Let \(X_1,...,X_{10}\sim N(10, 3)\), all independent. Find
Say \((X,Y)\) has a bivariate normal distribution with \(\mu_x=1,\mu_y=2,\sigma_x^2=5,\sigma_y^2=7\) and \(\rho=-0.3\). Find \(E[XY]\).
Let \((X,Y,Z)\) have a multivariate normal distribution with mean vector \(\pmb{\mu} = \begin{pmatrix} 1&0&1 \\ \end{pmatrix}^T\) and variance-covariance matrix
\[ \pmb{\Sigma} = \begin{pmatrix} 5 & 2& 0\\ 2 & 7 & 2 \\ 0 & 2 & 10\\ \end{pmatrix} \] Find