZ(z) =
∫ ∞
−∞

fX(t)fY (z − t)dt

proof
Repeat the above calculations
There is a second method for deriving the convolution formula which is useful. It uses a
continuous analog to the law of total probability:
In the setup from above we have
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FX+Y (z) = P (X + Y ≤ z) =∫ ∞
−∞

P (X + Y ≤ z|Y = y)fY (y)dy =∫ ∞
−∞

(X ≤ z − y|Y = y)fY (y)dy =∫ ∞
−∞

FX|Y=y(z − y|y)fY (y)dy

fZ(z) = d

dz
FZ(z) =

d

dz

∫ ∞
−∞

FX|Y=y(z − y|y)fY (y)dy =∫ ∞
−∞

d

dz
FX|Y=y(z − y|y)fY (y)dy =∫ ∞

−∞
fX|Y=y(z − y|y)fY (y)dy =∫ ∞

−∞
fX(z − y)fY (y)dy

and here we used the independence only at the very end, the formula above also holds in
general.
The tricky part of this is the interchange of the derivative and the integral. Working with
densities and cdfs usually means they are ok.

3.6.0.9 Example (3.6.9) Say X1, .., Xn are iid U[0,1]. Let M = max{X1, .., Xn}. Find fM .

FM(x) = P (M < m) = P (max {X1, .., Xn} < x) =
P (X1 < x, .., Xn < x) =
P (X1 < x)× ..× P (Xn < x) =
P (X1 < x)n = xn

fM(x) = nxn−1; 0 < x < 1

3.7 Statistics

3.7.1 Basic Concepts of Statistics

Statistics is of course a whole branch of Science all by itself. Here we will just introduce a
few basic ideas.
Probability theory and Statistics have in common that both start with a probability model.
Typically such models have parameters, for example the success probability p in a Bernoulli
rv or the rate λ in an exponential distribution. In probability theory we then have problems
such as: if p=0.2, what is the mean of the Bernoulli rv? In other words we assume we know
the parameters and then ask questions about possible outcomes.
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In Statistics it is exactly the other way around: we already have observed outcomes from a
rv and we are asking what the parameters might be.

3.7.2 The Likelihood Function

3.7.2.1 Definition (3.7.1) Let XXX = (X1, .., Xn) be a random vector with joint density
f(x1, .., xn|θθθ) where θθθ is a vector of parameters. Then

L(θθθ|x1, .., xn) = f(x1, .., xn|θθθ)
is called the likelihood function.
If X1, .., Xn are independent, then

L(θθθ|xxx) =
n∏
i=1

f(xi|θθθ)

3.7.2.2 Example (3.7.2) Xi ∼ N(µ, σ2), then

L(µ, σ2|xxx) =
n∏
i=1

f(xi|µ, σ2) =

n∏
i=1

1√
2πσ2

exp
{
− 1

2σ2 (xi − µ)2
}

=

(2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

3.7.3 Point Estimation

3.7.3.1 Definition (3.7.3) A function T (xxx) of the data is called a statistic or estimator.
A statistic T (xxx) is called an unbiased estimator of θθθ if

E[T (XXX)] = θθθ

3.7.3.2 Example (3.7.4) Xi ∼ N(µ, σ2), then T (xxx) = x̄ is an unbiased estimator of µ
because

E[T (XXX)] = E[X̄] = E[ 1
n

n∑
i=1

Xi] = 1
n

n∑
i=1

E[Xi] = µ
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3.7.4 Maximum Likelihood

3.7.4.1 Definition (3.7.5) Let θ̂̂θ̂θ = argmax {L(θθθ|xxx);θθθ}, then θ̂̂θ̂θ is called the *maximim
likelihood estimator of θθθ.

3.7.4.2 Example (3.7.6)

L(µ, σ2|xxx) = (2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}

logL(µ, σ2|xxx) = −n2 log(2πσ2)− 1
2σ2

n∑
i=1

(xi − µ)2

logL(µ, σ2|xxx)
dµ

= 1
σ2

n∑
i=1

(xi − µ) = 0

µ̂ = x̄

3.7.5 Confidence Interval

3.7.5.1 Definition (3.7.7) A (random) interval of the form (L(XXX), U(XXX)) is called a (1−
α)100% confidence interval for θ if

P (L(XXX) < θ < U(XXX)) ≥ 1− α

3.7.5.2 Example (3.7.8) Xi ∼ N(µ, σ2), σ2 known, then

L(xxx) = x̄− zα/2σ/
√
n

U(xxx) = x̄+ zα/2σ/
√
n

is a (1 − α)100% confidence interval for µ. Here zα is is upper α percentile of a standard
normal distribution.

P (L(XXX) < θ < U(XXX)) =
P (X̄ − zα/2σ/

√
n < µ < X̄ + zα/2σ/

√
n) =

P (µ− zα/2σ/
√
n < X̄ < µ+ zα/2σ/

√
n) =

P (−zα/2 <
√
n
X̄ − µ
σ

< zα/2) =

2Φ(zα/2)− 1 = 2(1− α/2)− 1 = 1− α

where Φ is the cdf of a standard normal distribution.
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3.7.6 Hypothesis Test

3.7.6.1 Definition (3.7.9) In testing H0 : θ = θ0

• the error of the first kind is to reject the null hypothesis although it is true. The
probability of the error of the first kind is denoted by α.

• the error of the second kind is to fail to reject the null hypothesis although it is false.
The probability of the error of the second kind is denoted by β. 1−β is called the power
of the test.

• The p-value of a test is the probability to observe a value of the test statistic as unlike
as that just observed or even more so, given that the null hypothesis is true.

3.7.6.2 Example (3.7.10) Xi ∼ N(µ, σ2), σ2 known, then a test for H0 : µ = µ0 is to reject
the null hypothesis if Z = |

√
n x̄−µ0

σ
| is greater than zα/2.

So

P (reject H0|H0 true) =
P (Z > zα/2|µ = µ0) =

1− P (|
√
n
x̄− µ0

σ
| < zα/2|µ = µ0) =

1− P (−zα/2 <
√
n
x̄− µ0

σ
< zα/2|µ = µ0) =

1− (1− α) = α

and

β = P (fail to reject H0|H0 false) =
P (Z < zα/2|µ = µ1) =

P (|
√
n
x̄− µ0

σ
| < zα/2|µ = µ1) =

P (−zα/2 <
√
n
x̄− µ0

σ
< zα/2|µ = µ1) =

P (−zα/2 <
√
n
x̄− µ1 + µ1 − µ0

σ
< zα/2|µ = µ1) =

P (−zα/2 <
√
n
x̄− µ1

σ
+
√
n
µ1 − µ0

σ
< zα/2|µ = µ1) =

P (−zα/2 −
√
n
µ1 − µ0

σ
<
√
n
x̄− µ1

σ
< zα/2 +

√
n
µ1 − µ0

σ
|µ = µ1) =

Φ(zα/2 +
√
n
µ1 − µ0

σ
)− Φ(−zα/2 +

√
n
µ1 − µ0

σ
)

and so we see that β (and therefore the power of a test) is a function of the true value of the
parameter. It is often shown in the form of a power graph:
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3.7.6.3 Example (3.7.11) Say
powr=function(mu1, n=10, mu0=0, sigma=1, alpha=0.05) {

za=qnorm(1-alpha/2)
beta=pnorm(za-sqrt(n)*(mu1-mu0)/sigma)-pnorm(-za-sqrt(n)*(mu1-mu0)/sigma)
100*(1-beta)

}
curve(powr, -2, 2, lwd=2,col="blue")
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3.7.7 Sample Size and Effect Size

An important question during the planning stage of an experiment is how many observations
need to be collected. First of all this depends on what analyses is going to be done.

• Confidence Interval
If eventually a confidence interval is to be found, one needs to decide what length of the
interval is acceptable. More specifically one chooses the error, or 1/2 the length. This choice
depends on the background of the experiment, and what size interval is small enough to yield
an interesting result.

3.7.7.1 Example (3.7.12) Xi ∼ N(µ, σ2), σ2 known, then we have the interval

(
x̄− zα/2σ/

√
n, x̄+ zα/2σ/

√
n
)

so E = zα/2σ/
√
n and so n =

(
zα/2σ

E

)2

Say we want E=0.1 and we know σ = 1, then
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round((qnorm(0.975)*1/0.1)^2)

## [1] 384

• Hypothesis Test
If we plan on carrying out a hypothesis we need to decide what power the test is supposed
to have, one typical choice is at least 80%. From the calculation above it is clear that we
also need µ1. |µ0 − µ1| is often called the effect size, the smallest deviation from the null
hypothesis of practical interest.

3.7.7.2 Example (3.7.13) Xi ∼ N(µ, σ2), σ2 known, and say we decide to use µ1 = 0.1. We
have the equation

β = Φ(zα/2 +
√
n
µ1 − µ0

σ
)− Φ(−zα/2 +

√
n
µ1 − µ0

σ
)

which we want to solve for n. This has to be done numerically:
n=1
repeat {

n=n+1
if(powr(mu1=0.1, n=n)>80) break

}
n

## [1] 785

3.7.8 Bayesian Analysis

An entirely different approach to statistics is the Bayesian. Here one treats parameters as
random variables with a distribution called a prior, and then uses probability theory to
combine the likelihood and the prior intothe posterior distribution.

3.7.8.1 Example (3.7.14) Xi ∼ N(µ, σ2), σ2 known, and we use π(µ) = 1 as the prior. Note
that this is not a proper density because

∫∞
−∞ 1dx =∞. This is ok as long as the posterior is

a proper distribution.
First note that
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n∑
i=1

(xi − µ)2 =

n∑
i=1

(xi − x̄+ x̄− µ)2 =

n∑
i=1

(xi − x̄)2 + 2(xi − x̄)(x̄− µ) + (x̄− µ)2 =

n∑
i=1

(xi − x̄)2 + 2(x̄− µ)
n∑
i=1

(xi − x̄)(x̄− µ) + n(x̄− µ)2

n∑
i=1

(xi − x̄)2 + 2(xi − x̄)(x̄− µ) + (x̄− µ)2 =

n∑
i=1

(xi − x̄)2 + n(x̄− µ)2

and so

f(xxx, µ) = (2πσ2)−n/2 exp
{
− 1

2σ2

n∑
i=1

(xi − µ)2
}
π(µ) =

(2πσ2)−n/2 exp
{
− 1

2σ2

[
n∑
i=1

(xi − x̄)2 + n(x̄− µ)2
]}

=

(2πσ2)−n/2 exp
{
− 1

2σ2

[
n∑
i=1

(xi − x̄)2
]}

exp
{
− 1

2σ2

[
n(x̄− µ)2

]}
m(xxx) =

∫ ∞
−∞

f(xxx, µ)dµ =∫ ∞
−∞

(2πσ2)−n/2 exp
{
− 1

2σ2

[
n∑
i=1

(xi − x̄)2
]}

exp
{
− 1

2σ2

[
n(x̄− µ)2

]}
dµ =

exp
{
− 1

2σ2

[
n∑
i=1

(xi − x̄)2
]}

nn/2(2π(σ2/n)−(n−1)/2

∫ ∞
−∞

(2π(σ2/n)−1/2 exp
{
− 1

2(σ2/n)(µ− x̄)2
}
dµ =

exp
{
− 1

2σ2

[
n∑
i=1

(xi − x̄)2
]}

nn/2(2π(σ2/n)−(n−1)/2

because the integral is over a N(x̄, σ2/n) density and therefore is 1.
Finally
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f(µ|xxx) = f(xxx, µ)
m(xxx) =

exp
{
− 1

2σ2 [∑n
i=1(xi − x̄)2]

}
nn/2(2π(σ2/n)−n/2 exp

{
− 1

2(σ2/n)(µ− x̄)2
}

exp
{
− 1

2σ2 [∑n
i=1(xi − x̄)2]

}
nn/2(2π(σ2/n)−(n−1)/2

=

1√
2π(σ2/n)

exp
{
− 1

2(σ2/n)(µ− x̄)2
}

and so we find

µ|X = xX = xX = x ∼ N(µ, σ2/n)

Say we want to find a (1− α)100% credible interval for µ, that is numbers L and U such that

P (L < µ < U |X = xX = xX = x) = 1− α

Note that here L and U are numbers, not random variables as in the frequentist calculation
above. Also note that we have one equation in two unknowns, so L and U are not uniquely
defined. We can get a solution by imposing an additional condition. For example, we can find

P (µ < L|X = xX = xX = x) = P (µ > U |X = xX = xX = x) = α/2

so

α/2 = P (µ < L|X = xX = xX = x) = Φ(L;µ, σ2/n)
L = Φ−1(α/2;µ, σ2/n)

where Φ(x;µ, σ2) is the cdf of a N(µ, σ2) and Φ−1 is its inverse.
Notice that in this case the frequentist confidence interval and the Bayesian credible interval
are the same numerically, but their interpretation is very different.
# Linear Algebra

3.8 Matrix and Vector Notation

3.8.1 Matrices

A matrix is a rectangular or square array of numbers or variables. We use uppercase boldface
letters to represent matrices. All elements of matrices will be real numbers or variables
representing real numbers. Here is an example of a 3× 2 matrix

AAA = (aij) =

 0.5 12
0.8 9
−0.1 14
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A vector is an n× 1 matrix:

xxx =

x1
x2
x3


A matrix of dimension 1× 1 is called a scalar.
Two matrices A and B are equal if they have the same dimension and if aij = bij for all i and
j.
The transpose A’ of a matrix is the matrix with rows and columns exchanged.

AAA′ = (aji) =
(

0.5 0.8 −0.1
12 9 14

)

3.8.1.1 Theorem (4.1.1) For any matrix AAA we have AAA = (AAA′)′

proof obvious

3.8.1.2 Definition (4.1.2) An n×m matrix AAA is called square if n=m.
A matrix AAA is called symmetric if AAA = AAA′.
The diagonal of a matrix AAA are the elements (aii). A matrix is called diagonal if (aij) = 0 for
all i 6= j.
A matrix AAA with (aii) = 1 for all i and (aij) = 0 for all i 6= j is called an identity matrix.
A matrix is called upper triangular if (aij) = 0 for all i < j and lower triangular if (aij) = 0
for all i > j.
A vector of 1’s is denoted by jjj:

jjj =

1
1
1


A square matrix of 1’s is denoted by JJJ :

JJJ =

1 1 1
1 1 1
1 1 1


A vector and a matrix of 0’s are denoted by

000 =

0
0
0
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and

OOO =

0 0 0
0 0 0
0 0 0



3.8.1.3 Definition (4.1.3) Let AAA be a n ×m matrix and BBB be a m × k matrix, then the
product CCC = ABABAB is defined by

cij =
m∑
l=1

ailblj

3.8.1.4 Corollary (4.1.4) Let aaa = (a1, .., an)′ and bbb = (b1, .., bn)′ then aaa′aaa = ∑n
i=1 a

2
i and

aaa′bbb = ∑n
i=1 aibi

3.8.1.5 Example (4.1.5)

jjj′jjj =
n∑
i=1

1 = n

jjjjjj′ = JJJ

3.8.1.6 Example (4.1.6) 0.5 12
0.8 9
−0.1 14

(1 2 5 −2.5 7
.6 0.8 6 0 −2.7

)
=

7.7 10.6 74.5 −1.25 −28.9
6.2 8.8 58.0 −2.00 −18.7
8.3 11.0 83.5 0.25 −38.5


Matrix multiplication in R is done like this:
A=matrix(c(0.5, 0.8,-0.1, 12,9,14), 3,2)
B=matrix(c(1, 0.6, 2, 0.8, 5, 6, -2.5, 0, 7, -2.7), 2,5)
A%*%B

## [,1] [,2] [,3] [,4] [,5]
## [1,] 7.7 10.6 74.5 -1.25 -28.9
## [2,] 6.2 8.8 58.0 -2.00 -18.7
## [3,] 8.3 11.0 83.5 0.25 -38.5

3.8.1.7 Theorem (4.1.7) In general ABABAB 6= BABABA.
proof
ABABAB and BABABA can only exist if both matrices are square. Now say

(
5 12
8 9

)(
0 2
1 0

)
=
(

12 10
9 16

)
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but

(
0 2
1 0

)(
5 12
8 9

)
=
(

16 18
5 12

)

3.8.1.8 Definition Let xxx be a vector, then the Euclidean distance or length of the vector is
defined by

√
x′xx′xx′x =

√√√√ n∑
i=1

x2
i

Let AAA be an n×m matrix and jjj a vector of 1’s, then

AjAjAj =



n∑
i=1

a1i
n∑
i=1

a2i

...
n∑
i=1

ami



3.8.1.9 Theorem (4.1.8) (AB)′(AB)′(AB)′ = A′B′A′B′A′B′

proof
Let CCC = ABABAB. Now

(ABABAB)′ij = (CCC ′)ij = cji =
n∑
k=1

ajkbki =

n∑
k=1

bkiajk =

n∑
k=1

(BBB)ki(AAA)jk =

n∑
k=1

(B′B′B′)ik(A′A′A′)kj =

BBB′AAA′

3.8.1.10 Definition (4.1.9) Partitioned Matrix
We can partition a matrix as follows
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AAA =
(
A11A11A11 A12A12A12
A21A21A21 A22A22A22

)

3.8.1.11 Example (4.1.10)

AAA =


1 3 1 0
0 4 5 1
2 1 3 7
1 1 5 3

 =
(
A11A11A11 A12A12A12
A21A21A21 A22A22A22

)

where

A11A11A11 =
(

1 3
0 4

)
A12A12A12 =

(
1 0
5 1

)
A21A21A21 =

(
2 1
1 1

)
A22A22A22 =

(
3 7
5 3

)

or where

A11A11A11 =
(
1
)
A12A12A12 =

(
3 1 0

)
A21A21A21 =

0
2
1

A22A22A22 =

4 5 1
1 3 7
1 5 3



3.8.1.12 Definition (4.1.11) If AAA is a symmetric matrix and xxx,yyy are vectors, then
i.

AyAyAy =
n∑
i=1

aijyj

is called a linear form.
ii.

y′Ayy′Ayy′Ay =
n∑
i=1

aiiy
2
i +

∑
i 6=j

aijyiyj

is called the quadratic form.
iii.

x′Ayx′Ayx′Ay =
∑
i,j

aijxiyj

is called a bilinear form.

3.8.1.13 Definition (4.1.12) A set of vectors aaa1, .., aaan is called linearly dependent if there
exist scalars c1, .., cn (not all 0) such that

c1aaa1 + ..+ cnaaan = 0

If no such coefficients c1, .., cn can be found the vectors are called linearly independent.
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The rank of a square matrix AAA is the number of linearly independent columns of AAA.
An n× p matrix AAA with n<p is said to be full rank if rank( AAA )=n. A full-rank square matrix
is called nonsingular.

3.8.1.14 Theorem (4.1.13)

i. rank(ABABAB) ≤ min{rank(AAA); rank(BBB)}
ii. rank(AA′AA′AA′) = rank(A′AA′AA′A) = rank(AAA)

proof omitted

3.9 Matrix Operations

3.9.1 Matrix Inverse

3.9.1.1 Definition (4.2.1) A nonsingular matrix AAA has a unique inverse AAA−1 such that

AAAAAA−1 = AAA−1AAA = III

3.9.1.2 Example (4.2.2) We can use the R function solve to find an inverse:

AAA =

 1 5 −3
−3 2 7
2 5 9


A=rbind(c(1, 5, -3), c(-3, 2, 7), c(2, 5, 9))
A

## [,1] [,2] [,3]
## [1,] 1 5 -3
## [2,] -3 2 7
## [3,] 2 5 9
Ainv=solve(A)
Ainv

## [,1] [,2] [,3]
## [1,] -0.06938776 -0.24489796 0.167346939
## [2,] 0.16734694 0.06122449 0.008163265
## [3,] -0.07755102 0.02040816 0.069387755
round(A%*%Ainv, 4)

## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1
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3.9.1.3 Theorem (4.2.3) Let

AAA =
(
a b
c d

)
then

AAA−1 = 1
ad− bc

(
d −b
−c a

)

proof easy, just multiply!
This is actually more general than it appears:

3.9.1.4 Theorem (4.2.4) Say AAA is a symmetric and nonsingular matrix partitioned as

AAA =
(
A11A11A11 A12A12A12
A21A21A21 A22A22A22

)

then if BBB = A22A22A22 −A21A21A21A
−1
11A−1
11A−1
11A12A12A12 and provided all inverses exist we have

A−1A−1A−1 =
(
A−1

11A−1
11A−1
11 +A−1

11A−1
11A−1
11A12A12A12B

−1B−1B−1A21A21A21A
−1
11A−1
11A−1
11 −A−1

11A−1
11A−1
11A12A12A12B

−1B−1B−1

−B−1B−1B−1A21A21A21A
−1
11A−1
11A−1
11 B−1B−1B−1

)

proof straight-forward multiplication

3.9.1.5 Example (4.2.5)

1. Say AAA is a square matrix partitioned as

AAA =
(
A11A11A11 aaa12
aaa12 a22

)

where a22 is a scalar, then b = a22 − a′21AAA
−1
11 a12 is a scalar and

A−1A−1A−1 = 1
b

(
bA−1

11A−1
11A−1
11 +A−1

11A−1
11A−1
11 a12a

′
12A

−1
11A−1
11A−1
11 −A−1

11A−1
11A−1
11 a12

−a′12A
−1
11A−1
11A−1
11 1

)
Say

AAA =

 1 −2 4
−2 3 0
4 0 1



AAA−1
11 =

(
−3 −2
−2 −1

)
b = a22−a′21AAA

−1
11 a12 = 1−

(
4 0

)(−3 −2
−2 −1

)(
4
0

)
= 1−(−48) = 49 bA−1

11A−1
11A−1
11 +A−1

11A−1
11A−1
11 a12a

′
12A

−1
11A−1
11A−1
11 = 49

(
−3 −2
−2 −1

)
+
(
−3 −2
−2 −1

)(
4
0

)(
4 0

)(−3 −2
−2 −1

)
= 49

(
−3 −2
−2 −1

)
+
(
−3 −2
−2 −1

)(
16 0
0 0

)(
−3 −2
−2 −1

)
=

(
−3 −2
−2 15

)
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also

−AAA−1
11 a12 =

(
12
8

)
− a′12AAA

−1
11 =

(
12 8

)
and finally

AAA−1 = 1
49

−3 −2 12
−2 15 8
12 8 1

 =

R check:
solve(matrix(c(1,-2,4,-2,3,0,4,0,1), 3, 3))*49

## [,1] [,2] [,3]
## [1,] -3 -2 12
## [2,] -2 15 8
## [3,] 12 8 1

2. Say AAA is a square matrix partitioned as

AAA =
(
A11A11A11 OOO
OOO A22A22A22

)

then

A−1A−1A−1 =
(
A−1

11A−1
11A−1
11 OOO
OOO A−1

22A−1
22A−1
22

)

3.9.2 Positive Definite Matrices

3.9.2.1 Definition (4.2.6) Let AAA be a symmetric matrix and yyy a vector, then if
i. y′Ayy′Ayy′Ay > 0 for all yyy 6= 0 A is called positive definite.
ii. y′Ayy′Ayy′Ay ≥ 0 for all yyy 6= 0 A is called positive semi-definite.
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3.9.2.2 Example (4.2.7)

AAA =
(

1 −1
−1 1

)

y′Ayy′Ayy′Ay = (y1 y2)
(
y1 − y2
−y1 + y2

)
=

y1(y1 − y2) + y2(−y1 + y2) =
y2

1 − y1y2 − y1y2 + y2
2 =

y2
1 − 2y1y2 + y2

2 =
(y1 − y2)2 > 0

and so AAA is positive definite.

3.9.2.3 Theorem (4.2.8)

i. If AAA is positive definite, then aii > 0 for all i

ii. If AAA is positive semi-definite, then aii ≥ 0 for all i
proof
Let y′y′y′ = (0, .., 1, .., 0), then y′Ayy′Ayy′Ay = aii > 0

3.9.2.4 Theorem (4.2.9) Let PPP be a nonsingular matrix, then if AAA is positive (semi)-definite,
so is P ′APP ′APP ′AP

proof

y′P ′APyy′P ′APyy′P ′APy = (Py′)A(Py)(Py′)A(Py)(Py′)A(Py)

and if P is nonsingular PyPyPy = 0 iff yyy = 0.

3.9.2.5 Theorem (4.2.10) If AAA is positive-definite, then A−1A−1A−1 is positive-definite.
proof omitted

3.9.2.6 Theorem (4.2.11) Let AAA be an n× p matrix
i. if rank(AAA)=p, then A′AA′AA′A is positive definite

ii. if rank(AAA)<p, then A′AA′AA′A is positive semi-definite
proof omitted
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3.9.3 Systems of Equations

3.9.3.1 Example (4.2.12) We want to solve the system of linear equations

2y1 + 3y2 − y3 = 1
y1 + 2y2 + 2y3 = 2
3y1 + 3y2 + y3 = 3

this can be done by solving the matrix equation AyAyAy = ccc where

AAA =

2 3 −1
1 2 2
3 3 1

 , ccc =

1
2
3

 , yyy =

y1
y2
y3


and a solution is given by yyy = A−1cA−1cA−1c. So
A=rbind(c(2, 3, 1), c(1, 2, 2), c(3, 3, 1) )
cc=cbind(c(1, 2, 3))
Ainf=solve(A)
Ainf

## [,1] [,2] [,3]
## [1,] -1.00 -1.850372e-16 1.00
## [2,] 1.25 -2.500000e-01 -0.75
## [3,] -0.75 7.500000e-01 0.25
Ainf %*% cc

## [,1]
## [1,] 2.0
## [2,] -1.5
## [3,] 1.5

or directly
solve(A, cc)

## [,1]
## [1,] 2.0
## [2,] -1.5
## [3,] 1.5

3.9.4 Generalized Inverse

3.9.4.1 Definition (4.2.13) A generalized inverse of an n × p matrix AAA is any matrix A−A−A−
such that

AAAA−A−A−AAA = AAA
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Generalized inverses are not unique, except if AAA is nonsingular and then A−A−A− = A−1A−1A−1. Every
matrix has a generalized inverse.

3.9.4.2 Example (4.2.14)

yyy =

1
2
3


then y−y−y− = (1, 0, 0) because

yyyy−y−y−yyy =1
2
3

 (1, 0, 0)

1
2
3

 =

1
2
3

 1 = yyy

3.9.4.3 Theorem (4.2.15) If a system of equations AxAxAx = ccc is consistent (that is has a
solution), then all possible solutions can be found as follows: find A−A−A−, then all solutions are
of the form

A−A−A−ccc+ (III −A−A−A−AAA)hhh

for any arbitrary vector hhh.
proof omitted

3.9.4.4 Example (4.2.16) We want to solve the system

2y1 + 3y2 − y3 = 1
y1 + 2y2 + 2y3 = 2

to find a generalized inverse we find the inverse of the matrix

(
2 3
1 2

)

which is

(
2 −3
−1 2

)

and so a generalized inverse is given by
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A−A−A− =

 2 −3
−1 2
0 0


Let’s check:
A=rbind(c(2, 3, -1), c(1, 2, 2))
A

## [,1] [,2] [,3]
## [1,] 2 3 -1
## [2,] 1 2 2
y= cbind(c(2, -1, 0), c(-3, 2, 0))
y

## [,1] [,2]
## [1,] 2 -3
## [2,] -1 2
## [3,] 0 0
A %*% y %*% A

## [,1] [,2] [,3]
## [1,] 2 3 -1
## [2,] 1 2 2

Now all the solutions are given by

A−A−A−ccc+ (III −A−A−A−AAA)hhh = 2 −3
−1 2
0 0

(1
2

)
+


1 0 0

0 1 0
0 0 1

−
 2 −3
−1 2
0 0

(2 3 −1
1 2 2

)
h1
h2
h3


−4

3
0

+


1 0 0

0 1 0
0 0 1

−
1 0 −8

0 1 5
0 0 0



h1
h2
h3

 =

−4
3
0

+

0 0 8
0 0 −5
0 0 1


h1
h2
h3

 =

−4 + 8h3
3− 5h3
h3


Here is a solution using R
library(MASS)
A

## [,1] [,2] [,3]
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## [1,] 2 3 -1
## [2,] 1 2 2
gA=ginv(A)
gA

## [,1] [,2]
## [1,] 0.1333333 0.02222222
## [2,] 0.1666667 0.11111111
## [3,] -0.2333333 0.37777778
A%*%gA%*%A

## [,1] [,2] [,3]
## [1,] 2 3 -1
## [2,] 1 2 2
y=gA%*%cbind(c(1, 2))
A%*%y

## [,1]
## [1,] 1
## [2,] 2

but of course this yields only one solution.

3.9.5 Determinants

The determinant of an n× n matrix A is a scalar function of A, denoted by either det(A) or
|A|, defined as the sum of all n! possible products of n elements such that
1. each product contains one element from every row and every column of A.

2. the factors in each product are written so that the column subscripts appear in order
of magnitude and each product is then preceded by a plus or minus sign according to
whether the number of inversions in the row subscripts is even or odd. (An inversion
occurs whenever a larger number precedes a smaller one.)

3.9.5.1 Theorem (4.2.17) ∣∣∣∣∣a b
c d

∣∣∣∣∣ = ad− bc

proof omitted

3.9.5.2 Definition (4.2.18) The cofactor AAAij is the matrix AAA with the ith row and jth column
removed.
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3.9.5.3 Theorem (4.2.19)

|AAA| =
n∑
i=1

(−1)n+1aik|AAAik| =
n∑
j=1

(−1)n+1akj|AAAkj|

proof omitted

3.9.5.4 Example (4.2.20)∣∣∣∣∣∣∣
4 3 2
0 2 3
2 1 1

∣∣∣∣∣∣∣ =

(−1)1+14
∣∣∣∣∣2 3
1 1

∣∣∣∣∣+ (−1)2+10
∣∣∣∣∣3 2
1 1

∣∣∣∣∣+ (−1)3+12
∣∣∣∣∣3 2
2 3

∣∣∣∣∣ =

4.2.1) + 2(9− 4) = −4 + 10 = 6

or
A=rbind(c(4, 3, 2), c(0, 2, 3), c(2, 1, 1))
A

## [,1] [,2] [,3]
## [1,] 4 3 2
## [2,] 0 2 3
## [3,] 2 1 1
det(A)

## [1] 6

3.9.5.5 Theorem (4.2.21)

i. |diag(a1, .., an)| = ∏n
i=1 ai

ii. the determinant of a triangular matrix is the product of the diagonal elements.
iii. AAA is a singular matrix iff det(AAA)=0
iv. If AAA is positive definite |AAA| > 0
v. |A′A′A′| = |AAA|
vi. |A−1A−1A−1| = 1/|AAA|

proof
proof of ii: say AAA is upper tringular, then

det(AAA) = (−1)1+1a11det(AAA11) = a11det(AAA11) = .. =
∏
aii

proofs of other parts omitted
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3.9.5.6 Theorem (4.2.22) Say AAA is a square matrix partitioned as

AAA =
(
A11A11A11 A12A12A12
A21A21A21 A22A22A22

)

and AAA11 and AAA2 are square and nonsingular, then

|AAA| = |AAA11||AAA22 −AAA21AAA
−1
11AAA12|

proof omitted

3.9.5.7 Corollary (4.2.23) Say AAA is a square matrix partitioned as

AAA =
(
A11A11A11 A12A12A12
OOO A22A22A22

)
orAAA =

(
A11A11A11 OOO
A21A21A21 A22A22A22

)

and AAA11 and AAA2 are square and nonsingular, then

|AAA| = |AAA11||AAA22|
proof omitted

3.9.5.8 Theorem (4.2.24)
|ABABAB| = |AAA||BBB|

proof omitted

3.9.5.9 Corollary (4.2.25)
|AAAn| = |AAA|n

3.9.6 Orthogonal Vectors and Matrices

3.9.6.1 Definition (4.2.26) Two vectors aaa and bbb are said to be orthogonal if

aaa′bbb =
n∑
i=1

aibi = 0

An orthogonal vector is called orthonormal if it has length 1.
Geometrically two vectors are orthogonal if they are at right angles (perpendicular) to each
other. Let θ be the angle between the two vectors, then
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cos θ = aaa′aaa+ bbb′bbb− (b− ab− ab− a)′(b− ab− ab− a)
2
√

(aaa′aaa)(bbb′bbb)
=

aaa′bbb√
(aaa′aaa)(bbb′bbb)

so if θ = 90o, aaa′bbb = cos 900 = 0.
A set of vectors where all vectors are mutually orthogonal and normalized is called an
orthonormal set. A matrix CCC where all columns form an orthonormal set is called an
orthogonal matrix. We have CCC ′CCC = III.

3.9.6.2 Theorem (4.2.27) Let CCC be an orthogonal matrix, then
i. |CCC| = ±1

ii. |CCC ′AAACCC| = |AAA|

iii. |cij| ≤ 1
proof omitted

3.9.7 Trace

3.9.7.1 Definition (4.2.28) The trace of a matrix AAA is the sum of the diagonal elements of
AAA.

3.9.7.2 Example (4.2.29)

AAA =

 1 5 −3
−3 2 7
2 5 9

 tr(AAA) = 1 + 2 + 9 = 12

3.9.7.3 Theorem (4.2.30)

i. tr(A±BA±BA±B) = tr(AAA)± tr(BBB)
ii. tr(ABABAB) = tr(BABABA)
iii. tr(A′AA′AA′A) = ∑n

i=1 a
′
iai

iv. if PPP is any nonsingular matrix then

tr(P−1APP−1APP−1AP ) = tr(AAA)
v. if CCC is any orthogonal matrix then
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tr(C ′APC
′
APC
′
AP ) = tr(AAA)

proof omitted

3.10 Eigenvalues and Eigenvectors, Matrix Calculus

3.10.1 Eigenvalues

3.10.1.1 Definition (4.3.1) For any square matrix AAA a scalar λ and a vector xxx can be found
such that

AAAxxx = λxxx

λ is called an eigenvalue and xxx its eigenvector.

Note if AAAxxx = λxxx we have AAAxxx − λxxx = 0 or (AAA− λIII)xxx = 0. Therefore AAA − λIII is a singular
matrix and |AAA− λIII| = 0, which is called the characteristic equation.

3.10.1.2 Example (4.3.2)

AAA =
(

1 3
−1 5

)

|AAA− λIII| =
∣∣∣∣∣1− λ 3
−1 5− λ

∣∣∣∣∣ =

(1− λ)(5− λ) + 3 = 0
λ2 − 6λ+ 8 = (λ− 2)(λ− 4) = 0

so we have eigenvalues λ1 = 2 and λ2 = 4. Now

AAA− λ1III = 0(
1− 2 3
−1 5− 2

)(
x1
x2

)
=
(

0
0

)
− x1 + 3x2 = 0

set x1 = 1, then x2 = 1/3. Also√
x2

1 + x2
2 =

√
12 + (1/3)2 =

√
10/3

so the normalized eigenvector is (1, 1/3)/(
√

10/3) = (3, 1)/
√

10.
And
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AAA− λ2III = 0(
1− 4 3
−1 5− 4

)(
x1
x2

)
=
(

0
0

)
− 3x1 + 3x2 = 0

Again setting x1 = 1, then x2 = 1. Also
√
x2

1 + x2
2 =
√

12 + 12 =
√

2, so the normalized
eigenvector is (1, 1)/

√
2.

Let’s check:
A=rbind(c(1, 3), c(-1, 5))
A

## [,1] [,2]
## [1,] 1 3
## [2,] -1 5
x=cbind(c(3, 1)/sqrt(10))
cbind(A%*%x, 2*x)

## [,1] [,2]
## [1,] 1.8973666 1.8973666
## [2,] 0.6324555 0.6324555
x=cbind(c(1, 1)/sqrt(2))
cbind(A%*%x, 4*x)

## [,1] [,2]
## [1,] 2.828427 2.828427
## [2,] 2.828427 2.828427

with R we can find eigenvalues and eigenvectors with
eigen(A)

## eigen() decomposition
## $values
## [1] 4 2
##
## $vectors
## [,1] [,2]
## [1,] -0.7071068 -0.9486833
## [2,] -0.7071068 -0.3162278

3.10.1.3 Theorem (4.3.3) Let AAA be a matrix with eigenvalue and eigenvector λ,xxx. Let c,k
be scalars with c 6= 0, k 6= 0, Then

i. cλ, is an eigenvalue of AAA
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ii. cλ+ k is an eigenvalue cAAA+ kIII

iii. λn is an eigenvalue of AAAn

iv. 1/λ is an eigenvalue of AAA−1 (if AAA−1 exists)
proof

i.
cAxAxAx = cλxxx

ii.
c(AAA+ kIII)xxx = c(AxAxAx+ kIxIxIx) = cλxxx+ kxxx = (cλ+ k)xxx

iii.
AAA2xxx = AAA(AAAxxx) = AAA(λxxx) = λ(AAAxxx) = λ2xxx

The statement with n follows by repeating this calculation n times.
iv.

xxx = AAA−1AAAxxx = AAA−1λxxx

AAA−1xxx = 1
λ
xxx

3.10.1.4 Comment Note that if λ, µ are eigenvalues of AAA and BBB respectively, in general
λ+ µ is NOT an eigenvalue of A+BA+BA+B.

3.10.1.5 Theorem (4.3.4) Let AAA be a matrix with eigenvalue and eigenvector λ,xxx. Let
p(x) = ∑n

i=0 akx
k be a polynomial. Then

p(AAA)xxx = p(λ)xxx

proof
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p(AAA)xxx =
(

n∑
i=0

akAAA
k

)
xxx =

n∑
i=0

(
akAAA

kxxx
)

=

n∑
i=0

ak
(
AAAkxxx

)
=

n∑
i=0

ak
(
λkxxx

)
=(

n∑
i=0

akλ
k

)
xxx =

p(λ)xxx

If the respective series are convergent this can sometimes be extended to infinite series:

3.10.1.6 Example (4.3.5) say λ is an eigenvalue of AAA, then 1− λ is an eigenvalue of III −AAA
by (4.3.3). If III−AAA is nonsingular 1

1−λ is an eigenvalue of (I − AI − AI − A)−1, also by (4.3.3). If |λ| < 1,
then 1

1−λ = ∑∞
i=0 λ

i and so

(I − AI − AI − A)−1 =
∞∑
i=0

AAAi

3.10.1.7 Theorem (4.3.6)

i. The eigenvalues of ABABAB are the same as the eigenvalues of BABABA
ii. If P is any nonsingular matrix, then AAA and P−1APP−1APP−1AP have the same eigenvalues.
iii. If C is any orthogonal matrix, then AAA and C ′ACC ′ACC ′AC have the same eigenvalues.

proof
i. say λ is an eigenvalue of ABABAB, then (ABABAB)xxx = λxxx. But then

BBBAAA(BBBxxx) = BBB(ABABAB)xxx = BBB(λxxx) = λ(BBBxxx)

so λ is an eigenvalue of BABABA with eigenvector BxBxBx.
ii, and iii follow from this.

3.10.2 Symmetric Matrices

3.10.2.1 Theorem (4.3.7) Let AAA be an n× n symmetric matrix. Then
i. the eigenvalues of AAA are real.
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ii. the eigenvectors corresponding to distinct eigenvalues are mutually orthogonal.
proof omitted

3.10.2.2 Theorem (4.3.8) Spectral Decomposition
Let AAA be an n × n symmetric matrix. Let λ1, .., λn and xxx1, ..,xxxn be its eigenvalues and
eigenvectors. Let DDD = diag(λ1, .., λn) and CCC = (xxx1, ..,xxxn). Then

AAA = CCCDDDCCC ′ =
n∑
i=1

λixxxixxx
′
i

and

CCC ′AAACCC = DDD

proof
by its definition CCC is orthogonal. Therefore III = CCCCCC ′ and so AAA = AAACCCCCC ′ and

AAA =
AAA(xxx1, ..,xxxn)CCC ′ =
(AAAxxx1, ..,AAAxxxn)CCC ′ =
(λ1xxx1, .., λnxxxn)CCC ′ =
CCCDDDCCC ′

3.10.2.3 Theorem (4.3.9) Spectral Decomposition II
Let AAA be an n × n nonsingular matrix. Let λ1, .., λn and xxx1, ..,xxxn be its eigenvalues and
eigenvectors. Let DDD = diag(λ1, .., λn) and PPP = (xxx1, ..,xxxn). Then

AAA = PPPDDDPPP−1

The spectral decomposition can be used to define functions of matrices: say AAA = PPPDDDPPP−1,
then

AAA2 = AAAAAA =
PPPDDDPPP−1PPPDDDPPP−1 =
PPPDDDDDDPPP−1 =
PPPDDD2PPP−1

and the square of a diagonal matrix is easy to find. This immediately generalizes to
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AAAn = PPPDDDnPPP−1

Let’s say we have a function and we know its power series expansion f(x) = ∑∞
i=0 aix

i, then

f(AAA) =
∞∑
i=0

aiAAA
i =

∞∑
i=0

aiPPPDDD
iPPP−1 =

PPP

[ ∞∑
i=0

aiDDD
i

]
PPP−1

3.10.2.4 Example (4.3.10)

AAA =
(

1 2
0 2

)

and we want to find BBB = exp(AAA).
Let’s find its eigenvalues and eigenvectors with R:
A=rbind( c(1, 2), c(0, 2) )
EA=eigen(A)
EA

## eigen() decomposition
## $values
## [1] 2 1
##
## $vectors
## [,1] [,2]
## [1,] 0.8944272 1
## [2,] 0.4472136 0

so AAA has eigenvalues 2 and 1 and eigenvectors (0.894, 0.447)′, (1, 0)′. Recall that

exp(x) =
∞∑
i=1

xi

i!

and so

BBB = exp(AAA) = PPP

[ ∞∑
i=0

DDDi/i!
]
PPP−1

now
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∞∑
i=0

DDDi/i! =

∞∑
i=0

1
i!

(
2 0
0 1

)i
=(∑∞

i=0
2i
i! 0

0 ∑∞
i=0

2i
i!

)
=(

e2 0
0 e

)

and so
P=EA$vectors
D1=diag(c(exp(2), exp(1)))
P%*%D1%*%solve(P)

## [,1] [,2]
## [1,] 2.718282 9.341549
## [2,] 0.000000 7.389056

3.10.2.5 Theorem (4.3.11) Let AAA be an n× n matrix with eigenvalues λ1, .., λn. Then
i. |AAA| = ∏n

i=1 λi

ii. tr(AAA) = ∑n
i=1 λi

proof
If AAA is a symmetric matrix we have

|AAA| = |CDC ′CDC ′CDC ′| = |CCC||DDD||CCC ′| = |DDD| =
n∏
i=1

λi

The general case can be found in any linear algebra textbook.

3.10.2.6 Example (4.3.12) Say

AAA =
(

1 3
−1 5

)

we have previously found the eigenvalues to be 2 and 4. Now

det(AAA) = 1 ∗ 5− (3 ∗ (−1) = 8 = 2 ∗ 4

and
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tr(AAA) = 1 + 5 = 6 = 2 + 4

3.10.3 Positive Definite Matrices

3.10.3.1 Theorem (4.3.13) Let AAA be an n× n matrix with eigenvalues λ1, .., λn. Then
i. if AAA is positive definite then λi > 0

ii. if AAA is positive semi-definite then λi ≥ 0. The number of eigenvalues > 0 is the rank of
AAA.

proof
i.

AAAxxx = λixxx

xxx′AAAxxx = xxx′λixxx = λixxx
′xxx

λi = xxx′AAAxxx

xxx′xxx
> 0

proof of ii omitted
Say AAA is positive-definite. Let AAA = CCCDDDCCC ′ be the spectral decomposition of AAA. Define
DDD1/2 = diag(

√
λ1, ..,

√
λ1) (which we can do because all eigenvalues are positive) and define

AAA1/2 = CCCDDD1/2CCC ′. Now

AAA1/2AAA1/2 =
CCCDDD1/2CCC ′CCCDDD1/2CCC ′ =
CCCDDD1/2DDD1/2CCC ′ =
CCCDDDCCC ′ = AAA

and so AAA1/2 is the square root of AAA!

3.10.4 Idempotent Matrices

3.10.4.1 Definition (4.3.14) A square matrix AAA is called idempotent if AAA2 = AAA

3.10.4.2 Theorem (4.3.15) The only nonsingular idempotent matrix is the identity.
proof
Say AAA is idempotent and nonsingular, so AAA2 = AAA and AAA−1 exists. Therefore

AAA = (AAA−1AAA)AAA = AAA−1AAA2 = AAA−1AAA = III
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3.10.4.3 Theorem (4.3.16) IfAAA is symmetric and idempotent thenAAA is positive semidefinite.
proof

AAA = AAA2 = AAAAAA = AAA′AAA

3.10.4.4 Theorem (4.3.17) If AAA is symmetric and idempotent of rank r, then AAA has r
eigenvalues equal to 1 and n-r eigenvalues equal to 0.
proof

AAAxxx = λxxx

AAA2xxx = λ2xxx

AAA2xxx = AAAxxx = λxxx

λxxx = λ2xxx

(λ− λ2)xxx = λ(1− λ)xxx = 000

and so all eigenvalues are either 0 or 1.
AAA is positive semidefinite and therefore the rank of AAA is equal to the number of positive
eigenvalues, that is the number of eigenvalues equal to 1.

3.10.4.5 Corollary (4.3.18) If AAA is symmetric and idempotent of rank r, then tr(AAA) = r.

3.10.4.6 Theorem (4.3.19) If AAA is n × n and idempotent, PPP is nonsingular, and CCC is
orthogonal we have

i. III −AAA is idempotent

ii. AAA(III −AAA) = (III −AAA)AAA = OOO

iii. PPP−1AAAPPP is idempotent

iv. CCC ′AAACCC is idempotent
proof omitted

3.10.5 Vector and Matrix Calculus

There are a number of ways to extend the ideas of calculus to matrices. We will discuss two:
Let u = f(xxx) be a function of variables xxx = (x1, .., xp)′ and let ∂u/∂xi be the partial
derivatives. We define the vector ∂u/∂xxx as
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∂u

∂xxx
=


∂u/∂x1
∂u/∂x2

...
∂u/∂xp



3.10.5.1 Theorem (4.3.20) Let u = aaa′xxx where aaa = (a1, .., ap)′. Then

∂u

∂xxx
= ∂aaa′xxx

∂xxx
= ∂xxx′aaa

∂xxx
= aaa

proof obvious

3.10.5.2 Theorem (4.3.21) Let u = xxx′AAAxxx where AAA is a symmetric matrix. Then

∂u

∂xxx
= ∂xxx′AAAxxx

∂xxx
= 2AAAxxx

proof

(AAAxxx)k =
p∑
i=1

akixi

xxx′AAAxxx =
p∑
j=1

xj

( p∑
i=1

ajixi

)
=

p∑
i;j=1

ajixixj =

p∑
i=1

aiix
2
i +

p∑
i 6=j

ajixixj

∂xxx′AAAxxx

∂xi
= 2aiixi + 2

∑
j 6=i

aijxj = 2
∑
j

aijxj = 2aaa′xxx

3.10.5.3 Example (4.3.22) Say AAA =
(

1 2
2 −1

)
, then
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x′Axx′Axx′Ax =(
x1 x2

)(1 2
2 −1

)(
x1
x2

)
=

(
x1 x2

)(x1 + 2x2
2x1 − x2

)
=

x1(x1 + 2x2) + x2(2x1 − x2) =
x2

1 + 4x1x2 − x2
2

∂x′Axx′Axx′Ax

∂x1
= 2x1 + 4x2

∂x′Axx′Axx′Ax

∂x2
= −2x2 + 4x1

but

2AxAxAx =

2
(

1 2
2 −1

)(
x1
x2

)
=

2
(
x1 + 2x2
2x1 − x2

)
=(

2x1 + 4x2
4x1 − 2x2

)

Next let XXX = (xij) be a p× p matrix of variables and define the function u = f(XXX). Define
the matrix of partial derivatives

∂u

∂XXX
=


∂u/∂x11 ... ∂u/∂x1p
∂u/∂x21 ... ∂u/∂x2p

... ...
∂u/∂xp1 ... ∂u/∂x1p



3.10.5.4 Theorem (4.3.23) Let u = tr(XAXAXA) where XXX is a positive definite matrix and AAA is
a matrix of constants. Then

∂u

∂XXX
= AAA+A′A′A′ − diag(AAA)

proof
Note that we previously found

tr(XAXAXA) =
p∑
i,j

xijaji =
p∑
i

xiiaii + 2
p∑
i<j

xijaji
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because XXX is positive definite and therefore symmetric. So ∂u/∂xii = aii and ∂u/∂xij =
aij + aji if i 6= j.
Also

[
AAA+A′A′A′ − diag(AAA)

]
ii

= aii + aii − aii = aii

and if i 6= j

[
AAA+A′A′A′ − diag(AAA)

]
ij

= aij + aji

3.10.5.5 Example (4.3.24) Let

AAA =
(
a11 a12
a21 a22

)

XXX is supposed to be positive definite, which implies that it is symmetric and so

XXXAAA =
(
x11 x12
x12 x22

)(
a11 a12
a21 a22

)
=
(
x11a11 + x12a21 x11a12 + x12a22
x12a11 + x22a21 x12a12 + x22a22

)
and so

tr(XXXAAA) = x11a11 + (a21 + a12)x12 + x22a22

and so we find

∂u

∂XXX
=
(

a11 a12 + a21
a12 + a21 a22

)

but also

AAA+A′A′A′ − diag(AAA) =
(
a11 a12
a21 a22

)
+
(
a11 a21
a12 a22

)
−
(
a11 0
0 a22

)
=
(

a11 a12 + a21
a12 + a21 a22

)

3.10.5.6 Theorem (4.3.25) Let u = log |XXX| where XXX is a positive-definite matrix. Then

∂u

∂XXX
= 2XXX−1 − diag(XXX−1)

proof omitted
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3.10.5.7 Example (4.3.26)

XXX =
(
x11 x
x x22

)
|XXX| = x11x22−x2 log |XXX| = log(x11x22−x2) ∂u

∂XXX
=
(
x22 −2x
−2x x11

)
/(x11x22−x2)

also

XXX−1 = 1
x11x22 − x2

(
x22 −x
−x x11

)
2XXX−1−diag(XXX−1) = 2 1

x11x22 − x2

(
x22 −x
−x x11

)
− 1
x11x22 − x2

(
x22 0
0 x11

)
=
(
x22 −2x
−2x x11

)
/( 1
x11x22 − x2 )

3.10.5.8 Definition (4.3.27) Let A be an n× n nonsingular matrix with elements (aij) that
are functions of a scalar x. Then we define

∂AAA

∂x
=
(
∂aaaij
∂x

)

3.10.5.9 Theorem (4.3.28) Let AAA be nonsingular of order n with derivative ∂AAA
∂x
. Then

∂AAA−1

∂x
= −AAA−1∂AAA

∂x
AAA−1

proof
Because AAA is nonsingular we have

AAA−1AAA = III

Therefore

∂AAA−1AAA

∂x
= ∂AAA−1

∂x
AAA+AAA−1∂AAA

∂x
= OOO

and so

∂AAA−1

∂x
AAA = −AAA−1∂AAA

∂x

and

∂AAA−1

∂x
= −AAA−1∂AAA

∂x
AAA−1
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3.10.5.10 Example (4.3.29) Consider

AAA =
(
x x2

2x 1

)

Let’s try and check on this with R:
A=function(x) rbind( c(x, x^2), c(2*x, 1) )
A.inf=function(x) solve(A(x))
x=1.5;h=0.001
A.prime = (A(x+h)-A(x))/h
A.inf.prime = (A.inf(x+h)-A.inf(x))/h
round(A.inf.prime, 2)

## [,1] [,2]
## [1,] 0.45 -0.45
## [2,] -0.98 0.49
round(-solve(A(x))%*%A.prime%*%solve(A(x)), 2)

## [,1] [,2]
## [1,] 0.45 -0.45
## [2,] -0.98 0.49
A.inf=function(x) solve(A(x))
x=2;h=0.001
A.prime = (A(x+h)-A(x))/h
A.inf.prime = (A.inf(x+h)-A.inf(x))/h
round(A.inf.prime, 2)

## [,1] [,2]
## [1,] 0.12 -0.18
## [2,] -0.33 0.16
round(-solve(A(x))%*%A.prime%*%solve(A(x)), 2)

## [,1] [,2]
## [1,] 0.12 -0.18
## [2,] -0.33 0.16

3.10.5.11 Theorem (4.3.30) Let AAA be a positive definite matrix. Then

∂ ln |AAA|
∂x

= tr

(
AAA−1∂AAA

∂x

)

proof omitted
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3.10.5.12 Example (4.3.31) Consider

AAA =
(
x x2

x2 3

)

∂ ln |AAA|
∂x

=

∂ ln (3x− x4)
∂x

=

3− 4x3

3x− x4

and

∂A

∂x
=
(

1 2x
2x 0

)

AAA−1 = 1
3x− x4

(
3 −x2

−x2 x

)

AAA−1∂A

∂x
= 1

3x− x4

(
3 −x2

−x2 x

)(
1 2x

2x 0

)
=

1
3x− x4

(
3− 2x2 6x
x2 −2x2

)

tr

(
AAA−1∂A

∂x

)
=

1
3x− x4

(
3− 2x2 − 2x2

)
= 3− 4x3

3x− x4

3.10.6 Optimization - Lagrange Multipliers

If we have a function u = f(xxx) and we want to find a maxima or minima we may be able to
do so by finding solving the equation ∂u

∂x
= 0. Often however we need to find a maxima or

minima under additional constraints. Let’s denote these by hi(xxx) = 0, i=1,..,q. Using the
method of Lagrange multipliers means finding an extremum of the function

v = u+
h∑
i=1

λihi(xxx)

which means solving the system of equations

∂u

∂x
+

q∑
i=1

λi
∂hi
∂x

= 0

hi(xxx) = 0; i = 1, .., q
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The λ′is are called the Lagrange multipliers

3.10.6.1 Example (4.3.32) Let f(x, y) = 2x2 + 3xy + y2. Find the minimum of f subject to
the constraint x+ 2y = 1
Here h(x, y) = x+ 2y − 1, so

∂f

∂x
+ λ

∂h

∂x
= 4x+ 3y + λ = 0 (I)

∂f

∂y
+ λ

∂h

∂x
= 3x+ 2y + 2λ = 0 (II)

x+ 2y − 1 = 0 (III)
I − II : x+ y − λ = 0;λ = x+ y (V I)
V I → I 5x+ 4y = 0 (V )
V − 2II → 3x = −2;x = −2/3
y = (1− x)/1 = (1− (−2/3))/2 = 5/6

4 Random Vectors and Distributions

4.1 Distributions of Random Vectors and Random Matrices

4.1.1 Covariance and Correlation

4.1.1.1 Definition (5.1.1) Say we have a random vector XXX = (X1, .., Xp)′. Let σij =
cov(Xi, Xj), then

ΣΣΣ =


σ11 σ12 ... σ1p
σ22 σ22 ... σ2p
... ... ...
σp1 σp2 ... σpp


is called the variance-covariance matrix or also covariance matrix. By definition the covariance
matrix is symmetric. If the Xi’s are continuous random variables and are linearly independent
(that is there do not exist scalars s and r such that P (sXi + tXj = 1) = 1 ) then ΣΣΣ is positive
definite, otherwise it is positive semi-definite.
Note that

var(Xi) = σii =: σ2
i

4.1.1.2 Definition (5.1.2) Let ZZZ be a matrix of random variables, that is
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ZZZ =


Z11 Z12 ... Z1p
Z22 Z22 ... Z2p
... ... ...
Zp1 Zp2 ... Zpp


then its mean is defined by

E[ZZZ] =


E[Z11] E[Z12] ... E[Z1p]
E[Z22] E[Z22] ... E[Z2p]

... ... ...
E[Zp1] E[Zp2] ... E[Zpp]



4.1.1.3 Theorem (5.1.3) Let XXX = (X1, .., Xp)′ and let µµµ = (E[X1], .., E[Xp])′, then

ΣΣΣ = E[(XXX − µµµ)(XXX − µµµ)′] = E[XXXXXX ′]− µµµµµµ′

proof straight-forward

4.1.1.4 Definition (5.1.4)

i. |ΣΣΣ| is called the generalized variance.
ii. (XXX − µµµ)′ΣΣΣ−1(XXX − µµµ) is called the standardized distance or Mahalanobis distance

Note that if ZZZ = (XXX − µµµ)′ΣΣΣ−1(XXX − µµµ), then E[Zi] = 0 and cov(Zi, Zj) = δij.

4.1.1.5 Definition (5.1.5) The correlation matrix is defined by

PPP ρ =


1 ρ12 ... ρ1p
ρ22 1 ... ρ2p
... ... ...
ρp1 ρp2 ... 1


where ρij = σij/σiiσjj.
If we define

DDDσ = [diag(ΣΣΣ)]1/2 = diag(σ1, .., σp)

then

ΣΣΣ = DDDσPPP ρDDDσ

Suppose a random vector VVV is partioned as follows:
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VVV =
(
XXX
YYY

)
=



X1
...
Xp

Y1
...
Yq


then

µµµ = E[VVV ] =
(
µµµx
µµµy

)

and

ΣΣΣ = cov[VVV ] =
(

ΣΣΣxx ΣΣΣxy

ΣΣΣyx ΣΣΣyy

)

where

ΣΣΣyx = ΣΣΣ′xy

4.1.2 Linear Functions of Random Vectors

Let XXX = (X1, .., Xp)′ be a random vector and aaa = (a1, .., ap)′ a vector of scalars. Let ZZZ = aaa′XXX.

4.1.2.1 Theorem (5.1.6) µµµz = E[ZZZ] = E[aaa′XXX] = aaa′µµµ

proof follows from the linearity of expectations.

4.1.2.2 Theorem (5.1.7) Suppose YYY is a random vector,XXX a random matrix, aaa and bbb vectors
of constants and AAA and BBB matrices of constants. Then

i. E[AAAYYY ] = AAAE[YYY ]

ii. E[aaa′XXXbbb] = aaa′E[XXX]bbb

iii. E[AAAXXXBBB] = AAAE[XXX]BBB

iv. E[AAAYYY + bbb] = AAAE[YYY ] + bbb

proof follows from linearity of expectations
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4.1.2.3 Theorem (5.1.8)
var(aaa′YYY ) = aaa′ΣΣΣaaa

proof

var(aaa′YYY ) =
E
[
(aaa′YYY − aaa′µµµ)2

]
=

E
[
(aaa′(YYY − µµµ))2

]
=

E [aaa′(YYY − µµµ)aaa′(YYY − µµµ)] =
E [aaa′(YYY − µµµ)(YYY − µµµ)′aaa] =
aaa′ΣΣΣaaa

4.1.2.4 Corollary (5.1.9)
cov(aaa′YYY ,bbb′YYY ) = aaa′ΣΣΣbbb

4.1.2.5 Theorem (5.1.10)

i.
cov(AAAYYY ) = AAAΣΣΣAAA′

ii.
cov(AAAYYY ,BBBYYY ) = AAAΣΣΣBBB′

iii.
cov(AAAYYY + bbb) = AAAΣΣΣAAA′

iv.
cov(AAAYYY ,BBBXXX) = AAAΣΣΣyxBBB

′

proof omitted

4.1.2.6 Theorem (5.1.11) Let z = Ayz = Ayz = Ay and w = Byw = Byw = By, where AAA is a k × p matrix of constants
and BBB is a m× p matrix of constants and yyy is a p× 1 random vector with covariance matrix
ΣΣΣ. Then

i.

cov(AyAyAy) = AΣA′AΣA′AΣA′

ii.
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cov(z, wz, wz, w) = AΣB′AΣB′AΣB′

proof follows from the corollary above

4.2 Multivariate Normal Density

4.2.1 Normal (Gaussian) Distribution

Let ZZZ = (Z1, .., Zp) be independent standard normal random variables, that is

fZi(x) = 1√
2π

exp{−x2/2}

Then we have

fZZZ(z1, .., zp) =
p∏
i=1

fZi(zi) =

p∏
i=1

1√
2π

exp{−z2
i /2} =

1
(
√

2π)p
exp{−

p∑
i=1

z2
i /2} =

1
(
√

2π)p
exp{−zzz′zzz/2}

A random vector with this density is said to have a multivariate normal distribution with
mean vector 000 and covariance matrix III.
Notation: ZZZ ∼ Np(000, III)

4.2.1.1 Theorem (5.2.1) Let ΣΣΣ1/2 be a symmetric square root matrix as defined before, and
let XXX = ΣΣΣ1/2ZZZ + µµµ, then

i. E[XXX] = µµµ

ii. cov(XXX) = ΣΣΣ
proof

i.

E[XXX] = E[ΣΣΣ1/2ZZZ + µµµ] = ΣΣΣ1/2E[ZZZ] + µµµ = ΣΣΣ1/2000 + µµµ = µµµ

ii.

cov(XXX) = cov(ΣΣΣ1/2ZZZ + µµµ) = ΣΣΣ1/2cov(ZZZ)(Σ1/2)′ = ΣΣΣ1/2III(Σ1/2)′ = ΣΣΣ
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4.2.1.2 Theorem (5.2.2) The density of XXX is given by

fXXX(xxx) = 1
(
√

2π)p|ΣΣΣ|1/2
exp{−(yyy − µµµ)′|ΣΣΣ|−1(yyy − µµµ)/2}

proof
By the change of variable formula from calculus we have the following: say yyy = ΣΣΣ1/2zzz + µµµ

fXXX(xxx) = fZZZ(zzz)abs(|ΣΣΣ−1/2|)

|ΣΣΣ−1/2| is called the Jacobian of the transformation.
Now ΣΣΣ−1/2 is positive definite, so the Jacobian is also positive and we have

fXXX(xxx) = fZZZ(zzz)|ΣΣΣ−1/2| = fZZZ(zzz)|ΣΣΣ|−1/2

xxx = ΣΣΣ1/2zzz + µµµ implies zzz = ΣΣΣ−1/2(xxx− µµµ)
Finally

fXXX(xxx) = fZZZ(zzz)|ΣΣΣ|−1/2 =
1

(
√

2π)p
exp{−zzz′zzz/2}|ΣΣΣ|−1/2 =

1
(
√

2π)p|ΣΣΣ|1/2
exp{−zzz′zzz/2} =

1
(
√

2π)p|ΣΣΣ|1/2
exp{−

(
ΣΣΣ−1/2(xxx− µµµ)

)′ (
ΣΣΣ−1/2(xxx− µµµ)

)
/2} =

1
(
√

2π)p|ΣΣΣ|1/2
exp{− (xxx− µµµ)′ΣΣΣ−1/2ΣΣΣ−1/2 (xxx− µµµ) /2} =

1
(
√

2π)p|ΣΣΣ|1/2
exp{− (xxx− µµµ)′ΣΣΣ−1 (xxx− µµµ) /2}

Notation: XXX ∼ Np(µµµ,ΣΣΣ)

4.2.1.3 Corollary (5.2.3) Let XXX ∼ N(µµµ,ΣΣΣ) and let ZZZ = ΣΣΣ−1/2(XXX − µµµ), then ZZZ ∼ N(000, III)

4.2.1.4 Example (5.2.4) Let p=1, then
Σ = [a], x′Σx = ax2 ≥ 0 iff a ≥ 0
|Σ| = a,Σ−1 = 1/a, and
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fX(x) = 1
(
√

2π)p|ΣΣΣ|1/2
exp{− (xxx− µµµ)′ΣΣΣ−1 (xxx− µµµ) /2}

1√
2πa1/2

exp{− (x− µ) 1
a

(x− µ) /2} =

1√
2πa

exp{−(x− µ)2

2a }

4.2.2 Moment Generating Functions

4.2.2.1 Definition (5.2.5) The moment generating function of a random vector XXX is defined
by

ψ(ttt) = E [exp{ttt′XXX}]

4.2.2.2 Example (5.2.6) Let Z ∼ N(0, 1), then

ψ(t) = E [exp tZ] =∫ ∞
−∞

etz
1√
2π

exp{−z
2

2 }dz =∫ ∞
−∞

1√
2π

exp{tz − z2

2 }dz =∫ ∞
−∞

1√
2π

exp{−1
2(z2 − 2tz + t2) + t2/2}dz =

exp{t2/2}
∫ ∞
−∞

1√
2π

exp{−1
2(z − t)2}dz =

exp{t2/2}

because the integral is over a N(0,t) random variable and therefore equal to 1.
Let X ∼ N(µ, σ), then

ψX(t) = E [exp tX] =
E [exp t(σZ + µ)] =
eµtE [exp (σt)Z] =
eµtψZ(σt) =
eµt exp{(σt)2/2} =
exp{σ2t2/2 + µt}

4.2.2.3 Theorem (5.2.7) Say XXX ∼ N(µµµ,ΣΣΣ), then
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ψ(ttt) = exp{ttt′µµµ+ 1
2t
tt′ΣΣΣttt}

proof
Let ZZZ ∼ N(000, III), then

ψZZZ(ttt) =
∫
..
∫
ettt
′xxx(2π)−p/2 exp {−xxx′xxx/2} dxxx =∫

..
∫

(2π)−p/2 exp {ttt′xxx− xxx′xxx/2} dxxx =∫
..
∫

(2π)−p/2 exp
{
−1

2 [xxx′xxx− 2ttt′xxx]
}
dxxx =∫

..
∫

(2π)−p/2 exp
{
−1

2 [xxx′xxx− 2ttt′xxx+ ttt′ttt− ttt′ttt]
}
dxxx =∫

..
∫

(2π)−p/2 exp
{
−1

2(x− tx− tx− t)′(x− tx− tx− t) + ttt′ttt/2
}
dxxx =

ettt
′ttt/2

∫
..
∫

(2π)−p/2 exp
{
−1

2(x− tx− tx− t)′(x− tx− tx− t)
}
dxxx =

ettt
′ttt/2

and the general case follows from the transformation xxx = ΣΣΣ1/2zzz + µµµ.

Recall two properties of moment generating functions:
i. if two random vectors have the same mgf they have the same distribution.

ii. If X and Y are independent then ψ(X,Y )′((x, y)′) = ψX(x)ψY (y)

4.2.2.4 Theorem (5.2.8) SayXXX ∼ N(µµµ,ΣΣΣ), aaa and bbb are vectors of constants and AAA a matrix
of constants. Then

i. Y = aaa′XXX ∼ N(aaa′µµµ,aaa′ΣΣΣaaa)

ii. YYY = AAAXXX ∼ N(AAAµµµ,AAAΣΣΣAAA′)

iii. TTT = AAAXXX + bbb ∼ N(AAAµµµ+ bbb,AAAΣΣΣAAA′)
proof

i.

ψY (t) = E[etaaa′ZZZ ] = E[e(taaa)′ZZZ ] =
ψZZZ(taaa) = e(taaa)′(taaa)/2 =
e(aaa′aaa)t2/2
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ψY (t) = E[etaaa′XXX ] =
E[e(taaa)′XXX ] = ψXXX(taaa) =
exp{(taaa)′µµµ− (taaa)′Σ(taaa)/2} =
exp{(aaa′µµµ)t− (aaa′Σaaa)t2/2}

and this is the mgf of a normal random variable with mean aaa′µµµ and variance aaa′Σaaa.
ii and iii are done similarly.

Note that one can use this theorem to derive the mgf of a multivariate normal random vector
from the mgf of a normal rv: by the theorem Y = t′Xt′Xt′X has a normal distribution with mean
t′µt′µt′µ and covariance matrix t′Σtt′Σtt′Σt, so

ψXXX(ttt) = E[exp
{
t′Xt′Xt′X

}
] =

E[exp {Y }] = ψY (1) =

exp
{

(t′µt′µt′µ)1 + 1
2(t′Σtt′Σtt′Σt)1

}
=

exp
{
t′µt′µt′µ+ 1

2t
′Σtt′Σtt′Σt

}

4.2.2.5 Theorem (5.2.9)

i. The marginal distributions of a multivariate normal distribution are also multivariate
normal.

ii. Xi ∼ N(µi, σii)
proof

i. Say we want to find the marginal YYY . Then there exists a matrix AAA (of 0’s and 1’s) such
that AXAXAX = YYY and the result follows from (4.3.9ii).

ii. direct consequence of i.

4.2.2.6 Theorem (5.2.10) if VVV =
(
XXX
YYY

)
is N(µµµ,ΣΣΣ), then XXX and YYY are independent if and

only if ΣΣΣxy = OOO

proof
Suppose ΣΣΣxy = OOO. Then

ΣΣΣ =
(

Σxx OOO
OOO Σyy

)

and so
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ttt′µµµ+ 1
2t
tt′ΣΣΣttt =

(ttt′x, ttt′y)
(
µµµx
µµµy

)
+ 1

2(ttt′x, ttt′y)
(

Σxx OOO
OOO Σyy

)(
tttx
ttty

)
=

ttt′xµµµx + ttt′yµµµy + 1
2t
tt′xΣΣΣxxtttx + 1

2t
tt′yΣΣΣyyttty

ψVVV (ttt) = exp{ttt′xµµµx + 1
2t
tt′xΣΣΣxxtttx} exp{ttt′yµµµy + 1

2t
tt′yΣΣΣyyttty}

which is the product of two mgf’s of multitvariate normals and therefore XXX and YYY are
independent.

4.2.2.7 Corollary (5.2.11) If XXX ∼ N(µµµ,ΣΣΣ), then Xi ⊥ Xj iff σij = 0

4.2.2.8 Corollary (5.2.12) If XXX ∼ N(µµµ,ΣΣΣ) and if cov(AAAXXX,BBBXXX) = AAAΣΣΣBBB′ = OOO then AAAXXX ⊥
BBBXXX.

4.2.3 Conditional Distributions

4.2.3.1 Theorem (5.2.13) if VVV =
(
XXX
YYY

)
is N(µµµ,ΣΣΣ) and ΣΣΣxy 6= OOO, then the conditional

distribution of YYY |XXX = xxx is multivariate normal with

E[YYY |XXX = xxx] = µµµy + ΣΣΣyxΣΣΣ−1
xx (xxx− µµµx)

cov(YYY |XXX = xxx) = ΣΣΣyy −ΣΣΣyxΣΣΣ−1
xxΣΣΣxy

proof
We have

fYYY |XXX=xxx(yyy|xxx) = f(xxx,yyy)
fXXX(xxx)

and this ratio can be evaluated directly from the definitions.

4.2.3.2 Example (5.2.14) Say
(
X
Y

)
is bivariate normal with mean vector (0, 0)′ and covari-

ance matrix Σ =
(

1 ρ
ρ 1

)
. So
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det(Σ) = 1− ρ2

Σ−1 = 1
1− ρ2

(
1 −ρ
−ρ 1

)

(x y)′ 1
1− ρ2

(
1 −ρ
−ρ 1

)(
x
y

)
=

1
1− ρ2 (x y)′

(
x− ρy)
−ρx+ y)

)
=

1
1− ρ2

(
x2 − 2ρxy + y2

)
the marginal is given by

fX(x) = (2π)−1/2 exp{−1
2x

2}

fY |X=x(y|x) = f(x, y)
fX(x) =

(2π
√

1− ρ2)−1 exp{− 1
2(1−ρ2) (x2 − 2ρxy + y2)}

(2π)−1/2 exp{−1
2x

2}
=

(2π(1− ρ2))−1/2 exp
{
−1

2

[
1

1− ρ2 (x2 − 2ρxy + y2)− x2
]}

=

1√
2π(1− ρ2)

exp
{
− 1

2(1− ρ2)
[
x2 − 2ρxy + y2 − (1− ρ2)x2

]}
=

1√
2π(1− ρ2)

exp
{
− 1

2(1− ρ2)
[
y2 − 2ρxy + ρ2x2

]}
=

1√
2π(1− ρ2)

exp
{
− 1

2(1− ρ2)(y − ρx)2
}

and so Y |X = x ∼ N(ρx, 1− ρ2).

4.2.3.3 Example (5.2.15) Say(
X
Y

)
∼ N

((
1
2

)
,

(
1 0.4

0.4 1

))

We want to find E[X|Y = 2.3]
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E[XXX|YYY = y] = µx + ΣΣΣxyΣΣΣ−1
yy (y − µy)

µy = 2
ΣΣΣxy = 0.4
ΣΣΣyy = 1
ΣΣΣ−1
yy = 1

E[X|Y = 2.3] =
1 + 0.4× 1(2.3− 2) = 1.12

Let’s see whether we can verify that with R
library(mvtnorm)
mu=c(1, 2)
vc=rbind(c(1, 0.4), c(0.4, 1))
xy=rmvnorm(1e5, mu, vc)
x=xy[ abs(xy[,2]-2.3)<0.1, 1]
length(x)

## [1] 7710
mean(x)

## [1] 1.137246

4.2.3.4 Example (5.2.16) SayXY
Z

 ∼ N


1

2
3

 ,
 1 0.4 0.6

0.4 1 −0.2
0.6 −0.2 1




Find E[X|Y = 2.3, Z = 2.8]
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E[X|Y = y, Z = z] = µx + ΣΣΣx(yz)ΣΣΣ−1
(yz)(yz)

(
y − µy
z − µz

)
(µy µz)′ = (2 3)′

ΣΣΣx(yz) = (0.4 0.6)

ΣΣΣ(yz)(yz) =
(

1 −0.2
−0.2 1

)

ΣΣΣ−1
(yz)(yz) = 1

0.96

(
1 0.2

0.2 1

)
E[X|Y = 2.3, Z = 2.8] =

1 + (0.4 0.6) 1
0.96

(
1 0.2

0.2 1

)(
2.3− 2
2.8− 3

)
=

1 + 1
0.96(0.4 0.6)

(
0.23
−0.14

)
=

1 + 0.02/0.96 = 1.021

Let’s see whether we can verify that with R
library(mvtnorm)
mu=c(1, 2, 3)
vc=rbind(c(1, 0.4, 0.6), c(0.4, 1, -0.2), c(0.6, -0.2, 1) )
xyz=rmvnorm(1e5, mu, vc)
round(cor(xyz), 3)

## [,1] [,2] [,3]
## [1,] 1.000 0.403 0.600
## [2,] 0.403 1.000 -0.197
## [3,] 0.600 -0.197 1.000
xy=xyz[ abs(xyz[,3]-2.8)<0.075, 1:2]
x=xy[ abs(xy[,2]-2.3)<0.075, 1]
length(x)

## [1] 351
mean(x)

## [1] 1.030432

4.2.4 Partial Correlation

Let VVV ∼ Np+q(µµµ,ΣΣΣ) and let VVV be partitioned as follows:

VVV =
(
XXX
YYY

)
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µµµ =
(
µµµx
µµµy

)

ΣΣΣ =
(

ΣΣΣxx ΣΣΣxy

ΣΣΣyx ΣΣΣyy

)
Denote the covariance of the conditional distribution of YYY given XXX by

σij·rs..q

where Xi, Xj are two of the variables in XXX and Yr, Ys, .., Yq are variables in YYY . For example
σ23·124 is the covariance between X2 and X3 in the conditional distribution of V1, .., V4 given
V5, .., V9 (say).
The partial correlation coefficient ρij·rs..q is defined in the usual way:

ρij·rs..q = σij·rs..q√
σii·rs..qσjj·rs..q

4.2.4.1 Example (5.2.17) Say VVV is a multivariate normal random variable with covariance
matrix

ΣΣΣ =


10 0 1 −2
0 5 3 −2
1 3 4 1
−2 −2 1 6



and we use the partition
(
XXX
YYY

)
with

ΣΣΣ =


10 0 | 1 −2
0 5 | 3 −2
− − | − −
1 3 | 4 1
−2 −2 | 1 6


cov(XXX|YYY ) = ΣΣΣxx −ΣΣΣxyΣΣΣ−1

xxΣΣΣyx

ΣΣΣ−1
xx =

(
10 0
0 5

)−1

= 1
50

(
5 0
0 10

)
=
(

0.1 0
0 0.2

)

ΣΣΣ−1
xxΣΣΣyx =

(
0.1 0
0 0.2

)(
1 −2
3 −2

)
=
(

0.1 −0.2
0.6 −0.4

)

ΣΣΣxyΣΣΣ−1
xxΣΣΣyx =

(
1 3
−2 −2

)(
0.1 −0.2
0.6 −0.4

)
=
(

1.9 −1.4
−1.4 1.2

)

cov(XXX|YYY ) =
(

10 0
0 5

)
−
(

1.9 −1.4
−1.4 1.2

)
=
(

8.1 1.4
1.4 3.8

)
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We can also use R:
A=matrix(c(10,0,1,-2,0,5,3,-2,1,3,4,1,-2,-2,1,6), 4, 4)
solve(A[1:2, 1:2])

## [,1] [,2]
## [1,] 0.1 0.0
## [2,] 0.0 0.2
solve(A[1:2, 1:2])%*%A[1:2, 3:4]

## [,1] [,2]
## [1,] 0.1 -0.2
## [2,] 0.6 -0.4
A[3:4, 1:2]%*%solve(A[1:2, 1:2])%*%A[1:2, 3:4]

## [,1] [,2]
## [1,] 1.9 -1.4
## [2,] -1.4 1.2
A[1:2,1:2]-A[3:4, 1:2]%*%solve(A[1:2, 1:2])%*%A[1:2, 3:4]

## [,1] [,2]
## [1,] 8.1 1.4
## [2,] 1.4 3.8

So now (in terms of VVV = (v1, .., v4)′

ρ12·34 = σ12·34√
σ11·34σ22·34

= 1.4√
8.1× 3.8

= 0.25

4.3 Sums of Squares, Mean and Variance of Quadratic Forms

4.3.1 Sums of Squares

4.3.1.1 Example (5.3.1) Let xxx = (x1, .., xn) be a random sample from some population with
mean µ and standard deviation σ. Then the total sum of squares is given by

n∑
i=1

x2
i . Let

x̄ = 1
n

∑n
i=1 xi be the sample mean, then
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n∑
i=1

(xi − x̄)2 =

n∑
i=1

(
x2
i − 2xix̄+ x̄2

)
=

n∑
i=1

x2
i −

n∑
i=1

2xix̄+
n∑
i=1

x̄2 =

n∑
i=1

x2
i − 2x̄

n∑
i=1

xi + nx̄2 =

n∑
i=1

x2
i − 2x̄nx̄+ nx̄2 =

n∑
i=1

x2
i − nx̄2

and so we find that the total sum of squares can be partitioned into a sum of squares about
the mean and the sum of squares due to the mean:

n∑
i=1

x2
i =

n∑
i=1

(xi − x̄)2 + nx̄2

This can also be written as a quadratic form:

n∑
i=1

x2
i = xxx′xxx = xxx′IIIxxx

Recall that jjj = (1, .., 1)′ and

JJJ =


1 ... 1
... ...
1 ... 1


then

x̄ = 1
n
jjj′xxx

and
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nx̄2 = n( 1
n
jjj′xxx)2 =

1
n
xxx′jjjjjj′xxx =

1
n
xxx′JJJxxx =

xxx′( 1
n
JJJ)xxx

and so

n∑
i=1

x2
i = xxx′(III − 1

n
JJJ)xxx+ xxx′( 1

n
JJJ)xxx

4.3.1.2 Theorem (5.3.2)

i. III =
(
III − 1

n
JJJ
)

+ 1
n
JJJ

ii. III, III − 1
n
JJJ, 1

n
JJJ are idempotent

iii. (III − 1
n
JJJ)( 1

n
JJJ) = OOO

proof follows from direct calculation

4.3.2 Mean and Variance of Quadratic Forms

4.3.2.1 Theorem (5.3.3) If XXX is a random vector with mean µµµ and covariance matrix ΣΣΣ
and if AAA is a symmetric matrix of constants, then

E[XXX ′AAAXXX] = tr(AAAΣΣΣ) + µµµ′AAAµµµ

proof
Note that XXX ′AAAXXX is a scalar, so always XXX ′AAAXXX = tr(XXX ′AAAXXX)
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ΣΣΣ = E[XXX ′XXX]− µµµµµµ′

E[XXX ′XXX] = ΣΣΣ + µµµµµµ′

E[XXX ′AAAXXX] =
E[tr(XXX ′AAAXXX)] = (by 4.2.11)
E[tr(AAAXXXXXX ′)] =
tr(E[AAAXXXXXX ′] =
tr(AAAE[XXXXXX ′] =
tr(AAA[ΣΣΣ + µµµ′µµµ]) =
tr(AAAΣΣΣ +AAAµµµ′µµµ) =
tr(AAAΣΣΣ) + tr(AAAµµµµµµ′) =
tr(AAAΣΣΣ) + tr(µµµ′AAAµµµ) =
tr(AAAΣΣΣ) + µµµ′AAAµµµ

4.3.2.2 Example (5.3.4) Let X ∼ N(µ, σ2);AAA = (a), a > 0, then ΣΣΣ = (σ2)

E[x′Ax] = E[aX2] = aE[X2] =
a(var(X) + E[X]2) = a(σ2 + µ2) =
aσ2 + aµ2 =
tr(AAAΣΣΣ) + µµµ′AAAµµµ

4.3.2.3 Example (5.3.5) Say XXX =
(
X
Y

)
∼ N(

(
1
2

)
,

(
3 1
1 2

)
) and we want to find E[X2 +

2XY + 2Y 2].
Direct solution:

E[X2 + 2XY + 2Y 2] =
E[X2] + 2E[XY ] + 2E[Y 2] =
var(X) + E[X]2 + 2(cov(X, Y ) + E[X]E[Y ]) + 2(var(Y ) + E[Y ]2) =
3 + 12 + 2(1 + 1 ∗ 2) + 2(2 + 22) = 4 + 6 + 12 = 22

or using the formula above: say AAA =
(

1 1
1 2

)
, then
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XXX ′AAAXXX =
(
X Y

)(1 1
1 2

)(
X
Y

)
=

(
X Y

)( X + Y
X + 2Y

)
=

X(X + Y ) + Y (X + 2Y ) = X2 + 2XY + 2Y 2

AAAΣΣΣ =
(

1 1
1 2

)(
3 1
1 2

)
=
(

4 3
5 5

)
tr(AAAΣΣΣ) = 4 + 5 = 9

µµµ′AAAµµµ =
(
1 2

)(1 1
1 2

)(
1
2

)
=
(
1 2

)(3
5

)
= 13

E[XXX ′AAAXXX] = tr(AAAΣΣΣ) + µµµ′AAAµµµ = 9 + 13 = 22

4.3.2.4 Definition (5.3.6) Let xxx = (x1, .., xn) be a sample from a random vector XXX . The
sample variance is defined by

s2 = 1
n− 1

n∑
i=1

(xi − x̄)2

By (5.3.1) we have

(n− 1)s2 = xxx′(III − 1
n
JJJ)xxx

Say E[X1] = µ and var(X1) = σ2. In a random sample the Xi’s are independent and
identically distributed, so E[XXX] = µjjj and cov(XXX) = σ2III. Set

AAA = III − 1
n
JJJ,ΣΣΣ = σ2III

and µµµ = µjjj, therefore

E[
n∑
i=1

(Xi − X̄)2] =

E[(n− 1)s2] =

E[XXX ′(III − 1
n
JJJ)XXX] = (by 5.3.2)

tr
[
(III − 1

n
JJJ)σ2III

]
+ µjjj′(III − 1

n
JJJ)µjjj =

σ2tr
[
III − 1

n
JJJ
]

+ µ2
(
jjj′jjj − jjj′jjj 1

n
jjj′jjj
)

=

σ2(n− n

n
) + µ2(n− 1

n
n2) =

σ2(n− 1)
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and so

E[s2] = 1
n− 1E[

n∑
i=1

(xi − x̄)2] = σ2

and we see that s2 is an unbiased estimator of σ2.

4.3.2.5 Theorem (5.3.7) LetXXX ∼ Np(µµµ,ΣΣΣ), then the moment generating function ofXXX ′AAAXXX
is given by

ψ(t) = |III − 2tAAAΣΣΣ|−1/2 exp
{
−µµµ′

[
III − (III − 2tAAAΣΣΣ)−1

]
ΣΣΣ−1

]
µµµ/2}

proof

ψ(t) = c1

∫
..
∫

exp{txxx′AAAxxx} exp{−(xxx− µµµ)′ΣΣΣ−1(xxx− µµµ)/2}dxxx =

ψ(ttt) = c1

∫
..
∫

exp{−[(xxx− µµµ)′ΣΣΣ−1(xxx− µµµ)− txxx′AAAxxx]/2dxxx =

c1

∫
..
∫

exp{−[xxx′(III − 2tAAAΣΣΣ)ΣΣΣ−1xxx− 2µµµ′ΣΣΣ−1xxx+ µµµ′ΣΣΣ−1µµµ]/2}dxxx

where

c1 = 1/
[
(2π)p/2|ΣΣΣ|−1/2

]
Now if t is close to 0 III − 2tAAAΣΣΣ is nonsingular. Let θθθ′ = µµµ′(III − 2tAAAΣΣΣ)−1 and VVV −1 =
(III − 2tAAAΣΣΣ)ΣΣΣ−1, then we have

ψ(t) = c1c2

∫
..
∫
c3 exp{−(xxx− θθθ)′VVV −1(xxx− θθθ)/2}dxxx

where

c2 = 1/
[
(2π)p/2|VVV |−1/2

]
exp{−(µµµΣΣΣ−1µµµ− θθθ′VVV −1θθθ)/2}

and

c3 = 1/
[
(2π)p/2|VVV |−1/2

]
The integral is one because it is integrating out a multivariate normal, and therefore

ψ(ttt) = c1c2 = 1/
[
(2π)p/2|ΣΣΣ|−1/2

]
1/
[
(2π)p/2|VVV |−1/2

]
exp{−(µµµΣΣΣ−1µµµ− θθθ′VVV −1θθθ)/2

and replacing the terms yields the result.
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4.3.2.6 Theorem (5.3.8) Say XXX ∼ Np(µµµ,ΣΣΣ), then

var(XXX ′AAAXXX) = 2tr[(AAAΣΣΣ)2] + 4µµµ′AAAΣΣΣAAAµµµ

proof
From probability theory we know that for any rv Y with mgf ψ we have

E[Y k] = dkψ(t)
dtk

|t=0

Therefore we have

d logψ(t)
dt

= ψ′(t)
ψ(t)

d2 logψ(t)
dt2

= ψ′′(t)ψY (t)− (ψ′(t))2

(ψ(t))2

d2 logψ(t)
dt2

|t=0 = E[Y 2]E[Y 0]− (E[Y ])2

(E[Y 0])2 =

E[Y 2]− (E[Y ])2 = var(Y )

By (5.3.7) we have

m(t) = logψXXX′AAAXXX(t) = −1
2 log |CCC| − 1

2µ
µµ′(III −CCC−1)ΣΣΣ−1µµµ

where CCC = III − 2tAAAΣΣΣ.
For the first term we find

d2 log |C|
dt2

=

d

dt

d|C|/dt
|C|

=

d2|C|/dt2|C| − (d|C|/dt)2

|C|2
=

1
|CCC|

[
d2|CCC|
dt2

]
− 1
|CCC|2

[
d|CCC|
dt

]2

For the second term we have
Now ∂CCC

∂t
= −2AAAΣΣΣ. By (4.3.28) we have

∂AAA−1

∂x
= −AAA−1∂AAA

∂x
AAA−1

and so
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∂CCC−1

∂t
= −CCC−1∂CCC

∂t
CCC−1 = 2CCC−1AΣAΣAΣCCC−1

For the second derivative we find

∂2CCC−1

∂t2
=

d

dt

{
2CCC−1AΣAΣAΣCCC−1

}
=

2 d
dt

{
CCC−1

}
AΣAΣAΣCCC−1 + 2CCC−1AΣAΣAΣ

{
CCC−1

}
=

4CCC−1AΣAΣAΣCCC−1AΣAΣAΣCCC−1 + 4CCC−1AΣAΣAΣCCC−1AΣAΣAΣCCC−1 =
CCC−1

{
AΣAΣAΣCCC−1AΣAΣAΣ +AΣAΣAΣCCC−1AΣAΣAΣ

}
CCC−1 =

8CCC−1
{
AΣAΣAΣCCC−1AΣAΣAΣ

}
CCC−1

so now we have

m′′(t) = d2

dt2

{
−1

2 ln |CCC| − 1
2µ
µµ′(III −CCC−1)ΣΣΣ−1µµµ

}
=

− 1
2

1
|CCC|

[
d2|CCC|
dt2

]
+ 1

2
1
|CCC|2

[
d|CCC|
dt

]2

− 1
2µ
µµ′
(
−8CCC−1

{
AΣAΣAΣCCC−1AΣAΣAΣ

}
CCC−1

)
ΣΣΣ−1µµµ =

− 1
2

1
|CCC|

[
d2|CCC|
dt2

]
+ 1

2
1
|CCC|2

[
d|CCC|
dt

]2

+ 4µµµ′CCC−1
{
AΣAΣAΣCCC−1AΣAΣAΣ

}
CCC−1ΣΣΣ−1µµµ

If t=0 we have CCC = III and the second term becomes 4µµµ′AΣAAΣAAΣAµµµ, as required.
For the first term recall that the determinant of a matrix is equal to the product of the
eigenvalues, so if the eigenvalues of AAAΣΣΣ are λ1, .., λp we have

|CCC| =
p∏
i=1

(1− t2λi); |CCC|t=0 = 1

1− 2t
p∑
i=1

λi + 4t2
p∑
i 6=j

λiλj −+...(−1)p2ptp
p∏
i=1

λi

d|CCC|
dt

= −2
p∑
i=1

λi + 8t
p∑
i 6=j

λiλj + higher order terms in t

d|CCC|
dt
|t=0 = −2

p∑
i=1

λi = −2tr(AAAΣΣΣ)

d2|CCC|
dt2

= 8
p∑
i 6=j

λiλj + higher order terms in t

d2|CCC|
dt2
|t=0 = 8

p∑
i 6=j

λiλj
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so the first term at t=0 is

− 1
2

1
|CCC|

[
d2|CCC|
dt2
|t=0

]
+ 1

2
1
|CCC|2

[
d|CCC|
dt
|t=0

]2

=

− 1
28

p∑
i 6=j

λiλj + 1
2[−2tr(AAAΣΣΣ)]2 =

2[tr(AAAΣΣΣ)]2 − 4
p∑
i 6=j

λiλj

and it can be shown that

[tr(AAAΣΣΣ)]2 − 4
p∑
i 6=j

λiλj = tr([AAAΣΣΣ]2)

4.3.2.7 Example (5.3.9) Let X ∼ N(µ, σ2);AAA = (a), a > 0, then ΣΣΣ = (σ2). Let Z ∼ N(0, 1)
and recall that Z2 ∼ χ2(1), and therefore E[Z]=0, E[Z2]=1, E[Z3]=0 and E[Z4]=3 (=2+1=var
+ mean2 of a χ2(1)). So

var(x′Ax) = var(aX2) = a2var(X2) = a2(E[X4]− E[X2]2)
E[X2] = var(X) + E[X]2 = σ2 + µ2

E[X4] = E[(σZ + µ)4] =
σ4E[Z4] + 4σ3E[Z3]µ+ 6σ2E[Z2]µ2 + 4σE[Z]µ3 + µ4 =
σ4 × 3 + 4σ3 × 0µ+ 6σ2 × 1µ2 + 4σ × 0µ3 + µ4 =
3σ4 + 6σ2µ2 + µ4

var(x′Ax) = a2
(
3σ4 + 6σ2µ2 + µ4 − (σ2 + µ2)2

)
=

a2
(
3σ4 + 6σ2µ2 + µ4 − σ4 − 2σ2µ2 − µ4

)
=

a2
(
2σ4 + 4σ2µ2

)
= 2a2σ2

(
σ2 + 2µ2

)
but also

2tr((AAAΣΣΣ)2) + 4µµµ′AAAΣΣΣAAAµµµ =
2a2σ4 + 4µaσ2aµ = 2a2σ2(σ2 + 2µ2)

4.3.2.8 Example (5.3.10) SayXXX =
(
X
Y

)
∼ N(

(
1
2

)
,

(
3 1
1 2

)
) and we want to find var(X2 +

2XY + 2Y 2).
Let’s try this directly:
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var(X2 + 2XY + 2Y 2) =
var(X2) + var(2XY ) + var(Y 2)+
2
[
cov(X22XY ) + cov(X22Y 2) + cov(2XY 2Y 2)

]
=

var(X2) + 4var(XY ) + var(Y 2)+
2
[
2cov(X3Y ) + 2cov(X2Y 2) + 4cov(XY 3)

]
and many of these terms are not easy to calculate. For example, to find var(XY ) we would
need the distribution of the product of two correlated normal random variables. But we can
use the formula above:

recall that AAA =
(

1 1
1 2

)
and AAAΣΣΣ =

(
4 3
5 5

)
, so

(AAAΣΣΣ)2 =
(

4 3
5 5

)(
4 3
5 5

)
=
(

31 27
45 40

)
tr((AAAΣΣΣ)2) = 31 + 40 = 71

µµµ′AAAΣΣΣAAAµµµ =(
1 2

)(4 3
5 5

)(
1 1
1 2

)(
1
2

)
=

(
1 2

)( 7 10
10 15

)(
1
2

)
= 107

var(XXX ′AAAXXX) = 2tr[(AAAΣΣΣ)2] + 4µµµ′AAAΣΣΣAAAµµµ =
2× 71 + 4× 107 = 570

let’s check this with R:
library(mvtnorm)
x=rmvnorm(2e5, c(1, 2), matrix(c(3, 1, 1, 2), 2, 2))
var(x[,1]^2+2*x[, 1]*x[, 2]+2*x[, 2]^2)

## [1] 570.5925

4.3.2.9 Theorem (5.3.11) Say XXX ∼ Np(µµµ,ΣΣΣ), then

cov(XXX,XXX ′AAAXXX) = 2ΣΣΣAAAµµµ

proof
by definition
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cov(XXX,XXX ′AAAXXX) =
E[(XXX − E[XXX])(XXX ′AAAXXX − E[XXX ′AAAXXX])] =
E[(XXX − µµµ)(XXX ′AAAXXX − tr(AAAΣΣΣ)− µµµ′AAAµµµ)] =
E[(XXX − µµµ) ((XXX − µµµ)′AAA(XXX − µµµ)− tr(AAAΣΣΣ) + 2(XXX − µµµ)′AAAµµµ)] =
E[(XXX − µµµ)(XXX − µµµ)′AAA(XXX − µµµ)]− E[(XXX − µµµ)tr(AAAΣΣΣ) + 2E[(XXX − µµµ)(XXX − µµµ)′AAAµµµ] =
E[(XXX − µµµ)(XXX − µµµ)′AAA(XXX − µµµ)]− E[XXX − µµµ]tr(AAAΣΣΣ) + 2E[(XXX − µµµ)(XXX − µµµ)′]AAAµµµ =
000− 000 + 2ΣΣΣAAAµµµ

the first term is 0 because it is the third central moment of a multivariate normal.

4.3.2.10 Corollary (5.3.12) Say XXX ∼ Np(µµµ,ΣΣΣ), and let BBB be a n× p matrix of constants,
then

cov(BXBXBX,XXX ′AAAXXX) = 2BΣBΣBΣAAAµµµ

4.3.2.11 Theorem (5.3.13) Let VVV =
(
XXX
YYY

)
be a partitioned in the usual way, with ΣΣΣxy a

p× q matrix. Let AAA be a q × p matrix of constants, then
E[x′Ayx′Ayx′Ay] = tr(AΣAΣAΣxy) + µµµ′yAµAµAµx

proof similar to proof earlier

4.3.2.12 Definition (5.3.14) We have a random sample
(
X
Y

)
=
((

x1
y1

)
, ..,

(
xn
yn

))
from

some bivariate distribution with means µx and µy, variances σ2
x and σ2

y . An estimator of the
population covariance σσσij is the sample covariance defined by

sxy = 1
n− 1

n∑
i=1

(xi − x̄)(yi − ȳ)

4.3.2.13 Example (5.3.15) We can write

sxy =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) =

1
n− 1

n∑
i=1

xiyi − nx̄ȳ =

1
n− 1x

xx′[III − (1/n)JJJ ]yyy =
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(xi, yi) is independent of (xj, yj) if i 6= j, we can define a random vector VVV =
(
X
Y

)
with

E[VVV ] =
(
µxjjj
µyjjj

)
and covariance matrix

ΣΣΣ =
(
σ2
xIII σxyIII

σxyIII σ2
yIII

)

Let AAA = III − (1/n)JJJ and so

E[xxx′[III − (1/n)JJJ ]yyy] =
tr [(III − (1/n)JJJ)σxyIII] + µyjjj

′(III − (1/n)JJJ)µxjjj =
σxytr[III − (1/n)JJJ ] + µxµy(jjj′jjj − (1/n)jjj′jjjjjj′jjj) =
σxy(n− 1) + 0 = (n− 1)σxy

4.4 Noncentral Chi-Square, F and t Distributions

4.4.1 Non-Central Chisquare Distribution

4.4.1.1 Definition (5.4.1) A random variable X is said to have a chi-square distribution
with n degrees of freedom if it has density

1
Γ(n/2)2n/2x

n/2−1e−x/2

Let Z ∼ N(0, 1) and let X = Z2, then

FX(x) = P (X < x) = P (Z2 < x) =
P (−
√
x < Z <

√
x) =∫ √x

−
√
x

1√
2π
e−t

2/2dt

fX(x) = dFx(x)
dx

= d

dx

∫ √x
−
√
x

1√
2π
e−t

2/2dt =

1√
2π
e−(
√
x)2/2 1

2
√
x
− 1√

2π
e−(−

√
x)2/2 −1

2
√
x

=

1√
2π

1√
x
e−x/2 =

1
Γ(1/2)21/2x

1/2−1e−x/2

and so X ∼ χ2(1).
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4.4.1.2 Theorem (5.4.2) Say X has a chi-square distribution with n df, then
i. E[X] = n

ii. var(X) = 2n

iii. ψ(t) = (1− 2t)−n/2; |t| < 1/2
proof

E[Xk] =
∫ ∞

0
xk

1
Γ(n/2)2n/2x

n/2−1e−x/2dx =

1
Γ(n/2)2n/2

∫ ∞
0

xk+n/2−1e−x/2dx =

Γ((2k + n)/2)2(2k+n)/2

Γ(n/2)2n/2
∫ ∞

0

1
Γ((2k + n)/2)2(2k+n)/2x

(2k+n)/2−1e−x/2dx =

Γ(k + n/2)2k+n/2

Γ(n/2)2n/2 =

(k + n/2− 1)(k + n/2− 2)..n/2Γ(n/2)2k
Γ(n/2) =

(k + n/2− 1)(k + n/2− 2)..(n/2)2k

E[X] = n/2× 2 = n

var(X) = E[X2]− E[X]2 =
(n/2 + 1)(n/2)22 − n2 = n2 + 2n− n2 = 2n

iii follows similarly

Let X, Y have independent chi-square distributions with n and m degrees of freedom, respec-
tively, then

ψX+Y (t) = ψX(t)ψY (t) =
(1− 2t)−n/2(1− 2t)−m/2 = (1− 2t)−(n+m)/2

and so X+Y ∼ χ2(n+m). Therefore if ZZZ = (Z1, .., Zn)′, Zi ∼ N(0, 1) and independent, then

Z ′ZZ ′ZZ ′Z ∼ χ2(n)

Now say Xi ∼ N(µi, 1), independent, and letXXX = (X1, .., Xn)′ and µµµ = (µ1, .., µn)′. Therefore

(X − µ)′(X − µ)(X − µ)′(X − µ)(X − µ)′(X − µ) ∼ χ2(n)
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Let Y ∼ N(µ, 1) and let X = Y 2, then

FX(x) = P (X < x) = P (Y 2 < x) =
P (−
√
x < Z <

√
x) =∫ √x

−
√
x

1√
2π
e−(t−µ)2/2dt

fX(x) = dFx(x)
dx

= d

dx

∫ √x
−
√
x

1√
2π
e−(t−µ)2/2dt =

1√
2π
e−(
√
x−µ)2/2 1

2
√
x
− 1√

2π
e−(−

√
x−µ)2/2 −1

2
√
x

=

1√
2π

1√
x

[
e−(
√
x−µ)2/2 + e−(−

√
x−µ)2/2

]
=

1√
2π

1√
x

[
e−(x−2

√
xµ+µ2)/2 + e−(x+2

√
xµ+µ2)/2

]
=

1
Γ(1/2)21/2x

1/2−1e−x/2
[
e
√
xµ + e−

√
xµ
]
e−µ

2/2 =

g(x, 1)
[
e
√
xµ + e−

√
xµ
]
e−µ

2/2

where g is the density of a chi-square distribution with 1 degree of freedom.
More generally we have

4.4.1.3 Definition (5.4.3) Let Xi ∼ N(µi, 1),i=1,..,n and independent, then the distribution
of X ′XX ′XX ′X is called a non-central chi-square distribution with n degrees of freedom and non-
centrality parameter λ where

λ = 1
2

n∑
i=1

µ2
i = µ′µµ′µµ′µ/2

We write X ′XX ′XX ′X ∼ χ2(n, λ)

Note
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E[
n∑
i=1

(Xi − µi)2] =

n∑
i=1

E[(Xi − µi)2] =

n∑
i=1

var(Xi) = n

E[
n∑
i=1

X2
i ] =

n∑
i=1

E[X2
i ] =

n∑
i=1

(var(Xi) + E[Xi]2) =

n∑
i=1

(1 + µ2
i ) =

n+
n∑
i=1

µ2
i = n+ 2λ

We can use R to calculate values for the non-central chisquare:
f=function(x) dchisq(x, 5)
f1=function(x) dchisq(x, 5, ncp = 4)
curve(f, 0, 20, lwd=2, col="blue")
curve(f1, 0, 20, lwd=2, col="red", add=TRUE)
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4.4.1.4 Theorem (5.4.4) Say X ∼ χ2(n, λ), then
i. E[X] = n+ 2λ

ii. E[X] = 2n+ 8λ

iii. ψX(t) = (1− 2t)−n/2e−λ[1−1/(1−2t)]

proof i and ii follow from the calculation above, iii uses the theorem from the last section.

4.4.1.5 Theorem (5.4.5) If X1 ∼ χ2(n1, λ1), .., Xk ∼ χ2(nk, λk) and independent, then∑k
i=1Xi ∼ χ2(∑k

i=1 ni,
∑k
i=1 λi)

proof similar to the corresponding theorem for chi-square distributions above.

4.4.2 Non-Central F Distribution

4.4.2.1 Definition (5.4.6) Say X ∼ χ2(n), Y ∼ χ2(m), independent, then the random
variable F = X/n

Y/m
is said to have an F distribution with n and m degrees of freedom. It has

density

f(x;n,m) = Γ((n+m)/2)
Γ(n/2)Γ(m/2)( n

m
)n/2 xn/2−1

(1 + nx/m)(n+m)/2

4.4.2.2 Theorem (5.4.7) Say X ∼ F (n,m), then
i. E[X] = m

m−2

ii. var(X) = 2m2(n+m−2)
n(m−1)2(m−4)

proof omitted

4.4.2.3 Definition (5.4.8) Say X ∼ χ2(n, λ), Y ∼ χ2(m), independent, then the random
variable F = X/n

Y/m
is said to have an non-central F distribution with n and m degrees of

freedom and non-centrality parameter λ.

4.4.2.4 Theorem (5.4.9) Say X ∼ F (n,m, λ), then E[X] = m
m−2(1 + 2λ/n)

proof omitted
We can use R to calculate values for the non-central F distribution:
f=function(x) df(x, 3, 5)
f1=function(x) df(x, 3, 5, ncp = 4)
curve(f, 0, 10, lwd=2, col="blue")
curve(f1, 0, 10, lwd=2, col="red", add=TRUE)
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4.4.3 Non-Central t Distribution

4.4.3.1 Definition (5.4.10) Say Z ∼ N(0, 1), Y ∼ χ2(n), independent, then the random
variable T = Z√

Y/m
is said to have a Student’s t distribution with n degrees of freedom. It

has density

f(x;n) = Γ((n+ 1)/2)
Γ(n/2)

1√
πn

1
(1 + x2/n)(n+1)/2

4.4.3.2 Theorem (5.4.11) Say X ∼ t(n), then
i. E[X] = 0

ii. var(X) = n
n−2

proof omitted

4.4.3.3 Definition (5.4.12) Say X ∼ N(µ, 1), Y ∼ χ2(n), independent, then the random
variable T = X√

Y/n
is said to have a non-central t distribution with n degrees of freedom and

non-centrality parameter µ.
Note that if X ∼ N(µ, σ2), Y ∼ χ2(n), independent, then T = X/σ√

Y/n
∼ t(n, µ/σ)

We can use R to calculate values for the non-central F distribution:
f=function(x) dt(x, 3)
f1=function(x) dt(x, 3, ncp = 1)
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curve(f, -5, 5, lwd=2, col="blue")
curve(f1, -5, 5, lwd=2, col="red", add=TRUE)
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4.5 Distribution and Independence of Linear and Quadratic Forms

4.5.1 Distribution of Quadratic Forms

4.5.1.1 Theorem (5.5.1) Let XXX ∼ Nn(µµµ,ΣΣΣ), then

(XXX − µµµ)′ΣΣΣ−1(XXX − µµµ) ∼ χ2(n)

proof

(XXX − µµµ)′ΣΣΣ−1(XXX − µµµ) =
(XXX − µµµ)′ΣΣΣ−1/2ΣΣΣ−1/2(XXX − µµµ) =[
ΣΣΣ−1/2(XXX − µµµ)

]′ [
ΣΣΣ−1/2(XXX − µµµ)

]
=

ZZZ ′ZZZ

where

ΣΣΣ−1/2(XXX − µµµ) = ZZZ ∼ Nn(000, III)

because of (5.2.2)
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4.5.1.2 Theorem (5.5.2) Let XXX ∼ Nn(µµµ,ΣΣΣ), let AAA be a symmetric matrix of constants with
rank r, and let λ = 1

2µ
′Aµµ′Aµµ′Aµ, then

XXX ′AAAXXX ∼ χ2(r, λ)
iff AΣAΣAΣ is idempotent.
proof
By (5.3.7) the moment generating function of XXX ′AAAXXX is given by

ψ(t) = |III − 2tAAAΣΣΣ|−1/2 exp
{
−µµµ′

[
III − (III − 2tAAAΣΣΣ)−1

]
ΣΣΣ−1µµµ/2

}
The eigenvalues of III − 2tAAAΣΣΣ are 1− 2tλi, i=1,..,p, where λi are the eigenvalues of AAAΣΣΣ. In
the proof of (5.3.8) we showed that

|III − 2tAAAΣΣΣ| =
p∏
i=1

(1− 2tλi)

and that

(III − 2tAAAΣΣΣ)−1 = III +
∞∑
i=1

(2t)i(AAAΣΣΣ)i

if |2tλi| < 1 for all i. Therefore

ψ(t) =
p∏
i=1

(1− 2tλi)−1/2 exp
{
−µµµ′

[
−
∞∑
i=1

(2t)i(AAAΣΣΣ)i
]

ΣΣΣ−1µµµ/2
}

Suppose that AΣAΣAΣ is idempotent with rank r, then r of the λ′is are equal to 1 and n-r are equal
to 0, and (AΣAΣAΣ)i = AΣAΣAΣ, so

ψ(t) = (1− 2t)−r/2 exp
{
−µµµ′

[
−
∞∑
i=1

(2t)i
]
AAAΣΣΣΣΣΣ−1µµµ/2

}
=

(1− 2t)−r/2 exp
{
µµµ′
[ ∞∑
i=0

( 1
1/(2t))i − 1

]
AAAµµµ/2

}
=

(1− 2t)−r/2 exp
{
−1

2µ
µµ′AAAµµµ[1− 1/(1− 2t)]

}
=

which is the moment generating function of a chi-square with r degrees of freedom and
non-centrality parameter 1

2µ
′Aµµ′Aµµ′Aµ.

The proof of the reverse is omitted.
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4.5.1.3 Corollary (5.5.3)

i. If XXX ∼ Np(000, III), then XXX ′AAAXXX ∼ χ2(r) iff AAA is idempotent of rank r.
ii. If XXX ∼ Np(µµµ, σ2III), then XXX ′AAAXXX/σ2 ∼ χ2(r,µ′Aµµ′Aµµ′Aµ/(2σ2) iff AAA is idempotent of rank r.

4.5.1.4 Example (5.5.4) Say XXX = (X1, .., Xn)′ where Xi ∼ N(µ, σ2) and independent.
Recall that we can write XXX ∼ Nn(µjjj, σ2III) and that ∑n

i=1(xi − x̄)2 = xxx′[III − (1/n)JJJ ]xxx. Now

[III − (1/n)JJJ ][III − (1/n)JJJ ] =
III[III − (1/n)JJJ ]− (1/n)JJJ [III − (1/n)JJJ ] =
III − (1/n)JJJ − (1/n)JJJ + (1/n)2JJJJJJ =
III − (1/n)JJJ − (1/n)JJJ + (1/n)2nJJJ =
III − (1/n)JJJ

and so III − (1/n)JJJ is idempotent. Also

rank(III − (1/n)JJJ) = tr(III − (1/n)JJJ) = n(1− 1/n) = n− 1
.
Now

λ = µ′Aµµ′Aµµ′Aµ/(2σ2) =
µjjj′(III − (1/n)JJJ)µjjj/(2σ2) =
µ2(jjj′jjj − (1/n)jjj′JJJjjj/(2σ2) =
µ2(jjj′jjj − (1/n)jjj′jjjjjj′jjj/(2σ2) =
µ2(n− (1/n)n2)/(2σ2) = 0

and so

(n− 1)s2/σ2 = xxx′[III − (1/n)JJJ ]xxx/σ2 ∼ χ2(n)

4.5.2 Independence of Linear and Quadratic Forms

4.5.2.1 Theorem (5.5.5) Suppose BBB is a k × p matrix of constants, AAA is a p× p symmetric
matrix of constants and XXX ∼ Np(µµµ,ΣΣΣ). Then BXBXBX and X ′AXX ′AXX ′AX are independent iff BΣABΣABΣA = OOO.
proof
Suppose BΣABΣABΣA = OOO. We will also assume that AAA is idempotent. The general case can be
found in textbooks.
We can write

X ′AXX ′AXX ′AX = X ′A′AXX ′A′AXX ′A′AX = (AX)′(AX)(AX)′(AX)(AX)′(AX)
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If BΣABΣABΣA = OOO we have cov(BX,AXBX,AXBX,AX) = 0. Because they are multivariate normal random
vectors, uncorrelated implies independence.
For the reverse assume BXBXBX and X ′AXX ′AXX ′AX are independent. Therefore cov(BX,X ′AXBX,X ′AXBX,X ′AX) = 000 and
so

2BΣAµBΣAµBΣAµ = 0

this holds for all µµµ and so BΣABΣABΣA = 0

4.5.2.2 Corollary (5.5.6) XXX ∼ Np(µµµ, σ2III). Then BXBXBX and X ′AXX ′AXX ′AX are independent iff BABABA =
OOO.

4.5.2.3 Example (5.5.7) Say XXX ∼ Nn(µjjj, σ2III). We can write

X̄ = (1/n)jjj′XXX
s2 = XXX ′[III − (1/n)JJJ ]XXX/(n− 1)

now

(1/n)jjj′[III − (1/n)JJJ ] =
(1/n)jjj′ − (1/n)(1/n)jjj′JJJ =
(1/n)jjj′ − (1/n)(1/n)njjj′ = 0

and so X̄ and s2 are independent.

4.5.2.4 Theorem (5.5.8) Suppose AAA and BBB are symmetric matrices of constants and XXX ∼
Np(µµµ,ΣΣΣ). Then X ′AXX ′AXX ′AX and X ′BXX ′BXX ′BX are independent iff AΣBAΣBAΣB = OOO.
proof
Suppose AΣBAΣBAΣB = OOO. Again we will also assume that AAA and BBB are idempotent, so we can write
X ′AXX ′AXX ′AX = (AX)′AX(AX)′AX(AX)′AX andX ′BXX ′BXX ′BX = (BX)′BX(BX)′BX(BX)′BX. AΣBAΣBAΣB = OOO we have cov(AX,BXAX,BXAX,BX) = AΣBAΣBAΣB = OOO.
Because they are multivariate normal random vectors, uncorrelated implies independence
and vice versa.

4.5.2.5 Example (5.5.9) We have previously partitioned

n∑
i=1

x2
i =

n∑
i=1

(xi − x̄)2 + nx̄2

(see (5.3.1)), which we can write as

xxx′xxx = xxx′[III − (1/n)JJJ ]xxx+ xxx′(1/n)JJJxxx
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now xxx′[III − (1/n)JJJ ]xxx and xxx′(1/n)JJJxxx are independent iff [III − (1/n)JJJ ][(1/n)JJJ ] = 000, which is
easy to show.

4.5.2.6 Theorem (5.5.10) (James’ Theorem)
Let XXX ∼ Nn(µµµ, σ2III), let AAAi be symmetric with rank ri, i=1,..,k. Set AAA = ∑k

i=1AAAi and assume
AAA is symmetric of rank r. Then

i. X ′AiXX ′AiXX ′AiX/σ
2 ∼ χ2(ri,µ′Aiµµ′Aiµµ′Aiµ/(2σ2))

ii. X ′AiXX ′AiXX ′AiX and X ′AjXX ′AjXX ′AjX are independent for all i 6= j

iii. X ′AXX ′AXX ′AX ∼ χ2(r,µ′Aµµ′Aµµ′Aµ/(2σ2))
i-iii are true iff at least two of the following are true
a. each AAAi is idempotent

b. AAAiAAAj = 0 for all i 6= j

c. AAA is idempotent
or if c and d are true, where
d. r = ∑k

i=1 ri

proof omitted

5 Regression

5.1 Simple Linear Regression - The Model

5.1.1 The Model

5.1.1.1 Definition (6.1.1) Let yyy = (y1, .., yn), xxx = (x1, .., xn), εεε = (ε1, .., εn), β0, β1 numbers,
then a model of the form

yi = β0 + β1xi + εi; i = 1, .., n
is called a simple linear regression model.
simple refers to the fact that there is only one predictor x.
We assume that yyy and εεε are random vectors whereas xxx is fixed. We will consider the case
where XXX is random later.
We make the following assumptions:
1. E[εi] = 0 (model is correct)
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2. var(εi) = σ2 (equal variance, homoscadasticity)

3. cov(εi, εj) = 0 (independence)
Notice that so far there is no assumption regarding the distribution of the εi’s.

5.1.2 Estimation

5.1.2.1 Definition (6.1.2) The method of least squares estimates parameters by minimizing

ε̂εε′ε̂εε =
n∑
i=1

(yi − ŷ)2 =
n∑
i=1

(yi − β0 − β1xi)2

The ε̂εε are called the residuals.
Now

0 = dε̂εε′ε̂εε

dβ0
= (−2)

n∑
i=1

(yi − β0 − β1xi) =

(−2)
(

n∑
i=1

yi − nβ0 −
n∑
i=1

β1xi

)
=

(−2n) (ȳ − β0 − β1x̄)

0 = dε̂εε′ε̂εε

dβ1
= (−2)

n∑
i=1

(yi − β0 − β1xi)xi =

(2n)
(
xy − β0x̄− β1x2

)
β0 + β1x̄ = ȳ

β0x̄+ β1x2 = xy

(ȳ − β1x̄)x̄+ β1x2 = xy

β1 = xy − ȳx̄
x2 − x̄2

=
∑n
i=1 xiyi − nȳx̄∑n
i=1 x

2
i − nx̄2

5.1.2.2 Example (6.1.3) We have data from a study for 19 developed countries on wine
consumption (liters of wine per person per year) and deaths from heart disease (per 100000
people). (taken from David Moore: The Active Practice of Statistics, data set is part of
Resma3.Rdata)
Note that strictly speaking this is not an experiment as described above because here XXX was
random and not fixed. It turns out (and we will later study) that most results hold for both
cases.
kable.nice(wine, do.row.names = FALSE)
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Country Wine.Consumption Heart.Disease.Deaths
Australia 2.5 211
Austria 3.9 167
Belgium 2.9 131
Canada 2.4 191
Denmark 2.9 220
Finland 0.8 297
France 9.1 71
Iceland 0.8 211
Ireland 0.7 300
Italy 7.9 107
Netherlands 1.8 167
New Zealand 1.9 266
Norway 0.8 227
Spain 6.5 86
Sweden 1.6 207
Switzerland 5.8 115
United Kingdom 1.3 285
United States 1.2 199
Germany 2.7 172

ggplot(data=wine, aes(Wine.Consumption, Heart.Disease.Deaths)) +
geom_point()
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Let’s find the least squares regression line:
xbar=mean(wine$Wine.Consumption)
x2bar=mean(wine$Wine.Consumption^2)
ybar=mean(wine$Heart.Disease.Deaths)
xybar=mean(wine$Wine.Consumption*wine$Heart.Disease.Deaths)
beta1=(xybar-xbar*ybar)/(x2bar-xbar^2)
beta0=ybar-beta1*xbar
round(c(beta0, beta1), 2)

## [1] 260.56 -22.97
ggplot(data=wine, aes(Wine.Consumption, Heart.Disease.Deaths)) +

geom_point() +
geom_abline(intercept = beta0, slope = beta1,

color="blue", size=1.5)
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or we can let R do the work:
fit=lm(Heart.Disease.Deaths~Wine.Consumption, data=wine)
coef(fit)

## (Intercept) Wine.Consumption
## 260.56338 -22.96877

Note that the least square regression line can always be found, even if the assumptions are
not satisfied and the line is a bad model for the data:
x=1:100/10
y=(x-5)^2 + rnorm(100, 0, 5)
df=data.frame(x=x, y=y)
ggplot(data=df, aes(x, y)) +

geom_point() +
geom_smooth(method = "lm", se=FALSE)
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5.1.2.3 Theorem (6.1.4) Under the three assumptions above we have

i. E[β̂1] = β1

ii. E[β̂0] = β0

iii. var(β̂1) = σ2∑
(xi−x̄)2

iv. var(β̂0) = σ2
[

1
n

+ x̄2∑
(xi−x̄)2

]
proof

i. note that

E[Ȳ ] = E[ 1
n

∑
Yi] = 1

n

∑
E[Yi] =

1
n

∑
(β0 + β1xi) = β0 + β1x̄

146



E[β̂1] = E[
∑n
i=1 xiYi − nȲ x̄∑n
i=1 x

2
i − nx̄2 ] =∑n

i=1 xiE[Yi]− nE[Ȳ ]x̄∑n
i=1 x

2
i − nx̄2 =∑n

i=1 xi(β0 + β1xi)− n[β0 + β1x̄]x̄∑n
i=1 x

2
i − nx̄2 =

nβ0x̄+ β1
∑n
i=1 x

2
i − nβ0x̄− nβ1x̄

2∑n
i=1 x

2
i − nx̄2 =

β1(∑n
i=1 x

2
i − nx̄2)∑n

i=1 x
2
i − nx̄2 = β1

the other parts are similar
Until now we assumed that σ is known. If it is not is also has to be estimated from the data.
To do so note

σ2 = E[ε2i ] = E[(Yi − Ŷi)2]

for i=1,..,n. We can therefore estimate σ2 as the mean of these deviations, however it turns
out to be better to use

s2 =
∑(yi − β̂0 − β̂1xi)2

n− 2 = SSE
n− 2

because then S2 is an unbiased estimator of σ2.
We define the residual sum of squared errors or error sum of squares SSE by

SSE =
∑

(yi − β̂0 − β̂1xi)2

5.1.3 Hypothesis Testing and Confidence Intervals for β1

Notice that if β1 = 0 we have yi = β0 + εi and there are no x’s here, so this shows that x and
y are independent. Therefore we might be interested in testing to see whether indeed β1 = 0.
In order to do a hypothesis test we need to make some assumptions about the distribution of
the εi. The usual one is

εi ∼ N(0, σ2)

5.1.3.1 Theorem (6.1.5) If
εi ∼ N(0, σ2)

for i=1,..,n, then
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i. β̂1 ∼ N(β1, σ
2/
∑n
i=1(xi − x̄)2

ii. (n− 2)s2/σ2 ∼ χ2(n− 2)

iii. β̂1 and s2 are independent
proof we will show these results later in greater generality.

5.1.3.2 Corollary (6.1.6)

t = β̂1

s/
√∑n

i=1(xi − x̄)2
∼ t(n− 2, δ)

where the non-centrality parameter is

δ = β1/[σ/
√√√√ n∑
i=1

(xi − x̄)2]

.
Therefore under the null hypothesis H0 : β1 = 0 we have t ∼ t(n− 2) and a two-sided test
rejects the null if

|t| > tα/2,n−2

The p-value of the test is given by

p = 2P (T > |t|)

where T ∼ t(n− 2).

5.1.3.3 Example (6.1.7) The 1970’s Military Draft
In 1970, Congress instituted a random selection process for the military draft. All 366 possible
birth dates were placed in plastic capsules in a rotating drum and were selected one by one.
The first date drawn from the drum received draft number one and eligible men born on that
date were drafted first. In a truly random lottery there should be no relationship between
the date and the draft number.
Here is a scatterplot of Draft.Number by Day.of.Year:
ggplot(data=draft, aes(Day.of.Year, Draft.Number)) +

geom_point()
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There is not supposed to be a relationship between Day.of.Year and Draft. Number, so it
makes sense to test H0 : β1 = 0.
x=draft$Day.of.Year
y=draft$Draft.Number
n=length(x)
beta1hat=(sum(x*y)-n*mean(x)*mean(y))/(sum(x^2)-n*mean(x)^2)
beta0hat=mean(y)-beta1hat*mean(x)
yhat=beta0hat+beta1hat*x
s2=sum((y-yhat)^2)/(n-2)
TS=beta1hat/(sqrt(s2/sum((x-mean(x))^2)))
c(TS, qt(0.95, n-2), 2*(1-pt(abs(TS), n-2)))

## [1] -4.427181e+00 1.649051e+00 1.263829e-05

Again, R can do it for us:
summary(lm(Draft.Number~Day.of.Year, data=draft))

##
## Call:
## lm(formula = Draft.Number ~ Day.of.Year, data = draft)
##
## Residuals:
## Min 1Q Median 3Q Max
## -210.837 -85.629 -0.519 84.612 196.157
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 225.00922 10.81197 20.811 < 2e-16
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## Day.of.Year -0.22606 0.05106 -4.427 1.26e-05
##
## Residual standard error: 103.2 on 364 degrees of freedom
## Multiple R-squared: 0.05109, Adjusted R-squared: 0.04849
## F-statistic: 19.6 on 1 and 364 DF, p-value: 1.264e-05

5.1.3.4 Theorem (6.1.8) A 100(1− α)% confidence interval for β1 is given by

β̂1 ± tα/2,n−2
s√∑n

i=1(xi − x̄)2

proof follows by inverting the hypothesis test in (6.1.6)

5.1.3.5 Example (6.1.9) A 95% confidence interval for the slope in the wine data set is
given by
x=wine$Wine.Consumption
y=wine$Heart.Disease.Deaths
n=length(x)
yhat=beta0+beta1*x
sse = sum((y-yhat)^2)
s2hat=sse/(n-2)
denom=sum((x-mean(x))^2)
round(beta1+c(-1, 1)*qt(0.05/2, n-2)*sqrt(s2hat/denom), 2)

## [1] -15.46 -30.47

We will not discuss interval estimated and/or hypothesis tests for β0. These of course exist
but do not play a large role in Statistics. If indeed H0 : β0 = 0 is true the model becomes
y = β1xy = β1xy = β1x, what is called a non-intercept model. Whether such a model is appropriate for an
experiment is usually better decided from the context of the experiment and not from some
statistical analysis.

5.1.3.6 Example We have data yi, the amount of damage done by tropical storms and
hurricanes in year i, and xi, the number of such storms that hit Puerto Rico in year i. Clearly
if xi = 0 we immediately have yi = 0, so a no-intercept model is appropriate.

5.1.4 Coefficient of Determination

5.1.4.1 Definition (6.1.10)

i. Residual sum of Squares
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SSE =
∑

(yi − ŷi)2

ii. Regression Sum of Squares

SSR =
∑

(ŷi − ȳ)2

iii. Total Sum of Squares

SST =
∑

(yi − ȳ)2

We have SST=SSR+SSE

5.1.4.2 Definition (6.1.11) The coefficient of determination r2 is given by

r2 = SSR
SSE =

∑(ŷi − ȳ)2∑(yi − ȳ)2

An intuitive explanation for the coefficient of determination is as follows: it is the proportion
of variation in the data explained by the model.
Comments
1.

r2 =
s2
xy

sxxsyy

where sxy was defined in (5.3.14). Therefore r is also the absolute value of the sample
correlation coefficient.
2. Let t be the t statistic in (6.1.6), then

t = β̂1

s/
√∑n

i=1(xi − x̄)2
=
√
n− 2 r√
1− r2

If H0 : β1 = 0 is true, then t ∼ t(n− 2).

5.1.4.3 Example (6.1.12) For the data in example (6.1.3) we find
x=wine$Wine.Consumption
y=wine$Heart.Disease.Deaths
yhat=beta0+beta1*x
ybar=mean(y)
ssr=sum((yhat-ybar)^2)
sst=sum((y-ybar)^2)
r2=ssr/sst
round(r2, 2)
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## [1] 0.71

5.2 Multiple Regression

5.2.1 The Model

5.2.1.1 Definition (6.2.1) We have a response vector yyy = (y1, .., yn)′, a vector of regression
coefficients βββ = (β0, β1, .., βn)′ and a predictor matrix

XXX =


1 x11 ... x1k
... ... ...
1 xn1 xnk


We also have a vector of errors εεε = (ε0, .., εn)′. Then a model of the form

yi = β0 + β1xi1 + ..+ βkxik; i = 1, .., n
or

yyy = XβXβXβ + εεε

is called a multiple regression model. XXX is called the design matrix. As in the simple regression
case we assume for now that XXX is fixed and not random.
Note that this includes models like

yi = β0 + β1xi + β2x
2
i

yi = β0 + β1 log(xi)

because they are models linear in the coefficients β.
The assumptions are the same as in the simple regression model:
1. E[εi] = 0 (model is correct)

2. var(εi) = σ2 (equal variance, homoscadasticity)

3. cov(εi, εj) = 0 (independence)

5.2.2 Estimation of βββ and σ2

Analogous to the simple regression case we can use the method of least squares and estimate
the coefficients by minimizing
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n∑
i=1

(yi − β0 − β1xi1 − ..− βkxik)2

Again one can differentiate this expression and solve the resulting system of equations,
however here is a better solution:

5.2.2.1 Theorem (6.2.2) If yyy = XβXβXβ + εεε where XXX is a n × (k + 1) matrix of rank k+1<n,
then the vector β̂̂β̂β that minimizes the least squares criterion is given by

β̂̂β̂β = (X ′X)(X ′X)(X ′X)−1X ′yX ′yX ′y

proof
we have

ε̂′ε̂ε̂′ε̂ε̂′ε̂ = (yyy − (Xβ̂Xβ̂Xβ̂)′(yyy −Xβ̂Xβ̂Xβ̂) =
yyy′(yyy −Xβ̂Xβ̂Xβ̂)− (Xβ̂Xβ̂Xβ̂)′(yyy −Xβ̂Xβ̂Xβ̂) =
yyy′yyy − yyy′Xβ̂Xβ̂Xβ̂ − (y′Xβ̂y′Xβ̂y′Xβ̂)′ + β̂′X ′β̂′X ′β̂′X ′Xβ̂Xβ̂Xβ̂ =
yyy′yyy − 2yyy′Xβ̂Xβ̂Xβ̂ + β̂′X ′β̂′X ′β̂′X ′Xβ̂Xβ̂Xβ̂

because yyy′Xβ̂Xβ̂Xβ̂ is a scalar.
By (4.3.20) and (4.3.21) we have

∂ε̂′ε̂ε̂′ε̂ε̂′ε̂/∂βββ =
∂(yyy′yyy − 2yyy′Xβ̂Xβ̂Xβ̂ + β̂′X ′β̂′X ′β̂′X ′Xβ̂Xβ̂Xβ̂)/∂βββ =
∂(yyy′yyy)/∂βββ − ∂(2yyy′Xβ̂)Xβ̂)Xβ̂)/∂βββ + ∂(β̂′X ′β̂′X ′β̂′X ′Xβ̂Xβ̂Xβ̂)/∂βββ =
000− 2XXX ′yyy + 2X ′XβX ′XβX ′Xβ = 000
X ′Xβ̂X ′Xβ̂X ′Xβ̂ = XXX ′yyy

X ′XX ′XX ′X is full-rank and therefore has an inverse, and so we have the result.

5.2.2.2 Definition
X ′Xβ̂X ′Xβ̂X ′Xβ̂ = XXX ′yyy

are called the normal equations.

5.2.2.3 Example (6.2.3) Prices of 28 residencies located 30 miles south of a large metropoli-
tan area.
kable.nice(houseprice, do.row.names = FALSE)
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Price Sqfeet Floors Bedrooms Baths
69.0 1500.000 1 2 1.0

118.5 1880.952 1 2 2.0
104.0 1976.190 1 3 2.0
116.5 1880.952 1 3 2.0
121.5 1880.952 1 3 2.0
125.0 1976.190 1 3 2.0
128.0 2357.143 2 3 2.5
129.9 2166.667 1 3 1.7
133.0 2166.667 2 3 2.5
135.0 2166.667 2 3 2.5
137.5 2357.143 2 3 2.5
139.9 2166.667 1 3 2.0
143.9 2261.905 2 3 2.5
147.9 2547.619 2 3 2.5
154.9 2357.143 2 3 2.5
160.0 2738.095 2 3 2.0
169.0 2357.143 1 3 2.0
169.9 2642.857 1 3 2.0
125.0 2166.667 1 4 2.0
134.9 2166.667 1 4 2.0
139.9 2547.619 1 4 2.0
147.0 2642.857 1 4 2.0
159.0 2261.905 1 4 2.0
169.9 2547.619 2 4 3.0
178.9 2738.095 1 4 2.0
194.5 2833.333 2 4 3.0
219.9 2928.571 1 4 2.5
269.0 3309.524 2 4 3.0

Here we want to predict the Price from the other four variables, so
par(mfrow=c(2, 2))
plot(houseprice$Sqfeet, houseprice$Price, pch=20)
boxplot(houseprice$Floors, houseprice$Price)
boxplot(houseprice$Bedrooms, houseprice$Price)
boxplot(houseprice$Baths, houseprice$Price)
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A=as.matrix(houseprice)
y=A[, 1, drop=FALSE]
X=cbind(1, A[, -1])
beta= solve(t(X)%*%X)%*%t(X)%*%y
round(c(beta), 3)

## [1] -67.620 0.086 -26.493 -9.286 37.381

We can write

X ′XX ′XX ′X =


n

∑
i xi1

∑
i xi2 ...

∑
i xik∑

i xi1
∑
i x

2
i1

∑
i xi1xi2 ...

∑
i xi1xik

... ... ... ...
...∑

i xik
∑
i xi1xik

∑
i xi2xi2 ...

∑
i x

2
ik


and

X ′yX ′yX ′y =


∑
i yi∑

i xi1yi
...∑

i xikyi


If β̂̂β̂β = (X ′XX ′XX ′X)−1X ′yX ′yX ′y, then

ε̂ = yyy −Xβ̂Xβ̂Xβ̂ = yyy − ŷ̂ŷy
is the vector of residuals.
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5.2.2.4 Example (6.2.4) Let’s study a simple regression problem as a special case of a
multiple regression problem. Then we have

XXX =


1 x1
... ...
1 xn



X ′XX ′XX ′X =
(

n
∑
i xi∑

i xi
∑
i x

2
i

)
X ′yX ′yX ′y =

( ∑
i yi∑
i xiyi

)
(X ′XX ′XX ′X)−1 = 1

n
∑
i x

2
i − (∑i xi)2

( ∑
i x

2
i −∑i xi

−∑i xi n

)
(X ′XX ′XX ′X)−1X ′yX ′yX ′y = 1

n
∑
i x

2
i − (∑i xi)2

( ∑
i x

2
i −∑i xi

−∑i xi n

)( ∑
i yi∑
i xiyi

)
= 1
n
∑
i x

2
i − (∑i xi)2

(
(∑i x

2
i )(
∑
i yi)−

∑
i xi

∑
i xiyi

(−∑i xi)(
∑
i yi) + n

∑
i xiyi

)

which is the same (6.1.2)

5.2.3 Properties of Least Squares Estimators

We will assume that XXX is fixed and of full rank, as long as not stated otherwise.

5.2.3.1 Theorem (6.2.5) If E[yyy] = XβXβXβ, then β̂̂β̂β is an unbiased estimator of βββ.
proof

E[β̂̂β̂β] = E[(X ′X(X ′X(X ′X)−1X ′yX ′yX ′y]
(X ′XX ′XX ′X)−1X ′X ′X ′E[yyy] =
(X ′XX ′XX ′X)−1X ′XβX ′XβX ′Xβ = βββ

5.2.3.2 Theorem (6.2.6) if cov(yyy) = σ2III, then cov(β̂̂β̂β) = σ2(X ′XX ′XX ′X)−1

proof
Using (5.1.11) we have

cov(β̂̂β̂β) =
cov((X ′X(X ′X(X ′X)−1X ′yX ′yX ′y) =
[(X ′X(X ′X(X ′X)−1X ′X ′X ′]cov(yyy)[(X ′X(X ′X(X ′X)−1X ′X ′X ′]′ =
(X ′X(X ′X(X ′X)−1X ′X ′X ′σ2XXX(X ′X(X ′X(X ′X)−1 =
σ2(X ′X(X ′X(X ′X)−1(X ′X ′X ′XXX)(X ′X(X ′X(X ′X)−1 =
σ2(X ′X(X ′X(X ′X)−1
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5.2.3.3 Example (6.2.7) In the case of simple linear regression we have

cov(β̂̂β̂β) = cov

(
β̂0

β̂1

)
=(

var(β̂0) cov(β̂0, β̂1)
cov(β̂0, β̂1) var(β̂1)

)
= σ2(X ′XX ′XX ′X)−1 =

σ2 1
n
∑
i x

2
i − (∑i xi)2

( ∑
i x

2
i −∑i xi

−∑i xi n

)
=

σ2∑
i(xi − xi)2

(
x2 −x̄
−x̄ 1

)

so we find

var(β̂0) = σ2x2∑
i(xi − xi)2

var(β̂1) = σ2∑
i(xi − xi)2

cov(β̂0, β̂1) = −σ2x∑
i(xi − xi)2

Note that if x̄ > 0, β̂0 and β̂1 are negatively correlated.

5.2.3.4 Theorem (6.2.8) Gauss-Markov
If E[yyy] = XβXβXβ and cov(yyy) = σ2III, then the least squares estimators have the smallest variance
among all linear unbiased estimators.
proof
Any linear estimator can be written in the form AyAyAy. To be unbiased we have to have
E[AyAyAy] = βββ, and therefore we find

E[AyAyAy] = AAAE[yyy] = AXβAXβAXβ = βββ

and since this has to hold for all possible βββ we have

AXAXAX = III

The covariance of AyAyAy is given by

cov(AyAyAy) = AAAcov(yyy)AAA′ = σ2AAAAAA′
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The variances of the β̂j’s are the diagonal elements of σ2AAAAAA′, and so we need to choose AAA,
subject to AXAXAX = III so that the diagonal elements are minimized.
Let’s write

AAAAAA′ = (AAA− (X ′XX ′XX ′X)−1XXX ′ + (X ′XX ′XX ′X)−1XXX ′)(AAA− (X ′XX ′XX ′X)−1XXX ′ + (X ′XX ′XX ′X)−1XXX ′) = (a+ b)(a+ b)

where a = AAA− (X ′XX ′XX ′X)−1XXX ′ and b = (X ′XX ′XX ′X)−1XXX ′

now (a+ b)(a+ b) = a2 + ab+ ba+ b2, and we find

ab =
(
AAA− (X ′XX ′XX ′X)−1XXX ′

) (
(X ′XX ′XX ′X)−1XXX ′

)
=

AAA(X ′XX ′XX ′X)−1XXX ′ − (X ′XX ′XX ′X)−1XXX ′(X ′XX ′XX ′X)−1XXX ′ =
AAAXXX(X ′XX ′XX ′X)−1 − (X ′XX ′XX ′X)−1XXX ′XXX(X ′XX ′XX ′X)−1 =
III(X ′XX ′XX ′X)−1 − (X ′XX ′XX ′X)−1 = 000

also ba = 0 and

b2 = (X ′XX ′XX ′X)−1XXX ′(X ′XX ′XX ′X)−1XXX ′ =
(X ′XX ′XX ′X)−1(X ′XX ′XX ′X)−1X ′XX ′XX ′X =
(X ′XX ′XX ′X)−1

because X ′XX ′XX ′X is symmetric. So we find

AAAAAA′ =
(
AAA− (X ′XX ′XX ′X)−1XXX ′

) (
AAA− (X ′XX ′XX ′X)−1XXX ′

)′
+ (X ′XX ′XX ′X)−1

The matrix (AAA− (X ′XX ′XX ′X)−1XXX ′) (AAA− (X ′XX ′XX ′X)−1XXX ′)′ is positive semidefinite by (4.2.10) and so
the diagonal elements are greater or equal to 0. They are equal to 0 clearly if AAA = (X ′XX ′XX ′X)−1XXX ′.
Comment
This theorem is quite remarkable because it has NO requirements on the distribution of the
yyy’s!

5.2.3.5 Definition (6.2.9) An estimator is called BLUE if it is minimum variance unbiased
and linear.
So the Gauss-Markov theorem states that (under its conditions) least squares estimators are
BLUE.

5.2.3.6 Corollary (6.2.10) if E[yyy] = XβXβXβ and cov(yyy) = σ2III, then the BLUE estimator of a′ya′ya′y
is a′β̂a′β̂a′β̂.
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The theorem also shows that the variance of the estimator depends on XXX. As this is assumed
to be fixed before the experiment, it is often under the control of the researcher. In this case
it is often a good idea to choose XXX to be orthogonal so that X ′XX ′XX ′X is diagonal. This often
leads to maximizing the power of a hypothesis test.

5.2.3.7 Theorem (6.2.11) If xxx = (1, x1, .., xk)′ and zzz = (1, ckx1, .., ckxk)′, then

β̂̂β̂β′xxx = β̂̂β̂β′zzzz

where β̂̂β̂βz is the least squares estimator of the regression of yyy on zzz.
proof omitted
This theorem states that least squares estimators are invariant under simple scalar multipli-
cation, or changes of scale.

5.2.3.8 Corollary (6.2.12) ŷ̂ŷy is invariant to a full-rank transformation of XXX

5.2.4 Estimation of σ2

As in simple regression, least squares does not give us an estimate of σ2. By the assumptions
we have E[yi] = xxx′iβββ and so

σ2 = E[(yi − xxx′iβββ)2]

Again we can estimate σ2 with the average of these terms, so

s2 = 1
n− k − 1

∑
(yi − xxx′iβ̂̂β̂β)2

where we use n-k-1 so that s2 is unbiased, see below. Note that by the above corollary xxx′iβ̂̂β̂β is
BLUE for xxx′iβββ.
By the proof of (6.2.2) we can write

s2 = 1
n− k − 1

∑
(yi − xxx′iβ̂̂β̂β)2 =

1
n− k − 1(yyy −X ′β̂X ′β̂X ′β̂)′(yyy − x′β̂x′β̂x′β̂) =

1
n− k − 1(yyy′yyy − β̂′X ′yβ̂′X ′yβ̂′X ′y) = SSE

n− k − 1
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5.2.4.1 Theorem (6.2.13) If E[yyy] = XβXβXβ and cov(yyy) = σ2III, then

E[s2] = σ2

proof

SSE =
yyy′yyy − β̂′X ′yβ̂′X ′yβ̂′X ′y =
yyy′yyy − [(X ′XX ′XX ′X)−1X ′yX ′yX ′y]′X ′yX ′yX ′y =
yyy′yyy − y′Xy′Xy′X(X ′XX ′XX ′X)−1X ′yX ′yX ′y =
yyy′
[
III −XXX(X ′XX ′XX ′X)−1XXX ′

]
X ′yX ′yX ′y

Using (5.3.3) we find

E[SSE] =
tr
{[
III −XXX(X ′XX ′XX ′X)−1XXX ′

]
σ2III

}
+ E[yyy′]

[
III −XXX(X ′XX ′XX ′X)−1XXX ′

]
E[yyy′] =

σ2tr
{[
III −XXX(X ′XX ′XX ′X)−1XXX ′

]}
+ β′X ′β′X ′β′X ′

[
III −XXX(X ′XX ′XX ′X)−1XXX ′

]
XβXβXβ′ =

σ2
{
n− tr(XXX(X ′XX ′XX ′X)−1XXX ′)

}
+ β′X ′Xββ′X ′Xββ′X ′Xβ − β′X ′Xββ′X ′Xββ′X ′Xβ =

σ2
{
n− tr(XXX(X ′XX ′XX ′X)−1XXX ′)

}
=

σ2 {n− tr(IIIk+1)} = (n− k − 1)σ2

because X ′XX ′XX ′X is a (k + 1)× (k + 1) matrix.

5.2.4.2 Corollary (6.2.14) s2(X ′XX ′XX ′X)−1 is an unbiased estimator of cov(β̂̂β̂β).

5.2.4.3 Theorem (6.2.15) If E[εεε] = 000, cov(εεε) = σ2III and E[ε4i ] = 3σ4, then s2 is the best
(minimum variance) quadratic unbiased estimator of σ2.
proof omitted

5.2.4.4 Example (6.2.16) Say Z ∼ N(0, 1), then
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∫ ∞
−∞

x4 exp
{
−x2/2

}
dx =∫ ∞

−∞
x3[x exp

{
−x2/2]

}
dx =

x3(− exp
{
−x2/2

}
|∞−∞ −

∫ ∞
−∞

3x2(− exp
{
−x2/2

}
)dx =

3
∫ ∞
∞

x2 exp
{
−x2/2

}
)dx

E[Z4] =
∫ ∞
−∞

x4 1√
2π

exp
{
−x2/2

}
dx =

3
∫ ∞
−∞

x2 1√
2π

exp
{
−x2/2

}
dx = 3

Let X ∼ N(0, σ2), then

E[X4] = E[(σZ))4] = 3σ4

so the condition of theorem (6.2.16) is fulfilled it the residual has a normal distribution.

5.2.4.5 Example (6.2.17) For the houseprice data we find
A=as.matrix(houseprice)
n=nrow(A)
y=A[, 1, drop=FALSE]
X=cbind(1, A[, -1])
betahat= (solve(t(X)%*%X)%*%t(X))%*%y
sse=c(t(y)%*%y-t(betahat)%*%t(X)%*%y)
sse

## [1] 4321.864
sse/(n-4-1)

## [1] 187.9071

5.3 Geometric Interpretion, Centered Form

5.3.1 Geometric Interpretation

In this section we will use a purely geometric argument to derive the least squares estimators.
To start we will view the parameters βββ = (βo, β1, .., βk)′ as point in (k+1)-dimensional space,
called the parameter space. Also the vector yyy can be viewed as a point in n-dimensional space,
called the data space. The matrix XXX can be written as a partitioned matrix in k+1 columns
as

XXX =
(
jjj xxx1 ... xxxk

)′
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all the columns of this matrix are n-dimensional vectors and so are again points in n-
dimensional space. Because XXX is assumed to be of rank k+1, the vectors are linearly
independent. The set of linear combinations of of these vectors form a subspace of data space.
The elements of this space are of the form

XbXbXb = b0jjj + b1x1x1x1 + ..+ bkxkxkxk

where bbb is a k+1 vector of scalars, that is any vector in parameter space. It can be shown
that this is indeed a subspace, that is closed under addition and multiplication. It is said to
be the subspace spanned by the columns of XXX and it is called the prediction space.
The columns of XXX form a basis of the prediction space.
Under the multiple regression model yyy = XβXβXβ + εεε we see that yyy is a vector in prediction space,
E[yyy] = XβXβXβ, plus a vector of random errors εεε. Here neither βββ nor εεε is known.
In this setup multiple regression is the problem of finding a reasonable estimate of E[yyy] in
prediction space and then finding the corresponding vector in parameter space.
What do we mean by “reasonable”? An obvious answer is in terms of distance, namely the
point closest to yyy. Again, one needs to say how a distance is defined, an in general there
are many choices. Here we will use the basic Euclidean distance. Then from geometry we
find that the point ε̂̂ε̂ε = yyy − ŷ̂ŷy has to be perpendicular to the prediction space. Because
the prediction space is spanned by the columns of XXX, the point ŷ̂ŷy must be such that ε̂̂ε̂ε is
orthogonal to the columns of XXX. From (4.1.12) we know that this means

X ′ε̂X ′ε̂X ′ε̂ = 000

so

000 = X ′ε̂X ′ε̂X ′ε̂ =
XXX ′(yyy − ŷ̂ŷy) =
XXX ′(yyy −Xβ̂Xβ̂Xβ̂) =
XXX ′yyy −XXX ′Xβ̂Xβ̂Xβ̂

and so again we arrive at the normal equations XXX ′Xβ̂Xβ̂Xβ̂ = XXX ′yyy!

5.3.2 The Model in Centered Form

5.3.2.1 Definition (6.3.1)

yi = β0 +
k∑
j=1

βjxij + εi =

α +
n∑
j=1

βj(xij − x̄j) + εi

where
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α = β0 +
k∑
j=1

βjx̄j

and x̄j = 1
n

∑k
j=1 xij are the sample means of the variables. This is called the model in

centered form.
In matrix notation we have

yyy =
(
jjj XXXc

)(ααα
βββ1

)
+ εεε

where βββ =
(
β1 ... βk

)′
,

XXXc =
(
III − 1

n
JJJ
)
XXX1 =


x11 − x̄1 x12 − x̄2 ... x1k − x̄k
x21 − x̄1 x22 − x̄2 ... x2k − x̄k

... ... ...
xn1 − x̄1 xn2 − x̄2 ... xnk − x̄k


and XXX1 is XXX without the column of 1’s.
In this form the normal equations become

(
jjj XXXc

)′ (
jjj XXXc

)(ααα
βββ1

)
=
(
jjj XXXc

)
yyy

but

(
jjj XXXc

)′ (
jjj XXXc

)
=
(
n 000′
000 XXX ′cXXXc

)

and

(
jjj XXXc

)
yyy =

(
nȳ
XXX ′cyyy

)

and so the least squares estimates are given by

α̂ = ȳ

β̂̂β̂β1 = (XXX ′cXXXc)−1XcXcXc
′yyy

these are the same estimators as in the original model, and β̂0 = α̂−∑ β̂jx̄j
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5.3.2.2 Example (6.3.2) For the houseprice data we find
Standard form:
A=as.matrix(houseprice)
n=nrow(A)
y=A[, 1, drop=FALSE]
X=cbind(1, A[, -1])
betahat= (solve(t(X)%*%X)%*%t(X))%*%y
round(c(betahat), 4)

## [1] -67.6198 0.0857 -26.4931 -9.2862 37.3807

centered form:
A=as.matrix(houseprice)
n=nrow(A)
y=A[, 1, drop=FALSE]
Xc=A[, -1]
xbar=apply(Xc, 2, mean)
for(j in 1:4) Xc[ ,j]=Xc[ ,j]-xbar[j]
beta1hat= (solve(t(Xc)%*%Xc)%*%t(Xc))%*%y
round(c(beta1hat), 4)

## [1] 0.0857 -26.4931 -9.2862 37.3807
round(mean(y)-sum(beta1hat*xbar), 4)

## [1] -67.6198

Let Sxx be the matrix of sums of squares for the centered form, that is

(Sxx)ij = 1
n− 1

n∑
k=1

(xki − x̄i)(xkj − x̄j)

and syx be the vector with

(syx)i = 1
n− 1

n∑
k=1

(xki − x̄i)(yk − ȳ)

then we find Sxx = XXX ′cXXXc/(n− 1) and syx = XXX ′cyyy/(n− 1), and using this we we can write

β̂̂β̂β1 = S−1
xx sxy

β̂0 = ȳ − s′yxS−1
xx x̄̄x̄x
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5.3.2.3 Example (6.3.3) For the houseprice data we find
A=as.matrix(houseprice)
n=nrow(A)
y=A[, 1, drop=FALSE]
Xc=A[, -1]
xbar=apply(Xc, 2, mean)
for(j in 1:4) Xc[ ,j]=Xc[ ,j]-xbar[j]
Sxx=t(Xc)%*%Xc/(n-1)
syx=t(Xc)%*%y/(n-1)
beta1hat=solve(Sxx)%*%syx
beta0hat=mean(y)-t(syx)%*%solve(Sxx)%*%cbind(xbar)
round(c(beta0hat, beta1hat), 4)

## [1] -67.6198 0.0857 -26.4931 -9.2862 37.3807

5.3.3 Orthogonalization

Say we have a model of the form y = X1β1 +X2β2 + εy = X1β1 +X2β2 + εy = X1β1 +X2β2 + ε and a reduced model y = X1β
∗
1 + ε∗y = X1β
∗
1 + ε∗y = X1β
∗
1 + ε∗.

Let β̂1̂β1̂β1 be the estimator of β1β1β1 and β̂∗1̂β∗1̂β∗1 the estimator of β∗1β∗1β∗1 . Then it is generally not true that
β̂1̂β1̂β1=β̂∗1̂β∗1̂β∗1 .

5.3.3.1 Example Let’s use Sqfeet and Floors for XXX1 and bathrooms and baths for XXX2:
colnames(houseprice)

## [1] "Price" "Sqfeet" "Floors" "Bedrooms" "Baths"
fit=lm(Price~., data=houseprice)
fit1=lm(Price~Sqfeet+Floors, data=houseprice)
coef(fit)

## (Intercept) Sqfeet Floors Bedrooms Baths
## -67.61983705 0.08570823 -26.49305703 -9.28622097 37.38067201
coef(fit1)

## (Intercept) Sqfeet Floors
## -60.876065 0.091688 -4.149169

and we see that the estimators for Sqfeet and Floors differ.
However:

5.3.3.2 Theorem (6.3.4) If X ′1X2 = OX ′1X2 = OX ′1X2 = O we have β̂1̂β1̂β1 = β̂∗1̂β
∗
1̂β
∗
1

proof

We have β̂∗1 = (X ′1X1)−1X ′1yβ̂∗1 = (X ′1X1)−1X ′1yβ̂∗1 = (X ′1X1)−1X ′1y. For β̂1̂β1̂β1 we partition β̂∗1 = (X ′1X1)−1X ′1yβ̂∗1 = (X ′1X1)−1X ′1yβ̂∗1 = (X ′1X1)−1X ′1y:
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(
β̂1̂β1̂β1

β̂2̂β2̂β2

)
=
(
X ′1X1X ′1X1X ′1X1 X ′1X2X ′1X2X ′1X2
X ′2X1X ′2X1X ′2X1 X ′2X2X ′2X2X ′2X2

)−1 (
X ′1X
′
1X
′
1 X ′2X

′
2X
′
2

)(yyy
yyy

)
=
(
X ′1X1X ′1X1X ′1X1 OOO
OOO X ′2X2X ′2X2X ′2X2

)−1 (
X ′1yX ′1yX ′1y
X ′2yX ′2yX ′2y

)
=
(

(X ′1X1X ′1X1X ′1X1)−1 OOO
OOO (X ′2X2X ′2X2X ′2X2)−1

)(
X ′1yX ′1yX ′1y
X ′2yX ′2yX ′2y

)
=
(

(X ′1X1X ′1X1X ′1X1)−1X ′1yX ′1yX ′1y
(X ′2X2X ′2X2X ′2X2)−1X ′2yX ′2yX ′2y

)

We can use this theorem to obtain estimators of β2β2β2 as follows:

1. Regress yyy onX1X1X1 and calculate residuals y − ŷ(X1)y − ŷ(X1)y − ŷ(X1), where ŷ(X1)ŷ(X1)ŷ(X1) = X1β̂1 = X1(X ′1X1)−1X ′1yX1(X ′1X1)−1X ′1yX1(X ′1X1)−1X ′1yX1β̂1 = X1(X ′1X1)−1X ′1yX1(X ′1X1)−1X ′1yX1(X ′1X1)−1X ′1yX1β̂1 = X1(X ′1X1)−1X ′1yX1(X ′1X1)−1X ′1yX1(X ′1X1)−1X ′1y.

2. Regress the columns of X2X2X2 on X1X1X1 and obtain residuals X2.1 = X2 − X̂2(X1)X2.1 = X2 − X̂2(X1)X2.1 = X2 − X̂2(X1). If XXX2 is
written in terms of its columns as XXX2 =

(
xxx21 .. xxx2j .. xxx2p

)
, then the regression

coefficient vector for xxx2j is bbbj = (X ′1X1)−1X ′1x2j(X ′1X1)−1X ′1x2j(X ′1X1)−1X ′1x2j, and so

x̂̂x̂x2j = X1(X ′1X1)−1X ′1x2jX1(X ′1X1)−1X ′1x2jX1(X ′1X1)−1X ′1x2j

Taking all columns of XXX2 together we get

X̂2(X1)X̂2(X1)X̂2(X1) = X1(X ′1X1)−1X ′1X2X1(X ′1X1)−1X ′1X2X1(X ′1X1)−1X ′1X2 = X1AX1AX1A

where AAA = (X ′1X1)−1X ′1X2(X ′1X1)−1X ′1X2(X ′1X1)−1X ′1X2 is called the alias matrix. Note that X2.1 = X2 − X̂2(X1)X2.1 = X2 − X̂2(X1)X2.1 = X2 − X̂2(X1) is
orthogonal to XXX1:

X ′1X2.1 = X ′1X2X ′1X2.1 = X ′1X2X ′1X2.1 = X ′1X2 −X ′1X1(X ′1X1)−1X ′1X2X ′1X1(X ′1X1)−1X ′1X2X ′1X1(X ′1X1)−1X ′1X2 = OOO

3. Regress y − ŷ(X1)y − ŷ(X1)y − ŷ(X1) on X2.1X2.1X2.1. Since X2.1X2.1X2.1 is orthogonal to XXX1, we obtain the same β̂̂β̂β2 as in
the full model.

A=as.matrix(houseprice)
y=A[, 1, drop=FALSE]
X1=cbind(1, A[, 2:3])
X2=A[, 4:5, drop=FALSE]
yhatX1 = X1%*%solve(t(X1)%*%X1)%*%t(X1)%*%y
y1=y-yhatX1
X2hat.X1=X1%*%solve(t(X1)%*%X1)%*%t(X1)%*%X2
X2.1 = X2-X2hat.X1
round(t(X1)%*%X2.1, 5)

5.3.3.3 Example (6.3.5)

## Bedrooms Baths
## 0 0
## Sqfeet 0 0
## Floors 0 0
round(c(solve(t(X2.1)%*%X2.1)%*%t(X2.1)%*%y1), 2)

## [1] -9.29 37.38
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round(coef(lm(Price~., data=houseprice)), 2)

## (Intercept) Sqfeet Floors Bedrooms Baths
## -67.62 0.09 -26.49 -9.29 37.38

5.4 Normal Model and Coefficient of Determination R2

5.4.1 Normal Model

We now add the assumption

yyy ∼ Nn(XβXβXβ, σ2III)

Under this assumption it is now possible to use maximum likelihood for estimation. We denote
the likelihood function by L(βββ, σ2) and the log likelihood function by l(βββ, σ2) = logL(βββ, σ2).

5.4.1.1 Theorem (6.4.1) If yyy ∼ Nn(XβXβXβ, σ2III) where XXX is n× k + 1 with full rank k+1<n,
the maximum likelihood estimators are

β̂̂β̂β = (XXX ′XXX)−1XXX ′yyy =

σ̂2 = 1
n

(yyy −Xβ̂Xβ̂Xβ̂)′(yyy −Xβ̂Xβ̂Xβ̂)

so the mle of βββ is the least squares estimator.
proof (sketch)

l(βββ, σ2) = −n2 log(2π)− n

2 log σ2 − 1
2σ2 (yyy −XβXβXβ)′(yyy −XβXβXβ)

taking partial derivatives and setting them equal to 0 yields the desired result.

5.4.1.2 Theorem (6.4.2) Under the assumptions of theorem (6.4.1) we find

i. β̂̂β̂β ∼ Nk+1(βββ, σ2(XXX ′XXX)−1)
ii. nσ̂2/σ2 ∼ χ2(n− k − 1)

iii. β̂̂β̂β and σ̂2 are independent
proof
i follows from (5.2.8) and ii and iii have been shown before for the least squares estimators

5.4.1.3 Theorem (6.4.3) Under the assumptions of theorem (6.4.1) β̂̂β̂β and σ̂2 are jointly
sufficient statistics
proof omitted
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5.4.1.4 Theorem (6.4.4) Under the assumptions of theorem (6.4.1) β̂̂β̂β and σ̂2 have minimum
variance among all unbiased estimators.
proof omitted
Note that this is a much stronger result than the Gauss-Markov theorem, which was about
linear unbiased estimators.

5.4.2 R2 in fixed-x regression

We can partition SST as follows: SST=SSR+SSE, where

SSR = β̂̂β̂β′1XXX
′
cyyy

is called the regression sum of squares.

5.4.2.1 Definition (6.4.5)

R2 = SSR
SSE = β̂̂β̂β′1XXX

′
cXXXcβ̂̂β̂β1∑(yi − ȳ)2 = β̂̂β̂β′XXX ′yyy − nȳ2

y′yy′yy′y − nȳ2

is called the coefficient of determination. It provides a measure of how well the model fits
the data.

5.4.2.2 Example (6.4.6) For the houseprice data we find
A=as.matrix(houseprice)
n=nrow(A)
y=A[, 1, drop=FALSE]
X=cbind(1, A[, -1])
betahat= (solve(t(X)%*%X)%*%t(X))%*%y
(t(betahat)%*%t(X)%*%y-n*mean(y)^2)/(t(y)%*%y-n*mean(y)^2)

## Price
## Price 0.8862443

so this model has an R2 of 88.6%.
Of course we can also use R:
summary(lm(Price~., data=houseprice))

##
## Call:
## lm(formula = Price ~ ., data = houseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
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## -23.018 -5.943 1.860 5.947 30.955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.61984 17.70818 -3.819 0.000882
## Sqfeet 0.08571 0.01076 7.966 4.62e-08
## Floors -26.49306 9.48952 -2.792 0.010363
## Bedrooms -9.28622 6.82985 -1.360 0.187121
## Baths 37.38067 12.26436 3.048 0.005709
##
## Residual standard error: 13.71 on 23 degrees of freedom
## Multiple R-squared: 0.8862, Adjusted R-squared: 0.8665
## F-statistic: 44.8 on 4 and 23 DF, p-value: 1.558e-10

Here are some properties of R2:
• 0 < R2 < 1
• if βββ = 0 R2 = 0
• R = cor(yyy, ŷ̂ŷy)2, that is R2 is the square of the correlation between the observed and the

predicted y’s.

fit=lm(Price~., data=houseprice)
summary(fit)

5.4.2.3 Example (6.4.7)

##
## Call:
## lm(formula = Price ~ ., data = houseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.018 -5.943 1.860 5.947 30.955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.61984 17.70818 -3.819 0.000882
## Sqfeet 0.08571 0.01076 7.966 4.62e-08
## Floors -26.49306 9.48952 -2.792 0.010363
## Bedrooms -9.28622 6.82985 -1.360 0.187121
## Baths 37.38067 12.26436 3.048 0.005709
##
## Residual standard error: 13.71 on 23 degrees of freedom
## Multiple R-squared: 0.8862, Adjusted R-squared: 0.8665
## F-statistic: 44.8 on 4 and 23 DF, p-value: 1.558e-10
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yhat=predict(fit)
cor(houseprice$Price, yhat)^2

## [1] 0.8862443

• Adding a variable to the predictors never decreases R2.
• if βββ = 0 E[R2] = k/(n− 1)
• R2 is invariant under a full-rank linear transformation of the x’s and under a scale

transformation of the y’s, but not a linear transformation of the x’s and the y’s simulta-
neously.

• R2 = sss′yxSSS
−1
xxsssyx/s

2
y

5.5 Generalized Least Squares

Until now we had the assumption that the y variables were independent. We will now study
the case where cov(yyy) = σ2VVV . One common case is were the variance of the y’s increases (or
decreases) as the x’s increase (or decrease). Another is if the x’s are time points, and one
would expect responses close together in time to have some correlation.
So the model now is

yyy = XβXβXβ + εεε, E[yyy] = XβXβXβ, cov(yyy) = σ2VVV

where XXX is full-rank and VVV is a known positive definite matrix.
Notice that VVV is an n × n matrix, and we have n observations, so estimation of VVV is not
possible. Sometimes additional information on VVV is available and estimation is possible.

5.5.1 Estimation

5.5.1.1 Theorem (6.5.1) Under the model above we have
i. The BLUE estimator of βββ is

β̂̂β̂β = (X ′V −1XX ′V −1XX ′V −1X)−1X ′V −1yX ′V −1yX ′V −1y

ii.

cov(β̂̂β̂β) = σ2(X ′V −1XX ′V −1XX ′V −1X)−1

iii. an unbiased estimator of σ2 is

ŝ2 = (yyy −Xβ̂Xβ̂Xβ̂)′VVV −1(yyy −Xβ̂Xβ̂Xβ̂)/(n− k − 1)

proof omitted
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5.5.1.2 Theorem (6.5.2) say yyy ∼ Nn(XβXβXβ, σ2VVV ), then the maximum likelihood estimators
are

β̂̂β̂β = (X ′V −1XX ′V −1XX ′V −1X)−1X ′V −1yX ′V −1yX ′V −1y

ŝ2 = (yyy −Xβ̂Xβ̂Xβ̂)′VVV −1(yyy −Xβ̂Xβ̂Xβ̂)/n

proof omitted

5.5.1.3 Example (6.5.3) Recall the centered model

yyy =
(
jjj XXXc

)(ααα
βββ1

)
+ εεε

with covariance pattern

ΣΣΣ =


1 ρ ... ρ
ρ 1 ... ρ
... ... ...
ρ ρ ... 1

 = σ2 [(1− ρ)III + ρJJJ ] = σ2VVV

so all variables have equal variance and any pair has the same correlation.
Note

X ′V −1XX ′V −1XX ′V −1X =(
jjj′

XXX ′c

)
VVV −1

(
jjj XXXc

)
=(

jjj′VVV −1jjj jjj′VVV −1XXXc

XXX ′cVVV
−1jjj XXX ′cVVV

−1XXXc

)

We can find

VVV −1 = a(III − bρJJJ)

where a = 1/(1− ρ) and b = 1/[(1 + (n− 1)ρ)]. Now
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X ′V −1XX ′V −1XX ′V −1X =

(
jjj′a(III − bρJJJ)jjj jjj′a(III − bρJJJ)XXXc

XXX ′ca(III − bρJJJ)jjj XXX ′ca(III − bρJJJ)XXXc

)
=

(
ajjj′jjj − abρjjj′JJJjjj ajjj′XXXc − abρjjj′JJJXXXc

aXXX ′cjjj − abρXXX ′cJJJjjj aXXX ′cXXXc − abρXXX ′cJJJXXXc

)
=

(
an− abρn2 ajjj′XXXc − abρnjjj′XXXc

aXXX ′cjjj − abρXXXcnjjj aXXX ′cXXXc − abρXXX ′cJJJXXXc

)
=

(
an(1− bnρ) a(1− bnρ)jjj′XXXc

a(1− bnρ)XXX ′cjjj XXX ′ca(1− bρJJJ)XXXc

)
=

(
bn 000′
000 aXXX ′cXXXc

)

because XXXc is the centered matrix and so j′Xj′Xj′Xc = 000′. Also we have

X ′V −1yX ′V −1yX ′V −1y = XXX =
(
bnȳ
aXXX ′cyyy

)

and so

(
α̂

β̂1

)
=
(

ȳ
(XXX ′cXXXc)−1XXXcyyy

)

5.5.2 Weighted Regression

5.5.2.1 Example (6.5.4) Suppose we have a simple regression problem of the form

yi = β0 + β1xi + εi

where var(yi) = σ2xi and cov(yi, yj) = 0 for all i 6= j. (this is an example of a weighted
regression model). So we have

VVV = σ2


x1 0 ... 0
0 x2 ... 0
... ... ...
0 0 .. xn
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and

XXX =


1 x1
... ...
1 xn


and

VVV −1 = 1/σ2


1/x1 0 ... 0

0 1/x2 ... 0
... ... ...
0 0 .. 1/xn


X ′V −1XX ′V −1XX ′V −1X =

1 x1
... ...
1 xn


′

1/σ2


1/x1 0 ... 0

0 1/x2 ... 0
... ... ...
0 0 .. 1/xn




1 x1
... ...
1 xn

 =

1/σ2
(

1/x1 1/x2 ... 1/xn
1 1 ... 1

)
1 x1
... ...
1 xn

 =

(∑ 1/xi n
n

∑
xi

)

(X ′V −1XX ′V −1XX ′V −1X)−1 =
σ2

(∑ 1/xi)(
∑
xi)− n2

(∑
xi −n
−n ∑ 1/xi

)

X ′V −1yX ′V −1yX ′V −1y =

1/σ2
(

1/x1 1/x2 ... 1/xn
1 1 ... 1

)
y1
...
yn

 =

1/σ2
(∑

yi/xi∑
yi

)

and so
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β̂̂β̂β = (X ′V −1XX ′V −1XX ′V −1X)−1X ′V −1yX ′V −1yX ′V −1y =

σ2

(∑ 1/xi)(
∑
xi)− n2

(∑
xi −n
−n ∑ 1/xi

)
1/σ2

(∑
yi/xi∑
yi

)
=

σ2

(∑ 1/xi)(
∑
xi)− n2

(
(∑ yi/xi)(

∑
xi)− n

∑
yi

(∑ 1/xi)(
∑
yi)− n(∑ yi/xi)

)

Let’s do a numerical example using R: say x=1,..,5 and y=100+10x+N(0, 5x), then
x=1:5
y=cbind(100+10*x+rnorm(5, 0, 5*x))
plot(x,y)

1 2 3 4 5

11
5

12
0

12
5

13
0

x

y

V=diag(x)
V

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 0 0 0 0
## [2,] 0 2 0 0 0
## [3,] 0 0 3 0 0
## [4,] 0 0 0 4 0
## [5,] 0 0 0 0 5
X=cbind(1,x)
X

## x
## [1,] 1 1
## [2,] 1 2
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## [3,] 1 3
## [4,] 1 4
## [5,] 1 5
Vinf=diag(1/x)
Xp.Vinf.X = t(X)%*%Vinf%*%X
c(sum(1/x), sum(x))

## [1] 2.283333 15.000000
Xp.Vinf.X

## x
## 2.283333 5
## x 5.000000 15
A=solve(Xp.Vinf.X)
c(sum(x), -5, sum(1/x))/((sum(1/x)*sum(x)-5^2))

## [1] 1.6216216 -0.5405405 0.2468468
A

## x
## 1.6216216 -0.5405405
## x -0.5405405 0.2468468
B=t(X)%*%Vinf%*%y
c(sum(y/x), sum(y))

## [1] 268.3518 604.1924
B

## [,1]
## 268.3518
## x 604.1924
c(sum(y/x)*sum(x)-5*sum(y),

sum(1/x)*sum(y)-5*sum(y/x))/((sum(1/x)*sum(x)-5^2))

## [1] 108.574538 4.087978
A%*%B

## [,1]
## 108.574538
## x 4.087978

so this works very well!
We can fit a weighted regression also with the R routine lm and the argument weights. These
are the inverses of the variances:
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summary(lm(y~x, weights=1/x))

##
## Call:
## lm(formula = y ~ x, weights = 1/x)
##
## Weighted Residuals:
## 1 2 3 4 5
## 0.3303 -1.7673 0.7326 3.1637 -2.4271
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 108.575 3.261 33.298 5.95e-05
## x 4.088 1.272 3.213 0.0488
##
## Residual standard error: 2.561 on 3 degrees of freedom
## Multiple R-squared: 0.7749, Adjusted R-squared: 0.6998
## F-statistic: 10.33 on 1 and 3 DF, p-value: 0.04883

5.5.2.2 Example (6.5.5) Let’s do a simple simulation to see the difference between ordinary
and weighted regression. We use the model similar to the last example:
gen.data=function(n=50, beta0=100, beta1=10, sigma2=1) {

x=seq(1, 5, length=n)
y=beta0+beta1*x+rnorm(n, 0, sigma2*x)
cbind(x, y)

}
plot(gen.data())
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Now we do the following: we generate a data set, estimate the parameters with both ordinary
and weighted least squares, and repeat this 1000 times:
B=1000
a=matrix(0, B, 4)
for(i in 1:B) {

x=gen.data()
a[i, 1:2]=coef(lm(x[ ,2]~x[ ,1]))
a[i, 3:4]=coef(lm(x[ ,2]~x[ ,1], weights=1/x[ ,1]))

}

Let’s see:
par(mfrow=c(2,2))
for(i in 1:4)

hist(a[, i], 50, main="")

a[, i]
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apply(a, 2, mean)

## [1] 99.999575 9.999502 99.998931 9.999717
apply(a, 2, var)

## [1] 1.0577596 0.1791154 0.6136294 0.1233135

and so we see that the weighted least squares estimators have smaller variance
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5.6 Hypothesis Tests in Regression

5.6.1 Test for Overall Regression

We start with a test to see whether any of the predictor variables is useful. So let βββ1 =
(β1 ... βk)′, then we wish to test

H0 : βββ1 = 000

To find a test we will use the centered model

yyy =
(
jjj XXXc

)( α
βββ1

)
+ εεε

where XXXc = [III − (1/n)JJJ ]XXX1 is the centered matrix and XXX1 is XXX without the column of 1’s.
The corrected total sum of squares is given by

∑
(yi − ȳ)2 =

β̂̂β̂β′1XXX
′
cyyy +

[∑
(yi − ȳ)2 − β̂̂β̂β′1XXX ′cyyy

]
=

β̂̂β̂β′1XXX
′
cXXXcβ̂̂β̂β1 + SSE =

SSR + SSE

using (6.4.5).
Recall the following formulas:

∑
(yi − ȳ)2 = yyy′[III − (1/n)JJJ ]yyy

β̂̂β̂β1 = (XXX ′cXXXc)−1XXX ′cyyy

SSE =
∑

(yi − ȳ)2 − β̂̂β̂β1XXX
′
cyyy

so we have

SSR + SSE =
∑

(yi − ȳ)2 = yyy′[III − (1/n)JJJ ]yyy =
y′Xy′Xy′Xc(XXX ′cXXXc)−1XXX ′cyyy + yyy′[III − (1/n)JJJ ]yyy − y′Xy′Xy′Xc(XXX ′cXXXc)−1XXX ′cyyy =
yyy′HHHcyyy + yyy′[III − (1/n)JJJ −HHHc]yyy =

where HHHc = XXXc(XXX ′cXXXc)−1XXX ′c.

5.6.1.1 Theorem (6.6.1) The matrices above have the following properties:
i. HHHc[III − (1/n)JJJ ] = HHHc

ii. HHHc is idempotent of rank k
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iii. III − (1/n)JJJ −HHHc is idempotent of rank n-k-1

iv. HHHc[III − (1/n)JJJ −HHHc] = OOO

proof follow from direct calculation

5.6.1.2 Theorem (6.6.2) If yyy ∼ Nn(XβXβXβ, σ2III) then

i. SSR/σ2 = β̂̂β̂β′1XXX
′
cXXXcβ̂̂β̂β1/σ

2 ∼ χ2(k, λ1) where λ1 = βββ′1XXX
′
cXXXcβββ1/(2σ2)

ii. SSE/σ2 = [∑(yi − ȳ)2 − β̂̂β̂β′1XXX ′cXXXcβ̂̂β̂β1]/σ2 ∼ χ2(n− k − 1)
iii. SSR and SSE are independent

proof i and ii follow from the calculation above and (5.2.2). The proof of iii is omitted.

5.6.1.3 Theorem (6.6.3) Under the conditions of theorem (6.6.2) let

F = SSR/k
SSE/(n− k − 1)

then
i. if H0 : βββ1 = 000 is false F ∼ F (k, n− k − 1, λ1), where λ1 = βββ′1XXX

′
cXXXcβββ1/(2σ2)

ii. if H0 : βββ1 = 000 is true F ∼ F (k, n− k − 1)
proof
see (5.4.6) and (6.6.1)
The test H0 : βββ1 = 000 is done as follows: Reject H0 if F ≥ Fα,k,n−k−1, where Fα,k,n−k−1 is the
upper α percentile of a (central) F distribution with k and n-k-1 degrees of freedom.
The p value of the test is given by P (X > F ), where X ∼ F (k, n− k − 1).

The result of such a test is usually presented in the form of an ANOVA table, which looks as
follows:

Source df SS F TS

Due to β1 k SSR SSR/k F
Error n− k − 1 SSE SSE/(n− k − 1)
Total n− 1 SST

5.6.1.4 Example (6.6.4) We run this the test for the houseprice data
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A=as.matrix(houseprice)
n=nrow(A);k=ncol(A)-1
c(n, k, n-k-1)

## [1] 28 4 23
y=A[, 1, drop=FALSE]
Xc=A[, -1]
xbar=apply(Xc, 2, mean)
for(j in 1:4) Xc[ ,j]=Xc[ ,j]-xbar[j]
beta1hat= (solve(t(Xc)%*%Xc)%*%t(Xc))%*%y
round(c(beta1hat), 4)

## [1] 0.0857 -26.4931 -9.2862 37.3807

SSR = β̂̂β̂β′1XXX
′
cyyy

ssr=t(beta1hat)%*%t(Xc)%*%y
ssr/c(1, k)

## [1] 33670.654 8417.663

SSE =
∑

(yi − ȳ)2 − SSR

sst=sum((y-mean(y))^2)
sst

## [1] 37992.52
sse=sst-ssr
sse/c(1, n-k-1)

## [1] 4321.8636 187.9071
FTS = (ssr/k)/(sse/(n-k-1))
FTS

## Price
## Price 44.79694

Source df SS F TS

Due to β1 4 33670 8418 44.8
Error 23 4322 187.9
Total 27 37992

If we test at the 5% level the critical value is

180



qf(0.95, k, n-k-1)

## [1] 2.795539

F = 44.8 > 2.8, and so we reject the null hypothesis, at least some of the variables are useful
for predicting the house prices.
The p value of the test is
1-pf(FTS, k, n-k-1)

## Price
## Price 1.55808e-10

5.6.2 Test on Subsets of βββ

Say we have split βββ = (βββ1 βββ2)′ and we wish to test H0 : βββ2 = 0. Then we can partition XXX
accordingly, so the model becomes

yyy = X1β1X1β1X1β1 +X2β2X2β2X2β2 + εεε

where the intercept β0 is included in βββ1.
We define matrices

HHH = XXX(XXX ′XXX)−1XXX ′

HHH1 = XXX1(XXX ′1XXX1)−1XXX ′1

so that HyHyHy is the least squares estimator of βββ under the full model and H1yH1yH1y is the least
squares estimator of βββ1 under reduced model assuming the null hypothesis is true.

5.6.2.1 Theorem (6.6.5) HHH −HHH1 is idempotent with rank h, where h is the number of
elements in βββ2

proof omitted

5.6.2.2 Theorem (6.6.6) If yyy ∼ Nn(XβXβXβ, σ2III) then
i. y′(I −H)yy′(I −H)yy′(I −H)y/σ2 ∼ χ2(n− k − 1)
ii. y′(H −H1)yy′(H −H1)yy′(H −H1)y/σ2 ∼ χ2(h, λ1), where

λ1 = βββ′2[XXX ′2XXX2 −XXX ′2XXX1(XXX ′1XXX1)−1XXX ′1XXX2]βββ2/(2σ2)
iii. y′(I −H)yy′(I −H)yy′(I −H)y and y′(H −H1)yy′(H −H1)yy′(H −H1)y are independent

proof omitted
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5.6.2.3 Theorem (6.6.7) If yyy ∼ Nn(XβXβXβ, σ2III) and define

F = y′(H −H1)yy′(H −H1)yy′(H −H1)y/h
y′(I −H)yy′(I −H)yy′(I −H)y/(n− k − 1) =

then
i. if H0 : β2β2β2 = 0 is false F ∼ F (h, n− k − 1, λ1)
ii. if H0 : β2β2β2 = 0 is true F ∼ F (h, n− k − 1)

proof same as above
so the test rejects the null hypothesis if F ≥ Fα,h,n−k−1

5.6.2.4 Example (6.6.8) Let’s consider the houseprice data. First note
round(cor(houseprice)[1, -1], 3)

## Sqfeet Floors Bedrooms Baths
## 0.915 0.291 0.605 0.653

that the variable with the smallest correlation with Price is Floors, so one might want to test
whether Floors is a useful predictor variable. Let’s see:
A=as.matrix(houseprice)
n=nrow(A)
k=ncol(A)-1
X=cbind(1, A[, -1])
y=A[, 1, drop=FALSE]
X1=X[, -3]
H=X%*%solve(t(X)%*%X)%*%t(X)
H1=X1%*%solve(t(X1)%*%X1)%*%t(X1)
num=t(y)%*%(H-H1)%*%y
denom=t(y)%*%(diag(nrow(H))-H1)%*%y/(n-k-1)
FTS=num/denom
c(FTS, qf(0.95, 1, n-k-1))

## [1] 5.821483 4.279344

5.82 > 4.28, so we reject the null hypothesis, Floors is (borderline) useful.
The p-value is
1-pf(FTS, 1, n-k-1)

## Price
## Price 0.02420375

Comment using correlations with the response to see whether a variable is useful in a
multiple regression problem turns out to be a bad idea. We will return to this important
topic soon.
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5.6.2.5 Example (6.6.9) We have the results from an experiment designed to determine
how much the speed of a washing machine effects the wear on a new fabric. The machine
was run at 5 different speeds (measured in rpm) and with six pieces of fabric each.
ggplot(data=fabricwear, aes(Speed, Wear)) +

geom_point()
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The scatterplot makes it clear that a linear model is not going to work, so we will try a
polynomial model. Because the predictor variable has large values we first standardize it:
n=length(fabricwear$Speed)
x=(fabricwear$Speed-110)/(190-110)
X=cbind(1, x, x^2)
y=cbind(fabricwear$Wear)
k=ncol(X)
X1=X[, -k]
H=X%*%solve(t(X)%*%X)%*%t(X)
H1=X1%*%solve(t(X1)%*%X1)%*%t(X1)
num=t(y)%*%(H-H1)%*%y
denom=t(y)%*%(diag(nrow(H))-H1)%*%y/(n-k-1)
round(c(num/denom, qf(0.95, 1, n-k-1)), 2)

## [1] 19.56 4.23

19.6 ≥ 4.23, and so we reject the null hypothesis, the quadratic term improves the fit
significantly.
How about a cubic term?
X=cbind(1, x, x^2,x^3)
k=ncol(X)
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X1=X[, -k]
H=X%*%solve(t(X)%*%X)%*%t(X)
H1=X1%*%solve(t(X1)%*%X1)%*%t(X1)
num=t(y)%*%(H-H1)%*%y
denom=t(y)%*%(diag(nrow(H))-H1)%*%y/(n-k-1)
round(c(num/denom, qf(0.95, 1, n-k-1)), 2)

## [1] 0.75 4.24

0.75 < 4.24, and so a cubic term is not needed.

Recall the definition of R2:

R2 = β̂′X ′yβ̂′X ′yβ̂′X ′y − nȳ2

y′yy′yy′y − nȳ2

Now

5.6.2.6 Theorem (6.6.10)

i. when testing H0 : βββ1 = 0 we have

F = R2/k

(1−R2)/(n− k − 1)
ii. when testing H0 : βββ2 = 0 we have

F = (R2 −R2
r)/h

(1−R2)/(n− k − 1)

where R2
r is is R2 for the reduced model

proof direct calculation

5.6.3 Testing the General Linear Hypothesis

5.6.3.1 Definition (6.6.11) Let CCC be a q × (k + 1) matrix of constants, then a test of a
hypothesis of the form

H0 : CβCβCβ = 0

is called the general linear hypothesis
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5.6.3.2 Example (6.6.12) The test for the full model corresponds to CCC =
(
000 IIIk

)
.

The test for the a set of predictors corresponds to CCC =
(
000 IIIh

)
.

We can also use this to test many other hypothesis:
Say have βββ = (β0, β1, .., β4)′ and we want to test

H0 : β2 − 2β3 = β2 + β4 = 0

then we can write this as follows

H0 :
(

0 0 1 −2 0
0 0 1 0 1

)
β0
β1
β2
β3
β4

 = 000

5.6.3.3 Theorem (6.6.13) If yyy ∼ Nn(XβXβXβ, σ2III) and CCC be a q × (k + 1) matrix of constants,
then

i. Cβ̂Cβ̂Cβ̂ ∼ Nq

(
CβCβCβ, σ2C(X ′X)−1C ′C(X ′X)−1C ′C(X ′X)−1C ′

)
ii. SSH/σ2 = (Cβ̂Cβ̂Cβ̂)′[C(X ′X)−1C ′C(X ′X)−1C ′C(X ′X)−1C ′]−1Cβ̂Cβ̂Cβ̂ ∼ χ2(q, λ)

where λ = (Cβ)Cβ)Cβ))′[C(X ′X)−1C ′C(X ′X)−1C ′C(X ′X)−1C ′]−1CβCβCβ/(2σ2)
iii. SSE/σ2 = y′[I −X(X ′X)−1X ′]yy′[I −X(X ′X)−1X ′]yy′[I −X(X ′X)−1X ′]y/σ2 ∼ χ2(n− k − 1
iv. SSH and SSE are independent

proof omitted

5.6.3.4 Theorem (6.6.14) Say yyy ∼ Nn(XβXβXβ, σ2III) and CCC be a q× (k+ 1) matrix of constants.
Let

F = SSH/q
SSE/(n− k − 1)

i. IfH0 : CβCβCβ = 0 is false, then F ∼ F (q, n−k−1, λ), where λ = (Cβ)Cβ)Cβ))′[C(X ′X)−1C ′C(X ′X)−1C ′C(X ′X)−1C ′]−1CβCβCβ/(2σ2)
ii. If H0 : CβCβCβ = 0 is true, then F ∼ F (q, n− k − 1),

proof same as theorems above
If we want to test a single condition, for example H0 : β1 = β2, we can use the test above
but the calculations simplify. In this case CCC is a matrix of one row, so we can write the null
hypothesis as H0 : a′βa′βa′β = 0, and the test statistic becomes
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F = (a′β̂a′β̂a′β̂)2

s2a′(X ′X)−1aa′(X ′X)−1aa′(X ′X)−1a

where s2=SSE/(n-k-1). Under the null hypothesis F now has an F distribution with 1 and
n-k-1 degrees of freedom.
Also consider a test for a single variable, that is the test H0 : βj = 0. This can be done with
the above and aaa = (0, .., 1, .., 0)′, which leads to

F =
β̂2
j

s2gjj

where gjj is the jth diagonal element of (X ′X)(X ′X)(X ′X)−1.
Since an F distribution with 1 and n degrees of freedom is equal to a t distribution with n
degrees of freedom we also have the following test: Let

T = β̂j
s
√
gjj

and reject the null hypothesis if |T | ≥ t(α/2, n− k − 1)

5.6.3.5 Example (6.6.15) Let’s repeat the test for Floors in the houseprice data.
A=as.matrix(houseprice)
n=nrow(A)
k=ncol(A)-1
X=cbind(1, A[, -1])
y=A[, 1, drop=FALSE]
G=solve(t(X)%*%X)
betahat= (solve(t(X)%*%X)%*%t(X))%*%y
betahat

## Price
## -67.61983705
## Sqfeet 0.08570823
## Floors -26.49305703
## Bedrooms -9.28622097
## Baths 37.38067201
sse = t(y)%*%(diag(n)-X%*%G%*%t(X))%*%y/(n-k-1)
round(c(abs(betahat[3]/sqrt(sse*G[3, 3])), qt(0.975, n-k-1)),3)

## [1] 2.792 2.069
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5.7 Simultaneous Inference, Multiple Testing

We will discuss this topic in the context of regression analysis, it is however much more
general and arises in almost all areas of Statistics. The solutions discussed here will generally
also work in other areas.

5.7.1 Bonferroni’s Method

In example (6.5.15) we tested for the predictor Floors of the houseprice data. But why just
Floors, let’s test for all predictors. In fact, let’s write an R routine that does this in general:
test.all.predictors=function(y, X, alpha=0.05) {

n=nrow(X)
k=ncol(X)
X=cbind(1, X)
y=cbind(y)
G=solve(t(X)%*%X)
betahat= (solve(t(X)%*%X)%*%t(X))%*%y
sse = t(y)%*%(diag(n)-X%*%G%*%t(X))%*%y/(n-k-1)
TS=c(abs(betahat)/sqrt(sse*diag(G)))[-1]
names(TS)=colnames(X)[-1]
list(TS=TS, crit=qt(1-alpha/2, n-k-1))

}
test.all.predictors(houseprice[, 1], as.matrix(houseprice[, -1]))

## $TS
## Sqfeet Floors Bedrooms Baths
## 7.965553 2.791823 1.359653 3.047909
##
## $crit
## [1] 2.068658

and so we reject all the null hypotheses except the one for Bedrooms, all other predictors are
useful.
There is however a problem. Let’s consider a situation where in fact none of the predictors
is useful, so all the null hypotheses are true. Let’s do a little simulation to see what would
happen:

B=1000
n=20
TS=matrix(0, B, 4)
x=seq(0, 1, length=n)
X=matrix(runif(4*n), n, 4)
for(i in 1:B) {

y=rnorm(n) # y does not depend on any of the predictors
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TS[i, ]=test.all.predictors(y, X)$TS
}

crit=qt(0.975, n-4-1)
for(i in 1:4) print(sum(abs(TS[, i])> crit)/B)

5.7.1.1 Example (6.7.1)

## [1] 0.055
## [1] 0.053
## [1] 0.05
## [1] 0.046

and so this seems to work fine. However consider the following question: how often do we
reject at least on of the four hypotheses? Well
TSmax=apply(TS, 1, max)
sum((TSmax>crit))/B

## [1] 0.172

In other words, if we applied this idea in practice, we would declare at least one predictor to
be useful 17.2% of the time, even though none of them is.
The problem is a simple one: if you pick a card from a standard deck, the probability to pick
the Ace of hearts is small (1/52) but if you pick a card, look at it, put the card back, shuffle,
pick another card, look at it and so on, sooner or later you will find the Ace of Hearts!

5.7.1.2 Definition (6.7.2) Say we carry out k hypothesis tests, each at the α level of
significance. Then the probability to reject at least one null although they are all true is
called the familywise error rate, denoted by αf . α is then called the comparisonwise error
rate αc.
What can be said about αf? Here is one case

5.7.1.3 Theorem (6.7.3) If the k tests are independent we have αf = 1− (1− αc)k

proof
Let the event test i rejects null hypothesis be denoted by Ti, then
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αf = P (at least one test rejects null | all nulls are true) =
1− P (none of the tests rejects null | all nulls are true) =
1− P (∩ki=1{T ci }) =

1−
k∏
i=1

P (T ci ) = {by independence}

1− P (T c1 )k =
1− (1− P (T1))k =
1− (1− αc)k

So in this case the solution would be easy: if we want a familywise error rate of αf we should
to each test at 1− (1− αc)1/k.
The problem is that in our case (and in almost all real live cases) the tests are not independent!
In fact they are all using the same data set. But we do have:

5.7.1.4 Theorem (6.7.4)
αf ≤ kαc

proof

αf = P (at least one test rejects null | all nulls are true) =
P (∪ki=1{Ti}) ≤ {Bonferroni Inequality}
k∑
i=1

P (Ti) = kαc

So even if the tests are not independent, doing each test at an α/k level insures that αf is at
most α. This is called the Bonferroni approach.
On the other hand, if the tests are fairly dependent this method is quite conservative, that is
the true αf can be much smaller than α. This in turn will lead to a test with low power.
There are a number of modifications to the Bonferroni approach that have been proposed that
are not as conservative, The best known of these is the method known as Holm-Bonferroni.

5.7.2 Scheffe’s Method

A second approach to the multiple testing problem is due to Scheffe. Say we want to test

H0 : a′βa′βa′β = 0

Again the test is based on the test statistic
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F = (a′β̂a′β̂a′β̂)2

s2aaa′(X ′XX ′XX ′X)−1aaa

The test rejects the null hypothesis if F is greater than some critical value. The idea now is
to find critical values that work for all possible vectors aaa. It is therefore necessary to find the
distribution of maxaaa F .

5.7.2.1 Theorem (6.7.5)

i.

FM = max
aaa

 (a′β̂a′β̂a′β̂)2

s2aaa′(X ′XX ′XX ′X)−1aaa

 = β̂X ′Xβ̂β̂X ′Xβ̂β̂X ′Xβ̂

s2

ii. if y ∼ Nn(XβXβXβ, σ2III), then Fm/(k + 1) ∼ F (k + 1, n− k − 1)
proof

∂

∂a

(a′β̂a′β̂a′β̂)2

aaa′(X ′XX ′XX ′X)−1aaa
=

∂
∂a

(a′β̂a′β̂a′β̂)2(aaa′(X ′XX ′XX ′X)−1aaa)− (a′β̂a′β̂a′β̂)2 ∂
∂a

(aaa′(X ′XX ′XX ′X)−1aaa)
(aaa′(X ′XX ′XX ′X)−1aaa)2 = 000

now from (4.3.20) we have

∂

∂a
(a′β̂a′β̂a′β̂)2 = 2(a′β̂a′β̂a′β̂) ∂

∂a
(a′β̂a′β̂a′β̂) = 2(a′β̂a′β̂a′β̂)β̂̂β̂β

and from (4.3.21) we have

∂

∂a
(aaa′(X ′XX ′XX ′X)−1aaa) = 2(X ′XX ′XX ′X)−1aaa

and so we have

(a′β̂a′β̂a′β̂)β̂̂β̂β(aaa′(X ′XX ′XX ′X)−1aaa)− (a′β̂a′β̂a′β̂)2(X ′XX ′XX ′X)−1aaa = 000

a′β̂a′β̂a′β̂ is a number, so this is equivalent to

[aaa′(X ′XX ′XX ′X)−1aaa]β̂̂β̂β − a′β̂a′β̂a′β̂(X ′XX ′XX ′X)−1aaa = 000

a′β̂a′β̂a′β̂(X ′XX ′XX ′X)−1aaa = [aaa′(X ′XX ′XX ′X)−1aaa]β̂̂β̂β
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(X ′XX ′XX ′X)−1aaa = aaa′(X ′XX ′XX ′X)−1aaa

a′β̂a′β̂a′β̂
β̂̂β̂β

and finally

aaa = aaa′(X ′XX ′XX ′X)−1aaa

a′β̂a′β̂a′β̂
X ′XX ′XX ′Xβ̂̂β̂β =: cX ′XX ′XX ′Xβ̂̂β̂β

substituting this back we get the result
ii. follows from (6.6.14) with CCC = IIIk+1.

So, to test H0 : a′βa′βa′β = 0 for any aaa with αf ≤ α find

F = (a′β̂a′β̂a′β̂)2

s2aaa′(X ′XX ′XX ′X)−1aaa

and reject the null hypothesis if F ≥ (k + 1)Fα,k+1,n−k−1.
To test for individual β′s using Scheffe’s method we use aaa = (0, .., 1, 0, ..0)′. Then as before
the test reduces to the t test

t = β̂j
s
√
gjj

and we reject the null hypothesis if |t| ≥
√

(k + 1)Fα,k+1,n−k−1.
If k is small when compared to n we have

tα/2k,n−k−1 <
√

(k + 1)Fα,k+1,n−k−1

and so the Bonferroni test for individual predictors is more powerful than Scheffe’s test.

5.7.2.2 Example (6.7.6) Let’s apply both methods to the houseprice data. We already
found the test statistics:
TS.house=test.all.predictors(houseprice[, 1], as.matrix(houseprice[, -1]))$TS

Now for Bonferroni the critical value would be
qt(1-0.05/(2*4), 28-4-1)

## [1] 2.70972
TS.house>qt(1-0.05/(2*4), 28-4-1)

## Sqfeet Floors Bedrooms Baths
## TRUE TRUE FALSE TRUE
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and so we find Bedrooms to not be statistically significant
With Scheffe’s method:
sqrt((4+1)*qf(1-0.05, 4+1, 28-4-1))

## [1] 3.63318
TS.house>sqrt((4+1)*qf(1-0.05, 4+1, 28-4-1))

## Sqfeet Floors Bedrooms Baths
## TRUE FALSE FALSE FALSE

and only SqFeet is found significant.

5.7.3 MC: Simulation based Methods

5.7.3.1 Example (6.7.7) let’s return for a moment to example (6.7.1). There we ran a
simulation and collected all the test statistics. Then we found the largest of each (in absolute
value), that is the test statistic most likely to be larger than the critical value and leading to
a rejection of a null. This is what they looked like:
df=data.frame(x=TSmax)
bw <- diff(range(x))/50
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density")
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But if these were values of test statistics from real experiments, and knowing that in fact all
null hypotheses were true, we could just find critical values from it:
crit=quantile(TSmax, 0.95)
TS.house>crit

## Sqfeet Floors Bedrooms Baths
## TRUE TRUE FALSE TRUE

and using these critical values the test would have correct familywise error rate by design.
As discussed before, both Bonferroni and Scheffe are conservative methods, that is they
usually lead to a αf smaller than desired, and therefore also to a smaller power. The MC
method however achieves αf exactly.
This approach has another advantage: neither the Bonferroni method (as described above)
nor Scheffe’s method give us a p-value, which is what is generally quoted when doing a
hypothesis test. The MC method can be used to do just that.
To see how let’s return to the case were all the tests are independent. Let’s denote by Pi the
p-value of the ith test and by Pmin = min {Pi}, the smallest p-value which would correspond
to the test most likely to be rejected. As always p values are random variables, and therefore
so is Pmin. What is its distribution? First recall that for any correct hypothesis test (for a
continuous parameter) the distribution of the p-value has to be U[0,1], we have P (Pi < x) = x
for 0 < x < 1.

FPmin(x) = P (Pmin < x|all nulls are true) =
1− P (Pmin > x) =
1− P (∩ki=1{Pi > x}) =

1−
k∏
i=1

P (Pi > x) = {by independence}

1− P (P1 > x)k =
1− (1− P (P1 < x))k =
1− (1− x)k

Next we can make use of the following theorem from probability theory

5.7.3.2 Theorem (6.7.8) (Probability Integral Transform)
Let X ∼ F be a continuous random variable, then F (X) ∼ U [0, 1].
proof see any probability theory textbook
So we find that

P ∗min = 1− (1− Pmin)k ∼ U [0, 1]
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But in our case we do not have independence! So we do not know the distribution of Pmin.
However, we do have data from our simulation, and we can use that to find first observations
from Pmin and then its distribution:

• find values from Pmin

pmin=rep(0, B)
tmp=rep(0, 4)
for(i in 1:B) {

xsim=TS[sample(1:B, 1), ]
for(k in 1:4) tmp[k] <- sum(xsim[k] < TS[ ,k])/B
pmin[i] <- min(tmp)

}

Here is a histogram of the simulated Pmin values:
df=data.frame(x=pmin)
bw <- 1/50
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density")
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• find the distribution
This we can do by finding the empirical distribution function, defined by

F̂ (x) = #X ′s ≤ x

#ofX ′s
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.
x=seq(0, 1, length=1000)
y=x
for(i in 1:1000 ) {

y[i]=sum(pmin<=x[i])/B
}

Here is a graph that shows this distribution function as well as the Bonferroni one and the
distribution for completely dependent test, which is just F(x)=x:
df=data.frame(x=c(x, x, x),

y=c(1-(1-x)^4, y, x),
Method=rep(c("Bonferroni", "MC", "Completely Dep."), each=B))

ggplot(data=df, aes(x, y, color=Method)) +
geom_point()
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In this example the Bonferroni curve is the same as the MC curve because we did the
simulation under the assumption of independence. In general the MC curve will be between
the other two.
More details of this method can be found in Buja and Rolke, Calibration for Simultaneity:
(Re) Sampling Methods for Simultaneous Inference with Applications to Function Estimation
and Functional Data.

5.8 Confidence and Prediction Intervals

5.8.1 Confidence Intervals for βj’s

In (6.6.14) we found a test for H0 : βj = 0. Subtracting βj and inverting this test we find
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5.8.1.1 Theorem (6.8.1) A (1− α)100% confidence interval for βj is given by

β̂j ± tα/2,n−k−1s
√
gjj

proof From In (6.6.14) we have

P

−tα/2,n−k−1 <
β̂j − βj
s
√
gjj

< tα/2,n−k−1

 = 1− α

Solving the corresponding equations yields the result.

5.8.1.2 Example (6.8.2) Let’s find 90% confidence intervals for the houseprice data:
A=as.matrix(houseprice)
n=nrow(A)
k=ncol(A)-1
X=cbind(1, A[ ,-1])
y=A[, 1, drop=FALSE]
G=solve(t(X)%*%X)
betahat= (solve(t(X)%*%X)%*%t(X))%*%y
sse = t(y)%*%(diag(n)-X%*%G%*%t(X))%*%y/(n-k-1)
crit=qt(1-(1-0.9)/2, n-k-1)
Low=c(betahat-crit*sqrt(sse*diag(G)))
High=c(betahat+crit*sqrt(sse*diag(G)))
CI= round(cbind(Low, High), 3)
rownames(CI) = c("Intercept", colnames(A)[-1])
CI

## Low High
## Intercept -97.969 -37.270
## Sqfeet 0.067 0.104
## Floors -42.757 -10.229
## Bedrooms -20.992 2.419
## Baths 16.361 58.400

Warning again we have issue of simultaneous inference: the 90% coverage applies to each
interval individually, not to the collection of intervals.

5.8.1.3 Theorem (6.8.3) A (1− α)100% confidence interval for a′βa′βa′β 6= 0 is given by

a′β̂a′β̂a′β̂ ± tα/2,n−k−1s
√
a′(X ′X)−1aa′(X ′X)−1aa′(X ′X)−1a

proof similar to proof of (6.8.1)
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5.8.2 Confidence Intervals for E[yyy]

Let xxx0 = (1 x01 ... x0k)′ be some point, not necessarily a point in XXX. A prediction of the
response at that point is given by

ŷ0 = x0β̂x0β̂x0β̂

5.8.2.1 Corollary (6.8.4) A (1− α)100% confidence interval for E[ŷ] is given by

x′0β̂x
′
0β̂x
′
0β̂ ± tα/2,n−k−1s

√
x′0(X ′X)−1x0x′0(X ′X)−1x0x′0(X ′X)−1x0

5.8.2.2 Example (6.8.5) Let’s find a 95% confidence interval for the average price of a
two-story house with 2500 sqfeet, 3 bedrooms and 2 baths.
x0=rbind(1, 2500, 2, 3, 2)
crit=qt(1-(1-0.95)/2, n-k-1)
tmp=crit*sqrt(sse*t(x0)%*%solve(t(X)%*%X)%*%x0)
round(t(x0)%*%betahat+c(-1, 1)*tmp, 1)

## [1] 124.4 156.8

we can also use R:
fit=lm(Price~., data=houseprice)
newx=data.frame(Sqfeet=2500, Floors=2, Bedrooms=3, Baths=2)
predict(fit, newdata=newx, interval="confidence")

## fit lwr upr
## 1 140.5673 124.3619 156.7727

5.8.2.3 Example (6.8.6) Let’s consider the case of simple regression. Here we have previously
found

(X ′XX ′XX ′X)−1 = 1
n
∑
i(xi − x̄)2

( ∑
i x

2
i −∑i xi

−∑i xi n

)

and so if xxx0 = (1 x0)′
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x′0x
′
0x
′
0(X ′XX ′XX ′X)−1x0x0x0 =(
1 x0

) 1
n
∑
i(xi − x̄)2

( ∑
i x

2
i −∑i xi

−∑i xi n

)(
1
x0

)
=

1
n
∑
i(xi − x̄)2

(
1 x0

)(∑
i x

2
i − x0

∑
i xi

−∑i xi + nx0

)
=

1
n
∑
i(xi − x̄)2

[∑
i

x2
i − x0

∑
i

xi + nx2
0 − x0

∑
i

xi

]
=

1
n
∑
i x

2
i − (∑i xi)2

[∑
i

x2
i − 2x0

∑
i

xi + nx2
0

]
=

1
n
∑
i(xi − x̄)2

∑
i

[
x2
i − 2x0xi + x2

0

]
=

1
n
∑
i(xi − x̄)2

∑
i

(xi − x0)2 =

1
n
∑
i(xi − x̄)2

∑
i

(x0 − x̄+ x̄− xi)2 =

1
n
∑
i(xi − x̄)2

(
n(x0 − x̄)2 +

∑
i

(x̄− xi)2
)

=

1
n

+ (x0 − x̄)2∑
i(xi − x̄)2

This shows that the width of the interval increases with the distance of x0 to x̄.

5.8.3 Prediction Intervals for Future Observations

Another type of problem is to predict a future observation, not part of the current data set.
This is called a prediction problem, and we use the term prediction interval. Because the
future observation is independent from the data we find

var(y0 − ŷ0) =
var(x′0βx′0βx′0β + εεε0 − x′0β̂x

′
0β̂x
′
0β̂0) =

var(εεε0 − x′0β̂x′0β̂x′0β̂0) =
var(εεε0) + var(x′0β̂x′0β̂x′0β̂0) =
σ2 + σ2x′0x

′
0x
′
0(X ′XX ′XX ′X)−1x0x0x0 =

σ2
[
1 + x′0x

′
0x
′
0(X ′XX ′XX ′X)−1x0x0x0

]

5.8.3.1 Theorem (6.8.7) A (1− α)100% prediction interval of y at the point xxx0 is given by

x′0β̂x
′
0β̂x
′
0β̂ ± tα/2,n−k−1s

√
1 + x′0(X ′X)−1x0x′0(X ′X)−1x0x′0(X ′X)−1x0
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proof omitted

5.8.3.2 Example (6.8.8) Let’s find a 95% prediction interval for the of a two-story house
with 2500 sqfeet, 3 bedrooms and 2 baths.
x0=rbind(1, 2500, 2, 3, 2)
crit=qt(1-(1-0.95)/2, n-k-1)
tmp=crit*sqrt(sse*(1+t(x0)%*%solve(t(X)%*%X)%*%x0))
round(t(x0)%*%betahat+c(-1, 1)*tmp, 1)

## [1] 107.9 173.2

or
fit=lm(Price~., data=houseprice)
newx=data.frame(Sqfeet=2500, Floors=2, Bedrooms=3, Baths=2)
predict(fit, newdata=newx, interval="predict")

## fit lwr upr
## 1 140.5673 107.9064 173.2282

5.9 Regression Diagnostics

Recall that all our calculations have been based on a number of assumptions, namely
1. E[yyy] = X ′βX ′βX ′β (model is correct)

2. var(εi) = σ2 (equal variance, homoscadasticity)

3. cov(εi, εj) = 0 (independence)

4. yyy ∼ Nn(X ′βX ′βX ′β, σ2VVV ) (normal residuals)
some or all of these assumptions will have to hold for our analysis, so the question arises,
how does one check them? This is known as regression diagnostics.

5.9.1 Residuals

5.9.1.1 Definition (6.9.1)

• The residuals are defined as

ε̂i = yi − ŷi
• the hat matrix is defined by

ŷ̂ŷy = Xβ̂Xβ̂Xβ̂ = X(X ′X)X(X ′X)X(X ′X)−1X ′yX ′yX ′y = HyHyHy

so

199



HHH = X(X ′X)X(X ′X)X(X ′X)−1X ′X ′X ′

Note

HXHXHX = X(X ′X)X(X ′X)X(X ′X)−1X ′XX ′XX ′X = XXX

and

ε̂̂ε̂ε = (I −H)y(I −H)y(I −H)y = (I −H)ε(I −H)ε(I −H)ε

5.9.1.2 Theorem (6.9.2) If E[yyy] = X ′βX ′βX ′β and cov(yyy) = σ2III, then
i. E[ε̂̂ε̂ε] = 000

ii. cov(ε̂̂ε̂ε) = σ2(I −HI −HI −H)

iii. cov(ε̂, yε̂, yε̂, y) = σ2(I −HI −HI −H)

iv. cov(ε̂, ŷε̂, ŷε̂, ŷ) = OOO

v. ¯̂ε = 0

vi. ε̂′yε̂′yε̂′y = SSE = yyy′(I −HI −HI −Hyyy

vii. ε̂′ŷε̂′ŷε̂′ŷ = 000

viii. ε̂′Xε̂′Xε̂′X = 000′

proof straightforward calculations
From iv we see that the residuals and the fitted values should be uncorrelated. This allows a
check of the model with the residual vs fits plot:

5.9.1.3 Example (6.9.3) Linear model is good:
x <- 1:50
y <- 5 + 2*x + rnorm(50, 0, 5)
fit <- lm(y~x)
df <- data.frame(Fits=fitted(fit),

Residuals=residuals(fit))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)
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Linear model is bad:
x <- 1:50
y <- 0.1*x^2+rnorm(50, 0, 10)
fit <- lm(y~x)
df <- data.frame(Fits=fitted(fit),

Residuals=residuals(fit))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)
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The U shaped pattern in the residual vs. fits plot is a very common one if the linear model is
bad.

5.9.2 The Hat Matrix

5.9.2.1 Theorem (6.9.4) The hat matrix HHH is symmetric and idempotent
proof

HHH ′ =
[
{X(X ′X)X(X ′X)X(X ′X)−1}X ′X ′X ′

]′
=

XXX{X(X ′X)X(X ′X)X(X ′X)−1}′ =
XXX ′[(X ′X)(X ′X)(X ′X)−1]′XXX ′ =
XXX ′(X ′X)(X ′X)(X ′X)−1XXX ′ = HHH

HHHHHH =[
{X(X ′X)X(X ′X)X(X ′X)−1}X ′X ′X ′

] [
{X(X ′X)X(X ′X)X(X ′X)−1}X ′X ′X ′

]′
=

X(X ′X)X(X ′X)X(X ′X)−1(X ′XX ′XX ′X)(X ′X)(X ′X)(X ′X)−1X ′X ′X ′ =
X(X ′X)X(X ′X)X(X ′X)−1X ′X ′X ′ = HHH

5.9.2.2 Theorem (6.9.5) for the centered model we have

HHH = 1
n
JJJ +HHHc = 1

n
JJJ +Xc(X ′cXc)Xc(X ′cXc)Xc(X ′cXc)−1}X ′cX

′
cX
′
c

proof straightforward

5.9.2.3 Theorem (6.9.6)

i. 1
n
≤ hii ≤ 1, i=1,2,..,n

ii. −1
2 ≤ hij ≤ 1

2 ; i 6= j

iii. tr(HHH) = ∑
hii = k + 1

proof
i. X ′cXcX ′cXcX ′cXc is positive definite, so it’s diagonal elements are positive. Therefore

hii = [ 1
n
JJJ +Xc(X ′cXc)Xc(X ′cXc)Xc(X ′cXc)−1}X ′cX

′
cX
′
c]ii >

1
n
JJJ ii = 1

n

HHH is symmetric and idempotent, so
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hii = h′hh′hh′h =
∑
j

h2
ij = h2

ii

∑
j

h2
j 6=i

1 = hii +
∑
j 6=i

h2
ij

hii

but hii > 0, so hii < 1
ii. using the above we can write

hii = h2
ii + h2

ik +
∑
j 6=ik

h2
ij

hii − h2
ii = h2

ik +
∑
j 6=ik

h2
ij

h2
ik ≤ hii − h2

ii ≤
1
4

iii. omitted

5.9.3 Outliers

5.9.3.1 Definition (6.9.7) An outlier is any observation that is unusual given the model.

5.9.3.2 Example (6.9.8) say X ∼ N(0, 1), then any observations outside [-3, 3] is an outlier.
A graphical check for outliers is again the residual vs fits plot:
x <- 1:50
y <- 5 + 2*x + rnorm(50, 0, 5)
y[1] = 5 + 2*x[1] + 25
fit <- lm(y~x)
df <- data.frame(Fits=fitted(fit),

Residuals=residuals(fit))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)
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Note that by (6.9.2ii) var(ε̂i) = σ2(1− hii) and by (6.9.6i) hii) ≤ 1, therefore var(ε̂i) will be
small if hii) is near 1. Moreover it can be shown that hii) will be large for observations far
from x̄i. These issues lead to the

5.9.3.3 Definition (6.9.9) The studentized residuals are defined by

ri = ε̂i
s
√

1− hii

The idea is to eliminate the effect of observations far from their means to have large variances.

5.9.3.4 Example (6.9.10) Let’s consider the houseprice data:
A=as.matrix(houseprice)
n=nrow(A)
k=ncol(A)-1
X=cbind(1, A[, -1])
y=A[, 1, drop=FALSE]
G=solve(t(X)%*%X)
betahat= G%*%t(X)%*%y
yhat=X%*%betahat
sse = t(y)%*%(diag(n)-X%*%G%*%t(X))%*%y/(n-k-1)
epsilonhat=y-yhat
H=X%*%G%*%t(X)
residual = epsilonhat-yhat
df=data.frame(residuals=residual, yhat=yhat)
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ggplot(data=df, aes(yhat, epsilonhat)) +
geom_point() +
geom_abline(slope=0,intercept=0)
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there are two potential outlier, one on the left and one in the upper right corner.
df$studres = epsilonhat/sqrt(sse*(1-diag(H)))
ggplot(data=df, aes(yhat, studres)) +

geom_point() +
geom_abline(slope=0,intercept=0)
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which looks the same here.

5.9.4 Leverage or Influential Observations

5.9.4.1 Definition (6.9.11) The Cook’s distance is defined by

Di = (β̂̂β̂β(i) − β̂̂β̂β)′X ′XX ′XX ′X(β̂̂β̂β(i) − β̂̂β̂β)
(k + 1)s2

where β̂̂β̂β(i) is the least squares estimator with the ith observation.
The distribution of Di is known, but as a simple rule-of-thumb any observation with Di > 1
should be considered influential.

5.9.4.2 Example (6.9.12) Let’s find and plot the Cook distances for the houseprice data:
A=as.matrix(houseprice)
n=nrow(A)
k=ncol(A)-1
X=cbind(1, A[, -1])
y=A[, 1, drop=FALSE]
G=solve(t(X)%*%X)
betaihat= G%*%t(X)%*%y
sse = t(y)%*%(diag(n)-X%*%G%*%t(X))%*%y/(n-k-1)
D=rep(n, 0)
for(i in 1:n) {

Xtmp=X[-i, ]
ytmp=y[-i, ]
betaihat= solve(t(Xtmp)%*%Xtmp)%*%t(Xtmp)%*%ytmp
D[i]=t(betaihat-betahat)%*%t(X)%*%X%*%(betaihat-betahat)/(k+1)/sse

}
df=data.frame(index=1:n, D=D)
ggplot(data=df, aes(index, D)) +

geom_point() +
geom_abline(slope=0, intercept = 1)
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so the two observations noted earlier as potential outliers do not have Cook’s distance over 1,
and therefore are ok.

5.9.5 Equal Variance

We will again draw the Residuals vs. Fits plot and check whether the variance (or spread) of
the dots changes as you go along the x axis.

5.9.5.1 Example (6.9.13) Equal Variance ok:
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Equal Variance not ok:
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This can be a tricky one to decide, especially if there are few observations.

5.9.6 Normal Distribution

To check the normal assumption we can draw the normal plot of residuals. If the assumption
is ok the dot’s will follow along a straight line.
Normal assumption OK:
x <- runif(50, 0, 10)
y1 <- 1+2*x+rnorm(50, 0, 3)
fit1=lm(y1~x)
df <- data.frame(Residuals=resid(fit1),

Fits = fitted(fit1))
ggplot(data=df, aes(sample=Residuals)) +

geom_qq() + geom_qq_line()
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Normal assumption not OK:
y2 <- 1+2*x+rt(50, 1)
fit2=lm(y2~x)
df <- data.frame(Residuals=resid(fit2),

Fits = fitted(fit2))
ggplot(data=df, aes(sample=Residuals)) +

geom_qq() + geom_qq_line()
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In addition one can do formal hypothesis tests, so-called goodness-of-fit tests. A good test
for normality is the Shapiro-Wilks test:
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shapiro.test(resid(fit1))

##
## Shapiro-Wilk normality test
##
## data: resid(fit1)
## W = 0.97152, p-value = 0.2666
shapiro.test(resid(fit2))

##
## Shapiro-Wilk normality test
##
## data: resid(fit2)
## W = 0.40013, p-value = 5.303e-13

5.10 Random Predictors

Up to now we have assumed that the design matrix XXX was fixed. Often however the values
of the predictor variables are themselves random. In fact, that was the case in the wine and
houseprice examples. It turns out that treating a random X case as if the X’s were fixed is
acceptable in many cases, in fact we will see that most of the results we have obtained so far
still hold. Moreover, it often makes sense to analyze a regression problem conditional on the
the X’s, in which case the predictors are treated as fixed although they originated in some
random fashion.
If the x’s are to be treated as random, we need to consider

cov


y
x1
...
xk

 = ΣΣΣ

5.10.1 Multivariate Normal Regression Model

In this section we will assume that yyy and XXX have a joint multivariate normal distribution
with mean vector

µµµ =
(
µy
µµµx

)

and covariance matrix

ΣΣΣ =
(
σyy σσσ′yx
σσσyx σσσxx

)
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By (5.2.13) we have

E[y|xxx] = µy + σσσ′yxΣΣΣ−1
xx (xxx− µµµx) = β0 + β′1xβ

′
1xβ
′
1x

where

β0 = µy − σσσ′yxΣΣΣ−1µµµx

β′1β
′
1β
′
1 = ΣΣΣ−1

xxσσσyx

Also from (5.2.13) we have

var(y|xxx) = σσσyy − σσσ′yxΣΣΣ−1
xxσσσyx = σ2

Note that under this model y is not only linear in βββ but also linear in the x’s, so this does
not allow for a model (say) quadratic in x.

5.10.2 Estimation and Testing

5.10.2.1 Theorem (6.10.1) Under the multivariate normal model the maximum likelihood
estimators are given by

µ̂̂µ̂µ =
(
ȳ
x̄̄x̄x

)

and

Σ̂̂Σ̂Σ = n− 1
n

(
syy sss′yx
sssyx sssxx

)

proof omitted

5.10.2.2 Theorem (6.10.2) (Invariance of MLEs)

If θ̂̂θ̂θ is the mle of θθθ, then g(θ̂̂θ̂θ) is the mle of g(θθθ)
proof any book on theory of statistics
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5.10.2.3 Theorem (6.10.3) The mle’s of β0, βββ1 and σ2 are given by

β̂0 = ȳ − sss′yxSSS−1x̄̄x̄x

β̂′1̂β
′
1̂β
′
1 = SSS−1

xxsssyx

and

σ̂2 = n− 1
n

(
syy − sss′yxSSS−1

xxsssyx
)

proof follows from the invariance of mle’s
Notice that these estimators are the same as the least-squares estimators in the fixed x case.
However, their distributions are no longer multivariate normal but multivariate t.
The F tests discussed in section 6.6 work equally well in the random x case since they are
based on the conditional distributions.

5.10.3 Standardized Regression Coefficients

The sample correlation matrix can be written as

RRR =


1 ry1 ... ryk
r1y 1 ... r1k
... ... ...

...
rky rk1 ... 1

 =
(

1 rrr′yx
rrryx RRRxx

)

here (for example)

ry1 = sy2√
s2
ys

2
2

=
∑(yi − ȳ)(xi2 − x̄2)√∑(yi − ȳ)2∑(xi2 − x̄2)2

and

r12 = s12√
s2

1s
2
2

=
∑(xi1 − x̄1)(xi2 − x̄2)√∑(xi1 − x̄1)2∑(xi2 − x̄2)2

we have S = DRDS = DRDS = DRD, where DDD = [diag(S)]1/2

DDD =


sy 0 ... 0
0 √

s11 ... 0
... ... ...

...
0 0 ...

√
skk

 =
(
sy 000′
000 DDDxx

)

and we can write
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β̂̂β̂β1 = syDDD
−1RRR−1

xxrrryx

5.10.3.1 Definition (6.10.4) Let xxx be sample. The the z scores are defined as

zzz = xxx− x̄
sx

Recall that the model in centered form is

ŷi = ȳ +
∑
i

β̂j(xij − x̄j)

and so

ŷi − ȳ
sy

=
∑
i

sj
sy
β̂j

(
xij − x̄j
sj

)

5.10.3.2 Definition (6.10.5) The coefficients β̂∗j = sj
sy
β̂j are called the beta weights or beta

coefficients. They can also be found as

β̂̂β̂β∗1 = 1
sy
DDDxβ̂̂β̂β1 = RRR−1

xxrrryx

5.10.3.3 Example (6.10.6) For the houseprice data we find
A=as.matrix(houseprice)
y=A[, 1, drop=FALSE]
ybar=mean(y)
X=cbind(1, A[, -1])
xbar=apply(X[, -1], 2, mean)
sxx=cov(A[, -1])
syx=cov(A)[-1, 1]
betahat= solve(t(X)%*%X)%*%t(X)%*%y
round(c(betahat), 3)

## [1] -67.620 0.086 -26.493 -9.286 37.381
round(c(solve(sxx)%*%cbind(syx)), 3)

## [1] 0.086 -26.493 -9.286 37.381
round(ybar-rbind(syx)%*%solve(sxx)%*%xbar, 3)

## [,1]
## syx -67.62
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5.10.4 R2

5.10.4.1 Definition (6.10.7) The sample coefficient of determination is defined by

R2 =
sss′yxSSS

−1
xxsssyx

syy

5.10.4.2 Example (6.10.8) For the houseprice data we find
A=as.matrix(houseprice)
y=A[, 1, drop=FALSE]
sxx=cov(A[, -1])
tmp=cov(A)[, 1]
syy=tmp[1]
syx=tmp[-1]
round(rbind(syx)%*%solve(sxx)%*%cbind(syx)/syy, 3)

## syx
## syx 0.886
summary(lm(Price~., data=houseprice))

##
## Call:
## lm(formula = Price ~ ., data = houseprice)
##
## Residuals:
## Min 1Q Median 3Q Max
## -23.018 -5.943 1.860 5.947 30.955
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -67.61984 17.70818 -3.819 0.000882
## Sqfeet 0.08571 0.01076 7.966 4.62e-08
## Floors -26.49306 9.48952 -2.792 0.010363
## Bedrooms -9.28622 6.82985 -1.360 0.187121
## Baths 37.38067 12.26436 3.048 0.005709
##
## Residual standard error: 13.71 on 23 degrees of freedom
## Multiple R-squared: 0.8862, Adjusted R-squared: 0.8665
## F-statistic: 44.8 on 4 and 23 DF, p-value: 1.558e-10

5.11 Bayesian Inference for Regression

We will now analyze a multiple regression problem using Bayesian analysis. The models are
often expressed in terms of the precision τ instead of the variance, where
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τ = 1
σ2

A multiple regression model with k predictor variables has k+2 parameters, all of whom need
a prior distribution. As an example it might look like this:

y|β, τy|β, τy|β, τ ∼ Nn(XβXβXβ, 1
τ
III)

β|τβ|τβ|τ ∼ Nk+1(φφφ, 1
τ
VVV )

τ ∼ Gamma(α, δ)

We will assume that φ, V, α, δφ, V, α, δφ, V, α, δ are known, but in real live they are often treated as hyperpa-
rameters with their own distributions in what are called hierarchical models. φ, V, α, δφ, V, α, δφ, V, α, δ are
chosen so as to express some prior knowledge of the experiment.

5.11.0.1 Theorem (6.11.1) The priors in the model above are conjugate priors, that is the
posterior distribution is again a normal distribution.
proof
Ignoring all constants the joint density can be written as

f(yyy,βββ, τ) =

K exp
{
−τ2(yyy −XβXβXβ)′(yyy −XβXβXβ)

}
exp

{
−τ2(βββ − θθθ)′VVV −1(βββ − θθθ)

}
τα−1 exp {−δτ} =

K exp
{
−τ2

[
(yyy −XβXβXβ)′(yyy −XβXβXβ) + (βββ − θθθ)′VVV −1(βββ − θθθ) + 2δ

]}
τα−1

g(βββ, τ |yyy) = K1 exp
{
−τ2(βββ − θ1θ1θ1)′VVV −1

1 (βββ − θ1θ1θ1) + δ1

}
where

VVV 1 = (VVV −1 +X ′XX ′XX ′X)−1

φφφ1 = VVV 1(VVV −1φφφ+X ′yX ′yX ′y)
δ1 = −φ′1Vφ′1Vφ′1V 1φφφ1 + φ′Vφ′Vφ′V −1φφφ+ y′yy′yy′y + 2δ

and so the posterior distribution is again a normal distribution.

5.11.0.2 Theorem (6.11.2) With the Bayesian model above we have

β|yβ|yβ|y ∼ t(n+ 2α,φφφ1,WWW 1)

where t is a multivariate t distribution and

215



φφφ1 = (VVV −1 +X ′XX ′XX ′X)−1(VVV −1φφφ+X ′yX ′yX ′y)
WWW 1 =

(
(y −Xφy −Xφy −Xφ)′(III +XVX ′XVX ′XVX ′)−1(y −Xφy −Xφy −Xφ) + 2δ

)
(VVV −1 +X ′XX ′XX ′X)−1/(n+ 2α)

proof omitted

5.11.1 Bayesian Inference for βββ

5.11.1.1 Theorem (6.11.3)

i. Based on the above model a reasonable estimator is the mean of the posterior distribution:

β̂̂β̂β = φφφ1 = (VVV −1 +X ′XX ′XX ′X)−1(VVV −1φφφ+X ′yX ′yX ′y)
ii. for any vector aaa we have

a′β̂a′β̂a′β̂ − a′φa′φa′φ1

a′W1aa′W1aa′W1a
∼ t(n+ 2α)

iii.

β̂i − θ1i

W1ii
∼ t(n+ 2α)

iv. A (1− w)100% credible interval is given by

θ1i ± tw/2,n+2αW1ii

proof omitted

5.11.1.2 Example (6.11.4) Let’s apply this method to our houseprice data. To do so we
need values for φ, Vφ, Vφ, V , α, δ. We will use non-informative priors, so sensible choices are

φφφ = (0, 0, 0, 0)′

VVV = 1000III
α = 0.001; δ = 0.001

then
phi=cbind(rep(0, 5))
V=1000*diag(5)
alp=0.001;del=0.001
A=as.matrix(houseprice)
y=A[, 1, drop=FALSE]
n=length(y)
X=cbind(1, A[, -1])
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phi1 = solve(solve(V)+t(X)%*%X)%*%(solve(V)%*%phi+t(X)%*%y)
round(cbind(phi1, solve(t(X)%*%X)%*%t(X)%*%y), 3)

## Price Price
## -67.503 -67.620
## Sqfeet 0.086 0.086
## Floors -26.463 -26.493
## Bedrooms -9.284 -9.286
## Baths 37.326 37.381

and we see that the estimators are quite similar to the frequentist ones, a typical result when
non-informative priors are used.

5.11.2 Modern Bayesian Analysis

Calculating the posterior distribution analytically as we did above is generally not possible.
Instead one uses so called Markov Chain Monte Carlo simulation to generate data from the
posterior distribution. For more on this take my course ESMA 5015 Simulation.

6 Analysis of Variance (ANOVA)

6.1 Non-Full Rank Models

6.1.1 Introduction

In many experiments one of a (relatively few) treatments is applied to each subject, and the
interest is in the effects of the treatments. For example, in an experiment in agriculture one
might treat each plant with one of four different fertilizers. In a medical trial a new vaccince
might be compared to an old vaccince as well as to a placebo and maybe even no treatment.
In an Analysis of Variance (ANOVA) the focus is on the mean responses per treatment.

6.1.2 One-Way Model

6.1.2.1 Example (7.1.1) Chasnoff and others obtained several measures and responses for
newborn babies whose mothers were classified by degree of cocaine use.
The study was conducted in the Perinatal Center for Chemical Dependence at Northwestern
University Medical School. The measurement given here is the length of the newborn.
Source: Cocaine abuse during pregnancy: correlation between prenatal care and perinatal
outcome Authors: SN MacGregor, LG Keith, JA Bachicha, and IJ Chasnoff Obstetrics and
Gynecology 1989;74:882-885
Here is a look at the data
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kable.nice(mothers[1:10, ], do.row.names = FALSE)

Status Length
Drug Free 44.3
Drug Free 45.3
Drug Free 46.9
Drug Free 47.0
Drug Free 47.2
Drug Free 47.8
Drug Free 47.8
Drug Free 48.5
Drug Free 48.8
Drug Free 49.6

nrow(mothers)

## [1] 94
table(mothers$Status)

##
## Drug Free First Trimester Throughout
## 39 19 36

so there were a total of 94 babies. 39 had mothers with no drug use, 19 had mothers who
stopped the cocaine use early during pregnancy and 36 had mothers who continued to take
cocaine until birth.
Basic Question: does the cocaine use of the mother influence the health of the baby?
A good way to start is with a multiple boxplot:
ggplot(data=mothers , aes(Status, Length)) +

geom_boxplot()
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which does look like that more drug use leads to smaller (and likely less healthy) babies.
Here is another way to summarize the data:
out <- matrix(0, 3, 3)
colnames(out) <- c("Size", "Mean", "SD")
rownames(out) <- unique(mothers$Status)
out[, 1] <- tapply(mothers$Length,

mothers$Status, length)
out[, 2] <- round(tapply(mothers$Length,

mothers$Status, mean), 2)
out[, 3] <- round(tapply(mothers$Length,

mothers$Status, sd), 2)
kable.nice(out)

Size Mean SD
Drug Free 39 51.1 2.9
First Trimester 19 49.3 2.5
Throughout 36 48.0 3.6

and again it seems there is an effect.
How can we write this as a model? Typically this is done with

yij = µ+ αi + εij

with i=1,2,3 and j1=39, j2=19, j3=36
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Here µ is the overall mean (disregarding the treatments), αi is the mean effect due to
treatment i and εij is the random effect.
We can again use matrix notation to write down this model: Let

yyy =


y11
...

y336



XXX =



1 1 0 0
... ... ... ...
1 1 0 0
1 0 1 0
... ... ... ...
1 0 1 0
1 0 0 1
... ... ... ...
1 0 0 1



βββ =


µ
α1
α2
α3



εεε =


ε11
...
ε336


then the model is

yyy = XβXβXβ + εεε

and we see a model of the same form as in the regression problems before. The main difference
is that now the design matrix XXX is always of the form as above, that is with 0’s and 1’s.
HereXXX is 96×4 matrix of rank 3 because the first column is equal to sum of the others, which
are clearly linearly independent. Because XXX is not of full rank X ′XX ′XX ′X is singular, (X ′XX ′XX ′X)−1

does not exist and therefore (X ′XX ′XX ′X)−1X ′yX ′yX ′y can not be used to estimate βββ.
One reason for this is that the model as written does not determine the parameters uniquely.
For example,

y11 = 10 + 2 + ε11 = 8 + 4 + ε11

We say the model is overparametrized. Note that this is not an issue of the sample size, it
will not go away if n is increased.
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There are a number of ways to overcome this problem:
1. reparametrize the problem with fewer, now unique, parameters

2. place constraints on the parameters

3. work with unique linear combinations of the parameters
Here are examples of these technics:
1. use the model

yij = µi + εij

2. Add the condition α1 + α2 + α3 = 0 to the model.
3. rewrite the model in terms of α1−α2 and α2−α3, that is the changes from one treatment

to the next. This makes most sense if (as is the case for our data) there is an ordering
of the treatments.

6.1.3 Two-Way Model

6.1.3.1 Example (7.1.2) Reference: Loven, Faith. (1981). A Study of the Interlist Equiva-
lency of the CID W-22 Word List Presented in Quiet and in Noise. Unpublished MS Thesis,
University of Iowa.
Description: Percent of a Standard 50-word list heard correctly in the presence of background
noise. 24 subjects with normal hearing listened to standard audiology tapes of English words
at low volume with a noisy background. They repeated the words and were scored correct or
incorrect in their perception of the words. The order of list presentation was randomized.
The word lists are standard audiology tools for assessing hearing. They are calibrated to be
equally difficult to perceive. However, the original calibration was performed with normal-
hearing subjects and no noise background. The experimenter wished to determine whether
the lists were still equally difficult to understand in the presence of a noisy background.
kable.nice(hearingaid[1:10, ], do.row.names = FALSE)
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Subject List Score
1 1 28
2 1 24
3 1 32
4 1 30
5 1 34
6 1 30
7 1 36
8 1 32
9 1 48

10 1 32

so here the response variable is Score and there are two predictor variables, Subject and List.
The interest is specifically in List.
Both Subject and List contain numbers, but these are really labels, so in R we need to turn
them into factors:
tmp <- tapply(hearingaid$Score, hearingaid$List, mean)
hearingaid$List <- factor(hearingaid$List,

levels=order(tmp),
ordered = TRUE)

tmp <- tapply(hearingaid$Score, hearingaid$Subject, mean)
hearingaid$Subject <- factor(hearingaid$Subject,

levels=order(tmp),
ordered = TRUE)

ggplot(data=hearingaid, aes(List, Score)) +
geom_boxplot()
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Also the summary table for List:
sum.tbl <-

data.frame(
List=c(3, 4, 2, 1),
n=as.integer(tapply(hearingaid$Score,

hearingaid$List,length)),
Mean=round(tapply(hearingaid$Score,

hearingaid$List, mean), 1),
Sd=round(tapply(hearingaid$Score,

hearingaid$List, sd), 2)
)
rownames(sum.tbl) <- NULL
kable.nice(sum.tbl)

List n Mean Sd
1 3 24 25.2 8.32
2 4 24 25.6 7.78
3 2 24 29.7 8.06
4 1 24 32.8 7.41

Notice the ordering by mean response.
Analogously to the previous discussion we can write the model for this data as

yij = µ+ αi + βj + εij

for i=1,..,4 and j=1,..,24
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In matrix form we have

yyy =


y11
...

y424



XXX =



1 1 0 0 0 1 0 ... 0
1 1 0 0 0 0 1 ... 0
... ... ... ...
1 1 0 0 0 0 0 ... 1
1 0 1 0 0 1 0 ... 0
... ... ... ...
1 0 0 0 1 0 0 ... 1


βββ =

(
µ α1 ... α4 β1 ... β24

)′

εεε =


ε11
...
ε424


then the model is

yyy = XβXβXβ + εεε

How can we create such a matrix XXX in R? Note for any block with 1’s in columns 2 to 5 the
following column form a diagonal matrix. Let’s illustrate this with i=3,j=4 instead of 24, so
it is easier to see:
make.X=function(I, J) {

X=NULL
for(i in 1:I) {

tmp=matrix(0, J, I)
tmp[, i]=1
X=rbind(X, cbind(tmp, diag(J)))

}
X=cbind(1, X)
X

}
make.X(3,4)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] 1 1 0 0 1 0 0 0
## [2,] 1 1 0 0 0 1 0 0
## [3,] 1 1 0 0 0 0 1 0
## [4,] 1 1 0 0 0 0 0 1
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## [5,] 1 0 1 0 1 0 0 0
## [6,] 1 0 1 0 0 1 0 0
## [7,] 1 0 1 0 0 0 1 0
## [8,] 1 0 1 0 0 0 0 1
## [9,] 1 0 0 1 1 0 0 0
## [10,] 1 0 0 1 0 1 0 0
## [11,] 1 0 0 1 0 0 1 0
## [12,] 1 0 0 1 0 0 0 1

The rank of our matrix XXX is
qr(make.X(4,24))$rank

## [1] 27

but there are 97 parameters, so again not all can be estimated.

6.2 Estimation in ANOVA

6.2.1 Estimation of βββ

We consider the model

yyy = XβXβXβ + εεε

where XXX is n × p with rank k < p ≤ n. We also have the assumptions E[yyy] = XβXβXβ,
cov(yyy) = σ2III.

Using least squares we need to find β̂̂β̂β that minimizes

ε′εε′εε′ε = (yyy −Xβ̂Xβ̂Xβ̂)′(yyy −Xβ̂Xβ̂Xβ̂)

as before we can expand this and differentiate and arrive at normal equations

X ′Xβ̂X ′Xβ̂X ′Xβ̂ = X ′yX ′yX ′y

but now X ′XX ′XX ′X is singular and has no inverse. In fact this system of equations has infinitely
many solutions:

6.2.1.1 Theorem (7.2.1) If XXX is n× p with rank k < p ≤ n, the system of equations

X ′Xβ̂X ′Xβ̂X ′Xβ̂ = X ′yX ′yX ′y

is consistent.
proof omitted
Because the system of equations is consistent, by (4.2.14) a solution is given by
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β̂̂β̂β = (X ′XX ′XX ′X)−X ′yX ′yX ′y

where (X ′XX ′XX ′X)− is a generalized inverse of X ′XX ′XX ′X.
For any generalized inverse we have

E[β̂̂β̂β] = (X ′XX ′XX ′X)−X ′X ′X ′E[yyy] = (X ′XX ′XX ′X)−X ′XβX ′XβX ′Xβ = βββ

and so β̂̂β̂β is an unbiased estimator of (X ′XX ′XX ′X)−X ′XβX ′XβX ′Xβ = βββ. However, since (X ′XX ′XX ′X)−X ′XX ′XX ′X 6= III, β̂̂β̂β
is not an unbiased estimator of βββ. In fact, E[β̂̂β̂β] depends on the particular choice of (X ′XX ′XX ′X)−.
Is there a matrix AAA such that E[AyAyAy] = βββ? If so, then

βββ = E[AyAyAy] = E[A(Xβ + εA(Xβ + εA(Xβ + ε)] = E[AXβAXβAXβ] +AAAE[εεε] = AXβAXβAXβ

This must hold for all βββ, and so we must have AXAXAX = III. But rank(AXAXAX) < p, and so no such
matrix AAA can exist.

6.2.1.2 Example (7.2.2) Let’s consider a simple oneway model with two groups and three
repeated measurements:

yij = µ+ αi + εij

with i=1,2 and j=1,2,3. So

βββ =

 µα1
α2



XXX =



1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1



X ′XX ′XX ′X =

6 3 3
3 3 0
3 0 3


A generalized inverse is given by

(X ′XX ′XX ′X)− =

0 0 0
0 1/3 0
0 0 1/3


let’s check:
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X=cbind(1, c(1,1,1,0,0,0), c(0,0,0,1,1,1))
X

## [,1] [,2] [,3]
## [1,] 1 1 0
## [2,] 1 1 0
## [3,] 1 1 0
## [4,] 1 0 1
## [5,] 1 0 1
## [6,] 1 0 1
X.X=t(X)%*%X
X.X

## [,1] [,2] [,3]
## [1,] 6 3 3
## [2,] 3 3 0
## [3,] 3 0 3
g.X=diag(c(0,1,1)/3)
g.X

## [,1] [,2] [,3]
## [1,] 0 0.0000000 0.0000000
## [2,] 0 0.3333333 0.0000000
## [3,] 0 0.0000000 0.3333333
X.X%*%g.X%*%X.X

## [,1] [,2] [,3]
## [1,] 6 3 3
## [2,] 3 3 0
## [3,] 3 0 3

so this is indeed a generalized inverse. So now

X ′yX ′yX ′y =


∑
i,j yij∑
j y1j∑
j y2j

 =

y..y1.
y2.

 β̂̂β̂β = (X ′XX ′XX ′X)−X ′yX ′yX ′y =

0 0 0
0 1/3 0
0 0 1/3



∑
i,j yij∑
j y1j∑
j y2j

 =

 0
1
3
∑
j y1j

1
3
∑
j y2j

 =

 0
ȳ1.
ȳ2.


Note
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E[ȳi.] =

E[13
∑
j

yij] =

1
3
∑
j

E[yij] =

1
3
∑
j

E[µ+ αi + εij] =

1
3 [3µ+ 3αi + 0] =

µ+ αi

6.2.1.3 Example (7.2.3) Let’s return to the hearing aid data set, see (7.1.2). Here we have
a model of the form

yi = µ+ αi + βj + εij

i=1,..,4 and j=1,..,24
make.X=function(I, J) {

X=NULL
for(i in 1:I) {

tmp=matrix(0, J, I)
tmp[, i]=1
X=rbind(X, cbind(tmp, diag(J)))

}
X=cbind(1, X)
X

}
X=make.X(4, 24)
y=as.matrix(hearingaid[, 1, drop=FALSE])
X.X=t(X)%*%X
library(MASS)
gX=ginv(X.X)
betahat=gX%*%t(X)%*%y
round(c(betahat), 3)

## [1] 9.677 2.419 2.419 2.419 2.419 -11.097 -10.097 -9.097 -8.097 -7.097 -6.097
## [12] -5.097 -4.097 -3.097 -2.097 -1.097 -0.097 0.903 1.903 2.903 3.903 4.903
## [23] 5.903 6.903 7.903 8.903 9.903 10.903 11.903

6.2.2 Estimable Functions

If we can not estimate βββ, can we instead estimate a linear function of βββ, say λ′βλ′βλ′β?
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6.2.2.1 Definition (7.2.4) A linear function of parameters λ′βλ′βλ′β is said to be estimable if there
exists a vector aaa such that E[a′ya′ya′y] = λ′βλ′βλ′β.

6.2.2.2 Theorem (7.2.5) Say yyy = XβXβXβ+εεε with E[yyy] = XβXβXβ andXXX is n×p of rank k < p ≤ n.
A linear function λ′βλ′βλ′β is estimable if and only if one of the following conditions holds

i. λλλ′ is a linear combination of the rows of XXX.

ii. λλλ′ is a linear combination of the rows of X ′XX ′XX ′X or λλλ is a linear combination of the columns
of X ′XX ′XX ′X.

iii. Either X ′X(X ′X)−λX ′X(X ′X)−λX ′X(X ′X)−λ = λλλ or λ′(X ′X)−X ′Xλ′(X ′X)−X ′Xλ′(X ′X)−X ′X = λλλ′

proof
i. say λλλ′ is a linear combination of the rows of XXX, then there exists aaa such that λλλ′ = a′Xa′Xa′X
and so

E[a′ya′ya′y] = a′a′a′E[yyy] = a′Xβa′Xβa′Xβ = λ′βλ′βλ′β

Conversely, if λ′βλ′βλ′β is estimable there exists aaa such that E[a′ya′ya′y] = λ′βλ′βλ′β. Therefore a′Xβa′Xβa′Xβ = λ′βλ′βλ′β
for all βββ, and therefore a′Xa′Xa′X = λ′λ′λ′, and so λλλ′ is a linear combination of the rows of XXX.
proofs of ii and iii omitted.

6.2.2.3 Example (7.2.6) Consider again the simple oneway model with two groups and
three repeated measurements from (7.2.2). That is βββ =

(
µ α1 α2

)′
and

XXX =



1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1


We want to show that α1 − α2 is estimable. Note that

α1 − α2 =
(
0 1 −1

) µα1
α2

 = λ′βλ′βλ′β

we see that λλλ′ =
(
0 1 −1

)
.

Using (7.2.4i):

We need to find aaa such that a′Xa′Xa′X = λλλ′. In fact, if aaa′ =
(
0 0 1 −1 0 0

)
, then we have

a′Xa′Xa′X = λλλ′.
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aaa here is not unique, there are many other choices.
Using (7.2.4ii):
We have

X ′XX ′XX ′X =

6 3 3
3 3 0
3 0 3


Now we need a vector aaa such that X ′XaX ′XaX ′Xa =

(
0 1 −1

)′
. One such vector is

aaa =
(
0 1/3 −1/3

)′
. Again there are other possibilities.

Using (7.2.4iii):
We saw before that a generalized inverse is given by

(X ′XX ′XX ′X)− =

0 0 0
0 1/3 0
0 0 1/3


and we see easily that for λλλ′ =

(
0 1 −1

)
we have X ′XX ′XX ′X(X ′XX ′XX ′X)−λλλ = λλλ.

6.2.2.4 Theorem (7.2.7) The number of estimable linear functions of βββ is equal to the rank
of XXX.
proof omitted
From the two theorems above it is clear that we can check the rows of XXX or of X ′XX ′XX ′X to see
which functions are estimable.

6.2.2.5 Example (7.2.8) Consider a twoway model with two groups and no repeated mea-
surements. That is βββ =

(
µ α1 α2 β1 β2

)′
and

XXX =


1 1 0 1 0
1 1 0 0 1
1 0 1 1 0
1 0 1 0 1


To get to a matrix with only linearly independent rows we can proceed as follows:

• subtract the first row from all others:


1 1 0 1 0
0 0 0 −1 1
0 −1 1 0 0
0 −1 1 −1 1
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• subtract second and third from fourth:


1 1 0 1 0
0 0 0 −1 1
0 −1 1 0 0
0 0 0 0 0


taking the first three rows as λλλ′1,λλλ′2 and λλλ′3, we find

λλλ′1βββ = µ+ α1 + β1

λλλ′2βββ = β2 − β1

λλλ′3βββ = α2 − α1

6.2.2.6 Definition (7.2.9) Let aaa be a vector such ∑ ai = 0. The a′βa′βa′β is called a contrast.

6.2.2.7 Example (7.2.10) In the example above the second and third linear combination
are contrasts.

6.2.2.8 Theorem (7.2.11) Let λ′βλ′βλ′β be an estimable function. Let β̂̂β̂β be any solution to the
normal equations X ′XβX ′XβX ′Xβ = X ′yX ′yX ′y and let aaa be any solution to X ′XaX ′XaX ′Xa = λλλ. Then the two
estimators λ′β̂λ′β̂λ′β̂ and a′X ′ya′X ′ya′X ′y have the following properties:

i. E[λ′β̂λ′β̂λ′β̂] = E[a′X ′ya′X ′ya′X ′y] = β

ii. λ′β̂λ′β̂λ′β̂ = a′X ′ya′X ′ya′X ′y

iii. λ′β̂λ′β̂λ′β̂ and a′X ′ya′X ′ya′X ′y are invariant to the choice of β̂̂β̂β or aaa
proof

i. By (7.2.1) we have

E[λ′β̂λ′β̂λ′β̂] = λ′λ′λ′(X ′XX ′XX ′X)−X ′XβX ′XβX ′Xβ

by (7.2.3)iii λ′(X ′XX ′XX ′X)−X ′XβX ′XβX ′Xβ = λ′λ′λ′ and so

E[λ′β̂λ′β̂λ′β̂] = λ′βλ′βλ′β

by (7.2.3)ii

E[a′X ′ya′X ′ya′X ′y] = a′X ′a′X ′a′X ′E[yyy]] = a′X ′Xβa′X ′Xβa′X ′Xβ = λ′βλ′βλ′β
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6.2.2.9 Example (7.2.12) In example (7.2.5) we saw that the linear function λ′βλ′βλ′β = α1 − α2

was estimable with aaa =
(
0 1/3 −1/3

)′
, so now

a′X ′ya′X ′ya′X ′y =

(
0 1/3 −1/3

)′1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1




y11
y12
y13
y21
y22
y23


=

(
0 1/3 −1/3

)′y..y1.
y2.

 =

y1./3− y2./3 = ȳ1. − ȳ2.

or using the other solution we need a solution to the normal equation X ′XβX ′XβX ′Xβ = X ′yX ′yX ′y.

6 3 3
3 3 0
3 0 3


 µ̂α̂1
α̂2

 =

y..y1.
y2.


6µ̂+ 3α̂1 + 3α̂2 = y..

3µ̂+ 3α̂1 = y1.

3µ̂+ α̂2 = y2.

Now we have two equations in three unknowns, so we can set µ̂ equal to some constant and
obtain

β̂̂β̂β =

 µ̂α̂1
α̂2

 =

 0
ȳ1.
ȳ2.

+ µ̂

 0
−1
−1


Finally

λ′β̂λ′β̂λ′β̂ =
(
0 1 −1

) 0
ȳ1. − µ̂
ȳ2. − µ̂

 = ȳ1. − ȳ2.

6.2.2.10 Theorem (7.2.13) Let λ′βλ′βλ′β be an estimable function. Let β̂̂β̂β be any solution to the
normal equations X ′XβX ′XβX ′Xβ = X ′yX ′yX ′y and let aaa be any solution to X ′XaX ′XaX ′Xa = λλλ. Then the variances
of the two estimators λ′β̂λ′β̂λ′β̂ and a′X ′ya′X ′ya′X ′y have the following properties:

i. var(a′X ′ya′X ′ya′X ′y) = σ2a′X ′Xaa′X ′Xaa′X ′Xa = σ2a′λa′λa′λ

ii. var(λ′β̂λ′β̂λ′β̂) = σ2λλλ′(X ′XX ′XX ′X)−λλλ
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iii. var(λ′β̂λ′β̂λ′β̂) is unique, hat is invariant under the choice of aaa or (X ′XX ′XX ′X)−

proof
i.

var(a′X ′ya′X ′ya′X ′y) =
a′X ′a′X ′a′X ′cov(yyy)XaXaXa =
a′X ′a′X ′a′X ′(σ2III)XaXaXa =
σ2a′X ′a′X ′a′X ′XaXaXa =
σ2a′a′a′λλλ

ii and iii omitted

6.2.2.11 Theorem (7.2.14) Let λ′1βλ′1βλ′1β and λ′2βλ′2βλ′2β be two estimable function, then

cov(λ′1β̂λ′1β̂λ′1β̂,λ′2β̂λ′2β̂λ′2β̂) = σ2λλλ′1(X ′XX ′XX ′X)−λλλ2

proof similar to proof of theorem above

6.2.2.12 Theorem (7.2.15) Let λ′βλ′βλ′β be an estimable function. Then the two estimators λ′β̂λ′β̂λ′β̂
and a′X ′ya′X ′ya′X ′y are BLUE.
proof omitted

6.2.3 Estimation of σ2

Again we define

SSE = (yyy −Xβ̂Xβ̂Xβ̂)′(yyy −Xβ̂Xβ̂Xβ̂)

where β̂̂β̂β is any solution of the normal equations. As before we have alternatively

SSE = yyy′yyy − β̂̂β̂β′X ′yX ′yX ′y = yyy′
[
III −X(X ′X)−X ′X(X ′X)−X ′X(X ′X)−X ′

]
yyy

and we define

s2 = SSE/(n− k)
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6.2.3.1 Theorem (7.2.16)

i. E[s2] = σ2

ii. s2 is invariant under the choice of β̂̂β̂β or the choice of (X ′X)−(X ′X)−(X ′X)−.
proof

6.2.4 Normal Model

6.2.4.1 Theorem (7.2.17) If yyy ∼ N(XβXβXβ, σ2III), the maximum likelihood estimators are

β̂̂β̂β = (X ′XX ′XX ′X)−X ′yX ′yX ′y

σ̂2 = 1
n

(yyy −Xβ̂Xβ̂Xβ̂)′(yyy −Xβ̂Xβ̂Xβ̂)

proof omitted

6.2.4.2 Theorem (7.2.18) Under the normal model

i. β̂̂β̂β ∼ Np [(X ′XX ′XX ′X)−X ′XβX ′XβX ′Xβ, σ2(X ′XX ′XX ′X)−X ′XX ′XX ′X(X ′XX ′XX ′X)−]
ii. (n− k)s2/σ2 ∼ χ2(n− k)

iii. β̂̂β̂β and s2 are independent.
proof omitted

6.2.5 Reparametrization

We discussed before that one often can change the parameters in order to make the problem
solvable. Here is a formal discussion of this issue.
A reparametrization is a transformation of the non-full rank model yyy = XβXβXβ + εεε to a full-rank
model yyy = ZγZγZγ + εεε, where γγγ = UβUβUβ is a set of k linearly independent functions of βββ. So we can
write

ZγZγZγ = ZUβZUβZUβ = XβXβXβ

This holds for all βββ, and so we have ZUZUZU = XXX. Since UUU is k × p of rank k < p, the matrix
UU ′UU ′UU ′ is nonsingular and we find ZUU ′ZUU ′ZUU ′ = XU ′XU ′XU ′ or

ZZZ = XU ′XU ′XU ′(UU ′UU ′UU ′)−1

It can be seen that ZZZ is full-rank and that therefore the normal equations have the solution

γ̂̂γ̂γ = (Z ′ZZ ′ZZ ′Z)−1Z ′yZ ′yZ ′y

234



Since ZγZγZγ = XβXβXβ, the estimators Zγ̂Zγ̂Zγ̂ and Xβ̂Xβ̂Xβ̂ are also equal

Zγ̂Zγ̂Zγ̂ = Xβ̂Xβ̂Xβ̂

6.2.5.1 Theorem (7.2.19)

s2 = 1
n− k

(y − Zγ̂y − Zγ̂y − Zγ̂)(y − Zγ̂y − Zγ̂y − Zγ̂)

SSE = (y −Xβ̂y −Xβ̂y −Xβ̂)(y −Xβ̂y −Xβ̂y −Xβ̂) = (y − Zγ̂y − Zγ̂y − Zγ̂)(y − Zγ̂y − Zγ̂y − Zγ̂)

proof omitted

6.2.5.2 Example (7.2.20) Consider the model

yyy = XβXβXβ + εεε =


1 1 0
1 1 0
1 0 1
1 0 1


 µα1
α2

+


ε11
ε12
ε21
ε22


XXX has rank 2, so there are two linearly independent estimable functions. These can be chosen
in any number of ways, for example µ+ α1 and µ+ α2. With this choice we have

γγγ =
(
µ+ α1
µ+ α2

)
=
(

1 1 0
1 0 1

) µα1
α2

 = UβUβUβ

Let

ZZZ =


1 0
1 0
0 1
0 1


then ZγZγZγ = XβXβXβ

6.2.6 Side Conditions

6.2.6.1 Definition (7.2.21) A side condition is an (p − k) × k matrix TTT of rank p-k such
that TβTβTβ = 0 and TβTβTβ are nonestimable functions.
Note that if one of the TβTβTβ were an estimable function it would be a linear combination of
X ′XβX ′XβX ′Xβ and would therefore not add to the rank.

235



6.2.6.2 Theorem (7.2.22) If y = Xβ + εy = Xβ + εy = Xβ + ε and TTT is a side condition, then

β̂̂β̂β =
(
X ′XX ′XX ′X + T ′TT ′TT ′T

)−1
X ′yX ′yX ′y

is the unique vector β̂̂β̂β such that X ′Xβ̂ = X ′yX ′Xβ̂ = X ′yX ′Xβ̂ = X ′y and T β̂T β̂T β̂ = 0
proof the two equation can be combined into

(
yyy
000

)
=
(
XXX
TTT

)
βββ +

(
εεε
000

)

and by the conditions of the theorem the matrix
(
XXX
TTT

)
is full-rank. Therefore

(
XXX
TTT

)′ (
XXX
TTT

)
has an inverse, and we find

(
XXX
TTT

)′ (
XXX
TTT

)
β̂̂β̂β =

(
XXX
TTT

)′ (
yyy
000

)

β̂̂β̂β =
((

XXX
TTT

)′ (
XXX
TTT

))−1 (
XXX
TTT

)′ (
yyy
000

)

β̂̂β̂β =
((
XXX ′ TTT ′

)(XXX
TTT

))−1 (
X ′X ′X ′ T ′T ′T ′

)′ (yyy
000

)

β̂̂β̂β =
(
X ′XX ′XX ′X + T ′TT ′TT ′T

)−1
X ′yX ′yX ′y

6.2.6.3 Example (7.2.23) Let’s return to example (7.2.18), where we used the model

yij = µ+ αi + εij

with i=1, 2.
Using theorem (7.2.4) we can easily see that α1 + α2 is not an estimable function. This can
be written as (0 1 1)βββ = 0 and so TTT = (0 1 1).
Now
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X ′X + T ′TX ′X + T ′TX ′X + T ′T =

4 2 2
2 2 0
2 0 2


0

1
1

 (0 1 1) =

4 2 2
2 2 0
2 0 2


0 0 0

0 1 1
0 1 1

 =

4 2 2
2 3 1
2 1 3


(X ′X + T ′TX ′X + T ′TX ′X + T ′T )−1 = 1

4

 2 −1 −1
−1 2 0
−1 0 2


β̂̂β̂β = (X ′X + T ′TX ′X + T ′TX ′X + T ′T )−1X ′yX ′yX ′y =

1
4

 2 −1 −1
−1 2 0
−1 0 2


1 1 1 1

1 1 0 0
0 0 1 1



y11
y12
y21
y22

 =

1
4

 2 −1 −1
−1 2 0
−1 0 2


y..y1.
y2.

 =

1
4

2y.. − y1. − y2.
2y1. − y..
2y2. − y..

 =

 ȳ..
ȳ1. − ȳ..
ȳ2. − ȳ..


because ȳ1. + ȳ. = ȳ..

6.3 Hypothesis Tests in ANOVA

While in a regression problem the focus is usually on estimation, in the case of ANOVA it is
generally on hypothesis testing.
In this section we will consider hypotheses about the β’s in the model y = Xβ + εy = Xβ + εy = Xβ + ε, where XXX
is n× p of rank k < p ≤ n, and yyy ∼ Nn(XβXβXβ, σ2III).

6.3.1 Testable Hypotheses

There is a close connection between estimable functions and whether or not a hypothesis can
be tested:

6.3.1.1 Definition (7.3.1) A hypothesis such as H0 : β1 = β2 is called testable if there exists
linearly independent estimable functions λ′1βλ′1βλ′1β, .., λ′kβλ′kβλ′kβ such that H0 is true iff

λ′1βλ
′
1βλ
′
1β = ... = λ′kβλ′kβλ′kβ = 0
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6.3.1.2 Example (7.3.2) say we have the model

yi = µ+ αi + βj + εij

with i=1,2,3;j=1,2,3.
and we want to test H0 : α1 = α2 = α3. We find

XβXβXβ =



1 1 0 0 1 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 0 1 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1
1 0 0 1 1 0 0
1 0 0 1 0 1 0
1 0 0 1 0 0 1





µ
α1
α2
α3
β1
β2
β3


=



µ+ α1 + β1
µ+ α1 + β2
µ+ α1 + β3
µ+ α2 + β1
µ+ α2 + β2
µ+ α2 + β3
µ+ α1 + β1
µ+ α2 + β2
µ+ α3 + β3


Now

(µ+ α1 + β1)− (µ+ α2 + β1) = α1 − α2

so α1 − α2 is an estimable function. Also

(µ+ α1 + β1) + (µ+ α2 + β1)− 2(µ+ α3 + β1) = α1 + α2 − 2α3

and so α1 + α2 − 2α3 is an estimable function. But

α1 − α2 = 0
α1 + α2 − 2α3 = 0

iff α1 = α2 = α3. Therefore H0 is testable and is equivalent to

H0 :
(

α1 − α2
α1 + α2 − 2α3

)
=
(

0
0

)

So if we want to test H0 : β1 = .. = βq we can find a set of linearly independent estimable
functions such that H0 : β1 = .. = βq is equivalent to

H0 : γγγ1 =


λ′1βλ
′
1βλ
′
1β
λ′2βλ
′
2βλ
′
2β
...
λ′lβλ
′
lβλ
′
lβ

 =


0
0
...
0


It is also possible to find
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γγγ2 =


λ′l+1βλ′l+1βλ′l+1β

...
λ′kβλ′kβλ′kβ



such that the functions λ′iβλ′iβλ′iβ,i=1,..,k are linearly independent and estimable. Let γγγ =
(
γγγ1
γγγ2

)
,

then we can reparametrize from the non-full rank model y = Xβ + εy = Xβ + εy = Xβ + ε to the full rank model

y = Zγ + ε = Z1γ1 + Z2γ2 + εy = Zγ + ε = Z1γ1 + Z2γ2 + εy = Zγ + ε = Z1γ1 + Z2γ2 + ε

Now under the null hypothesis we have the reduced model y = Z2γ
∗
2 + εy = Z2γ
∗
2 + εy = Z2γ
∗
2 + ε∗. Also

6.3.1.3 Theorem (7.3.3) Consider the partitioned model y = Xβ + ε = X1β1 +X2β2 + εy = Xβ + ε = X1β1 +X2β2 + εy = Xβ + ε = X1β1 +X2β2 + ε.
If X ′2X1 = 0X ′2X1 = 0X ′2X1 = 0, any estimate of β∗2β∗2β∗2 in the reduced model is also an estimate of β2β2β2 in the full
model.
proof follows from (6.3.4)

So we know that the estimate of γ∗2 is the same as the estimate of γ2 if the columns of ZZZ2 are
orthogonal to the columns of ZZZ1, that is if Z ′2Z1 = 0Z ′2Z1 = 0Z ′2Z1 = 0. This is typically true for the balanced
models considered here.
Since y = Zγ + εy = Zγ + εy = Zγ + ε is a full-rank model, we can use the theorems of section 6.6. The details of
the test are here:

Source df SS F

Due to γ1 l SS(γ̂1|γ̂2)γ̂2)γ̂2)γ̂1|γ̂2)γ̂2)γ̂2)γ̂1|γ̂2)γ̂2)γ̂2) = γ̂′Z ′yγ̂′Z ′yγ̂′Z ′y − γ̂′2Z ′2yγ̂′2Z
′
2yγ̂′2Z
′
2y

SS(γ̂1|γ̂2)γ̂2)γ̂2)γ̂1|γ̂2)γ̂2)γ̂2)γ̂1|γ̂2)γ̂2)γ̂2)/l
SSE/(n−k)

adjusted for γ1
Error n− k SSE = y′y − γ̂′Z ′yy′y − γ̂′Z ′yy′y − γ̂′Z ′y
Total n− 1 SST = y′yy′yy′y − nȳ2

The difficulty with this approach is finding the matrix ZZZ. However, we also have SSE =
y′y − β̂′X ′yy′y − β̂′X ′yy′y − β̂′X ′y and (7.2.18), so

y′y − β̂′X ′yy′y − β̂′X ′yy′y − β̂′X ′y = y′y − γ̂′Z ′yy′y − γ̂′Z ′yy′y − γ̂′Z ′y

or

β̂′X ′yβ̂′X ′yβ̂′X ′y = γ̂′Z ′yγ̂′Z ′yγ̂′Z ′y

The same is true for the reduced model obtained by setting β1 = .. = βl, and so we have the
ANOVA table for testing H0 : β1 = .. = βl in balanced non-full rank models:
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Source df SS F

Due to β1 l β̂′X ′yβ̂′X ′yβ̂′X ′y − β̂′2X ′2yβ̂′2X
′
2yβ̂′2X
′
2y

SS(β̂1|β̂2)β̂2)β̂2)β̂1|β̂2)β̂2)β̂2)β̂1|β̂2)β̂2)β̂2)/l
SSE/(n−k)

adjusted for β1

Error n− k SSE = y′y − β̂′X ′yy′y − β̂′X ′yy′y − β̂′X ′y
Total n− 1 SST = y′yy′yy′y − nȳ2

6.3.2 General Linear Hypothesis

6.3.2.1 Theorem (7.3.4) If yyy ∼ Nn(XβXβXβ, σ2III), where XXX is n× p pf rank k < p ≤ n , if CCC is
m× p of rank m ≤ k such that CβCβCβ is a set of m linearly independent estimable functions,
and if β̂̂β̂β = (X ′XX ′XX ′X)−X ′yX ′yX ′y, then

i. C(X ′X)−C ′C(X ′X)−C ′C(X ′X)−C ′ is nonsingular

ii. Cβ̂Cβ̂Cβ̂ ∼ Nm[CβCβCβ, σ2C(X ′X)−C ′C(X ′X)−C ′C(X ′X)−C ′]

iii. SSH/σ2 = (Cβ̂Cβ̂Cβ̂)′C(X ′X)−C ′C(X ′X)−C ′C(X ′X)−C ′]−1Cβ̂Cβ̂Cβ̂′/σ2 ∼ χ2(m,λ) where λ = (CβCβCβ)′C(X ′X)−C ′C(X ′X)−C ′C(X ′X)−C ′]−1CβCβCβ′/(2σ2)
iv. SSE/σ2 = yyy[I −X(X ′X)−X ′X(X ′X)−X ′X(X ′X)−X ′]yI −X(X ′X)−X ′X(X ′X)−X ′X(X ′X)−X ′]yI −X(X ′X)−X ′X(X ′X)−X ′X(X ′X)−X ′]y/σ2 ∼ χ2(n− k)
v. SSH and SSE are independent

proof omitted

6.3.2.2 Theorem (7.3.5) Under the conditions of the above theorem if H0 : Cβ = 0Cβ = 0Cβ = 0 is true

F = SSH/m
SSE/(n− k) ∼ F (m,n− k)

proof see (5.4.6)

6.3.3 A Simple Model

As an example of all of the above consider an additive two-way model without interactions
and without repetitions:

yij = µ+ αi + βj + εij

i=1,2,3 and j=1,2
Let’s use R for some of the work:
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make.X=function(I, J) {
X=NULL
for(i in 1:I) {

tmp=matrix(0, J, I)
tmp[, i]=1
X=rbind(X, cbind(tmp, diag(J)))

}
X=cbind(1, X)
X

}
X=make.X(3, 2)
qr(X)$rank

## [1] 4
t(X)%*%X

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 6 2 2 2 3 3
## [2,] 2 2 0 0 1 1
## [3,] 2 0 2 0 1 1
## [4,] 2 0 0 2 1 1
## [5,] 3 1 1 1 3 0
## [6,] 3 1 1 1 0 3

say we want to test H0 : α1 = α2 = α3. This can be written as

H0 : α1 − α2 = 0 and α1 − α3 = 0

so H0 is testable if α1 − α2 = 0 and α1 − α3 = 0 are estimable.
Let’s write

α1 − α2 =
(
0 1 −1 0 0 0

)
βββ = λ1βλ1βλ1β

then

(
0 1/2 −1/2 0 0 0

)


6 2 2 2 3 3
2 2 0 0 1 1
2 0 2 0 1 1
2 0 0 2 1 1
3 1 1 1 3 0
3 1 1 1 0 3


=
(
0 1 −1 0 0 0

)

Similarly we have

α1 − α3 =
(
0 1 0 −1 0 0

)
βββ = λ2βλ2βλ2β
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and

(
0 1/2 0 −1/2 0 0

)
X ′XX ′XX ′X =

(
0 1 0 −1 0 0

)
If we need a complete set of linearly independent estimable functions we can subtract rows of
XXX. One solution is



1 1 0 0 1 0
0 0 0 0 1 −1
0 1 −1 0 0 0
0 0 0 0 0 0
0 1 0 −1 0 0
0 0 0 0 0 0





µ
α1
α2
α3
β1
β2


=



µ+ α1 + β1
β1 − β2
α1 − α2

0
α1 − α3

0


= 000

As we needed two estimable functions to express the null hypothesis, the sum of squares will
have two degrees of freedom.
The normal equations are given by



6 2 2 2 3 3
2 2 0 0 1 1
2 0 2 0 1 1
2 0 0 2 1 1
3 1 1 1 3 0
3 1 1 1 0 3





µ̂
α̂1
α̂2
α̂3

β̂1

β̂2


=



y..
y1.
y2.
y3.
y.1
y.2


adding the side conditions α̂1 + α̂2 + α̂3 = 0 and β̂1 + β̂2 = 0 we find the solutions

µ̂ = ȳ..

α̂1 = ȳ1. − ȳ..
α̂2 = ȳ2. − ȳ..
α̂3 = ȳ3. − ȳ..
β̂1 = ȳ.1 − ȳ..
β̂2 = ȳ.2 − ȳ..

For the test H0 : α1 = α2 = α3 we need β̂X ′yβ̂X ′yβ̂X ′y, which we denote by
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SS(µ, α, β) = β̂X ′yβ̂X ′yβ̂X ′y =

(
µ̂ α̂1 α̂2 α̂3 β̂1 β̂2

)
=



y..
y1.
y2.
y3.
y.1
y.2


=

ȳ..y.. +
3∑
i=1

(ȳi. − ȳ..)yi. +
2∑
j=1

(ȳ.j − ȳ..)y.j =

y2
../6 +

3∑
i=1

(yi./2− y../6)yi. +
2∑
j=1

(y.j/3− y../6)y.j =

y2
../6 +

( 3∑
i=1

y2
i./2− y2

../6
)

+
 2∑
j=1

y2
.j/3− y2

../6


where we used the fact that ∑i yi. = ∑
j y.j = y...

For the error sum of squares we find

y′y − β̂X ′yy′y − β̂X ′yy′y − β̂X ′y =
∑
i,j

y2
ij − y2

../6 +
( 3∑
i=1

y2
i./2− y2

../6
)

+
 2∑
j=1

y2
.j/3− y2

../6


Next we need β̂X ′2yβ̂X ′2yβ̂X ′2y for the reduced model

yij = µ+ βj + εij

where µ is µ+ α.
Now the normal equations are found as follows
X2=X[, -c(2:4)]
X2

## [,1] [,2] [,3]
## [1,] 1 1 0
## [2,] 1 0 1
## [3,] 1 1 0
## [4,] 1 0 1
## [5,] 1 1 0
## [6,] 1 0 1
t(X2)%*%X2

## [,1] [,2] [,3]
## [1,] 6 3 3
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## [2,] 3 3 0
## [3,] 3 0 3

and adding the side condition β̂1 + β̂2 = 0 we have the system of equations

6µ̂+ 3β̂1 + 3β̂2 = y..

3µ̂+ 3β̂1 = y.1

β̂1 + β̂2 = 0
which we solve:

6µ̂+ 3(β̂1 + β̂2) = 6µ̂ = y..

µ̂ = ȳ..

I-2*II : −3β̂1 + 3β̂2 = y.. − 2y.1
− 3β̂1 − 3β̂1 = y.. − 2y.1
β̂1 = (2y.1 − y..)/6 = ȳ.1 − ȳ..
β̂2 = −(ȳ.1 − ȳ..) = ȳ.2 − ȳ..

SS(µ, β) = β̂X ′2yβ̂X ′2yβ̂X ′2y =
(
µ̂ β̂1 β̂2

)
=

y..y.1
y.2

 =

ȳ..y.. +
2∑
j=1

(ȳ.j − ȳ..)y.j =

y2
../6 +

3∑
i=1

(yi./2− y../6)yi. +
2∑
j=1

(y.j/3− y../6)y.j =

y2
../6 +

 2∑
j=1

y2
.j/3− y2

../6
 =

Finally

SS(α|µ, β) = β̂X ′yβ̂X ′yβ̂X ′y − β̂2X
′
2yβ̂2X
′
2yβ̂2X
′
2y =

3∑
i=1

y2
i./2− y2

../6

and we summarize the test for H0 : α1 = α2 = α3 in the ANOVA table
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Source df SS F

Due to α 2 SS(α|µ, β) = ∑
i y

2
i./2− y2

../6
SS(α|µ,β)/2

SSE/2
adjusted for β, µ

Error 2 SSE = y′y − β̂′X ′yy′y − β̂′X ′yy′y − β̂′X ′y
Total 5 SST = y′yy′yy′y − nȳ2

6.3.3.1 Example (7.3.6) Let’s generate some data and see how this works. We do this so
that the null hypothesis is true in y1 and false in y2:
make.X=function(I, J) {

X=NULL
for(i in 1:I) {

tmp=matrix(0, J, I)
tmp[, i]=1
X=rbind(X, cbind(tmp, diag(J)))

}
X=cbind(1, X)
X

}
X=make.X(3, 2)
X

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 1 0 0 1 0
## [2,] 1 1 0 0 0 1
## [3,] 1 0 1 0 1 0
## [4,] 1 0 1 0 0 1
## [5,] 1 0 0 1 1 0
## [6,] 1 0 0 1 0 1
n=nrow(X)
k=qr(X)$rank
beta1=rbind(5, 0, 0, 0, -2, 2)
beta2=rbind(5, -3, -1, 4, -2, 2)
epsilon=rnorm(6, 0, 1)
y1=cbind(round(X%*%beta1+epsilon, 3))
y2=cbind(round(X%*%beta2+epsilon, 3))

# Find ydots and betahats
I=3;J=2
ydots1=c(t(X)%*%y1)
tmp=ydots1/apply(X, 2, sum)
tmp[-1]=tmp[-1]-tmp[1]
betahat1=tmp

245



ydots2=c(t(X)%*%y2)
tmp=ydots2/apply(X, 2, sum)
tmp[-1]=tmp[-1]-tmp[1]
betahat2=tmp
rbind(round(betahat1, 3), round(betahat2, 3))

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 4.648 0.365 -0.129 -0.236 -1.975 1.976
## [2,] 4.648 -2.636 -1.129 3.764 -1.975 1.976
# Find sse
sse1=t(y1)%*%y1-rbind(betahat1)%*%t(X)%*%y1
sse2=t(y2)%*%y2-rbind(betahat2)%*%t(X)%*%y2
round(c(sse1, sse2), 5)

## [1] 1.12942 1.12942
# Find salpha given mu, beta
ssalpha1=sum(ydots1[1+1:I]^2/J)-ydots1[1]^2/(I*J)
ssalpha2=sum(ydots2[1+1:I]^2/J)-ydots2[1]^2/(I*J)
round(c(ssalpha1, ssalpha2), 3)

## [1] 0.410 44.784
# Find F statistics
F1=(ssalpha1/(I-1))/(sse1/(n-k))
F2=(ssalpha2/(I-1))/(sse2/(n-k))
# Find p values
round(c(F1, F2), 1)

## [1] 0.4 39.7
c(1-pf(F1, I-1, n-k), 1-pf(F2, I-1, n-k))

## [1] 0.73370245 0.02459893

and so we correctly reject the second case but not the first.

6.3.3.2 Example (7.3.7) Let’s apply this to the hearing aid data. Instead of deriving the
equations all over we do this by analogy:
I=4;J=24
X=make.X(I, J)
n=nrow(X)
k=qr(X)$rank
k

## [1] 27
y=as.matrix(hearingaid[, 3, drop=FALSE])
ydots=c(t(X)%*%y)
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tmp=ydots/apply(X, 2, sum)
tmp[-1]=tmp[-1]-tmp[1]
betahat=tmp
round(betahat, 3)

## [1] 28.312 4.438 1.354 -3.062 -2.729 -3.812 -4.312 -0.312 -7.812 2.688 -0.312
## [12] -1.312 0.188 8.188 2.188 -0.312 2.688 3.688 7.688 5.188 -1.312 0.188
## [23] -8.812 9.688 -6.812 -11.312 -6.312 -1.312 11.688
# Find sse
sse=t(y)%*%y-rbind(betahat)%*%t(X)%*%y
round(sse/c(1, n-k), 3)

## [1] 2506.542 36.327
# Find salpha given mu, beta
ssalpha=sum(ydots[1+1:I]^2/J)-ydots[1]^2/(I*J)
round(ssalpha/c(1, I-1), 3)

## [1] 920.458 306.819
# Find F statistics
FTS=(ssalpha/(I-1))/(sse/(n-k))
round(FTS, 3)

## Score
## Score 8.446
# Find p value
1-pf(FTS, I-1, n-k)

## Score
## Score 7.412012e-05

and so we reject the null hypothesis, the lists are not all equal.
How about letting R do all the work?
summary(aov(Score~as.factor(Subject)+as.factor(List), data=hearingaid))

## Df Sum Sq Mean Sq F value Pr(>F)
## as.factor(Subject) 23 3232 140.51 3.868 6.96e-06
## as.factor(List) 3 920 306.82 8.446 7.41e-05
## Residuals 69 2507 36.33

and so we have found all the relevant numbers!

6.4 One-way ANOVA

6.4.1 The One-Way Model

We have a model of the form
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yij = µ+ αi + εij

i=1,..,k and j=1,..,ni

Also let n = ∑
i ni be the sample size.

We have the assumptions
i. E[εij] = 0 for all i,j

ii. var(εij) = σ2 for all i,j

iii. cov(εij, εrs) = 0 for all (i, j) 6= (r, s)
Often we also have
iv. εij ∼ Nn(0, σ2)

and

v. ∑i αi = 0
The one-way layout is sometimes also called a completely randomized design.

6.4.2 Estimable Functions

For illustration let’s study the case k=3, ni=2. Then

yyy =



y11
y12
y21
y22
y31
y32


=



µ+ α1
µ+ α1
µ+ α2
µ+ α2
µ+ α3
µ+ α3


+



ε11
ε12
ε21
ε22
ε31
ε32


=



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1




µ
α1
α2
α2

+



ε11
ε12
ε21
ε22
ε31
ε32


and XXX is 6 × 4 of rank 3. Again the vectors βββ =

(
µ α1 α2 α2

)′
. In general, XXX for a

one-way balanced design is n× (k + 1) of rank k.
We have seen before that in general contrasts are estimable, that is ∑ ciαi is estimable if∑
ci = 0.

If we add some side conditions and denote the constrained parameters as µ∗, α∗1, ..α∗k, then
these are estimable.
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6.4.2.1 Theorem (7.4.1) Under the side condition ∑α∗i = 0 the estimators are µ∗ = µ̄. and
α∗i = µi − µ̄., where µi = µ+ αi and µ̄. = 1

k

∑
i µi.

proof

yij = µ+ αi + εij = µi + εij

ȳ. = 1
k

∑
i

µi = 1
k

∑
i

(µ∗ + α∗i ) =

µ∗ + 1
k

∑
i

α∗i = µ∗

α∗i = µi − µ̄.

6.4.3 Parameter Estimation

The general one-way model has the design matrix

XXX =


jjjn1 jjjn1 000 ... 000
jjjn2 000 jjjn3 ... 000
... ... ... ...
jjjnk 000 000 ... jjjnk


where jjjni is the vector of 1’s of length ni.
The normal equations are

X ′Xβ̂ = X ′yX ′Xβ̂ = X ′yX ′Xβ̂ = X ′y


n n1 0 0 ... 0
n1 n2 0 0 ... 0
n2 0 n3 0 ... 0
... ... ... ... ...

...
nk 0 0 0 ... nk




µ̂
α̂1
...
α̂k

 =


y..
y1.
...
yk.


Adding the usual side condition we have the system of equations

nµ̂+ n1α̂1 + ..+ nkα̂k = y..

nµ̂+ niα̂i = yi.; i = 1, .., k∑
niα̂i = 0

and so

y.. =
k∑
i=1

yi. =
k∑
i=1

(niµ̂+ niα̂i) = nµ̂+
k∑
i=1

niα̂i = nµ̂

µ̂ = y../n = ȳ..

α̂i = yi./ni − µ̂ = ȳi. − ȳ..
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6.4.3.1 Example (7.4.2) In the mothers and cocaine use data we find:
y=mothers$Length
x=mothers$Status
ni=table(x)
n=sum(ni)
y.. = sum(y)
yi. = tapply(y, x, sum)
round(c(y../n, yi./ni-y../n), 3)

## Drug Free First Trimester Throughout
## 49.549 1.551 -0.249 -1.549

6.4.3.2 Example (7.4.3) The flammability of fabric used in children’s sleepwear is tested
by placing a flame under a piece of fabric until it ignites. The flame is then removed, and
the fabric stops burning. The length of the charred portion of the fabric is measured. In the
data set pieces of the same cloth were sent to five different laboratories, which then carried
out this experiment eleven times.
Research Question: Are there differences between the labs?
kable.nice(head(flammability), do.row.names = FALSE)

Labs Length
Lab 1 2.9
Lab 1 3.1
Lab 1 3.1
Lab 1 3.7
Lab 1 3.1
Lab 1 4.2

table(flammability$Labs)

##
## Lab 1 Lab 2 Lab 3 Lab 4 Lab 5
## 11 11 11 11 11

so here we have a balanced one-way design with k=5 and ni=11, i=1,..,k. Now
y=flammability$Length
x=flammability$Labs
ni=rep(11, 5)
n=sum(ni)
k=5
y..=sum(y)
yi.=tapply(y, x, sum)
round(c(y../n, yi./ni-y../n), 3)
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## Lab 1 Lab 2 Lab 3 Lab 4 Lab 5
## 3.376 -0.040 0.224 -0.076 -0.376 0.269

As previously discussed another approach to estimation is to use the generalized inverse. We
can easily verify that a generalized inverse of X ′XX ′XX ′X is given by

(X ′XX ′XX ′X)− =


0 0 0 0 ... 0
0 1/n1 0 0 ... 0
0 0 1/n2 0 ... 0
... ... ... ... ...

...
0 0 0 0 ... 1/nk


and so a solution to the normal equations is given by

β̂̂β̂β = (X ′XX ′XX ′X)−X ′yX ′yX ′y =


0 0 0 0 ... 0
0 1/n1 0 0 ... 0
0 0 1/n2 0 ... 0
... ... ... ... ...

...
0 0 0 0 ... 1/nk




jjjn1 jjjn1 000 ... 000
jjjn2 000 jjjn3 ... 000
... ... ... ...
jjjnk 000 000 ... jjjnk



y11
...
ykn

 =


0
ȳ1.
...
ȳk.



6.4.4 An estimator of σ2

6.4.4.1 Definition (7.4.4) An unbiased estimator for σ2 is given by s2 = SSE/[k(n − 1]),
where

SSE = y′y − β̂X ′yy′y − β̂X ′yy′y − β̂X ′y = y′[I −X(X ′X)−X ′]yy′[I −X(X ′X)−X ′]yy′[I −X(X ′X)−X ′]y
Alternative formulas are

s2 =
∑
ij y

2
ij −

∑
i y

2
i./ni

n− k
=
∑
ij(yij − ȳi.)2

n− k

6.4.4.2 Example (7.4.5) For the children’s ware data we find
n=55;k=5
ybar = tapply(flammability$Length, flammability$Labs, mean)
sse=sum( (flammability$Length-rep(ybar,each=11))^2 )
sse/(n-k)

## [1] 0.1646545
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6.4.5 Hypothesis Testing

Say we want to test H0 : µ1 = .. = µk. As always for testing we now also assume

yyy ∼ Nn(XβXβXβ, σ2III)

Adding the usual side condition the null hypothesis becomes

H0 : α1 = .. = αk = 0

Under the null hypothesis the reduced model is yyy = µjjj + εεε.
For the full model we have

SS(µ, α) = β̂X ′yβ̂X ′yβ̂X ′y =
∑
i

y2
i./ni

and for the reduced model we find

µ̂ = (j′njnj′njnj′njn)−1j′nyj
′
nyj
′
ny = ȳ..

SS(µ) = µ̂j′nyj
′
nyj
′
ny = y2

../n

By the ANOVA table just before theorem (9.3.3) the sum of squares for the α’s adjusted for
µ is given by

SS(α|µ) = SS(α, µ)− SS(µ) =
∑
i

y2
i./ni − y2

../n

all this is summarized in the
ANOVA table for one-way design

Source df SS F

Treatments k − 1 SS(α|µ) = ∑
i y

2
i./ni − y2

../n
SS(α|µ)/(k−1)
SSE/[k(n−1)]

Error n− k SSE = ∑
ij(yij − ȳi.)2

Total n− 1 SST = ∑
ij y

2
ij − y2

../n

6.4.5.1 Example (7.4.6) In the mothers and cocaine use data we find:
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y=mothers$Length
x=mothers$Status
k=3
ni=table(x)
n=sum(ni)
y..=sum(y)
yi.=tapply(y, x, sum)
sse=sum(y^2)-sum(yi.^2/ni)
ssalpha=sum(yi.^2/ni)-y..^2/n
FTS=(ssalpha/(k-1))/(sse/(n-k))
round(c(ssalpha/c(1, k-1), sse/c(1, n-k), FTS, 1-pf(FTS, k-1, k*(n-1))), 3)

## [1] 181.375 90.687 885.580 9.732 9.319 0.000

or of course
summary(aov(y~x))

## Df Sum Sq Mean Sq F value Pr(>F)
## x 2 181.4 90.69 9.319 0.000208
## Residuals 91 885.6 9.73

and so we find that the babies do not have equal lengths.

6.4.5.2 Example (7.4.7) For the children’s sleep ware data:
y=flammability$Length
x=flammability$Labs
ni=rep(11, 5)
n=sum(ni)
k=5
y..=sum(y)
yi.=tapply(y, x, sum)
sse=sum(y^2)-sum(yi.^2/ni)
ssalpha=sum(yi.^2/ni)-y..^2/n
FTS=(ssalpha/(k-1))/(sse/(n-k))
round(c(ssalpha/c(1, k-1), sse/c(1, n-k), FTS, 1-pf(FTS, k-1, k*(n-1))), 3)

## [1] 2.987 0.747 8.233 0.165 4.535 0.001

or of course
summary(aov(y~x))

## Df Sum Sq Mean Sq F value Pr(>F)
## x 4 2.987 0.7466 4.535 0.00334
## Residuals 50 8.233 0.1647

and so we find that the Labs do not have equal means.
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6.4.6 Contrasts

In the case of a one-way model a contrast can be written in terms of the αi’s or the µi’s:

∑
i

ciµi =
∑
i

ci(µ+ αi) = µ
∑
i

ci +
∑
i

ciαi =
∑
i

ciαi

Tests of contrasts are essentially comparisons of means:
H0 : 2µ1− µ2 −mu3 = 0↔ H0 : µ1 = µ2+µ3

2

To test these hypotheses we can use theorem (9.3.5). Here m=1 and the test statistic becomes

F = (c′β̂c′β̂c′β̂)[c′(X ′X)−c]−1c′β̂c′(X ′X)−c]−1c′β̂c′(X ′X)−c]−1c′β̂

SSE/(n− k) = (∑i ciȳi.)2

s2∑
i c

2
i /ni

where s2 = SSE/(n− k)

6.4.6.1 Example (7.4.8) Let’s have a look at the children’s sleep ware data:
y=flammability$Length
x=factor(flammability$Labs)
ni=rep(11, 5)
n=sum(ni)
k=5
ybar=tapply(y, x, mean)
ybar

## Lab 1 Lab 2 Lab 3 Lab 4 Lab 5
## 3.336364 3.600000 3.300000 3.000000 3.645455

so it seems that mean of Lab 1 is equal to the mean of Lab 3 but Lab 4 is different from Lab
5.
Let’s test whether the mean of Lab 1 is equal to the mean of Lab 3. So we have H0 : µ1 = µ3
or H0 : µ1 − µ3 = 0 or

H0 :
(
1 0 −1 0 0

)

µ1
µ2
µ3
µ4
µ5

 = 0

sse=sum( (y-rep(ybar,each=11))^2 )
cc=c(1, 0, -1, 0, 0)
num=sum(cc*ybar)^2
s2=sse/(n-k)
denom=s2*sum(cc^2/ni)
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FTS=num/denom
round(c(FTS, 1-pf(FTS, 1, n-k)), 4)

## [1] 0.0442 0.8344

and we fail to reject the null hypothesis, the means of Lab 1 and Lab 3 are the same.
We can also use R to test for contrasts:
library(multcomp)
fit=aov(y~x)
fit.gh=glht(fit, linfct = mcp(x = cc))
summary(fit.gh)

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: User-defined Contrasts
##
##
## Fit: aov(formula = y ~ x)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 1 == 0 0.03636 0.17302 0.21 0.834
## (Adjusted p values reported -- single-step method)

Note that because the F distribution has 1 degree of freedom the F test is also a t-test, and
(0.21)^2

## [1] 0.0441

similarly testing Lab 4 vs. Lab 5 we find
cc=c(0, 0, 0, 1, -1)
num=sum(cc*ybar)^2
s2=sse/(n-k)
denom=s2*sum(cc^2/ni)
FTS=num/denom
round(c(FTS, 1-pf(FTS, 1, n-k)), 4)

## [1] 13.9162 0.0005

and now we reject the null hypothesis.
and again with Rs:
fit.gh=glht(fit, linfct = mcp(x = cc))
summary(fit.gh)

##
## Simultaneous Tests for General Linear Hypotheses
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##
## Multiple Comparisons of Means: User-defined Contrasts
##
##
## Fit: aov(formula = y ~ x)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 1 == 0 -0.6455 0.1730 -3.73 0.000489
## (Adjusted p values reported -- single-step method)

Note that because the F distribution has 1 degree of freedom the F test is also a t-test, and
(-3.73)^2

## [1] 13.9129

6.4.7 Orthogonal Contrasts

6.4.7.1 Definition (7.4.9) Two contrasts c′iβ̂c′iβ̂c′iβ̂ and c′jβ̂c′jβ̂c′jβ̂ are orthogonal iff c′icjc′icjc′icj = 0.

Note that

cov(c′iβ̂c′iβ̂c′iβ̂, c′jβ̂c′jβ̂c′jβ̂) = c′i(X ′X)−cjc′i(X ′X)−cjc′i(X ′X)−cj = c′ic
′
ic
′
idiag(0, 1/n, .., 1/n)cjcjcj = c′icjc′icjc′icj/n = 0

iff c′icjc′icjc′icj = 0. But we also have the normal assumption, and so two contrasts are orthogonal iff
c′icjc′icjc′icj = 0.
(Here we added a 0 to all c’s)

A similar argument shows that the sums of squares (c′iβ̂c′iβ̂c′iβ̂)2/c′ic
′
ic
′
i(X ′X)−ci and (c′jβ̂c′jβ̂c′jβ̂)2/c′ic

′
ic
′
i(X ′X)−cj

are also independent.

6.4.7.2 Theorem (7.4.10) In the balanced one-way model, if yyy ∼ Nn(XβXβXβ, σ2III) and if
H0 : α1 = .. = αk is written as CβCβCβ = 0 where the rows of CCC = (c′i), i=1,..k-1, are mutually
orthogonal contrasts, then

SSH = (Cβ̂)′[C(X ′X)−C ′]Cβ̂(Cβ̂)′[C(X ′X)−C ′]Cβ̂(Cβ̂)′[C(X ′X)−C ′]Cβ̂ =
k−1∑
i=1

(c′iβ̂)2

c′i(X ′X)−ci
and the sums of squares c′i(X ′X)−ci are independent.
proof
By the calculation above C(X ′X)−C ′ is a diagonal matrix with c′i(X ′X)−ci on the diagonal,
which shows the second equality. The first follows from the independence of the orthogonal
contrasts.
Notice a consequence of this theorem
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6.4.7.3 Corollary (7.4.11) Let F be the test statistic of the overall test, then

F = SSH/(k − 1)
s2 = 1

k − 1

k−1∑
i=1

(c′iβ̂)2

c′i(X ′X)−ci
= 1
k − 1

k−1∑
i=1

Fi

where Fi is the test statistic for the ith contrast.

6.4.7.4 Example (7.4.12) For the children’s sleep ware data:
There are a number of standard orthogonal contrasts. One of them is
C=t(contr.helmert(5))
C

## 1 2 3 4 5
## [1,] -1 1 0 0 0
## [2,] -1 -1 2 0 0
## [3,] -1 -1 -1 3 0
## [4,] -1 -1 -1 -1 4

this compares 1-2, the means of 1,2 with 3, and so on.
C%*%t(C)

## [,1] [,2] [,3] [,4]
## [1,] 2 0 0 0
## [2,] 0 6 0 0
## [3,] 0 0 12 0
## [4,] 0 0 0 20

shows that these are indeed orthogonal contrasts.
Let’s apply this to our data, but let’s order the the groups first by their means
x=factor(flammability$Labs, levels = levels(x)[order(ybar)],

ordered = TRUE)
ybar=sort(ybar)
FTS=rep(0, 4)
for(i in 1:4) {

num=n*sum(C[i, ]*ybar)^2
denom=s2*sum(C[i, ]^2)
FTS[i]=num/denom

}
FTS

## [1] 15.031471 7.734283 37.691402 30.234099
pvalue=1-pf(FTS, 1, k*(n-1))
round(cbind(FTS, pvalue), 3)

## FTS pvalue
## [1,] 15.031 0.000
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## [2,] 7.734 0.006
## [3,] 37.691 0.000
## [4,] 30.234 0.000
FTS.all=sum(FTS)/(k-1)
round(c(FTS.all, 1-pf(FTS.all, k-1, k*(n-1))), 3)

## [1] 22.673 0.000

and we see that the overall test is the same as before, in (9.2.5)
sqrt(FTS)

## [1] 3.877044 2.781058 6.139332 5.498554
fit=aov(y~x)
fit.gh=glht(fit, linfct = mcp(x = C))
summary(fit.gh)

##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: User-defined Contrasts
##
##
## Fit: aov(formula = y ~ x)
##
## Linear Hypotheses:
## Estimate Std. Error t value Pr(>|t|)
## 1 == 0 0.3000 0.1730 1.734 0.3065
## 2 == 0 0.3727 0.2997 1.244 0.6210
## 3 == 0 1.1636 0.4238 2.746 0.0328
## 4 == 0 1.3455 0.5471 2.459 0.0672
## (Adjusted p values reported -- single-step method)

Notice the last line of the printout: Adjusted p values reported – single-step method): because
these tests are independent on can use the Bonfferoni adjustment, so what is reported here is
the family-wise error rate. However
round((k-1)*pvalue,4)

## [1] 0.0005 0.0232 0.0000 0.0000

shows that the method used by R is slightly different.

6.5 Pairwise Comparisons

After the basic ANOVA test and rejecting the null hypothesis of no differences one generally
wants to go a step further and investigate what the differences are.
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6.5.0.1 Example We rejected the null hypothesis of equal lengths of the babies in the
mother and cocaine use experiment. But

• is there a stat. signif. difference between drug free and 1st trimester?

• is there a stat. signif. difference between 1st trimester and throughout?
Notice that in this case we have a natural ordering of the levels, so there are two pairs of
interest. In general if a factor has k levels there are

(
n
k

)
pairs.

Comparing two groups could be done with the two-sample t test, but doing
(
n
k

)
tests we

again have the issue of simultaneous inference, as discussed in section 6.7. The same general
solutions proposed there (Bonferroni’s method, Scheffe’s method and p-value adjustment
via simulation) can be applied here as well. In addition we have some methods specifically
designed for pairwise comparisons in ANOVA.
Note an often made suggestion is to do pairwise comparisons at the α = 10% level rather
than 5%.

6.5.1 Bonferroni’s Method

This method uses the basic 2-sample t test but with the adjusted significance level α/k if k
comparisons are done.

6.5.2 Sheffe’s Method

We already discussed this method in the context of regression in (6.5.2). There we saw that
all hypotheses of the form H0 : a′βa′βa′β = 0 can be tested simultaneously with

FM = (a′β̂a′β̂a′β̂)2

s2aaa′(X ′XX ′XX ′X)−1aaa

using F/(k + 1) ∼ FM(k + 1, n− k − 1) if k tests are done.
A pairwise comparison is a contrast of the form aaa = (0 .. 0 1 0 .. 0 − 1 0 .. 0)′, so
a′β̂ = ȳi − ȳja′β̂ = ȳi − ȳja′β̂ = ȳi − ȳj and
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aaa′(X ′XX ′XX ′X)−aaa =

aaa′


0 0 0 0 ... 0
0 1/n1 0 0 ... 0
0 0 1/n2 0 ... 0
... ... ... ... ...

...
0 0 0 0 ... 1/nk





0
...
0
1
0
...
0
−1
0
...
0



=

(0 .. 0 1 0 .. 0 − 1 0 .. 0)′



0
...
0

1/n1
0
...
0

−1/nj
0
...
0



=

1/ni + 1/nj
and so

FM = (ȳi − ȳj)2

s2 (1/ni + 1/nj)

6.5.2.1 Example In the mothers and cocaine use data we find:
y=mothers$Length
x=mothers$Status
k=3
ni=table(x)
n=sum(ni)
y..=sum(y)
yi.=tapply(y, x, sum)
sse=sum(y^2)-sum(yi.^2/ni)
s2=sse/(n-k)
F12= (yi.[2]/ni[2]-yi.[1]/ni[1])^2/s2/((1/ni[2]+1/ni[1]))
F23= (yi.[3]/ni[3]-yi.[2]/ni[2])^2/s2/((1/ni[3]+1/ni[2]))
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FTS=c(F12, F23)
names(FTS)=c("Drug Free - First Trimester", "First Trimester - Throughout")
round(1-pf(FTS, 1, n-k), 3)

## Drug Free - First Trimester First Trimester - Throughout
## 0.042 0.145

and so we find a difference between Drug Free and First Trimester but not between First
Trimester and Throughout, although this is almost certainly due to the small sample sizes.

6.5.3 Adjusted p value

The idea is to find the distribution of the smallest p value via simulation and then adjust the
actual p values accordingly:
B=10000
mu=mean(y)
sig=sd(y)
TS=function(x,y) t.test(x,y)$p.value
pvals = matrix(0, B, 3)
for(i in 1:B) {

pvals[i, 1]=TS(rnorm(ni[1], mu, sig),rnorm(ni[2], mu, sig))
pvals[i, 2]=TS(rnorm(ni[2], mu, sig),rnorm(ni[3], mu, sig))

}
pvals[, 3]=apply(pvals[, 1:2], 1, min)
par(mfrow=c(2, 2))
for(i in 1:3) hist(pvals[,i], 100, freq=FALSE, main="")

pvals[, i]

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
8

pvals[, i]

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
6

1.
2

pvals[, i]

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

so we see that while the p values of the individual tests have a uniform [0,1] distribution, the
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minimum p-value does not. We can now use the empirical distribution function to adjust the
p-values:
data.pvals=c(TS(y[x=="Drug Free"], y[x=="First Trimester"]),

TS(y[x=="Throughout"], y[x=="First Trimester"]))
data.pvals

## [1] 0.01917369 0.12397785
adj.pvals=ecdf(pvals[, 3])(data.pvals)
names(adj.pvals)=c("Drug Free - First Trimester", "First Trimester - Throughout")
adj.pvals

## Drug Free - First Trimester First Trimester - Throughout
## 0.0388 0.2407

and so again we find a difference between Drug Free and First Trimester but not between
First Trimester and Throughout

6.5.4 Fisher’s LSD Method

LSD stands for least significant difference. Say we wish to compare groups i and j. Now ȳi.
and ȳj. are the respective group means and s2 = SSE/(n1 + n2 − 2), then the test statistic

T = |ȳi. − ȳj.|
s
√

1/n1 + 1/n2
∼ t(1− α/2, n1 + n2 − 2)

this of course is just the standard 2-sample t test for the difference in means, assuming equal
variance. Fisher’s LSD method therefore does not provide an experiment-wise error rate, but
is guards against to many false positives because it is run only after the F test rejects the
null hypothesis. It is sometimes referred to as the protected LSD method.

6.5.4.1 Example We did the F test for the mothers and cocaine use, so now we can do
Fisher’s LSD:
round(t.test(mothers$Length[mothers$Status=="Drug Free"],

mothers$Length[mothers$Status=="First Trimester"])$p.value, 3)

## [1] 0.019
round(t.test(mothers$Length[mothers$Status=="First Trimester"],

mothers$Length[mothers$Status=="Throughout"])$p.value, 3)

## [1] 0.124

so again we find a difference between Drug Free and First Trimester but not between First
Trimester and Throughout.
pairwise.t.test(mothers$Length, mothers$Status, p.adjust.method="none")
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##
## Pairwise comparisons using t tests with pooled SD
##
## data: mothers$Length and mothers$Status
##
## Drug Free First Trimester
## First Trimester 0.042 -
## Throughout 4.3e-05 0.145
##
## P value adjustment method: none

One disadvantage of using the pairwise.t.test command is that it finds all pairwise comparisons,
whereas because our levels have an ordering only two are of interest.

6.5.5 Holm’s Method

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal
of Statistics. 6 (2): 65–70. describes a method to adjust p values specifically for the case of
pairwise comparisons. It is implemented in R in
pairwise.t.test(mothers$Length, mothers$Status)

##
## Pairwise comparisons using t tests with pooled SD
##
## data: mothers$Length and mothers$Status
##
## Drug Free First Trimester
## First Trimester 0.08404 -
## Throughout 0.00013 0.14512
##
## P value adjustment method: holm

6.5.6 Tukey’s HSD Method

Tukey’s HSD (honest significant difference) test is based on the studentized range:

q = maxi,j{|ȳi. − ȳj.|}
s/
√
n

Under the normal assumption it is possible to derive the distribution of q. This is implemented
in
round(TukeyHSD(aov(Length~Status, data=mothers))$Status[,4], 3)

## First Trimester-Drug Free Throughout-Drug Free Throughout-First Trimester
## 0.103 0.000 0.310
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and unlike with the other methods neither difference between Drug Free and First Trimester
nor between First Trimester and Throughout is statistically significant, although Drug Free
and First Trimester is close.

6.5.7 Other Methods

There are many other methods that have been developed such as Newman-Keuls multiple
range test, Duncan’s range test and others

6.5.8 Suggested Method

Many studies have been done to investigate these methods. The general conclusion is
that Tukey’s HSD test provides a good performance in most cases, and is therefore the
recommended method.

6.6 Power and Sample Size

6.6.1 Power of a One-Way ANOVA Test.

Say we are considering a one-way ANOVA model with k groups and the basic test

H0 : α1 = .. = αk

By the discussion in (6.6.3) we have that if the null hypothesis is wrong the test statistic

F = SSR/k
SSE/(n− k − 1)

has a non-central F distribution with k and n-k-1 degrees of freedom and non-centrality
parameter

λ = β1X
′
cXcβ1β1X
′
cXcβ1β1X
′
cXcβ1/(2σ2)

where XXXc is the centered matrix of XXX, the design matrix without the column of 1’s, and βββ1 is
βββ without µ.

6.6.1.1 Example Let’s illustrate this in the case of the mothers and cocaine use data:
y=mothers$Length
x=mothers$Status
k=3
ni=table(x)
n=sum(ni)
y..=sum(y)
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yi.=tapply(y, x, sum)
sse=sum(y^2)-sum(yi.^2/ni)
s2=sse/(n-k-1)

j1=rep(1, ni[1])
j2=rep(1, ni[2])
j3=rep(1, ni[3])
X1=cbind(c(j1, rep(0, ni[2]+ni[3])),

c(rep(0, ni[1]), j2, rep(0, ni[3])),
c(rep(0, ni[1]+ni[2]), j3))

Xc=(diag(n)-matrix(1, n ,n )/n)%*%X1
Xcc=t(Xc)%*%Xc

Finally we need β1, that is a vector of true values. Let’s check the data
yi./ni-y../n

## Drug Free First Trimester Throughout
## 1.5510638 -0.2489362 -1.5489362

Let’s find the power if βββ1 =
(
1.5 0 −1.5

)′
:

beta=rbind(1.5, 0, -1.5)
lambda=t(beta)%*%Xcc%*%beta/2/s2
crit=qf(0.95, k-1, n-k-1)
round(1-pf(crit, k-1, n-k-1, lambda), 3)

## [1] 0.733

so in this case our test had a 73% chance of correctly rejecting the null hypothesis!

6.6.2 Sample Size

Say we are planning on carrying out the following experiment: we will collect n observations
each from 4 groups. Then we will do the one-way ANOVA test. We want the test to have a
power of 80%. What should n be?
To answer the question we need two things:

• σ2: we do need some idea of the population standard deviation. Often one uses some
number from similar experiments, or one does a small scale pilot study. Say for our
purpose we know σ2 = 0.15.

• βββ1: here we need to decide what the smallest effect size of practical interest is. This is
the smallest difference that would be important enough to justify the experiment. Let’s
say that it is δ. Then one often uses

βββ1 =
(
δ/2 −δ/2 0 0

)′
so that the difference between groups 1 and 2 is δ, and the other groups are between those.
Say in our experiment δ = 2.3.
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So now
pwr <- function(n, k, delta, sigma2, alpha=0.05) {

X1=matrix(0, k*n, k)
for(i in 1:k) X1[((i-1)*n+1):(i*n), i]=1
Xc=(diag(k*n)-matrix(1, k*n , k*n)/(k*n))%*%X1
Xcc=t(Xc)%*%Xc
beta=c(delta/2, -delta/2, rep(0, k-2))
lambda=t(beta)%*%Xcc%*%beta/2/s2
crit=qf(1-alpha, k-1, n*k-k-1)
round(1-pf(crit, k-1, n*k-k-1, lambda), 4)

}
pwr(20, 4, 2.3, 0.15)

## [1] 0.2374

so with 20 observations per group the power is 23%, to low.
pwr(50, 4, 2.3, 0.15)

## [1] 0.5609
pwr(100, 4, 2.3, 0.15)

## [1] 0.8791
pwr(90, 4, 2.3, 0.15)

## [1] 0.839
pwr(80, 4, 2.3, 0.15)

## [1] 0.7884
pwr(83, 4, 2.3, 0.15)

## [1] 0.8048
pwr(82, 4, 2.3, 0.15)

## [1] 0.7994

so we need 83 observations per group, for a total of 332!

6.7 Balanced Two-Way ANOVA

6.7.1 The Model

In this section we will study the case of a balanced two-way model with interaction. Such a
model can be written as

yijk = µ+ αi + βj + γij + εijk
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where i=1,..,I, j=1,..,J and k=1,..,n.
Here the new term γij is called the interaction term and is meant to encode a dependency
between the factors A and B. If these are independent we would expect γij = 0 for all i and j.
The assumptions are the same as in a one-way ANOVA, extended to this case.

6.7.1.1 Example (7.7.1) The hearingaid data discussed in example (7.1.2) is a balanced
two-way design, however by design one would not expect an interaction (dependency) between
subjects and lists.

6.7.1.2 Example (7.7.2) In an experiment to study gas mileage four different blends of
gasoline are tested in each of three makes of automobiles. The cars are driven a fixed distance
to determine the mpg (miles per gallon) The experiment is repeated three times for each
blend-automobile combination. (Taken from Lyman Ott)
Note that the interest here is indifferent gasoline blends, automobile is a blocking variable, so
this is a randomized block design.
head(gasoline)

## MPG Gasoline Automobile
## 1 22.7 1 A
## 2 22.4 1 A
## 3 22.9 1 A
## 4 21.5 2 A
## 5 21.8 2 A
## 6 21.6 2 A

Note that Gasoline is coded as 1, 2, 3 and 4, but these are simple codes without any meaning.
So it is better to change them into factors.
gasoline$Gasoline = factor(gasoline$Gasoline)

Now
table(gasoline$Gasoline, gasoline$Automobile)

##
## A B C
## 1 3 3 3
## 2 3 3 3
## 3 3 3 3
## 4 3 3 3

shows that each factor-level combination was tested three times, so here we have
I=4, J=3 and n=3
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6.7.2 Interaction

Usually the first step in the analysis of a two-way design is to check for interaction. If we
found γij = 0 for all i and j, the model would simplify to an additive model of the form

yijk = µ+ αi + βj + εijk

A graphical check is to draw the interaction plot: here we find the mean responses for each
factor-level combination ȳij., choose one of the factors to use on the x-axis, plot the means on
the y-axis and connect the dots corresponding to the other factor.

6.7.2.1 Example (7.7.3) For the gasoline data:
mns = tapply(gasoline$MPG, gasoline[, -1], mean)
df=data.frame(Gasoline=rep(1:4, 3),

Means=c(mns),
Automobile = rep(c("A", "B", "C"), each=4))

ggplot(data=df, aes(Gasoline, Means, color=Automobile)) +
geom_point() +
geom_line()

21

22

23

1 2 3 4
Gasoline

M
ea

ns

Automobile

A

B

C

Now in an additive model, going from level 1 of factor A to level 2, all responses get added
the same (namely β2 − β1), so the line segments should be parallel.
The problem with this approach is that each of the means is based on just three numbers, so
the variance is quite high and the graphs can easily be far from parallel even if no interaction
is present. It is therefore preferable to do a formal test.
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6.7.3 Test for Interaction

It can be shown that estimable contrasts in γij’s have the form

γij − γit + γsj − γst
We illustrate the ideas in the case of I=3, J=2. Then the cell means are

µ11 µ21
µ12 µ22
µ13 µ23


so if factor 1 is at level 1, the effect of factor 2 is µ11 − µ12. At level 2 it is µ21 − µ22 and
at level 3 µ31 − µ32. If all of these effects were 0, there would be no interaction. Notice the
similarity to the discussion above on the interaction plot.
So the hypothesis of no interaction can be written as

H0 : µ11 − µ12 = µ21 − µ22 = µ31 − µ32

Now

µ11 − µ12 = µ+ α1 + β1 + γ11 − (µ+ α1 + β2 + γ12) =
β1 − β2 + γ11 − γ12 =
µ21 − µ22 = β1 − β2 + γ21 − γ22

and so µ11 − µ12 = µ21 − µ22 implies β1 − β2 + γ11 − γ12 = β1 − β2 + γ21 − γ22 or

γ11 − γ12 − γ21 + γ22 = 0
It can be shown that this is an estimable contrast. Similarly we find

γ21 − γ22 − γ31 + γ32 = 0

and again this is an estimable contrast. Therefore the interaction hypothesis is testable.
To get a reduced model we reparametrize the model as follows: let

γ∗ij = µij − µ̄.j − µ̄i. + µ̄..

which is estimable.
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6.7.3.1 Theorem (7.7.4) Consider the model

yijk = µ∗ + α∗i + β∗j + γ∗ij + εijk

where

µ∗ = ȳ..

α∗i = ȳi. − ȳ..
β∗ = ȳ.j − ȳ..

In this model the no interaction hypothesis H0 : γ∗ij = 0 for all i,j is equivalent to

H0 : µ11 − µ12 = µ21 − µ22 = µ31 − µ32

which in turn is equivalent to

H0 :
(
γ11 − γ12 − γ21 + γ22
γ21 − γ22 − γ31 + γ32

)
=
(

0
0

)

proof
We will show this in the case of I=3, J=2. Consider for example γ∗12 = µ12 − µ̄.2 − µ̄1. + µ̄...
Under H0 : γ∗12 = 0, and so
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0 = µ12 − µ̄.2 − µ̄1. + µ̄.. =

µ12 −
1
I

∑
i

µi2 −
1
J

∑
j

µ1j + 1
IJ

∑
i,j

µij =

µ+ α1 + β2 + γ12−
1
I

∑
i

(µ+ αi + β2 + γij)−

1
J

∑
j

(µ+ α1 + βj + γij) +

1
IJ

∑
ij

(µ+ αi + βj + γij) =

µ+ α1 + β2 + γ12−
1
I

(
Iµ+

∑
i

αi − Iβ2 +
∑
i

γij

)
−

1
J

Jµ+ Jα1 +
∑
j

βj +
∑
j

γij

+

1
IJ

IJµ+ J
∑
i

αi + I
∑
j

βj +
∑
ij

γij

 =

1
IJ

(IJµ+ IJα1 + IJβ2 + IJγ12

− IJµ− J
∑
i

αi − IJβ2 − J
∑
i

γij

− IJµ− IJα1 − I
∑
j

βj − I
∑
j

γij+

IJµ+ J
∑
i

αi + I
∑
j

βj +
∑
ij

γij

 =

1
IJ

(
IJα1 − J

∑
i

αi − IJα1 + J
∑
i

αi

+ IJβ2 − IJβ2 − I
∑
j

βj + I
∑
j

βj

+IJγ12 − J
∑
i

γi2 − I
∑
j

γ1j +
∑
ij

γij

 =

γ12 −
1
I

∑
i

γi2 −
1
J

∑
j

γ1j + 1
IJ

∑
ij

γij =

γ12 − γ̄1. − γ̄.2 + γ̄..
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and so γ12 = γ̄1. + γ̄.2 − γ̄..
In the same way we can show that

γ11 = γ̄1. + γ̄.1 − γ̄..
γ21 = γ̄2. + γ̄.1 − γ̄..
γ12 = γ̄2. + γ̄.2 − γ̄..

and so

γ11 − γ12 − γ21 + γ22 = γ̄1. + γ̄.1 − γ̄.. − γ̄1. − γ̄.2 + γ̄.. − γ̄2. − γ̄.1 + γ̄.. + γ̄2. + γ̄.2 − γ̄.. = 0

The sum of squares for the test H0 : γ∗ij = 0 is given by

SS(γ|µ, α, β) = SS(µ, α, β, γ)− SS(µ, α, β)

Using the usual side conditions ∑i α̂i = 0, ∑j β̂j = 0, ∑i γ̂ij = 0 and ∑j γ̂ij = 0, a solution to
the normal equation is given by

µ̂ = ȳ...

α̂i = ȳi.. − ȳ...
β̂j = ȳ.j. − ȳ...
γ̂ij = ȳij. − ȳi.. − ȳ.j. +−ȳ...

and so

SS(µ, α, β, γ) = β̂′X ′yβ̂′X ′yβ̂′X ′y =

µ̂y... +
I∑
i=1

α̂iyi.. +
J∑
i=j

β̂jy.j. +
I∑
i=1

J∑
j=1

γ̂ijyij. =

ȳ...y... +
I∑
i=1

(ȳi.. − ȳ...) yi..+

J∑
j=1

(ȳ.j. − ȳ...) y.j. +
I∑
i=1

J∑
j=1

(ȳij. − ȳi.. − ȳ.j. +−ȳ...) yij. =

1
n

∑
i,j

y2
ij.

a similar calculation for the reduced model yields

SS(µ, α, β) = y2
...

nIJ
+
(∑

i

y2
i..

nJ
− y2

...

nIJ

)
+
∑

j

y2
.j.

nI
− y2

...

nIJ
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and so

SS(γ|µ, α, β) =
∑
ij

y2
ij.

n
−
∑
i

y2
i..

nJ
−
∑
j

y2
.j.

nI
+ y2

...

nIJ

As always

SSE = y′y − β̂X ′yy′y − β̂X ′yy′y − β̂X ′y =
∑
ijk

y2
ijk −

∑
ij

y2
ij.

n

There are IJ parameters involved in the null hypothesis. However, the side conditions impose
I+J-1 restrictions. So the degrees of freedom for SS(γ|µ, α, β) are (I-1)(J-1).

6.7.3.2 Theorem (7.7.5) To test H0 : γ∗ij = 0 use

F = SS(γ|µ, α, β)/[(I − 1)(J − 1)]
SSE/[IJ(n− 1)] ∼ F ((I − 1)(J − 1), IJ(n− 1))

proof all of the above
Notice the degrees of freedom of SSE: IJ(n-1). This shows that the test is only possible if we
have repeated measurements.

6.7.3.3 Example (7.7.6) Let’s do the interaction test for the gasoline data:
y=gasoline$MPG
I=4;J=3;n=3
yij. = tapply(gasoline$MPG, gasoline[, -1], sum)
yi.. = tapply(gasoline$MPG, gasoline[, 2], sum)
y.j. = tapply(gasoline$MPG, gasoline[, 3], sum)
y...= sum(y)
sse=sum(y^2)-sum(yij.^2)/n
ssgamma=sum(yij.^2)/n-sum(yi..^2)/(n*J)-sum(y.j.^2)/(n*I)+y...^2/(n*I*J)
FTS=(ssgamma/((I-1)*(J-1)))/(sse/(I*J*(n-1)))
round(c(sse/c(1, I*J*(n-1)), ssgamma/c(1, (I-1)*(J-1)), FTS, 1-pf(FTS, (I-1)*(J-1), I*J*(n-1))), 3)

## [1] 2.247 0.094 0.909 0.151 1.618 0.185

or
gasoline$Gasoline=factor(gasoline$Gasoline)
fit=aov(MPG~.^2 , data=gasoline)
summary(fit)

## Df Sum Sq Mean Sq F value Pr(>F)
## Gasoline 3 25.405 8.468 90.464 3.21e-13
## Automobile 2 0.527 0.263 2.813 0.0799
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## Gasoline:Automobile 6 0.909 0.151 1.618 0.1854
## Residuals 24 2.247 0.094

6.7.4 Tests for Main Effects

While it is possible to test for individual factors in the presence of interaction, it is usually
better practice to first test for interaction and if such is found to be statistically significant,
not to test for individual factors.
As before we consider the reparametrized model:

α∗i = µ̄i. − µ̄.. =
1
J

∑
j

µij −
1
IJ

∑
ij

µij =

1
J

∑
j

(
µij −

1
I

∑
i

µij

)
=

1
J

∑
j

(µij − µ̄.j)

Now µij − µ̄.j is the effect of the ith level of factor A at the jth level of factor B. So α∗i is the
mean effect of the ith level of A. We therefore have the side condition ∑i α

∗
i = 0. So now

H0 : α1 = ... = αI

is equivalent to

H0 : α∗1 = ... = α∗I = 0

and this hypothesis is testable.
By their definition this is equal to

H0 : µ̄1. − µ̄.. = ... = µ̄I. − µ̄..

which is obviously equal to

H0 : µ̄1. = ... = µ̄I.

Under the null hypothesis H0 : α∗1 = ... = α∗I = 0 the reduced model is

yijk = µ∗ + β∗j + γ∗ij + εijk

In the balanced case this model is orthogonal, so the estimators µ̂∗, β̂∗j and γ̂∗ij , and so we find
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SS(µ, β, γ) = β̂′X ′1yβ̂′X ′1yβ̂′X ′1y =

µ̂y... +
J∑
i=j

β̂jy.j. +
I∑
i=1

J∑
j=1

γ̂ijyij. =

ȳ...y... +
J∑
j=1

(ȳ.j. − ȳ...) y.j. +
I∑
i=1

J∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...) yij. =

y2
.../nIJ +

J∑
j=1

(
y2
.j./nI − y2

.../nIJ
)

+
∑

ij

y2
ij./n−

∑
i=1

y2
i../nJ −

∑
j=1

y2
.j./nI + y2

.../nIJ


and

SS(α|µ, β, γ) = SS(µ, α, β, γ)− SS(µ, β, γ) =
∑
i=1

y2
i../nJ − y2

.../nIJ

Putting it all together we have the
ANOVA table for balanced two-way design

Source df SS

Factor A I − 1 ∑
i=1 y

2
i../nJ − y2

.../nIJ
Factor B J − 1 ∑

j=1 y
2
.j./nI − y2

.../nIJ

Interaction (I − 1)(J − 1) ∑
ij

y2
ij.

n
−∑i

y2
i..

nJ
−∑j

y2
.j.

nI
+ y2

...

nIJ
Error IJ(n− 1) ∑

ijk y
2
ijk −

∑
ij y

2
ij./n

Total nIJ − 1 ∑
ijk y

2
ijk − y2

.../(nIJ)

6.7.4.1 Example (7.7.7) Let’s do the test for the gasoline:
y=gasoline$MPG
I=4;J=3;n=3
yij. = tapply(gasoline$MPG, gasoline[, -1], sum)
yi.. = tapply(gasoline$MPG, gasoline[, 2], sum)
y.j. = tapply(gasoline$MPG, gasoline[, 3], sum)
y...= sum(y)
sse=sum(y^2)-sum(yij.^2)/n
ssalpha=sum(yi..^2)/(n*J)-y...^2/(n*I*J)
FTS=(ssalpha/(I-1))/(sse/(I*J*(n-1)))
round(c(sse/c(1, I*J*(n-1)), ssalpha/c(1, (I-1)), FTS, 1-pf(FTS, (I-1), I*J*(n-1))), 3)

## [1] 2.247 0.094 25.405 8.468 90.464 0.000
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or again
gasoline$Gasoline=factor(gasoline$Gasoline)
fit=aov(MPG~.^2 , data=gasoline)
summary(fit)

## Df Sum Sq Mean Sq F value Pr(>F)
## Gasoline 3 25.405 8.468 90.464 3.21e-13
## Automobile 2 0.527 0.263 2.813 0.0799
## Gasoline:Automobile 6 0.909 0.151 1.618 0.1854
## Residuals 24 2.247 0.094

If we previously tested for interaction and failed to reject the null hypothesis of no interaction
we can (and should) instead fit an additive model

yijk = µ+ αi + βj

and then we find
ANOVA table for balanced additive two-way design

Source df SS

Factor A I − 1 ∑
i=1 y

2
i../nJ − y2

.../nIJ
Factor B J − 1 ∑

i=1 y
2
.j./nI − y2

.../nIJ
Error nIJ − I − J + 1 ∑

ijk y
2
ijk −

∑
i=1 y

2
i../nJ−∑

j=1 y
2
.j./nI + y2

.../nIJ
Total nIJ − 1 ∑

ijk y
2
ijk − y2

.../(nIJ)

6.7.4.2 Example (7.7.8) Let’s do the test for the gasoline in the additive model:
ssalpha=sum(yi..^2)/(n*J) - y...^2/(n*I*J)
ssalpha/c(1, I-1)

## [1] 25.405278 8.468426
ssbeta=sum(y.j.^2)/(n*I) - y...^2/(n*I*J)
ssbeta/c(1, J-1)

## [1] 0.5266667 0.2633333
sse= sum(y^2)-sum(yi..^2)/(n*J)-sum(y.j.^2)/(n*I)+y...^2/(n*I*J)
FTS=(ssalpha/(I-1))/(sse/(n*I*J-I-J+1))
round(c(sse/c(1, n*I*J-I-J+1), ssalpha/c(1, (I-1)), FTS, 1-pf(FTS, (I-1), n*I*J-I-J+1)), 3)

## [1] 3.156 0.105 25.405 8.468 80.510 0.000
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fit=aov(MPG~. , data=gasoline)
summary(fit)

## Df Sum Sq Mean Sq F value Pr(>F)
## Gasoline 3 25.405 8.468 80.510 1.89e-14
## Automobile 2 0.527 0.263 2.504 0.0987
## Residuals 30 3.156 0.105

6.8 Unbalanced Two-Way ANOVA

Things begin to be rather difficult when we consider two (or more) factors with an unequal
number of replications, maybe even some factor-level combinations with zero counts. In this
situation there turn out to be several ways to parametrize the same experiment which can
actually lead to different results, and there is no mathematical way to determine which is
correct. In practice one needs to use subject matter knowledge to decide which model to use.
In general when planning an experiment it is highly recommended to attempt an at least
somewhat balanced design to avoid those difficulties.
In this section we will discuss one approach called the cell means model:

yijk = µ+ αi + βj + εijk = µij + εijk

i=1„.,I;j=1,..J,K;k=1,..,nij

6.8.1 Unconstrained Model

Throughout this section we will use the following for purposes of illustration: I=2,J=3,
n12=n21=1, n11=n13=n23=2 and n22=3, so N = ∑

nij = 11. Therefore we have the equations

y111 = µ11 + ε111

y112 = µ11 + ε112

y121 = µ12 + ε121

y131 = µ13 + ε131

y132 = µ13 + ε132

y211 = µ21 + ε211

y221 = µ22 + ε221

y222 = µ22 + ε222

y223 = µ22 + ε223

y231 = µ23 + ε231

y232 = µ23 + ε232

In matrix form the model is y = Wµ+ εy = Wµ+ εy = Wµ+ ε or
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y111
y112
y121
y131
y132
y211
y221
y222
y223
y231
y232



=



1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1





µ11
µ12
µ13
µ21
µ22
µ23


=



ε111
ε112
ε121
ε131
ε132
ε211
ε221
ε222
ε223
ε231
ε232


here yyy and εεε are 11× 1 and WWW is 11× 6, in general they are N × 1 and WWW is N × IJ .
Since WWW is full rank we have

µ̂ = (W ′WW ′WW ′W )−1W ′yW ′yW ′y

Let’s use R to find µ̂:
W=rbind(c(1 , 0 , 0 , 0 , 0 , 0),
c(1 , 0 , 0 , 0 , 0 , 0),
c(0 , 1 , 0 , 0 , 0 , 0),
c(0 , 0 , 1 , 0 , 0 , 0),
c(0 , 0 , 1 , 0 , 0 , 0),
c(0 , 0 , 0 , 1 , 0 , 0),
c(0 , 0 , 0 , 0 , 1 , 0),
c(0 , 0 , 0 , 0 , 1 , 0),
c(0 , 0 , 0 , 0 , 1 , 0),
c(0 , 0 , 0 , 0 , 0 , 1),
c(0 , 0 , 0 , 0 , 0 , 1))
t(W)%*%W

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 2 0 0 0 0 0
## [2,] 0 1 0 0 0 0
## [3,] 0 0 2 0 0 0
## [4,] 0 0 0 1 0 0
## [5,] 0 0 0 0 3 0
## [6,] 0 0 0 0 0 2

shows that W ′WW ′WW ′W is a diagonal matrix with the respective sample sizes on the diagonal, so in
general (W ′WW ′WW ′W )−1 = diag( 1

n11
, .., 1

nIJ
). Of course W ′yW ′yW ′y = (y11., .., yIJ.)′, and so
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µ̂̂µ̂µ =


ȳ11.
ȳ12.
...
ȳIJ.

 = ȳ̄ȳy

Also

cov(µ̂̂µ̂µ) = σ2(W ′WW ′WW ′W )−1 =

diag( σ
2

n11
, ..,

σ2

nIJ
)

An unbiased estimator of σ2 is given by

s2 = SSE
νE

= (y −Wµ̂y −Wµ̂y −Wµ̂)′(y −Wµ̂y −Wµ̂y −Wµ̂)
N − IJ

Alternatively we have

SSE = y′[I −W (W ′W )−1W ′]yy′[I −W (W ′W )−1W ′]yy′[I −W (W ′W )−1W ′]y =
∑
ijk

(yijk − ȳij)2

If nij ≥ 2 for all cells we can find the within-cell variance s2
ij = 1

nij−1
∑nij
k=1(yijk − ȳij)2 and

the s2 can be written as the pooled estimator.

s2 =
∑
ij(nij − 1)s2

ij

N − IJ

Notice that the cell means model does not have any explicit terms for main effects and/or
interactions. These are “hard-coded” in to the µij’s. If we want to test for them we have to
express them as contrasts.
Let’s consider the main effect of factor A. In the vector

µµµ =
(
µ11 µ12 µ13 µ21 µ22 µ23

)′
the first three elements correspond to the first level of factor A, the last three to the second
level. So for the main affect of A we can compare the mean of µ11, µ12, µ13 to the mean of
µ21, µ22, µ23. The difference can be expressed as a contrast:

a′µa′µa′µ = µ11 + µ12 + µ13 − µ21 − µ22 − µ23(
1 1 1 −1 −1 −1

)
µµµ =

(µ11 − µ21) + (µ12 − µ22) + (µ13 − µ23)

So we have H0 : a′µa′µa′µ = 0 is equivalent to H0 : (µ11 − µ21) + (µ12 − µ22) + (µ13 − µ23) = 0.
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Factor B has three levels, so we will need two contrasts:

b′1µb
′
1µb
′
1µ = 2(µ11 + µ21)− (µ12 + µ22)− (µ13 + µ23) =(
2 −1 −1 2 −1 −1

)
µµµ

b′2µb
′
2µb
′
2µ = (µ12 + µ22)− (µ13 + µ23) =(
0 1 −1 0 1 −1

)
µµµ

Setting BBB =
(
bbb′1
bbb′2

)
we have H0 : BµBµBµ = 0 is equivalent to H0 : µ11 +µ21 = µ12 +µ22 = µ13 +µ23.

Finally for the interaction we find the test H0 : µ11 − µ21 = µ12 − µ22 = µ13 − µ23

which also can be written in terms of contrasts:

CCC =
(

2 −1 −1 −2 1 1
0 1 −1 0 −1 1

)

Here are the corresponding tests:
• H0 : a′µa′µa′µ = 0

F = (a′µ̂)′[a′(W ′W )−1a]−1(a′µ̂)(a′µ̂)′[a′(W ′W )−1a]−1(a′µ̂)(a′µ̂)′[a′(W ′W )−1a]−1(a′µ̂)
s2 =

(∑ij aij ȳij.)2

s2∑
ij a

2
ij/nij

∼ F (1, N − ab)

- H0 : B′µB′µB′µ = 0

F = (B′µ̂)′[B′(W ′W )−1B]−1(B′µ̂)(B′µ̂)′[B′(W ′W )−1B]−1(B′µ̂)(B′µ̂)′[B′(W ′W )−1B]−1(B′µ̂)
s2 =∼ F (νB, N − ab)

where νB is the number of rows of BBB.
• Interaction test H0 : C ′µC ′µC ′µ = 0

F = (C ′µ̂)′[C ′(W ′W )−1C]−1(C ′µ̂)(C ′µ̂)′[C ′(W ′W )−1C]−1(C ′µ̂)(C ′µ̂)′[C ′(W ′W )−1C]−1(C ′µ̂)
s2 =∼ F (νC , N − ab)

where νC is the number of rows of CCC.

6.8.1.1 Example Remington and Schork carried out an experiment to investigate the effects
of smoking on physical activity. 21 people were classified as to their smoking habit and
then randomly assigned to one of three physical activities. The time until maximum oxygen
uptake in minutes was recorded. The data is
df=data.frame(

Time=c(12.8,13.5,11.2,16.2,17.8,22.6,19.3,18.9,9.2,7.5,13.2,8.1,16.2,16.1,17.8),
Smoking=factor(rep(c("None", "Heavy"), c(8, 7)),

levels = c("None", "Heavy"),
ordered = TRUE),
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Activity=factor(c(rep(c("Bycicle", "Treatmill", "Step"), c(3, 2, 3)),
rep(c("Bycicle", "Treatmill", "Step"), c(2,2,3))),

levels = c("Bycicle", "Treatmill", "Step"),
ordered=TRUE)

)
kable.nice(df, do.row.names = FALSE)

Time Smoking Activity
12.8 None Bycicle
13.5 None Bycicle
11.2 None Bycicle
16.2 None Treatmill
17.8 None Treatmill
22.6 None Step
19.3 None Step
18.9 None Step
9.2 Heavy Bycicle
7.5 Heavy Bycicle

13.2 Heavy Treatmill
8.1 Heavy Treatmill

16.2 Heavy Step
16.1 Heavy Step
17.8 Heavy Step

The sample sizes and within cell means are
n=tapply(df[, 1], df[, 2:3], length)
n

## Activity
## Smoking Bycicle Treatmill Step
## None 3 2 3
## Heavy 2 2 3
N=sum(n)

We need
I=2;J=3
baryij.=c(t(tapply(df[, 1], df[, 2:3], mean)))
n=c(t(n))
sse=sum( (df$Time-rep(baryij., n))^2)
s2=sse/(N-I*J)

• Test for Smoking:
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a=c(1,1,1,-1,-1,-1)
FA=sum(a*baryij.)^2/s2/sum(a^2/n)
round(c(sse/c(1,N-I*J), FA, 1-pf(FA, 1, N-I*J)), 4)

## [1] 28.5767 3.1752 24.9272 0.0007

• Test for Activity:
W.Winv=diag(1/n)
B=rbind(c(2, -1, -1, 2, -1, -1),

c(0, 1, -1, 0, 1, -1))
muhat=cbind(baryij.)
ssB=t(B%*%muhat)%*%solve(B%*%W.Winv%*%t(B))%*%(B%*%muhat)
FB=(ssB/2)/(sse/(N-I*J))
round(c(FB, 1-pf(FA, 2, N-I*J)), 4)

## [1] 27.8014 0.0002

• Test for Interaction:
C=rbind(c(2, -1, -1, -2, 1, 1),

c(0, 1, -1, 0, -1, 1))
ssC=t(C%*%muhat)%*%solve(C%*%W.Winv%*%t(C))%*%(C%*%muhat)
FC=(ssC/2)/(sse/(N-I*J))
round(c(FC, 1-pf(FC, 2, N-I*J)), 4)

## [1] 0.7678 0.4922

Let’s compare this with
summary(aov(Time~Smoking*Activity, data=df))

## Df Sum Sq Mean Sq F value Pr(>F)
## Smoking 1 58.30 58.30 18.362 0.002035
## Activity 2 180.33 90.17 28.398 0.000129
## Smoking:Activity 2 4.88 2.44 0.768 0.492173
## Residuals 9 28.58 3.18

and we see while the error sum of squares is the same and the results are as well (both factors
are significant whereas the interaction is not), the values of the F statistics are somewhat
different. This is because aov uses a somewhat different parametrization.

6.8.2 Additive Model

If it is clear that there is no interaction between the factors (maybe because of the design of
the experiment) we might wish to test an additive model. Using the cell means approach
this means we want to fit the constraint model

y = Wµ+ εy = Wµ+ εy = Wµ+ ε subject to Cµ = 0Cµ = 0Cµ = 0
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such a model can be fit using Lagrange multipliers.

6.8.3 Missing Values

Sometimes it happens that nij = 0 for one (or a few) cells. It turns out that the cell means
model is still viable, with the following change: the matrix WWW now has rows with all 0’s,
as many as there are cells with 0 counts. Therefore WWW is no-full rank and no longer has
an inverse. However, if (W ′W )−1 is replaced by the generalized inverse (W ′W )− the above
derivation still holds.

7 Other Linear Models

7.1 Analysis of Covariance - ANCOVA

7.1.0.1 Example (8.1.1) We have data on the number of shoes sold by year and type:
kable.nice(head(shoesales), do.row.names = FALSE)

Sales Year Type
1539 1 Mens

12984 1 Kids
25809 1 Ladies
5742 2 Mens

30058 2 Kids
34764 2 Ladies

There are two ways to look at this problem:
• as a regression problem with response Sales and predictors Year and Type, where Type

is a categorical variable, usually called a dummy variable.
• as a one-way ANOVA problem with some additional information, called a covariate.

This is then called Analysis of Covariance ANCOVA.
From the above it is clear that we have here a blend of regression and ANOVA.

7.1.1 Regression Analysis

In order to study this as a regression problem we first need to code the categorical variable.
The obvious way to do this is to assign numbers, for example Mens=1, Kids=2 and Ladies=3.
This however is usually a bad idea because it does two things:

• it introduces order (Mens=1<2=Kids)

• it introduces a scale (Kid-Mens = 2-1 = 3-2 = Ladies-Kids)
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The better way to do this is to introduce two dummy variables:
• d1 = 1 if Mens, 0 otherwise
• d2 = 1 if Kids, 0 otherwise

so if d1+d2=0 it has to be Ladies.

d1=ifelse(shoesales$Type=="Mens", 1, 0)
d2=ifelse(shoesales$Type=="Kids", 1, 0)
y=shoesales$Sales
X=data.frame(Sales=y, Year=shoesales$Year, d1=d1, d2=d2)
fit.shoe1=lm(Sales~., data=X)
summary(fit.shoe1)

7.1.1.1 Example (8.1.2)

##
## Call:
## lm(formula = Sales ~ ., data = X)
##
## Residuals:
## Min 1Q Median 3Q Max
## -12963.7 -3433.5 -469.7 3349.1 22146.6
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28416.0 1917.8 14.817 < 2e-16
## Year 1551.6 115.4 13.440 < 2e-16
## d1 -26986.9 1875.7 -14.388 < 2e-16
## d2 -14212.4 1875.7 -7.577 1.65e-10
##
## Residual standard error: 6361 on 65 degrees of freedom
## Multiple R-squared: 0.8565, Adjusted R-squared: 0.8498
## F-statistic: 129.3 on 3 and 65 DF, p-value: < 2.2e-16

However, notice the following
x=seq(min(shoesales$Year), max(shoesales$Year), length=100)
z1=coef(fit.shoe1)[1]+coef(fit.shoe1)[2]*x+coef(fit.shoe1)[3]
z2=coef(fit.shoe1)[1]+coef(fit.shoe1)[2]*x+coef(fit.shoe1)[4]
z3=coef(fit.shoe1)[1]+coef(fit.shoe1)[2]*x
df=data.frame(Year=rep(x, 3),

Sales=c(z1, z2, z3),
Type=rep(c("Mens", "Kids", "Ladies"), each=100))

ggplot(data=df, aes(Year, Sales, color=Type)) +
geom_line()
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and so we see that this fits parallel lines!
Here is how to fit separate lines for each group:
fit.shoe2=lm(Sales~(.)^2, data=X)
summary(fit.shoe2)

##
## Call:
## lm(formula = Sales ~ (.)^2, data = X)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11588.7 -3433.0 -256.7 2947.3 16121.3
##
## Coefficients: (1 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 21185.6 2443.6 8.670 2.42e-12
## Year 2154.1 178.2 12.087 < 2e-16
## d1 -14185.1 3455.7 -4.105 0.000119
## d2 -5322.9 3455.7 -1.540 0.128490
## Year:d1 -1066.8 252.0 -4.233 7.64e-05
## Year:d2 -740.8 252.0 -2.939 0.004594
## d1:d2 NA NA NA NA
##
## Residual standard error: 5669 on 63 degrees of freedom
## Multiple R-squared: 0.8895, Adjusted R-squared: 0.8807
## F-statistic: 101.4 on 5 and 63 DF, p-value: < 2.2e-16
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z1=coef(fit.shoe2)[1]+coef(fit.shoe2)[2]*x+coef(fit.shoe2)[3]+coef(fit.shoe2)[3]+coef(fit.shoe2)[5]*x
z2=coef(fit.shoe2)[1]+coef(fit.shoe2)[2]*x+coef(fit.shoe2)[4]+coef(fit.shoe2)[5]*x
z3=coef(fit.shoe2)[1]+coef(fit.shoe2)[2]*x
df=data.frame(Year=rep(x, 3),

Sales=c(z1, z2, z3),
Type=rep(c("Mens", "Kids", "Ladies"), each=100))

ggplot(data=df, aes(Year, Sales, color=Type)) +
geom_line()
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7.1.2 ANCOVA Model

The model can be written as

y = Zα +Xβ + εy = Zα +Xβ + εy = Zα +Xβ + ε

where ZZZ contains 0’s and 1’s, ααα contains µ and parameters such as αi, βj and γij representing
factors and interactions; XXX a matrix of covariate values and βββ their coefficients.

7.1.2.1 Example (8.1.3) For the shoesales data we have
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y = Zα +Xβ + εy = Zα +Xβ + εy = Zα +Xβ + ε =



1 1 0 0
1 1 0 0
... ... ... ...
1 1 0 0
1 0 1 0
... ... ...
1 0 1 0
1 0 1 0
1 0 0 1
... ... ...
1 0 0 1




µ
α1
α2
α3

+



x11
x12
...

x1n1

x21
...

x3n3


β

7.1.3 Estimation

We will assume that ZZZ is less than full-rank and that XXX is full-rank. We can withe the model
in the form

y = Zα +Xβ + εy = Zα +Xβ + εy = Zα +Xβ + ε =(
ZZZ XXX

)(ααα
βββ

)
+ εεε =

Uθ + εUθ + εUθ + ε

The normal equations are

U ′Uθ̂ = U ′yU ′Uθ̂ = U ′yU ′Uθ̂ = U ′y

which is equal to

(
Z ′ZZ ′ZZ ′Z Z ′XZ ′XZ ′X
X ′ZX ′ZX ′Z X ′XX ′XX ′X

)(
α̂̂α̂α

β̂̂β̂β

)
=
(
Z ′yZ ′yZ ′y
X ′yX ′yX ′y

)

which is the two equation

Z ′Zα̂Z ′Zα̂Z ′Zα̂ +Z ′Xβ̂Z ′Xβ̂Z ′Xβ̂ = Z ′yZ ′yZ ′y

X ′Zα̂X ′Zα̂X ′Zα̂ +X ′Xβ̂X ′Xβ̂X ′Xβ̂ = X ′yX ′yX ′y

using a generalized inverse for Z ′ZZ ′ZZ ′Z we find

α̂̂α̂α = (Z ′ZZ ′ZZ ′Z)−Z ′yZ ′yZ ′y − (Z ′ZZ ′ZZ ′Z)−Z ′Xβ̂Z ′Xβ̂Z ′Xβ̂ = α̂̂α̂α0 − (Z ′ZZ ′ZZ ′Z)−Z ′Xβ̂Z ′Xβ̂Z ′Xβ̂

where α̂̂α̂α0 is a solution of the normal equations without the covariates.

To find β̂̂β̂β we substitute this into the second equation:
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X ′ZX ′ZX ′Z
[
(Z ′ZZ ′ZZ ′Z)−Z ′yZ ′yZ ′y − (Z ′ZZ ′ZZ ′Z)−Z ′Xβ̂Z ′Xβ̂Z ′Xβ̂

]
+X ′Xβ̂X ′Xβ̂X ′Xβ̂ = X ′yX ′yX ′y

X ′X ′X ′
[
III −ZZZ(Z ′ZZ ′ZZ ′Z)−Z ′Z ′Z ′

]
XXXβ̂̂β̂β = X ′yX ′yX ′y −X ′ZX ′ZX ′Z(Z ′ZZ ′ZZ ′Z)−Z ′yZ ′yZ ′y

X ′X ′X ′ [III −PPP ]XXXβ̂̂β̂β = X ′X ′X ′(I − PI − PI − P )yyy

where P = ZP = ZP = Z(Z ′ZZ ′ZZ ′Z)−Z ′Z ′Z ′. Because XXX is a set of covariates it is (almost always) independent of
ZZZ, and so X ′X ′X ′ [III −PPP ]XXX is non-singular. So we find

β̂̂β̂β =
[
X ′X ′X ′ (III −PPP )XXX

]−1
X ′(I − P )yX ′(I − P )yX ′(I − P )y = EEE−1

xxeeexy

7.1.3.1 Example (8.1.4) Let’s find the estimates for the shoesales data. For that we need
to reorder the data as well
shoesales=shoesales[order(shoesales$Type), ]
X=matrix(as.numeric(shoesales[ ,"Year"]),ncol=1)
y=matrix(as.numeric(shoesales[ ,"Sales"]),ncol=1)
ni=table(shoesales$Type)
ni

##
## Kids Ladies Mens
## 23 23 23
n=sum(ni)
Z=matrix(0, n, 4)
Z[, 1]=1
Z[1:ni[1], 2]=1
Z[(1+ni[1]):(ni[1]+ni[2]), 3]=1
Z[(1+ni[1]+ni[2]):n, 4]=1
library(MASS)
gZZ=ginv(t(Z)%*%Z)
P=Z%*%gZZ%*%t(Z)
betahat=solve(t(X)%*%(diag(n)-P)%*%X)%*%t(X)%*%(diag(n)-P)%*%y
alpha0hat=gZZ%*%t(Z)%*%y
c(alpha0hat)

## [1] 24976.239 7846.109 22058.500 -4928.370
alphahat=alpha0hat-gZZ%*%t(Z)%*%X%*%betahat
c(alphahat, betahat)

## [1] 11012.182 3191.423 17403.814 -9583.055 1551.562

Now for the sum of squares we find
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SSE = SSEy.x = y′y − θ̂U ′yy′y − θ̂U ′yy′y − θ̂U ′y =

y′yy′yy′y −
(
α̂′α̂′α̂′ β̂ ′̂β ′̂β′

)(Z ′yZ ′yZ ′y
X ′yX ′yX ′y

)
=

y′yy′yy′y − α̂′Z ′yα̂′Z ′yα̂′Z ′y − β̂′X ′yβ̂′X ′yβ̂′X ′y =
y′yy′yy′y −

[
α̂̂α̂α′0 − β̂′X ′Zβ̂′X ′Zβ̂′X ′Z(Z ′ZZ ′ZZ ′Z)−

]
Z ′yZ ′yZ ′y − β̂′X ′yβ̂′X ′yβ̂′X ′y =

y′yy′yy′y − α̂̂α̂α′0Z ′yZ
′yZ ′y + β̂′X ′Zβ̂′X ′Zβ̂′X ′Z(Z ′ZZ ′ZZ ′Z)−Z ′yZ ′yZ ′y − β̂′X ′yβ̂′X ′yβ̂′X ′y =

y′yy′yy′y − α̂̂α̂α′0Z ′yZ
′yZ ′y − β̂′X ′β̂′X ′β̂′X ′

[
III −ZZZ(Z ′ZZ ′ZZ ′Z)−Z ′Z ′Z ′

]
yyy =

SSEy − β̂′X ′β̂′X ′β̂′X ′ [III −PPP ]yyy

where SSEy is the error sum of squares for the ANOVA model without covariates.
Setting eyy = SSEy = y′(I − P )yy′(I − P )yy′(I − P )y we can also write

SSEy.x = eyy − e′xyEEE−1
xxeeexy

It can be shown that EEExx is positive definite, so that e′xyEEE−1
xxeeexy > 0, and so the use of

covariates reduces the sum of squares, thereby leading to smaller variances.

7.1.3.2 Example (8.1.5) Continuing the analysis of the shoesales data:
Exx=t(X)%*%(diag(n)-P)%*%X
exy=t(X)%*%(diag(n)-P)%*%y
eyy=t(y)%*%(diag(n)-P)%*%y
sse=eyy-t(exy)%*%solve(Exx)%*%exy
c(sse, eyy)

## [1] 2629827256 9938524862

7.1.4 Testing Hypotheses

As always we will now assume that εεε = Nn(000, σ2III). The hypothesis H0 : α1 = .. = αk = 0
can be written as

H0 :
(
CCC1 000

)(ααα
βββ

)
= 000

and we can use a general linear hypothesis test.
A test that is often of interest is H0 : βββ = 0, that is a test whether any of the covariates
is useful. For a general linear hypothesis test of H0 : βββ = 0 we need cov(β̂̂β̂β), where
β̂̂β̂β = [X ′X ′X ′ (III −PPP )XXX]−1X ′(I − P )yX ′(I − P )yX ′(I − P )y. By (4.3.19) I − PI − PI − P is idempotent we have
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cov(β̂̂β̂β) =
[X ′(I − P )X[X ′(I − P )X[X ′(I − P )X]−1X ′(I − P )X ′(I − P )X ′(I − P )σ2I(I − P )XI(I − P )XI(I − P )X[X ′(I − P )X[X ′(I − P )X[X ′(I − P )X]−1 =
σ2[X ′(I − P )X[X ′(I − P )X[X ′(I − P )X]−1X ′(I − P )X ′(I − P )X ′(I − P )(I − P )X(I − P )X(I − P )X[X ′(I − P )X[X ′(I − P )X[X ′(I − P )X]−1 =
σ2[X ′(I − P )X[X ′(I − P )X[X ′(I − P )X]−1[X ′(I − P )X][X ′(I − P )X][X ′(I − P )X][X ′(I − P )X[X ′(I − P )X[X ′(I − P )X]−1 =
σ2[X ′(I − P )X[X ′(I − P )X[X ′(I − P )X]−1

So now

SSH = β̂̂β̂βX ′(I − P )XX ′(I − P )XX ′(I − P )X = e′xyE
−1
xx eexye′xyE
−1
xx eexye′xyE
−1
xx eexy

ANOVA table for test of covariates in ANCOVA design

Source df SS F

Covariates k SSH = e′xyE
−1
xx eexye′xyE
−1
xx eexye′xyE
−1
xx eexy

SSH/k
SSE/(n−k−1)

Error n− k − 1 SSE = eyy − e′xyE−1
xx exyeyy − e′xyE−1
xx exyeyy − e′xyE−1
xx exy

Total n− 1 SST = eyyeyyeyy

7.1.4.1 Example (8.1.6) Let’s test for Year in shoesales:
k=1
ssh=t(exy)%*%solve(Exx)%*%exy
FTS = (ssh/1)/(sse/(n-k-1))
round(c(ssh, sse/c(1, n-k-1), FTS, 1-pf(FTS, 1, n-k-1)))

## [1] 7308697607 2629827256 39251153 186 0

or with R:
summary(aov(Sales~., data=shoesales))

## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 7.309e+09 7.309e+09 180.6 <2e-16
## Type 2 8.383e+09 4.192e+09 103.6 <2e-16
## Residuals 65 2.630e+09 4.046e+07

In the above we have assumed that there was no interaction between the predictors. If we
suspect that there is we should run
summary(aov(Sales~(.)^2, data=shoesales))

## Df Sum Sq Mean Sq F value Pr(>F)
## Year 1 7.309e+09 7.309e+09 227.39 < 2e-16
## Type 2 8.383e+09 4.192e+09 130.41 < 2e-16
## Year:Type 2 6.049e+08 3.024e+08 9.41 0.000266
## Residuals 63 2.025e+09 3.214e+07
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and indeed there such an interaction.

7.1.5 Balanced One-Way Model with One Covariate

In the case where we have two predictors, one categorical and one continuous, and a balanced
design the formulas simplify:

α̂̂α̂α = α̂̂α̂α0 − (Z ′ZZ ′ZZ ′Z)−Z ′Xβ̂Z ′Xβ̂Z ′Xβ̂ =



0
ȳ1. − β̂x̄1.

ȳ2. − β̂x̄2.
...

ȳk. − β̂x̄k.


EEExx = exx =

∑
ij

(xij − x̄i.)2

eeexy = exy =
∑
ij

(xij − x̄i.)(yij − ȳi.)

eeeyy = exy =
∑
ij

(yij − ȳi.)2

β̂ = exy
eyy

SSEy.x = eyy − e2
xy/exx

and SSEy.x has k(n-1)-1 degrees of freedom, where k is the number of groups and n is the
number of observations per group.
ANOVA table for test of one covariate in One-Way ANOVA design

Source df SS F

Covariate 1 SSH = e2
xy/exx

SSH/k
SSE/(n−k−1)

Error k(n− 1)− 1 SSE = eyy − e2
xy/exx

Total k(n− 1)− 2 SST = eyy

7.2 Generalized Least Squares

7.2.1 Correlated Response

In section 6.5 we discussed the case of correlated responses in the context of regression. We
now return to this case in the general linear model.
In all the discussion so far (except section 6.5) we always assumed a model of the form
y = Xβ + εy = Xβ + εy = Xβ + ε with cov(εεε) = σ2III. We now consider the case where cov(εεε) = σ2DDD, where DDD is a
known positive-definite matrix.
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Because D is positive-definite there exists a non-singular matrixDDD1/2 such thatDDD1/2DDD1/2 = DDD,
see (4.3.13). Now consider the transformed model

yyy∗ = DDD−1/2yyy = DDD−1/2XβXβXβ +DDD−1/2εεε

cov(DDD1/2εεε) = DDD−1/2σ2DDDDDD−1/2 = σ2III

and so this transformed model has uncorrelated errors with equal variance. Therefore we can
apply the methods previously discussed.
Notice

(yyy∗ −XXX∗β̂̂β̂β)′(yyy∗ −XXX∗β̂̂β̂β) =
(DDD−1/2yyy −DDD−1/2XXXβ̂̂β̂β)′(DDD−1/2yyy −DDD−1/2XXXβ̂̂β̂β) =
(yyy −XXXβ̂̂β̂β)′DDD−1(yyy −XXXβ̂̂β̂β)

and so the method of generalized least squares amounts to minimizing a quadratic form

(yyy −XXXβ̂̂β̂β)′DDD−1(yyy −XXXβ̂̂β̂β)

The normal equations of the transformed model are

XXX∗
′
XXX∗β̂̂β̂β = XXX∗

′
yyy∗

and so

(DDD−1/2XXX)′(DDD−1/2XXX)β̂̂β̂β = (DDD−1/2XXX)′(DDD−1/2yyy)
XXX ′DDD−1XXXβ̂̂β̂β = XXX ′DDD−1yyy

β̂̂β̂β = [XXX ′DDD−1XXX]−XXX ′DDD−1yyy

7.2.1.1 Theorem (8.2.1) In a model of the form y = Xβ + εy = Xβ + εy = Xβ + ε with cov(εεε) = σ2DDD, the BLUE
of a linear function a′βa′βa′β is a′β̂a′β̂a′β̂ where β̂̂β̂β = [XXX ′DDD−1XXX]−XXX ′DDD−1yyy.
Furthermore

var(a′β̂a′β̂a′β̂) = σ2aaa′[XXX ′DDD−1XXX]−aaa
Also

SSE = y′D−1y − (y′D−1X)(X ′D−1X)−(X ′D−1y)y′D−1y − (y′D−1X)(X ′D−1X)−(X ′D−1y)y′D−1y − (y′D−1X)(X ′D−1X)−(X ′D−1y)
and SSE/σ2 ∼ χ2(n− r) and is independent of the distribution of the BLUES.
proof follows from the discussion above.
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7.2.1.2 Theorem (8.2.2) For testing a hypothesis of the form H0 : KβKβKβ = d where K is m×p
of rank m the sum of squares is

SSH = (Kβ̂ − d)′[K(X ′D−1X)−K ′]−1(Kβ̂ − d)(Kβ̂ − d)′[K(X ′D−1X)−K ′]−1(Kβ̂ − d)(Kβ̂ − d)′[K(X ′D−1X)−K ′]−1(Kβ̂ − d)
which has m degrees of freedom. The F-test is

F = SSH/m
SSE/(n− r) ∼ F (m,n− r)

proof omitted, but easy.

7.2.2 Weighted Least Squares

7.2.2.1 Example (8.2.3) We have following (artificial) data:
ggplot(data=df, aes(x, y)) +

geom_point()
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so here we have a positive linear relationship, but as x increases so does the variance of y|x.
Assuming that the observations are still uncorrelated we have a model of the form

yi = β0 + β1xi + εi

and cov(εi, εj) = σ2
i δij. In other words the matrix DDD is

DDD = diag(σ2
1, .., σ

2
n)

so then
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DDD−1 = diag(1/σ2
1, .., 1/σ2

n)

Therefore the least squares criterion becomes

(yyy −XXXβ̂̂β̂β)′DDD−1(yyy −XXXβ̂̂β̂β) =
(yyy −XXXβ̂̂β̂β)′diag(1/σ2

1, .., 1/σ2
n)(yyy −XXXβ̂̂β̂β) =

n∑
i=1

(
yi − (XXXβ̂)iβ̂)iβ̂)i

)2
/σ2

i =

n∑
i=1

wi
(
yi − (XXXβ̂)iβ̂)iβ̂)i

)2

where wi = 1/σ2
i are called the weights, hence the name weighted least squares.

7.2.2.2 Example (8.2.4) So, what are the weights in the example above? Ideally we would
know these, but in practice we usually do not. Notice though that our data has multiple
measurements at each x value, so we can estimate these:
w=1/tapply(y, x, var)
round(w, 4)

## 1 2 3 4 5 6 7 8 9 10
## 1.0172 0.6565 0.1395 0.0987 0.8321 0.0087 0.0070 0.0178 0.0121 0.0087

and so the weighted least squares estimators of the coefficients are
X=cbind(1, x)
Dinf=diag(rep(w, each=5))
tmp=solve(t(X)%*%Dinf%*%X)
betahat= c(tmp%*%t(X)%*%Dinf%*%cbind(y))
betahat

## [1] 8.690910 2.375936

or
fit=lm(y~x, data=df, weights=rep(w, each=5))
coef(fit)

## (Intercept) x
## 8.690910 2.375936
ggplot(data=df, aes(x, y)) +

geom_point() +
geom_abline(xintercept=betahat[1],slope=betahat[2], size=2, col="blue")
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If there is one predictor we can also do this directly:

0 = d

dβ0

n∑
i=1

wi(yi − β0 − β1xi)2 =

(−2)
n∑
i=1

wi(yi − β0 − β1xi) =

(−2)
(

n∑
i=1

wiyi − nβ0
∑

wi −
n∑
i=1

β1wixi

)
=

(−2n) (wy − β0w̄ − β1wx)

0 = d

dβ1

n∑
i=1

wi(yi − β0 − β1xi)2 =

(−2)
n∑
i=1

wi(yi − β0 − β1xi)xi =

(2n)
(
wxy − β0w̄x̄− β1wx2

)
β0w̄ + β1wx = wy

β0wx+ β1wx2 = wxy

β0 = (wy − β1wx)/w̄

β1 = wy × wx− w̄ × wxy
wx2 − w̄ × wx2

—
Notice that in the above did not actually know DDD but estimated it from the data. This is
quite commonly done even so it violated the assumptions. This turns out to be generally ok.
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x=df$x
y=df$y
w=rep(w, each=5)
bx=mean(x)
bw=mean(w)
bwx=mean(w*x)
bwy=mean(w*y)
bwxy=mean(w*x*y)
bwx2=mean(w*x^2)
betahat1=(bwx*bwy-bw*bwxy)/(bwx^2-bw*bwx2)
betahat0=(bwy-betahat1*bwx)/bw
round(c(betahat0, betahat1), 3)

7.2.2.3 Example (8.2.5)

## [1] 8.691 2.376

7.2.3 Sampling from a Small Population

Say we are selecting without replacement from a population that is so small that the
probability of selecting the same object is not negligible. Let’s investigate the effect of this.
Notice that so far there is no linear model, this is a general problem.
Say the population is y1, .., yN , then the population means is µ = 1

N

∑
yi and the population

variance is

σ2 = 1
N

∑
(yi − µ)2 = (N − 1)S2

N

where S2 = 1
N−1

∑(yi − ȳ)2.
Now say we draw a sample of size {X1, .., Xn} from the population such that xi is equally
likely any of the yj’s. This is called a simple random sample (SRS). So
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E[Xi] =
N∑
i=1

yi
1
N

= ȳ

E[X2
i ] =

N∑
i=1

y2
i

1
N

E[XiXj] = E{E[XiXj|Xj} =
E{XjE[Xi|Xj} =

E{Xj

∑
i 6=j yi

N − 1 } =
1

N − 1E{Xj[
∑
i

yi −Xj]} =

1
N − 1E{Xj[Nµ−Xj]} =

Nµ

N − 1E{Xj} −
1

N − 1E{X
2
j } =

Nµ

N − 1µ−
1

N − 1
1
N

N∑
i=1

y2
i =

Nµ2

N − 1 −
1

N(N − 1)

N∑
i=1

y2
i

cov(Xi, Xj) = E[XiXj]− E[Xi]E[Xj] =
Nµ2

N − 1 −
1

N(N − 1)

N∑
i=1

y2
i − µ2 =

µ2

N − 1 −
1

N(N − 1)

N∑
i=1

y2
i =

− 1
N(N − 1)

(
N∑
i=1

y2
i −Nµ2

)
=

− S2/N

and also

var(Xi) = (N − 1)S2/N

So we can set up a model

Xi = µ+ εi

where

cov(εεε) = S2(InInIn −
1
N
JJJnn)
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and so we have a generalized least squares model with DDD = InInIn − 1
N
JJJnn and σ2 = S2.

Note that DDD−1 = (III − 1
N
JJJ)−1 = III + 1

N−nJJJ , so

µ̂ = [XXX ′DDD−1XXX]−XXX ′DDD−1yyy =

[jjj′(III + 1
N − n

JJJ)jjj]−jjj′(III + 1
N − n

JJJ)yyy =

[jjj′jjj + 1
N − n

jjj′JJJjjj]−(j′yj′yj′y + 1
N − n

jjj′JJJyyy) =

[n+ 1
N − n

n2]−(nȳ + 1
N − n

n2ȳ) =

[n+ 1
N − n

n2]−(n+ 1
N − n

n2)ȳ = ȳ

so the BLUE is ȳ!
Also

var(µ̂) = σ2[XXX ′DDD−1XXX]−XXX ′DDD−1 =

σ2[XXX ′DDD−1XXX]−XXX ′DDD−1 = N − n
Nn

S2

N−n
Nn

is called the finite population correction.

7.2.4 Combining Experiments - Meta Analysis

Say we have k experiments, each taking measurements for the same quantity θ. Experiment
k has the unbiased estimator Tk. Is it possible to combine these experiments in to super-
experiment? This is part of a branch of statistics called meta analysis.
We can write the model

Tk = θ + εi

where cov(εεε) = σ2DDD. The BLUE of the combined experiment is therefore given by

θ̂̂θ̂θ = [XXX ′DDD−1XXX]−XXX ′DDD−1TTT = [jjj′DDD−1jjj]−jjj′DDD−1TTT

with variance

var(θ̂̂θ̂θ) = [jjj′DDD−1jjj]−

• independent experiments
If it can be assumed that the experiments are independent we have DDD = diag(σ2

1, .., σ
2
k), so
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θ̂̂θ̂θ = [jjj′diag(1/σ2
1, .., 1/σ2

k)jjj]−1jjj′diag(1/σ2
1, .., 1/σ2

k)TTT =
[
∑
i

1/σ2
i ]−1∑

i

Ti/σ
2
i =∑

i Ti/σ
2
i∑

i 1/σ2
i

=
∑
iwiTi∑
iwi

where the weights w are defined as before. The variance is

var(θ̂̂θ̂θ) = 1∑
i 1/σ2

i

Say we have two such experiment, on with σ2 = 1, then the variance of the combined
experiment is
curve(1/(1+1/x), 0, 10)

a[, i]
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and so we always gain something but we gain the most if the second experiment has a small
variance.
In the special case where all experiments has the same variance σ2 but different sample sizes
we have wi = 1/σ2

i = 1/(σ2/ni) = ni/σ
2, and so

θ̂̂θ̂θ =
∑
i ni/σ

2Ti∑
i ni/σ2 =

∑
i niTi∑
i ni

and finally if all the sample sizes were the same the BLUE is simply the mean of the Ti’s.
• two correlated experiments.
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Say we have T1 and T2 with

DDD =
(

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

)

then

DDD−1 = 1
σ2

1σ
2
2(1− ρ2)

(
σ2

2 −σ1σ2ρ
−σ1σ2ρ σ2

1

)

jjj′DDD−1jjj = 1
σ2

1σ
2
2(1− ρ2)

(
1 1

)(σ2
2 − σ1σ2ρ
σ2

1 − σ1σ2ρ

)
=

1
σ2

1σ
2
2(1− ρ2)

[
σ2

2 − σ1σ2ρ+ σ2
1 − σ1σ2ρ

]
=

σ2
1 + σ2

2 − 2σ1σ2ρ

σ1σ2(1− ρ2)

and so

θ̂̂θ̂θ = [jjj′DDD−1jjj]−jjj′DDD−1TTT =

[σ
2
1 + σ2

2 − 2σ1σ2ρ

σ1σ2(1− ρ2) ]−1jjj′
1

σ2
1σ

2
2(1− ρ2)

(
σ2

2 −σ1σ2ρ
−σ1σ2ρ σ2

1

)
TTT =

σ1σ2(1− ρ2)
σ2

1 + σ2
2 − 2σ1σ2ρ

1
σ2

1σ
2
2(1− ρ2)j

jj′
(
σ2

2T1 − σ1σ2ρT2
−σ1σ2ρT1 + σ2

1T2

)
=

(σ2
2 − σ1σ2ρ)T1 + (σ2

1 − σ1σ2ρ)T2

σ2
1 + σ2

2 − 2σ1σ2ρ
=

a2T1 + a1T2

a1 + a2

where ai = σ2
i − σ1σ2ρ

The variance of the combined estimator is

var(β̂̂β̂β) = [XXX ′DDD−1XXX]− = σ1σ2(1− ρ2)
σ2

1 + σ2
2 − 2σ1σ2ρ

Let’s investigate this a bit. To do so we fix σ1 = σ2 = 1, so we have

var(β̂̂β̂β) = 1− ρ2

2− 2ρ = (1− ρ)(1 + ρ)
2(1− ρ) = 1 + ρ

2

Not that −1 ≤ ρ ≤ 1, so 0 ≤ 1+ρ
2 ≤ 1 = var(Ti), so there is always an improvement but

the best case is two highly negatively correlated experiments! If the two experiments are
independent ρ = 0 and the variance is 1/2.
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7.3 Linear Mixed Models

In the last section we considered models with correlated responses of the form y = Xβ + εy = Xβ + εy = Xβ + ε,
E[εεε] = 0 and cov(εεε) = σ2DDD, where DDD was assumed to be a known covariance matrix. In
practice we often encounter cases whereDDD is not known but has to be estimated. Unfortunately
DDD has

(
n
2

)
elements, and so there nowhere near enough equations to estimate it. However,

in some cases one knows something about the structure of DDD, which lowers the number of
unknowns sufficiently to allow estimation.
Dependencies between observations can arise in many ways. For example, if observations
are taken on meteorological phenomena (temperature, pressure etc) each day, measurements
from one day to the next are likely correlated. In surveys of people those living in the same
geographical area (maybe even in the same household) are likely correlated.
A model for experiments of this kind can often be written in the form

y = Xβ + Z1a1 + ..+ Zmam + εy = Xβ + Z1a1 + ..+ Zmam + εy = Xβ + Z1a1 + ..+ Zmam + ε

where E[εεε] = 0 and cov(εεε) = σ2III. Here XXX is a (possibly less than full-rank) n × p known
matrix of fixed predictors, just as before. The ZZZi’s are known n× ri full-rank matrices. The
aaai’s are vectors of unknown quantities, similar to εεε. We assume E[aaai] = 0, cov(aaai) = σ2

i III and
cov(aaai, aaaj) = OOO for i 6= j.
Compare this model to the random X model discussed in section 6.10. There it was the
matrix XXX that was assumed to be random and the vector βββ was fixed. This model however is
fairly close to the Bayesian model, where βββ is also assumed to be random.
Models of this kind are (for obvious reasons) called mixed linear models. IfX = jX = jX = j is sometimes
called a random model. The σ2

i ’s are called variance components.

7.3.0.1 Theorem (8.3.1) Consider the model y = Xβ + Z1a1 + ..+ Zmam + εy = Xβ + Z1a1 + ..+ Zmam + εy = Xβ + Z1a1 + ..+ Zmam + ε, with ele-
ments as described above. Then E[yyy] = XβXβXβ and

cov(yyy) = ΣΣΣ =
m∑
i=1

σ2
iZ
′
iZiZ ′iZiZ ′iZi + σ2III

proof

E[yyy] = E[Xβ + Z1a1 + ..+ Zmam + εXβ + Z1a1 + ..+ Zmam + εXβ + Z1a1 + ..+ Zmam + ε] =
E[XβXβXβ] +Z1Z1Z1E[a1a1a1] + ..+ZmZmZmE[amamam] + E[εεε] = XβXβXβ

cov(yyy) = cov(Xβ + Z1a2 + ..+ Zmam + εXβ + Z1a2 + ..+ Zmam + εXβ + Z1a2 + ..+ Zmam + ε) =
cov(Z1a1Z1a1Z1a1) + ..+ cov(ZmamZmamZmam) + cov(εεε) =
σ2

1Z
′
1Z1Z ′1Z1Z ′1Z1 + ..+ σ2

mZ
′
mZmZ ′mZmZ ′mZm + σ2

because cov(ZiaiZiaiZiai,ZjajZjajZjaj) = ZiZiZi
′cov(ai, ajai, ajai, aj)ZjZjZj = ZiZiZi

′ZiZiZi if i=j and 0 otherwise.
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7.3.1 Examples

7.3.1.1 Example (8.3.2) Randomized Block design
We carry out a study on the effectiveness of a new drug. We have three treatments: no drug,
placebo and new drug. We randomly choose 4 hospitals (out of a much larger list of possible
hospitals) where the study will take place. If we average over the patients for each factor
level combination a model would be

yij = µ+ τi + αj + εij

with i=1,2,3;j=1,2,3,4; aj ∼ N(0, σ2
j ); εij ∼ N(0, σ2) and cov(aj, εij) = 0. where µ is the

overall effect, τi is the effect of the three treatments, which are fixed, and αi is the effect of
the choice of hospital, which is random. Note that we did not include an interaction term,
which is assumed not to exist.
So we have

XXX =


jjj3 III3
jjj3 III3
jjj3 III3
jjj3 III3



ZZZ1 =


jjj3 0003 0003 0003
0003 jjj3 0003 0003
0003 0003 jjj3 0003
0003 0003 0003 jjj3


Let’s use R to find σσσ = σ2III + σ2

1Z
′
1Z1Z ′1Z1Z ′1Z1:

I=3;J=4
sig=2.5;sig1=1.9
Z=matrix(0, I*J, J)
for(j in 1:J) Z[(j-1)*I+1:I, j]=1
sig*diag(I*J)+sig1*Z%*%t(Z)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 4.4 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
## [2,] 1.9 4.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
## [3,] 1.9 1.9 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
## [4,] 0.0 0.0 0.0 4.4 1.9 1.9 0.0 0.0 0.0 0.0 0.0 0.0
## [5,] 0.0 0.0 0.0 1.9 4.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0
## [6,] 0.0 0.0 0.0 1.9 1.9 4.4 0.0 0.0 0.0 0.0 0.0 0.0
## [7,] 0.0 0.0 0.0 0.0 0.0 0.0 4.4 1.9 1.9 0.0 0.0 0.0
## [8,] 0.0 0.0 0.0 0.0 0.0 0.0 1.9 4.4 1.9 0.0 0.0 0.0
## [9,] 0.0 0.0 0.0 0.0 0.0 0.0 1.9 1.9 4.4 0.0 0.0 0.0
## [10,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 1.9 1.9
## [11,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 4.4 1.9
## [12,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 1.9 4.4
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and so

σσσ = σ2III + σ2
1Z
′
1Z1Z ′1Z1Z ′1Z1 =


Σ1Σ1Σ1 0 0 0
0 Σ1Σ1Σ1 0 0
0 0 Σ1Σ1Σ1 0
0 0 0 Σ1Σ1Σ1


where

ΣΣΣ1 =

σ
2
1 + σ2 σ2

1 σ2
1

σ2
1 σ2

2 + σ2 σ2
1

σ2
1 σ2

1 σ2
1 + σ2



7.3.1.2 Example (8.3.3) Subsampling
Five batches were produced using each of two processes. Two samples were obtained and
measured from each of the batches. Constraining the process effects to sum to zero, the
model is

yijk = µ+ τi + αij + εijk

with i=1,2;j=1,..,5;k=1,2; τ1 + τ2 = 0, aij ∼ N(0, σ2
1); εijk ∼ N(0, σ2) and cov(aij, εij) = 0.

XXX =
(
jjj10 jjj10
jjj10 jjj10

)

ZZZ1 =


jjj2 0002 ... 0002
0002 jjj2 ... 0002
... ... ...

0002 0002 ... jjj2


and again we can find

σσσ = σ2III + σ2
1Z
′
1Z1Z ′1Z1Z ′1Z1 =


Σ1Σ1Σ1 0 ... 0
0 Σ1Σ1Σ1 ... 0
... ... ...
0 0 ... Σ1Σ1Σ1


where

ΣΣΣ1 =
(
σ2

1 + σ2 σ2
1

σ2
1 σ2

1 + σ2

)
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7.3.1.3 Example (8.3.4) Split-Plot Studies
A 3× 2 factorial experiment (with factors A and B, respectively) was carried out using six
main units, each of which was subdivided into two subunits. The levels of A were each
randomly assigned to two of the main units, and the levels of B were randomly assigned to
subunits within main units.
An appropriate model is

yijk = µ+ τi + δj + θij + αik + εijk

with i=1,2,3;j=1,2;k=1,2; aij ∼ N(0, σ2
1); εijk ∼ N(0, σ2) and cov(aij, εij) = 0.

Here are the matrices, created with R:
X=matrix(0, I*J, J)
for(j in 1:J) X[(j-1)*I+1:I, j]=1
tmp=rbind(cbind(diag(2),diag(2), 0*diag(2), 0*diag(2)),

cbind(diag(2),diag(2), 0*diag(2), 0*diag(2)),
cbind(diag(2),0*diag(2), diag(2), 0*diag(2)),
cbind(diag(2),0*diag(2), diag(2), 0*diag(2)),
cbind(diag(2),0*diag(2), 0*diag(2), diag(2)),
cbind(diag(2),0*diag(2), 0*diag(2), diag(2)))

X=cbind(1, X, tmp)
X

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## [1,] 1 1 0 0 0 1 0 1 0 0 0 0 0
## [2,] 1 1 0 0 0 0 1 0 1 0 0 0 0
## [3,] 1 1 0 0 0 1 0 1 0 0 0 0 0
## [4,] 1 0 1 0 0 0 1 0 1 0 0 0 0
## [5,] 1 0 1 0 0 1 0 0 0 1 0 0 0
## [6,] 1 0 1 0 0 0 1 0 0 0 1 0 0
## [7,] 1 0 0 1 0 1 0 0 0 1 0 0 0
## [8,] 1 0 0 1 0 0 1 0 0 0 1 0 0
## [9,] 1 0 0 1 0 1 0 0 0 0 0 1 0
## [10,] 1 0 0 0 1 0 1 0 0 0 0 0 1
## [11,] 1 0 0 0 1 1 0 0 0 0 0 1 0
## [12,] 1 0 0 0 1 0 1 0 0 0 0 0 1
I=3;J=2;K=2
Z=matrix(0, I*J*K, I*J)
j=matrix(1, 2, 1)
o=matrix(0, 2, 1)
Z=rbind(cbind(j, o, o, o , o, o),

cbind(o, j, o, o , o, o),
cbind(o, o, j, o , o, o),
cbind(o, o, o, j , o, o),
cbind(o, o, o, o , j, o),
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cbind(o, o, o, o , o, j))
Z

## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] 1 0 0 0 0 0
## [2,] 1 0 0 0 0 0
## [3,] 0 1 0 0 0 0
## [4,] 0 1 0 0 0 0
## [5,] 0 0 1 0 0 0
## [6,] 0 0 1 0 0 0
## [7,] 0 0 0 1 0 0
## [8,] 0 0 0 1 0 0
## [9,] 0 0 0 0 1 0
## [10,] 0 0 0 0 1 0
## [11,] 0 0 0 0 0 1
## [12,] 0 0 0 0 0 1
sig=2.5;sig1=1.9
sig*diag(I*J*K)+sig1*Z%*%t(Z)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
## [1,] 4.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
## [2,] 1.9 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
## [3,] 0.0 0.0 4.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
## [4,] 0.0 0.0 1.9 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
## [5,] 0.0 0.0 0.0 0.0 4.4 1.9 0.0 0.0 0.0 0.0 0.0 0.0
## [6,] 0.0 0.0 0.0 0.0 1.9 4.4 0.0 0.0 0.0 0.0 0.0 0.0
## [7,] 0.0 0.0 0.0 0.0 0.0 0.0 4.4 1.9 0.0 0.0 0.0 0.0
## [8,] 0.0 0.0 0.0 0.0 0.0 0.0 1.9 4.4 0.0 0.0 0.0 0.0
## [9,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 1.9 0.0 0.0
## [10,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 4.4 0.0 0.0
## [11,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 1.9
## [12,] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 4.4

and so we find ΣΣΣ to be same as in the previous example.

7.3.1.4 Example (8.3.5) One-Way Random Effects Model
Let’s analyze a one-way model where the factor is random. So we have y = µ+ αi + εijy = µ+ αi + εijy = µ+ αi + εij,
αi ∼ N(0, σ2

1), σij ∼ N(0, σ2), cov(αi, σij) = 0.
For the purpose of illustration we will use I=3,J=4, then we have m=1, X = jX = jX = j (the vector
for µ). Recall from the example above

ZZZ1 =

jjj4 0004 0004
0004 jjj4 0004
0004 0004 jjj4


and
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ΣΣΣ = σ2
1Z1Z1Z1Z1Z1Z1

′ + σ1III =

ΣΣΣ1 OOO OOO
OOO ΣΣΣ1 OOO
OOO OOO ΣΣΣ1


where

ΣΣΣ1 =


σ2

1 + σ2 σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 + σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 σ2
1 + σ2

1 σ2
1

σ2
1 σ2

1 σ2
1 σ2

1 + σ2
1



7.3.2 Estimation of Variance Components

There are a number of different methods known for estimating the variance components
in a mixed linear model. We will discuss a method known as residual maximum likelihood
(REML). This is also the estimator s2 in the usual linear models.
We now add the normal assumption. So we have

yyy ∼ Nn(Xβ,ΣXβ,ΣXβ,Σ)

where ΣΣΣ = ∑m
i=1 σ

2
iZiZiZiZiZiZi

′+σ2III. To simplify set σ2
0 = σ2 and ZZZ0 = III, so that ΣΣΣ = ∑m

i=0 σ
2
iZiZiZiZiZiZi

′.
The idea of REML is to use maximum likelihood estimation on data KyKyKy, where KKK is chosen
so that the distribution of KyKyKy involves only the variance components, not βββ. Therefore we
need a matrix with KX = 0KX = 0KX = 0. So we need E[KyKyKy] = 0.

7.3.2.1 Theorem (8.3.6) KKK must be of the form K = C(I −H) = C[I −X(X ′X)−X ′]K = C(I −H) = C[I −X(X ′X)−X ′]K = C(I −H) = C[I −X(X ′X)−X ′],
where CCC is some full-rank transformation of the rows of I −HI −HI −H
proof The rows ki of KKK must satisfy the equations k′iX = 0k′iX = 0k′iX = 0 or equivalently X ′ki = 0X ′ki = 0X ′ki = 0. By
(4.2.14) solutions to this system of equations are given by ki = (I −X−X)cki = (I −X−X)cki = (I −X−X)c for all possible
p× 1 vectors CCC. In other words, the solutions include all possible linear combinations of the
columns of I −X−XI −X−XI −X−X.
Now rank(X−XX−XX−X) = r. Also I −X−XI −X−XI −X−X is idempotent. Because of this idempotency,
rank(I −X−XI −X−XI −X−X) = rank(III) − rank(X−XX−XX−X) = n − r. Hence by the definition of rank n-
r linearly independent vectors ki that satisfy X ′ki = 0X ′ki = 0X ′ki = 0 and thus the maximal number of rows
in K is n-r.
Since ki = (I −X−X)cki = (I −X−X)cki = (I −X−X)c, K = C(I −X−X)K = C(I −X−X)K = C(I −X−X) for some full-rank (n − r) × n matrix CCC that
specifies n-r linearly independent linear combinations of the rows of the symmetric matrix
I −X−XI −X−XI −X−X.
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7.3.2.2 Theorem (8.3.7)

KyKyKy ∼ Nn−r(000,K(
m∑
i=0

σ2
iZiZiZiZiZiZi

′)K ′K(
m∑
i=0

σ2
iZiZiZiZiZiZi

′)K ′K(
m∑
i=0

σ2
iZiZiZiZiZiZi

′)K ′)

proof follows from (5.2.8)
So as desired the distribution of KyKyKy depends only on the variance components. Therefore

7.3.2.3 Theorem (8.3.8) A set of m+1 estimating equations is given by

tr[K ′(KΣK ′)−1KZiZ
′
iK ′(KΣK ′)−1KZiZ
′
iK ′(KΣK ′)−1KZiZ
′
i] = y′K ′(KΣK ′)−1KZiZ

′
iK
′(KΣK ′)−1Kyy′K ′(KΣK ′)−1KZiZ

′
iK
′(KΣK ′)−1Kyy′K ′(KΣK ′)−1KZiZ

′
iK
′(KΣK ′)−1Ky

where Σ = ∑m
i=0 σ

2
iZiZiZiZiZiZi

′

proof since E[KyKyKy] = 0 the log likelihood function is given by

logL(σ2
0, .., σ

2
m) =

n− r
2 log(2π)− 1

2 log |KΣK ′|KΣK ′|KΣK ′| − 1
2y
′(KΣK ′)−1Kyy′(KΣK ′)−1Kyy′(KΣK ′)−1Ky =

n− r
2 log(2π)− 1

2 log |K
m∑
i=0

σ2
iZiZiZiZiZiZi

′K ′|K
m∑
i=0

σ2
iZiZiZiZiZiZi

′K ′|K
m∑
i=0

σ2
iZiZiZiZiZiZi

′K ′| − 1
2y
′(K

m∑
i=0

σ2
iZiZiZiZiZiZi

′K ′)−1Kyy′(K
m∑
i=0

σ2
iZiZiZiZiZiZi

′K ′)−1Kyy′(K
m∑
i=0

σ2
iZiZiZiZiZiZi

′K ′)−1Ky

and so by (4.3.28) and (4.3.28)

∂

∂σ2
i

logL(σ2
0, .., σ

2
m) =

− 1
2tr

(
(KΣK ′)(KΣK ′)(KΣK ′)−1

[
∂

∂σ2
i

(KΣK ′)(KΣK ′)(KΣK ′)−1
])

+

1
2y
′(KΣK ′)−1y′(KΣK ′)−1y′(KΣK ′)−1

[
∂

∂σ2
i

(KΣK ′)(KΣK ′)(KΣK ′)−1
]

(KΣK ′)−1Ky(KΣK ′)−1Ky(KΣK ′)−1Ky

In most cases the these equations have to be solved numerically.

7.3.2.4 Example (8.3.9) One-Way Random Effects Model
Let’s analyze a one-way model where the factor is random. SO we have y = µ+ αi + εijy = µ+ αi + εijy = µ+ αi + εij,
αi ∼ N(0, σ2

1), σij ∼ N(0, σ2), cov(αi, σij) = 0.
We saw before that

ΣΣΣ =

ΣΣΣ1 OOO OOO
OOO ΣΣΣ1 OOO
OOO OOO ΣΣΣ1


where
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ΣΣΣ1 =


σ2

1 + σ2 σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 + σ2
1 σ2

1 σ2
1

σ2
1 σ2

1 σ2
1 + σ2

1 σ2
1

σ2
1 σ2

1 σ2
1 σ2

1 + σ2
1


Now X ′XX ′XX ′X = 12, so XXX(X ′XX ′XX ′X)−XXX ′ = 1

12XXXXXX
′ = 1

12JJJ and I −XI −XI −X(X ′XX ′XX ′X)−XXX ′ = III − 1
12JJJ .

As CCC we can choose CCC =
(
III 000

)
, then

K = C(I −H)K = C(I −H)K = C(I −H) =
(
III 000

)
(III − 1

12J
JJ) = III

KΣK ′KΣK ′KΣK ′ = IΣ1I
′IΣ1I
′IΣ1I
′ = ΣΣΣ

Now we need ΣΣΣ−1, which is quite some calculation. In the end we find the equations

9σ2
0 = y′(I − 1

4Z1Z
′
1)yy′(I − 1

4Z1Z
′
1)yy′(I − 1

4Z1Z
′
1)y

2(4σ2
1 + σ2

0) = y′(1
4Z1Z

′
1 −

1
12J

y′(1
4Z1Z

′
1 −

1
12Jy′(1

4Z1Z
′
1 −

1
12J)y

which has the solution

σ̂2
0 = y′(I − 1

4Z1Z
′
1)yy′(I − 1

4Z1Z
′
1)yy′(I − 1

4Z1Z
′
1)y/9

σ̂2
1 = y′(1

4Z1Z
′
1 −

1
12J

y′(1
4Z1Z

′
1 −

1
12Jy′(1

4Z1Z
′
1 −

1
12J)y/4− σ̂2

0/8

It is possible that σ̂2
1 < 0. In this case one usually sets σ̂2

1 = 0.
Rather than using this approach directly there are a number of iterative method known that
find the solutions.

7.3.2.5 Example (8.3.10) Let’s return to the hearing aid data. Here List is a fixed effect
(those are all the lists of interest) but Subject is a random effect, a sample from all possible
people with good hearing. So this is a randomized block design with Subject the blocking
variable.
library(lme4)
fit=lmer(Score~List+(1|Subject), data=hearingaid)
summary(fit)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Score ~ List + (1 | Subject)
## Data: hearingaid
##
## REML criterion at convergence: 646.1
##
## Scaled residuals:
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## Min 1Q Median 3Q Max
## -2.1393 -0.6430 -0.0658 0.6349 2.7597
##
## Random effects:
## Groups Name Variance Std.Dev.
## Subject (Intercept) 25.90 5.089
## Residual 36.92 6.076
## Number of obs: 96, groups: Subject, 24
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 34.7917 1.8402 18.907
## List -2.5917 0.5546 -4.673
##
## Correlation of Fixed Effects:
## (Intr)
## List -0.754
library(car)
Anova(fit)

## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Score
## Chisq Df Pr(>Chisq)
## List 21.834 1 2.973e-06

so we see that the REML method is used, and the routine finds σ2
1 = 25.9.

Notice that the estimates could not have been found using aov:
summary(aov(Score~List+Subject, data=hearingaid))

## Df Sum Sq Mean Sq F value Pr(>F)
## List 1 806 806.0 12.837 0.000543
## Subject 1 13 13.5 0.215 0.644213
## Residuals 93 5839 62.8

7.3.3 Inference for βββ

Estimates of the variance components can be plugged into ΣΣΣ to obtain

Σ̂̂Σ̂Σ =
∑

σ̂2
iZ1Z

′
iZ1Z
′
iZ1Z
′
i

Using this we find an estimator of βββ to be

β̂̂β̂β = (X ′Σ̂−1XX ′Σ̂−1XX ′Σ̂−1X)−X ′Σ̂−1yX ′Σ̂−1yX ′Σ̂−1y
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This is called the generalized least-squares (EGLS) estimator. It is a non-linear estimator
because Σ̂ is a non-linear function of yyy. β̂̂β̂β is not MVUE but it can be shown to be
asymptotically MVUE.

Similarly, a sensible estimator of the covariance matrix of β̂̂β̂β is given by

cov(β̂̂β̂β) = (X ′Σ̂−1XX ′Σ̂−1XX ′Σ̂−1X)−X ′Σ̂−1X(X ′Σ̂−1XX ′Σ̂−1XX ′Σ̂−1X)−X ′Σ̂−1X(X ′Σ̂−1XX ′Σ̂−1XX ′Σ̂−1X)−X ′Σ̂−1X(X ′Σ̂−1XX ′Σ̂−1XX ′Σ̂−1X)−

which, if XXX is full-rank, simplifies to

cov(β̂̂β̂β) = (X ′Σ̂−1XX ′Σ̂−1XX ′Σ̂−1X)−1

7.3.4 Inference for Estimable Functions of βββ

Exact methods for inference for estimable functions of βββ in linear mixed models do generally
not exits. However, a number of approximate methods are known.

7.3.4.1 Example (8.3.11)

7.3.4.2 Example (8.3.12) Let’s return to the hearing aid data. Notice that the output of
the lmer routine does not yield p values:
library(lme4)
fit=lmer(Score~List+(1|Subject), data=hearingaid)
summary(fit)

## Linear mixed model fit by REML ['lmerMod']
## Formula: Score ~ List + (1 | Subject)
## Data: hearingaid
##
## REML criterion at convergence: 646.1
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.1393 -0.6430 -0.0658 0.6349 2.7597
##
## Random effects:
## Groups Name Variance Std.Dev.
## Subject (Intercept) 25.90 5.089
## Residual 36.92 6.076
## Number of obs: 96, groups: Subject, 24
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 34.7917 1.8402 18.907
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## List -2.5917 0.5546 -4.673
##
## Correlation of Fixed Effects:
## (Intr)
## List -0.754

we can get those as follows:
library(car)
Anova(fit)

## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: Score
## Chisq Df Pr(>Chisq)
## List 21.834 1 2.973e-06

7.4 Nonlinear Regression

We have previously discussed polynomial regression, which is one way beyond linear regression.
In this section we discuss two others.

7.4.1 Transformations

It is often possible to turn a non-linear model into a linear one via a transformation. Say for
example that we want to fit an exponential model of the form y = aebx, then

log y = log aebx = log a+ bx

so this is equivalent to a linear model in log y.

7.4.1.1 Example (8.4.1) In Westchester County, north of New York City, Consolidated
Edison bills residential customers for electricity on a monthly basis. The company wants to
predict residential usage, in order to plan purchases of fuel and budget revenue flow. The data
includes information on usage (in kilowatt-hours per day) and average monthly temperature
for 55 consecutive months for an all-electric home. Data on consumption of electricity and
the temperature in Westchester County, NY.
attach(elusage)
head(elusage)

## Month Year Usage Temperature
## 1 8 1989 24.828 73
## 2 9 1989 24.688 67
## 3 10 1989 19.310 57
## 4 11 1989 59.706 43
## 5 12 1989 99.667 26
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## 6 1 1990 49.333 41
fitlin=lm(Usage~Temperature, data=elusage)
df <- data.frame(Residuals=resid(fitlin),

Fits = fitted(fitlin))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)
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so the residual vs fits plot shows a clear pattern, so a linear model is not good. Now
fitlogy=lm(log(Usage)~Temperature, data=elusage)
df <- data.frame(Residuals=resid(fitlogy),

Fits = fitted(fitlogy))
ggplot(data=df, aes(Fits, Residuals)) +

geom_point() +
geom_hline(yintercept = 0)
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is much better
exp(coef(fitlogy)[1])

## (Intercept)
## 207.513
coef(fitlogy)[2]

## Temperature
## -0.03187381

shows that the model is

y = 207.5e−0.0319x

which looks like this:
x=seq(min(elusage$Temperature), max(elusage$Temperature), length=100)
y=exp(coef(fitlogy)[1])*exp(coef(fitlogy)[2]*x)
df=data.frame(x=x,y=y)
ggplot(data=elusage, aes(Temperature, Usage)) +

geom_point() +
geom_line(aes(x, y), data=df, col="blue", size=1.2)
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There are issues when finding confidence intervals and doing hypothesis tests, but we won’t
discuss these here.

7.4.2 Nonlinear Parametric Models

Sometimes the model we wish to fit is known, up to parameters. Generally that is the
case if there is a scientific theory that predicts the shape of the relationship. For example,
radioactive decay is known to be exponential: y = αe−βt

7.4.2.1 Example (8.4.2) Growth of Lobsters
Data from an experiment to raise Florida lobster in a controlled environment. The data
shows the overall length and the age of a certain species of lobster.
kable.nice(lobster[1:10, ])
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Time Length
1 14 59
2 22 92
3 28 131
4 35 175
5 40 215
6 50 275
7 56 289
8 63 269
9 71 395
10 77 434

ggplot(data=lobster, aes(Time, Length)) +
geom_point()
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Now biology suggests that the relationship should be of the form

y = β2

1 + (β2 − β0)/β0 exp(β1t)
+ ε

where
• β0 is the expected value of y at time t=0

• β1 is a measure of the growth rate
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• β2 is the expected limit of y as t→∞
This is often called the logistic or autocatalytic model
Previously we have always used the method of least squares to estimate the parameters in
our models, that is we minimized the “figure of merit”

RSS =
∑

(yi − β0 − β1xi)2

the natural extension of this is to use

RSS =
∑

(yi − f(xi; β))2

now for a linear model minimizing this expression could be done with lm. This however is
still a minimization problem, and we can do it with
fit <- nls(Length ~ beta[3]/(1 + ((beta[3] -

beta[1])/beta[1]) * exp(beta[2] * Time)),
start = list(beta = c(10, -0.1, 500)),
data = lobster)

summary(fit)

##
## Formula: Length ~ beta[3]/(1 + ((beta[3] - beta[1])/beta[1]) * exp(beta[2] *
## Time))
##
## Parameters:
## Estimate Std. Error t value Pr(>|t|)
## beta1 32.008757 6.755720 4.738 0.000164
## beta2 -0.057557 0.004957 -11.612 8.55e-10
## beta3 465.884778 8.340739 55.857 < 2e-16
##
## Residual standard error: 21.63 on 18 degrees of freedom
##
## Number of iterations to convergence: 7
## Achieved convergence tolerance: 7.722e-06
x <- seq(10, 160, 1)
df <- data.frame(x=x,

y = predict(fit,
newdata = data.frame(Time = x)))

ggplot(data=lobster, aes(Time, Length)) +
geom_point() +
geom_line(data=df, aes(x, y), color="blue")
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7.4.2.2 Example (8.4.3) Prime Number Theorem
That there were infinitely many prime numbers was first proven by the Greek mathematician
Euclid at around 300BC. A serious study of how fast they grow was first begun by Adrienne-
Marie Legendre. He studied the function N(k), which gives the number of primes less or
equal to k. We can do the same. The primes up to 1,000,000 are available at
primes <- scan("C://Users//Wolfgang//dropbox//teaching//Computing-with-R//primes.txt")

## Error in file(file, "r"): cannot open the connection
primes <- as.integer(primes)

## Error in eval(expr, envir, enclos): object 'primes' not found
kable.nice(matrix(primes[1:100], ncol=10, byrow = TRUE))

## Error in matrix(primes[1:100], ncol = 10, byrow = TRUE): object 'primes' not found

A detailed study of these primes led Legendre in 1798 to propose the function

N(k) = k/(log k − α)
Here is what that looks like for several values of α:
N <- function(k, alpha) {

k/(log(k)-alpha)
}
k <- seq(1000, 1e6, length=250)
exact.counts <- k
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for(i in 1:250)
exact.counts[i] <- sum(primes<k[i])

## Error in eval(expr, envir, enclos): object 'primes' not found
df <- data.frame(N=c(k, k, k, k),

Counts=c(exact.counts, N(k, 0), N(k, 1), N(k, 2)),
Method=rep(c("Counts", "a=0", "a=1", "a=2"),

each=250))
ggplot(df, aes(N, Counts, color=Method)) +

geom_line()
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and so it seems a value of α = 1 is good.
Legendre however was not satisfied with that, he wanted to find the optimal answer. So he
found the least squares solution!
fit <- nls(exact.counts ~ k/(log(k) - alpha),

start = list(alpha = 0))
coef(fit)

## alpha
## 10.47122

and so he claimed that

N(k) = k/(log k − 1.08)

Around the same time German mathematician Carl Friedrich Gauss also looked at this
problem, and he made a different conjecture. He said
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N(k) = k/ log k
That was a rather strange guess, because it looks like this:
N <- function(k, alpha) {

k/(log(k)-alpha)
}
k <- seq(1000, 1e6, length=250)
exact.counts <- k
for(i in 1:250)

exact.counts[i] <- sum(primes<k[i])

## Error in eval(expr, envir, enclos): object 'primes' not found
df <- data.frame(N=c(k, k),

Counts=c(exact.counts, N(k, 0)),
Method=rep(c("Counts", "Gauss"), each=250))

ggplot(df, aes(N, Counts, color=Method)) +
geom_line()
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and it surely looks like the two curves are growing further apart. However, almost 100 years
later in 1896 the French mathematicians Jacques-Salomon Hadamard and Charles de la Valée
Poussin independently showed that Gauss was right!
From our modern point of view we might say Legendre was guilty of over-fitting!

7.5 Logistic and Poisson Regression, Generalized Linear Models

7.5.1 Logistic Regression
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7.5.1.1 Example (8.5.1) We begin with a very famous data set from the Challenger shuttle
disaster. On Jan 28, 1986, at 11.38 am EST, the space shuttle challenger was launched from
Cape Canaveral, Florida. The mission ended 73 seconds later when the Challenger exploded.
All 7 crew members were killed.
What happened?
Hot propellant gases flew past the aft joint of the right solid rocket booster, burning through
two rubber O-rings. An investigation ensued into the reliability of the shuttle’s propulsion
system. The explosion was eventually traced to the failure of one of the three field joints
on one of the two solid booster rockets. Each of these six field joints includes two O-rings,
designated as primary and secondary, which fail when phenomena called erosion and blowby
both occur.
The night before the launch a decision had to be made regarding launch safety. The discussion
among engineers and managers leading to this decision included concern that the probability
of failure of the O-rings depended on the temperature t at launch, which was forecast to be
31 degrees F. There are strong engineering reasons based on the composition of O-rings to
support the judgment that failure probability may rise monotonically as temperature drops.
The discussion centered on the following data from the previous 23 shuttle launches:
kable.nice(head(shuttle))

Temp NumFail Failure
1 66 0 0
2 70 1 1
3 69 0 0
4 68 0 0
5 67 0 0
6 72 0 0

ggplot(data=shuttle, aes(Temp, NumFail)) +
geom_point()
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there seems to be a tendency for failures at lower temperatures.
The variable Failure is an indicator of failure or not:
plt <- ggplot(data=shuttle, aes(Temp, Failure)) +

geom_jitter(height = 0)
plt
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So again we have a model of the form yi = β0 + β1xi + εi, but now y1, .., yn are Bernoulli rv’s.
Therefore
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E[yi] = P (yi = 1) = pi = 1− P (yi = 0) = 1− E[yi]
var(yi) = pi(1− pi)

Note that therefore

var(yi) = pi(1− pi) = E[yi](1− E[yi]) = (β0 + β1xi)(1− β0 − β1xi)
and we also have unequal variances. This means that the usual least squares estimators are
no longer optimal.
Another issue is that as always 0 ≤ pi ≤ 1 but using least squares p̂i = β̂0 + β̂1xi need not be.
What is needed is a model that always yields values in [0,1], that is a model of the form

l(pi) = β0 + β1xi + εi

where l is a link function. One popular choice is the logit transform l(x) = log( x
1−x), which

leads to logistic regression.
Note

log( pi
1− pi

) = β0 + β1xi

pi
1− pi

= exp {β0 + β1xi}

pi = exp {β0 + β1xi}
1 + exp {β0 + β1xi}

=

1
1 + exp {−β0 − β1xi}

Here is what this looks like:
curve(exp(x)/(1+exp(x)),-5, 5,ylab="logit", col="blue", lwd=2)
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Because the observed data is discrete and the predicted values are continuous yi − ŷi no
longer is sensible, and so least square can not be used for estimation. Instead one generally
uses maximum likelihood:

L(β0, β1) =
n∏
i=1

f(xi; β0, β1) =
n∏
i=1

pyii (1− pi)1−yi

logL(β0, β1) =
∑
i

[yi log pi + (1− yi) log(1− pi)] =

∑
i

[
yi log exp {β0 + β1xi}

1 + exp {β0 + β1xi}
+ (1− yi) log(1− exp {β0 + β1xi}

1 + exp {β0 + β1xi}
)
]

=∑
i

[yi(β0 + β1xi)− yi log(1 + exp {β0 + β1xi}−

(1− yi) log(1 + exp {β0 + β1xi})] =∑
i

yi(β0 + β1xi)−
∑
i

log(1 + exp {β0 + β1xi}

d logL(β0, β1)/dβ0 =
∑
i

yi −
∑
i

exp {β0 + β1xi}
1 + exp {β0 + β1xi}

= 0

d logL(β0, β1)/dβ1 =
∑
i

yixi −
∑
i

exp {β0 + β1xi}xi
1 + exp {β0 + β1xi}

= 0

and these equations have to be solved numerically.
Clearly if there are more than one predictor the model becomes

log( pi
1− pi

) = X ′βX ′βX ′β
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#### Example (8.5.2)
for the Challenger disaster data we find
ll=function(beta)

-(sum(shuttle$Failure*(beta[1]+beta[2]*shuttle$Temp))-
sum(log(1+exp(beta[1]+beta[2]*shuttle$Temp))))

fit=optim(c(0, 0), ll)
fit

## $par
## [1] 15.0453570 -0.2321977
##
## $value
## [1] 10.1576
##
## $counts
## function gradient
## 99 NA
##
## $convergence
## [1] 0
##
## $message
## NULL
x=seq(30, 90, length=100)
y=exp(fit$par[1]+fit$par[2]*x)/(1+exp(fit$par[1]+fit$par[2]*x))
df=data.frame(x=x, y=y)
plt +

geom_line(aes(x,y), data=df, col="blue", size=1.2)
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so at the expected launch temperature of 38 degrees F the estimated probability of a failure
was 1.
Using R we can fit such a logistic regression model with
fit <- glm(Failure~Temp,

family=binomial,
data=shuttle)

fit

##
## Call: glm(formula = Failure ~ Temp, family = binomial, data = shuttle)
##
## Coefficients:
## (Intercept) Temp
## 15.0429 -0.2322
##
## Degrees of Freedom: 22 Total (i.e. Null); 21 Residual
## Null Deviance: 28.27
## Residual Deviance: 20.32 AIC: 24.32

What would be a 95% confidence interval for the probability at 32F?
tmp <- predict(fit, data.frame(Temp=32),

type="response", se.fit=TRUE)
round(tmp$fit +c(-1, 1)*qnorm(0.975)*tmp$se.fit, 3)

## [1] 0.996 1.003

but there is something silly about this interval: it goes beyond 1! This is a consequence of
using normal theory intervals. Here is a better solution:
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tmp <- predict(fit, data.frame(Temp=32),
type="link", se.fit=TRUE)

e <- tmp$fit
r <- tmp$se.fit
cr <- qnorm(0.975)
round(c(exp(e-cr*r)/(1+exp(e-cr*r)),

exp(e+cr*r)/(1+exp(e+cr*r))), 3)

## 1 1
## 0.476 1.000

but this has a much lower (likely to low) lower limit.

7.5.1.2 Example (8.5.3) UPR Admissions data
Let’s say we want to predict whether or not somebody will graduate from UPR as a function of
their Highschool GPA. We will give them six years to do so, so we will consider all applicants
from 2003-2007:
dta <- upr[upr$Year<=2007,

c("Highschool.GPA", "Graduated")]
dta$GradInd <- ifelse(dta$Graduated=="Si", 1, 0)
plt <- ggplot(dta, aes(Highschool.GPA, GradInd)) +

geom_jitter(width=0, height=0.1)
plt
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fit <- glm(GradInd~Highschool.GPA,
family=binomial,
data=dta)
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fit

##
## Call: glm(formula = GradInd ~ Highschool.GPA, family = binomial, data = dta)
##
## Coefficients:
## (Intercept) Highschool.GPA
## -6.252 1.680
##
## Degrees of Freedom: 11409 Total (i.e. Null); 11408 Residual
## Null Deviance: 15790
## Residual Deviance: 14960 AIC: 14960
x <- seq(2, 4, length=100)
df <- data.frame(x=x,

y=predict(fit, data.frame(Highschool.GPA=x),
type="response"))

plt +
geom_line(data=df, aes(x, y),

color="blue", size=1.2)
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so the probability of a successful graduation does increase, but only to about 62%.
Let’s find a pointwise confidence band for the success probability:
tmp <- predict(fit, data.frame(Highschool.GPA=x),

type="link", se.fit=TRUE)
e <- tmp$fit
r <- tmp$se.fit
cr <- qnorm(0.975)
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ymin <- exp(e-cr*r)/(1+exp(e-cr*r))
ymax <- exp(e+cr*r)/(1+exp(e+cr*r))
df1 <- data.frame(x=x, ymin=ymin, ymax=ymax)
ggplot(dta, aes(Highschool.GPA, GradInd)) +
geom_line(data=df, aes(x, y),

color="blue", size=1.2) +
geom_ribbon(data=df1,

aes(x=x, ymin=ymin, ymax=ymax),
alpha=0.2, inherit.aes = FALSE)
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7.5.2 Poisson Regression

7.5.2.1 Example (8.5.4) Warp Breaks: the data set gives the results of an experiment to
determine the effect of wool type (A or B) and tension (low, medium or high) on the number
of warp breaks per loom. Data was collected for nine looms for each combination of settings.
kable.nice(head(warpbreaks))

breaks wool tension
1 26 A L
2 30 A L
3 54 A L
4 25 A L
5 70 A L
6 52 A L
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we want to build a model relating the wool type and tension to the number of breaks.
What distribution might be appropriate for breaks? First, let’s have a look at them:
bw <- diff(range(warpbreaks$breaks))/20
ggplot(warpbreaks, aes(x=breaks)) +

geom_histogram(color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Breaks")
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our data is counts with a bit of skew to the right. This is typical for data from a Poisson
distribution.
Here is another argument in favor of a Poisson: Each loom could be considered as a series of
small intervals. We then would have a large number of such intervals, each of which has a
small probability of a break. The total number of breaks would be the sum of the breaks in
each interval, and therefore would be Binomial. But in this case the Poisson approximation
to the Binomial would be very good.
Again we want to use regression to relate type and tension to breaks. In the case of a Poisson
response variable the link function is given by the logarithm.
fit <- glm(breaks~wool*tension,

data=warpbreaks,
family=poisson)

summary(fit)

##
## Call:
## glm(formula = breaks ~ wool * tension, family = poisson, data = warpbreaks)
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##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.3383 -1.4844 -0.1291 1.1725 3.5153
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 3.79674 0.04994 76.030 < 2e-16
## woolB -0.45663 0.08019 -5.694 1.24e-08
## tensionM -0.61868 0.08440 -7.330 2.30e-13
## tensionH -0.59580 0.08378 -7.112 1.15e-12
## woolB:tensionM 0.63818 0.12215 5.224 1.75e-07
## woolB:tensionH 0.18836 0.12990 1.450 0.147
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 297.37 on 53 degrees of freedom
## Residual deviance: 182.31 on 48 degrees of freedom
## AIC: 468.97
##
## Number of Fisher Scoring iterations: 4

and we see that all terms except one interaction term are stat. significant.

Let’s do our own little study of Poisson regression. First we generate some data:
x <- 1:100/50
df <- data.frame(x=x, y=rpois(100, 10*x))
plt <- ggplot(data=df, aes(x, y)) +

geom_point()
plt
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fit <- glm(y~x,
data=df,
family=poisson)

summary(fit)

##
## Call:
## glm(formula = y ~ x, family = poisson, data = df)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.6425 -0.9848 -0.1348 0.5833 2.9190
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.03973 0.08816 11.79 <2e-16
## x 1.05278 0.06143 17.14 <2e-16
##
## (Dispersion parameter for poisson family taken to be 1)
##
## Null deviance: 472.36 on 99 degrees of freedom
## Residual deviance: 146.59 on 98 degrees of freedom
## AIC: 524.89
##
## Number of Fisher Scoring iterations: 5
df1 <- df
df1$y <- predict(fit, type="response")
plt +
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geom_line(data=df1, aes(x, y), color="blue", size=1.2)
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and that looks quite good!

7.5.3 Generalized Linear Models

Logistic and Poisson regression are examples of Generalized Linear Models, which can be
characterized as follows: we have
1. Independent random variables y1, .., yn with E[yi] = µi and density function from an

exponential family.
2. A linear predictor x′iβx′iβx′iβ
3. A link function g(µi) = x′iβx

′
iβx
′
iβ

7.5.3.1 Definition (8.5.5) A distribution is said to belong to the exponential family if its
density can be written as

f(xxx;θθθ) = h(xxx) exp {θθθ′T (xxx)− A(θθθ)}
where

• θ is a vector of parameters

• T (x) is a vector of sufficient statistics

• A is a function of θ alone and h is a function of x alone
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we have

∫
f(x; θ)dx =∫
h(x) exp

{
θTT (x)− A(θ)

}
dx =

exp {−A(θ)}
∫
h(x) exp

{
θTT (x)

}
dx = 1

so

A(θ) = log
[∫

h(x) exp
{
θTT (x)

}
dx
]

7.5.3.2 Examples

• Bernoulli

f(x; p) = px(1− p)1−x

exp {x log p+ (1− x) log(1− p)} =
exp {x(log p− log(1− p)) + log(1− p)} =

exp
{
x log p

1− p + log(1− p)
}

exp
{
xθ − log(1 + eθ)

}
θ = log p

1− p
h(x) = 1
T (x) = x

A(θ) = − log(1 + eθ)

because

θ = log p

1− p
eθ = p

1− p

p = eθ

1 + eθ

1− p = 1
1 + eθ

log(1− p) = − log(1 + eθ)
• Normal
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1√
2πσ2

exp
{
− 1

2σ2 (x− µ)2
}

=

1√
2π

exp
{
− 1

2σ2

(
x2 − 2xµ+ µ2

)
− log σ

}
=

1√
2π

exp
{
−x

2

σ2 + xµ

σ2 −
µ2

2σ2 − log σ
}

so

θ = (µ/σ2,−1/(2σ2)T

h(x) = 1√
2π

T (x) = (x, x2)T

A(θ) = µ2

2σ2 + log σ =

− θ2
1/(4θ2)− 1

2 log(−2θ2)
—
The likelihood function is given by

L(yyy;θθθ) =
∏
i

h(yiyiyi) exp {θθθ′T (xxx)− A(θθθ)} =

[
∏
i

h(yiyiyi)] exp
{∑

i

θθθ′T (xxx)− nA(θθθ)
}

and so

logL(yyy;θθθ) = K

{∑
i

θθθ′T (xxx)− nA(θθθ)
}

For the exponential family we have

E[yi] = µi = A′(θ)

7.6 Classification

7.6.0.1 Example (8.6.1) One of the most famous data sets in Statistics was first studied
by Fisher, his iris data. For each of three types of iris flowers (Iris setosa, Iris virginica and
Iris versicolor) we have four measurements: the lengths and the widths of the Petal and the
Sepal. The goal is to determine from these measurements the type of flower.
kable.nice(head(iris), do.row.names = FALSE)
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Sepal.Length Sepal.Width Petal.Length Petal.Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
4.6 3.1 1.5 0.2 setosa
5.0 3.6 1.4 0.2 setosa
5.4 3.9 1.7 0.4 setosa

table(iris$Species)

##
## setosa versicolor virginica
## 50 50 50
pushViewport(viewport(layout = grid.layout(3, 3)))
print(ggplot(data=iris,

aes(Sepal.Length, Sepal.Width, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=1, layout.pos.col=1))
print(ggplot(data=iris,

aes(Sepal.Length, Petal.Length, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=1, layout.pos.col=2))
print(ggplot(data=iris,

aes(Sepal.Length, Petal.Width, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=1, layout.pos.col=3))
print(ggplot(data=iris,

aes(Sepal.Width, Petal.Length, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=2, layout.pos.col=2))
print(ggplot(data=iris,

aes(Sepal.Width, Petal.Width, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=2, layout.pos.col=3))
print(ggplot(data=iris,

aes(Petal.Length, Petal.Width, color=Species)) +
geom_point() + theme(legend.position="none"),

vp=viewport(layout.pos.row=3, layout.pos.col=3))
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It is clear that we the different flowers have different values of the predictors, but with some
overlap.

If we code the response variable Species (say setosa=0, versicolor=1 and virginica=2) we
again have a regression problem with a discrete response variable like in the last section.
However, there are two differences:
1. We do not assume some probability distribution (Binomial, Poisson) for y

2. The goal is to find a model that let’s us assign a new case to one of the groups, not to
find the probability of group membership. Of course those two are closely related.

7.6.0.2 Example (8.6.2) We will consider the three artificial examples. Here is a routine
that generates some data from each of them:
gen.ex <- function(which, n=50) {

library(mvtnorm)
ex1 <- function(mu=2, n=50) {

x1 <- rmvnorm(n, mean=c(0,0), sigma=diag(2))
x2 <- rmvnorm(n, mean=c(mu,mu), sigma=diag(2))
data.frame(x=c(x1[, 1], x2[, 1]),

y=c(x1[, 2], x2[, 2]),
group=rep(c("A", "B"), each=n))

}
ex2 <- function(mu=2, n=50) {

x <- cbind(runif(10000), runif(10000, -1, 1))
x <- x[x[, 1]^2 + x[, 2]^2<1, ]

336



x <- x[1:n, ]
y <- cbind(runif(10000, 0, 2), runif(10000, -2, 2))
y <- y[y[, 1]^2 + y[, 2]^2>0.9, ]
y <- y[1:n, ]
data.frame(x=c(x[, 1], y[, 1]),

y=c(x[, 2], y[, 2]),
group=rep(c("A", "B"), each=n))

}
ex3 <- function(mu=2, n=33) {
x1 <- rmvnorm(n, mean=c(0, 0), sigma=diag(2))
x2 <- rmvnorm(n, mean=c(mu, mu), sigma=diag(2))
x3 <- rmvnorm(n, mean=2*c(mu, mu), sigma=diag(2))
data.frame(x=c(x1[, 1], x2[, 1], x3[, 1]),

y=c(x1[, 2], x2[, 2], x3[, 2]),
group=rep(c("A", "B", "C"), each=n))

}
if(which==1)

df <- ex1(n=n)
if(which==2)

df <- ex2(n=n)
if(which==3)

df <- ex3(n=n)
df$Code <- ifelse(df$group=="A", 0, 1)
if(which==3)

df$Code[df$group=="C"] <- 2
df

}

• two types, fairly simple separation
ggplot(data=gen.ex(1, n=150), aes(x, y,color=group)) +

geom_point() +
labs(x="x1",y="x2") +

theme(legend.position="none")
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• two types, more complicated separation
ggplot(data=gen.ex(2, n=150), aes(x, y,color=group)) +

geom_point() +
labs(x="x1",y="x2") +

theme(legend.position="none")
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• three types
ggplot(data=gen.ex(3, n=150), aes(x, y,color=group)) +

geom_point() +
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labs(x="x1",y="x2") +
theme(legend.position="none")
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Let’s say we code a response variable y as 0 if “green” and 1 if “red” if there are two groups
(models 1 and 2) or with 0, 1 and 2 if there are three groups (model 3). Then we run the
linear regression of y on x1 and x2.
Now the model is the same as always: y = Xβ + εy = Xβ + εy = Xβ + ε, and so the estimator is as always
β̂ = (X ′X)−1X ′yβ̂ = (X ′X)−1X ′yβ̂ = (X ′X)−1X ′y. Say we have two groups ordered so that all cases with y=0 come first, then

yyy =
(
0 0 ... 0 1 ... 1

)′
Let’s say there are n observations from group 0 and m from group 1, so

X ′yX ′yX ′y =
(
X ′nX
′
nX
′
n X ′mX

′
mX
′
m

)
yyy = X ′mjX ′mjX ′mj =


∑m+n
i=m+1 xi1

...∑m+n
i=m+1 xk1


Finally we assign a point (x1, x2) to “green” if its predicted response is <0.5, and to “red”
otherwise for models 1 and 2, and depending on whether its predicted response is <2/3 or
>4/3 for model 3.
Of course in the case of two groups we could also use logistic regression, but we won’t pursue
this idea here.
To see what this looks like we find an even spaced grid and predict the color for each point.
Then we overlay that grid onto the graph. This is done in
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make.grid <- function(df) {
x <- seq(min(df$x), max(df$x), length=100)
y <- seq(min(df$y), max(df$y), length=100)
expand.grid(x=x, y=y)

}
do.graph <- function(df, df1) {

print(ggplot(data=df, aes(x, y, color=group)) +
geom_point(size=2) +
labs(x="x1",y="x2") +
theme(legend.position="none") +
geom_point(data=df1,

aes(x,y, color=group, alpha=0.1),
inherits.aes=FALSE))

}

Here our three examples:
df <- gen.ex(1)
df$Code <- ifelse(df$group=="A", 0, 1)
fit <- lm(Code~x+y, data=df)
df1 <- make.grid(df)
df1$group <- ifelse(predict(fit, df1)<0.5, "A", "B")
do.graph(df, df1)

−6

−3

0

3

−2 −1 0 1 2
theoretical

sa
m

pl
e

df <- gen.ex(2)
df$Code <- ifelse(df$group=="A", 0, 1)
fit <- lm(Code~x+y, data=df)
df1 <- make.grid(df)
df1$group <- ifelse(predict(fit, df1)<0.5, "A", "B")
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do.graph(df, df1)
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df <- gen.ex(3)
df$Code <- ifelse(df$group=="A", 0, 1)
df$Code[df$group=="C"] <- 2
fit <- lm(Code~x+y, data=df)
df1 <- make.grid(df)
tmp <- predict(fit, df1)
df1$group <- ifelse(tmp<2/3, "A", "B")
df1$group[tmp>4/3] <-"C"
do.graph(df, df1)
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this seems to work ok for examples 1 and 3, not so much for 2.
Let’s have a closer look at example 1:
df <- gen.ex(1)
fit <- lm(Code~x+y, data=df)
coef(fit)

## (Intercept) x y
## 0.2279637 0.1064668 0.2012716

we assign the group depending if the fitted value is < or > than 0.5. What do we get if it is
equal to 0.5?

0.5 = β0 + β1x1 + β2x2

x2 = (0.5− β0 − β1x1)/β2

x2 = 0.5− β1

β2
− β1

β2
x1

Let’s add that line to the graph:
ggplot(data=df, aes(x, y, color=group)) +

geom_point(size=2) +
theme(legend.position="none") +
geom_abline(intercept = (0.5-coef(fit)[2])/coef(fit)[3],

slope=-coef(fit)[2]/coef(fit)[3])
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and this is called the decision boundary.
It is easy to see that in example 3 it works like this:
df <- gen.ex(3)
fit <- lm(Code~x+y, data=df)
ggplot(data=df, aes(x, y, color=group)) +

geom_point(size=2) +
theme(legend.position="none") +
geom_abline(intercept = (2/3-coef(fit)[2])/coef(fit)[3],

slope=-coef(fit)[2]/coef(fit)[3]) +
geom_abline(intercept = (4/3-coef(fit)[2])/coef(fit)[3],

slope=-coef(fit)[2]/coef(fit)[3])
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7.6.1 Misclassification Rate

One thing that sets a classification problem apart from regression is that here we have an
obvious way to judge how good a method is, namely the miss-classification rate: What
percentage of the observations are given the wrong label?
Let’s see:
msr <- function(x, y) {

z <- table(x, y)
round((sum(z)-sum(diag(z)))/sum(z)*100, 1)

}

df <- gen.ex(1, n=1000)
fit <- lm(Code~x+y, data=df)
pred <- ifelse(predict(fit)<0.5, "A", "B")
table(df$group, pred)

## pred
## A B
## A 919 81
## B 83 917
msr(df$group, pred)

## [1] 8.2
df <- gen.ex(2, n=1000)
fit <- lm(Code~x+y, data=df)
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pred <- ifelse(predict(fit)<0.5, "A", "B")
msr(df$group, pred)

## [1] 19.5
df <- gen.ex(3, n=1000)
fit <- lm(Code~x+y, data=df)
tmp <- predict(fit)
pred <- ifelse(tmp<2/3, "A", "B")
pred[tmp>4/3] <- "C"
msr(df$group, pred)

## [1] 11.8

7.6.2 Overfitting and Cross-validation

Of course these misclassification rates are to optimistic: we calculated it on the same data
set that we fit on. We should always train and test on different data sets, maybe using
cross-validation:
df <- gen.ex(1, n=1000)
print(dim(df))

## [1] 2000 4
out <- rep(0, 10)
for(i in 1:10) {

I <- sample(1:2000, size=400)
fit <- lm(Code~x+y, data=df[-I, ])
pred <- ifelse(predict(fit, df[I, 1:2])<0.5, "A", "B")
out[i] <- msr(df$group[I], pred)

}
mean(out)

## [1] 7.42

Here we split the data into 80% for training and 20% for evaluation. Is this a good split?
Actually, nobody knows!

Our method works quite well for examples 1 and 3, but not so much for example 2.
df <- gen.ex(2)
df$Code <- ifelse(df$group=="A", 0, 1)
fit <- lm(Code~x+y, data=df)
df1 <- make.grid(df)
df1$group <- ifelse(predict(fit, df1)<0.5, "A", "B")
do.graph(df, df1)
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shows us why: here a linear decision boundary clearly won’t work. So how about a quadratic
one?
df$x2 <- df$x^2
df$y2 <- df$y^2
df$xy <- df$x*df$y
fit <- lm(Code~x+y+x2+y2+xy, data=df)
df1 <- make.grid(df)
df1$x2 <- df1$x^2
df1$y2 <- df1$y^2
df1$xy <- df1$x*df1$y
df1$group <- ifelse(predict(fit, df1)<0.5, "A", "B")
do.graph(df, df1)
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and that looks much better!
Here is the mcr based on cross-validation:
df <- df[, c(4, 1:2, 5:7)]
out <- rep(0, 10)
for(i in 1:10) {

I <- sample(1:2000, size=400)
fit <- lm(Code~x+y+x2+y2+xy, data=df[-I, ])
pred <- ifelse(predict(fit, df[I, -1])<0.5, "A", "B")
out[i] <- msr(df$Code[I], pred)

}
mean(out)

## [1] 7.67

The two solutions we have discussed above, linear and quadratic regression, are (slight
variations of) what Fisher came up with back when he introduced the Iris data set. They are
now called

7.6.3 Linear and Quadratic discriminants

and are implemented in R with
library(MASS)
df <- gen.ex(1)
fit <- lda(df$group~x+y, data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)$class
head(df1)
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## x y group
## 1 -2.432248 -1.761245 A
## 2 -2.371442 -1.761245 A
## 3 -2.310637 -1.761245 A
## 4 -2.249831 -1.761245 A
## 5 -2.189026 -1.761245 A
## 6 -2.128220 -1.761245 A
do.graph(df, df1)
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df <- gen.ex(3)
fit <- lda(group~x+y, data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)$class
do.graph(df, df1)
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for example 2 we should use
df <- gen.ex(2)
fit <- qda(group~x+y, data=df)
df1 <- make.grid(df)
df1$group <- predict(fit, df1)$class
do.graph(df, df1)
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Notice a couple of differences between the lm and lda/qda solutions:
• in lda/qda we don’t have to do any coding, they accept categorical variables as response.
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• there is a difference between the lm and the lda/qda solutions of examples 2 and 3. Do
you see what it is, and why?

7.7 Nonparametric Regression

In this last section we will discuss fitting more general functions to data. We will now allow
infinite dimensional models. We will still use least squares, so the problem will become as
follows: find a function f that minimizes

Φ(y,Xy,Xy,X, f) =
n∑
i=1

(yi − f(xxxi))2

Of course in this generality we can always find a function f so that Φ(y, xy, xy, x, f) = 0. For
example, if XXX is n× 1 one can always find a polynomial of degree n such p(xi) = yi.
One way to make this work is to restrict the set of functions over which to minimize:
1. Allow only polynomials up to some (fixed) degree

2. Allow only cubic splines, that is functions that are piecewise cubic such that at the
points where the cubic functions change (called knots) the function still has a continuous
derivative.

A more general approach is to use instead a criterion of the form

Φ(y,Xy,Xy,X, f) =
n∑
i=1

(yi − f(xxxi))2 − λΨ(f)

where Ψ is some penalty function and λ a parameter that allows us to determine the amount
of penalty. This idea is called regularization.

7.7.0.1 Example (8.7.1) The idea of regularization is even useful in standard linear regres-
sion. Sometimes is a good idea to make sure the coefficients do not get to large, and so we
might minimize

Φ(y,Xy,Xy,X, f) =
∑
i

(yi − (X ′βX ′βX ′β)i))2 − λ
∑
i

|βi|

This is known as ridge regression.

7.7.0.2 Example (8.7.2) Let’s define the space of functions f : [0, 1] → R which have a
continuous second derivative and who have

∫ 1
0 (f ′′(x))2dx < R for some R>0. Then we can

minimize

Φ(y,Xy,Xy,X, f) =
n∑
i=1

(yi − f(xxxi))2 − λ
∫ 1

0
(f ′′(x))2dx
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It may seem at first very hard and maybe impossible to actually find such a minimum because
we are here optimizing over an infinite dimensional space, but in some cases this can actually
be done. For example, in this specific case it can be shown that the solution is always a cubic
spline!

7.7.1 Reproducing Kernel Hilbert Space (RKHS)

In order to be able to find such a minimum it is necessary to use a function space with
sufficient “structure”. A good choice are so called Reproducing Kernel Hilbert Spaces (RKHS),
which we will now define:

7.7.1.1 Definition (8.7.3) A vector space is a set of elements with operations “addition” and
“multiplication” that follow the usual rules.

7.7.1.2 Example (8.7.4)

1. Rd with vector addition and multiplication

2. C[0,1], the set of continuous functions on [0,1] with the usual addition and multiplication,
for example (f*g)(x)=f(x)g(x)

7.7.1.3 Definition (8.7.5) Let V be some vector space V. A mapping 〈., .〉 : V 2 → R is an
inner product on V if for x, y, z ∈ V and a ∈ R
1. 〈x, y〉 ≥ 0

2. 〈x, y〉 = 〈y, x〉

3. 〈ax+ y, z〉 = a〈x, z〉+ 〈y, z〉
A vector space with an inner product is called an inner product space.
Often we also write 〈x, x〉 = ||x||2 and then ||x|| is called the norm.
Such a norm induces a metric on the space via d(x, y) = ||x− y||.

7.7.1.4 Example (8.7.6)

1. Rn with 〈x, y〉 = ∑
xiyi

2. the space of continuous functions C with
〈f, g〉 =

∫
f(x)g(x)dx

Note that in an inner product space we have a version of the Pythagorean theorem: if x and
y are such that
〈x, y〉 = 0
they are said to be orthogonal, and then we have
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||x+ y||2 =
〈x+ y, x+ y〉 =
〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉 =
||x||2 + ||y||2

7.7.1.5 Definition (8.7.7) A sequence is called a “Cauchy sequence” if for all ε > 0 there
exists N such that for all n, m>N such d(xn, xm) < ε.
This definition of convergence has the advantage that one can check it without knowing what
the limit of the sequence is

7.7.1.6 Example xn = 1
n
, d(xn, xm) = |xn − xm| then if n < m

| 1
n
− 1
m
| = m− n

nm
<

m

mn
= 1
m
< ε

if n,m > N = 1/ε

7.7.1.7 Definition (8.7.8) A space is called complete if each Cauchy sequence converges.
It may seem at first that this is always true, but it is not:

7.7.1.8 Example Consider the space of functions L1[0, 1] on [0,1] that are continuous and
have norm ||f || =

∫ 1
0 |f(x)|dx. Now consider the sequence fn(x) = xn, so

||fn|| =
∫ 1

0
xndx = 1

n+ 1

and so we see that fn is a Cauchy sequence. But

lim
n→∞

fn(x) = I0(x)

which is not continuous and therefore is not in L1[0, 1]. Therefore we have the definition

7.7.1.9 Definition (8.7.9) A complete inner product space is called a Hilbert Space

The main idea here is that Hilbert spaces can be infinite dimensional but retain (almost) all
the nice properties of Euclidean space Rd, such as the convergence of Cauchy sequences.
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7.7.1.10 Example (8.7.10)

1. l2 = {(a1, a2, ..) : ∑ a2
i <∞} is a Hilbert space with 〈aaa, bbb〉 = ∑

aibi

Notice that d-dimensional Euclidean space is a subspace of l2.

2. L2[0, 1] =
{
f :

∫ 1
0 f

2(x)dx <∞
}
is a Hilbert space with 〈f, g〉 =

∫ 1
0 f(x)g(x)dx

Let f ∈ L2[0, 1], and let {φi} be an orthonormal basis of L2[0, 1]. Then we have

f(x) =
∞∑
i=0

aiφi(x)

where aj = 〈f, φj〉. By Parseval’s theorem we have

||aaa||l2 = ||f ||L2[0,1]

therefore we have an isomorphism from l2 to L2[0, 1], and in a certain sense the two spaces
are the same!

7.7.1.11 Definition (8.7.11) A linear functional is a L mapping from some vector space V
into the real numbers such that for any a ∈ R

L(ax+ y) = aL(x) + L(y)

A linear functional is called bounded if there exists M>0 such that

|L(f)| ≤M ||f ||
The mathematical theory that studies such objects is called functional analysis.

7.7.1.12 Theorem (8.7.12) Let H be a Hilbert space and g ∈ H some element of H, then
L(f) = 〈f, g〉 defines a bounded linear functional.
proof
The linearity follows from the definition of the inner product. The boundedness is a conse-
quence of the Cauchy-Schwartz inequality:

|L(f)| = 〈f, g〉 ≤ ||f || × ||g|| = M ||f ||

and there is a famous theorem that says that
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7.7.1.13 Theorem (8.7.13) Riesz representation theorem
Let L be a bounded linear function on a Hilbert space H. Then there exists g ∈ H such that
L(f) = 〈f, g〉.
In other words, on a Hilbert space all bounded linear functionals are generated by elements
of the space and the inner product.

7.7.1.14 Definition (8.7.14) A symmetric bivariate function K : H × H → R is called
positive (semi)-definite if for all n>0 and elements x1, , , ., xn ∈ H the matrix with elements
K(xi, xj) is positive (semi)-definite.

7.7.1.15 Example (8.7.15)

1. Rd: let K(xxx,xxx′) = 〈xxx,xxx′〉, then

a′Kaa′Kaa′Ka =
n∑

i,j=1
aiajxixj = ||

∑
aixi||2 ≥ 0

This is of course the usual case of a positive semi-definite matrix.
2. (Gaussian kernel)

for any x, y ∈ Rd let

K(x, y) = exp{−(||x− y||2/2σ2}

7.7.1.16 Definition Let X be some space, and H a Hilbert space of functions from the
Cartesian product X × X into the Cartesian product R. Let K be a semi-definite kernel
function on X × X . H is called a reproducing kernel Hilbert space (RKHA) if for any x ∈ X
the function K(·, x) ∈ H and we have the relation

〈f,K(·, x)〉 = f(x)
for all f ∈ H.
In other words finding inner products on such a space is easy: one only needs to evaluate the
functions. So finding an f that maximizes the inner product means maximizing a function on
R. This is often referred to as the kernel trick.

How can we find such RKHS’s? Let’s say we have a space X and a semi-definite kernel K on
the Cartesian product X × X . Now consider the space H of functions on X defined by

f(·) =
n∑
j=1

ajK(·, xj)
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for some integer n ≥ 1, points x1, .., xn ∈ X and weights a1, ., , an ∈ R. It is easy to check
that H is a vector space under the usual function addition and scalar multiplication.
For any given pair f, g ∈ H we define the inner product

〈f, g〉H =
n∑

j,k=1
ajbkK(xj, x̄k)

and with this definition we have

〈f,K(·, x)〉 =
n∑
j=1

ajK(xj, x) = f(x)

and one can verify that this indeed defines a proper inner product. Finally taking limits as
n→∞ and using the completeness of Hilbert spaces we have

7.7.1.17 Theorem Given any positive semi-definite kernel function K, there is a unique
Hilbert space H in which the kernel satisfies the reproducing property. It is known as the
RKHS associated with K.
proof omitted

7.7.1.18 Example L2[0, 1] is not an RKHS. If it were there would have to be a function Rx

such that

∫ 1

0
f(y)Rx(y)dy = f(x)

for all f ∈ L2[0, 1]. It can be shown that the only function to do so is Rx(y) =∞Ix(y), but
that function is not in L2[0, 1].
In a certain sense L2[0, 1] is to large a space to be a RHKS, so in order for a space of functions
to be a RKHS we need to put further restrictions on them. A common one is

7.7.1.19 Definition For some fixed n ≥ 1 define the space Hn[0, 1] as the space of all
real-valued functions that are n-times continuously differentiable with the nth derivative being
Lebesgue integrable and

f(0) = f ′(0) = ..f (n−1)(0) = 0

If we define the inner product

〈f, g〉Hn[0,1] =
∫ 1

0
f (n)(x)g(n)(x)dx

It can be shown that this defines a RKHS. It is called the Sobolev space of order n.
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7.7.1.20 Theorem Let Hn[0, 1] be the Sobolev space of order n, then

K(x, y) =
∫ 1

0

(x− z)n−1
+ (y − z)n−1

+

(n− 1)!(n− 1)! dz

proof (for n=1)
In this case the kernel becomes K(x, y) =

∫ 1
0 I[0,x](z)I[0,y](z)dz. Now say x < y, then

K(x, y) =
∫ 1
0 I[0,x](z)I[0,y](z)dz =

∫ x
0 dz = x, so in general K(x, y) = min{x, y}. With this

kernel one can now verify all the properties of a RKHS.

7.7.2 Function Interpolation

Say we observe n samples of some unknown function yi = f ∗(xi) with known design matrix
x1, .., xn. There are two questions of interest:

• is there a function f from some specified set that fits the points exactly, that is we have
yi = f(xi) for all i.?

• if there are many such functions, is the a best one?
The first question can be answered affirmatively by writing down such a function, but the
second one is a bit vague: what does best mean? If the set is a RKHS we can use the norm
to “order” them and we can write the following optimization problem:
choose f̂ ∈ argmin {||f ||H} such that yi = f(xi).
An optimization problem of this type is called a convex program.

7.7.2.1 Example
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Clearly in the example above the blue curve is “better”.

So, how can one solve such an optimization problem? Here is one answer:

7.7.2.2 Theorem LetKKK be the kernel matrix defined by the design points {xi}. The convex
program above is feasible if and only if y ∈ range(KKK), in which case the optimal solution can
be written as

f̂(·) = 1√
n

n∑
i=1

α̂iK(·, xi)

where KKKα̂ = y/
√
n

proof omitted

7.7.3 Fitting via Ridge Regression

In statistics we usually have observations that also include some random noise, so our model
is

yi = f ∗(xi) + εi

In this case we no longer want a function that connects all the points but a function that
smooths out the random noise. This means we now want to minimize some trade-off between
the fit to the data and the Hilbert space norm.For example we might want to minimize the
mean-squared difference between the observed data and the fitted values, which leads to the
optimiziation problem
min {||f ||H : f ∈ H} such that 1

2n
∑n
i=1(yi − f(xi))2 < δ2

where δ > 0 is some type of tolerance parameter. It is possible to reformulate such a problem
to

f̂ = arg min
{

1
2n

n∑
i=1

(yi − f(xi))2 + λn||f ||H
}

Notice that we are now back to least squares!
This method is known as kernel ridge regression.

7.7.3.1 Theorem For all λn > 0 the kernel ridge regression estimate can be written as

f̂(·) = 1√
n

n∑
i=1

α̂iK(·, xi)

where
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α̂̂α̂α = (KKK + λnIII)−1yyy/
√
n

proof omitted

7.7.3.2 Example Let’s use the first order Sobolev space and ridge regression to fit to the
Lobster data.
K=function(x, y) {

if(length(x)==1 & length(y)==1) return(1+min(x, y))
apply(cbind(x, y), 1, min)

}
x=lobster$Time
y=lobster$Length
K1=outer(x, x, K)/length(x)
fhat=function(t, l) {

n=nrow(K1)
alphahat=c(solve(K1+l*diag(n))%*%cbind(y))/sqrt(n)
s=t
for(i in seq_along(t)) s[i]=sum(alphahat*K(t[i], x))
s/sqrt(n)

}
t=seq(x[1], max(x), length=100)
df=data.frame(x=c(t, t, t),

y=c(fhat(t, 0.1), fhat(t, 1), fhat(t, 2)),
lambda=rep(c("0.1", 1, 10),each=100))

ggplot(data=lobster, aes(Time, Length)) +
geom_point() +
geom_line(aes(x, y,color=lambda), data=df)
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