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1 Probability

1.1 Fundamentals

The probability of rain tomorrow is 30% (or 0.3)
What does that mean?
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It will likely come at a surprise that the answer to that question is not a simple one. In
fact, experts (mathematicians, statisticians, philosophers etc) have been thinking about this
question for centuries, and yet there is no single universally accepted answer to it, even today.
In this course we will eventually do the “math thing” and start with a set of axioms, from
which one can derive the whole theory of probability.
But rather than simply state those axioms I want to show you that they are at least
“reasonable”.
The following is in large part taken from the book
Principles of Uncertainty by Joseph B. Kadane

1.1.1 The Idea of the Sure Loser

Let’s go back to the question of rain tomorrow, and let’s also add the question: Is the
temperature tomorrow going to be over 90 degrees Fahrenheit? If we take the two together
we get the four possibilities:
A1 : Rain and High above 90 degrees F tomorrow
A2 : Rain and High at or below 90 degrees F tomorrow
A3 : No Rain and High above 90 degrees F tomorrow
A4 : No Rain and High at or below 90 degrees F tomorrow
Tomorrow, one and only one of these events will occur. In mathematical language, the
events are exhaustive (at least one must occur) and disjoint (no more than one can occur).
(Sometimes we also say they form a partition).
Let’s assume there are four tickets, one for each of the four possibilities. You can offer to
either buy one of these tickets from me or sell me one. Let’s say you decide to sell me ticket
A1 , for which I will pay you $p. Then if it rains tomorrow and the high is above ninety you
will pay me $1, otherwise you owe me nothing.
Now an important idea is that in a deal that is fair for both sides it doesn’t matter who is
the seller and who is the buyer. The price p reflects what you think the ticket is worth either
way. It is (in your opinion, which might be different from mine) a fair price for this ticket. In
fact I will decide whether to buy or sell a ticket after you named the price.
This is like the old idea of how to devide a piece of cake between two people: one divides it
into two pieces, the other gets to choose. Clearly it is in the first persons best interest to
divide the piece as evenly as possible.
The intuition behind this is that if you are willing to buy or sell a ticket on A1 for $0.70, you
consider A1 more likely than if you were willing to buy or sell it for only $0.10. The price p
is in your opinion the likelihood of A1 happening.
Let us suppose that in general your price for a $1 ticket on A1 is Pr(A1 ) (pronounced “price
of A1”), and in particular you name 30 cents. This means that I can sell you such a ticket
for $0.30 (or buy such a ticket from you for $0.30). If I sell the ticket to you and it rains
tomorrow and the temperature is above 90 degrees Fahrenheit, I would have to pay you $1.
If it does not rain or if the temperature does not rise to be above 90 degrees Fahrenheit, I

2



would not pay you anything. Thus in the first case, you come out $0.70 ahead, while in the
second case I am ahead by $0.30.
Similarly you name prices Pr(A2 ), Pr(A3 ) and Pr(A4).
Now of course you would like to win money in this game, but there is no way to make sure
of that. On the other hand it would clearly be stupid for you to name prices that would
assure the I win (and you loose). What can we say about prices that would make you a sure
looser?
To take the simplest requirement first, suppose you make the mistake of offering a negative
price for an event, for example
Pr(A1 ) = - $0.05
This would mean that you offer to sell me ticket A1 for the price of -$0.05, (i.e., you will give
me the ticket and 5 cents). If event A1 happens, that is, if it rains and the high temperature
is more than 90 degrees Fahrenheit, you owe me $1, so your total loss is $1.05. On the other
hand, if event A1 does not happen, you still lose $0.05. Hence in this case, no matter what
happens, you are a sure loser. To avoid this kind of error, your prices cannot be negative,
that is, for every event A, you must specify prices satisfying
Pr(A)≥ 0 (Rule 1)
Now consider the sure event S. In the example we are discussing, S is the same as the event of
either A1 or A2 or A3 or A4 , which is a formal mathematical way of saying either it will rain
tomorrow or it will not, and either the high temperature will be above 90 degrees Fahrenheit
or not.
What price should you give to the sure event S? If you give a price below $1, say $0.75, I can
buy that ticket from you for $0.75. Since the sure event is sure to happen, tomorrow you will
owe me $1, and you will have lost $0.25, whatever the weather will be. So you are sure to
lose if you name any price below $1. Similarly, if you offer a price above $1 for the sure event
S, say $1.25, I can sell you the ticket for $1.25. Tomorrow, I will certainly owe you $1, but I
come out ahead by $0.25 whatever happens. So you can see that the only way to avoid being
a sure loser is to have a price of exactly $1 for S. This isthe second requirement to avoid a
sure loss, namely,
Pr(S) = 1 (Rule 2)
Next, let’s consider the relationship of the price you would give to each of two disjoint sets A
and B to the price you would give to the event that at least one of them happens, which is
called the union of the events A and B, and is written A ∪B.
To be specific, let A be the event A1 above, and B be the event A2 above. These events are
disjoint, that is, they cannot both occur, because it is impossible that the high temperature
for the day is both above and below 90 degrees Fahrenheit. The union of A and B in this
case is the event that it rains tomorrow.
Suppose, that your prices are $0.20 for A1 , $0.25 for A2 and $0.40 for the union of A1 and
A2 . Then I can sell you a ticket on A1 for $0.20, and a ticket on A2 for $0.25, and buy from
you a ticket on the union for $0.40.
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Let’s see what happens. Suppose first that it does not rain. Then none of the tickets have
to be settled by payment. But you gave me $0.20 + $0.25 = $0.45 for the two tickets you
bought, and I gave you $0.40 forthe ticket I bought, so I come out $0.05 ahead.
Now suppose that it does rain. Then one of A1 and A2 occurs (but only one. Remember
that they are disjoint). So I have to pay you $1. But the union also occurred, so you have to
pay me $1 as well. In addition I still have the $0.05 that I gained from the sale and purchase
of the tickets to begin with. So in every case, I come out ahead by $0.05, and you are a sure
loser.
The problem seems to be that you named too low a price for the ticket on the union. Indeed,
any price less than $0.45 leads to sure loss, with the same argument as above.
How about charging more than $0.45, say $0.60? Now if I do the exact opposite, namely sell
you the union and buy from you A1 and A2 it easy to see that you are a sure looser again.
The only way for you not be a sure looser is if you choose the prices such that
Pr(A ∪B) = Pr(A)+Pr(B) (Rule 3)
Now we have seen three requirements for any prices so you are not a sure looser. In a bit we
will show that in fact these are all the requirements!
Prices satisfying these equations are said to be coherent. The derivations of equations are
constructive, in the sense that I reveal exactly which of your offers I accept to make you
a sure loser. Also note that because it is always you who is naming the prices my beliefs
(prices) are irrelevant to making you a sure loser.
The equations are of course the equations that define Pr() to be a probability (with the
possible strengthening of Rule 3 to be taken up later). To emphasize that, we will now assume
that you have decided not to be a sure loser, and hence to have your prices satisfy equations
1-3. I will write P() instead of Pr(), and think of P(A) as your probability of event A.
Although the approach here is called subjective, there are both subjective and objective
aspects of it. It is an objective fact, that is a mathematical theorem, that you cannot be
made a sure loser if and only if your prices satisfy equations 1-3. However, the prices that you
assign to tickets on any given set of events are personal, or subjective, in that the theorems
do not specify those values. Different people can have different probabilities without violating
coherence.
To see why this is natural, consider the following example: Imagine I have a coin that we
both regard as fair, that is, it has probability 1/2 of coming up heads. I flip it, but I don’t
look at it, nor do I show it to you. Reasonably, our probabilities are still 1/2 for heads.
Now I look at it, and observe heads, but I don’t show it to you. My probability is now 1.
Perhaps yours is still 1/2. But perhaps you saw that I raised my left eyebrow when I looked
at the coin, and you think I would be more likely to do so if the coin came up heads than
tails, and so your probability is now 60%. Finally I show you the coin, and your probability
now rises to 1.
The point of this thought-experiment is that probability is a function not only of the coin,
but also of the information available to the person whose probability it is. Thus subjectivity
occurs, even in the single flip of a fair coin, because each person can have different information
and beliefs.
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There are a number of subtleties here which we will not discuss in detail. As one example,
let’s say you named a price p for A this morning. Now in the the afternoon you change your
mind, not because there is any new information but just because you feel like it. Now if
your new price is higher, and I bought the ticket for A from you this morning, I can now
sell it back to you for the new higher price, and you are a sure looser again! One might call
this a dynamic sure loss. It is important to remember that coherence is a minimal set of
requirements on probabilistic opinions. The most extraordinary nonsense can be expressed
coherently, such as that the moon is made of green cheese. Moreover, there is a substantial
body of psychological research dedicated to finding systematic ways in which the prices that
people actually offer for tickets or the equivalent fail to be coherent.
There is a special issue about whether personal probabilities can be zero or one. The
implication is that you would bet your entire fortune present and future against a penny on
the outcome, which is surely extreme. In the example above, I propose that when I see that
the coin came up heads, my probability is one that it is heads. But could I have seen wrong?
For the sake of the argument I am willing to set that possibility aside, but I must concede
that sometimes I do get things wrong, so I can’t really mean probability one.
Is there an event you would be willing to bet your live on?
The approach to probability described here is sometimes referred to as behavioristic. It is
not the only one. Two other common approaches are

• Frequentist
Here a probability is the long run frequency of an event happening. Take our event A1 : Rain
and High above 90 degrees F tomorrow. We could go to some website (or meteorological
office) and find out in how many of the last 10000 days it rained and the high was over 90,
and then use the ratio as our probability.
There are two main problems with this approach. One is that we only know the “true”
probability after observing infinitely many experiments, clearly impossible. The other one is
what to do with an event like: The universe will explode in less than 1010 days. There is only
one universe, so how can we run this experiment more than once?

• Axiomatic
Here a probability is simply defined as any assignment of numbers to events that satisfy
Rules 1-3, without any regard to their meaning. Of course, probability theory is supposed to
help us with real live events, so this is also not very satisfying.
These are not all the apporaches either, there are many others, all of them with some strenghts
and some weaknesses.

1.1.2 Sufficiency of Rules 1-3

Let us now show that if your prices satisfy equations 1-3, you can not be made a sure loser.
To do so we will have to use some concepts and results of probability theory which we will
get to later in the course but which you likely have heard of before!
Suppose first that you announce price p for a ticket on event A. If you buy such a ticket it
will cost you p, but you will gain $1 if A occurs, and nothing otherwise. Thus your gain from
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the transaction is exactly IA − p, where IA is the indicator function of A, that is IA = 1 if A
happened and 0 if not. If you sell such a ticket, your gain is p− IA. Both of these can be
represented by saying that your gain is α(IA− p) where α is the number oftickets you buy. If
α is negative, you sell α tickets.
With many such offers your total gain (or loss) is

where your price on event Ai is pi. The numbers αi may be positive or negative, but are not
in your control. But whatever choices of α’s I make, positive or negative, W is the random
variable that represents your gain, and it takes a finite number of values. Let’s compute the
expectation of W:

Now if you could be made a sure loser we would have P (W < 0) = 1 (there is no chance of
you winning), but then E[W ] < 0 as well, and we have a contradiction.

1.2 Basic Theorems

1.2.1 Basic Definitions

An experiment is a well-defined procedure that produces a set of outcomes. For example,
“roll a die”, “randomly select a card from a standard 52-card deck”, “flip a coin” and “pick
any moment in time between 10am and 12 am” are experiments.
A sample space is the set of outcomes from an experiment. Thus, for “flip a coin” the
sample space is {H, T}, for “roll a die” the sample space is {1, 2, 3, 4, 5, 6} and for “pick
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any moment in time between 10am and 12 am” the sample space is [10, 12].
An event is a subset, say A, of a sample space S. For the experiment “roll a die”, an event is
“obtain a number less than 3”. Here, the event is {1, 2}.

1.2.2 Kolmogorov’s Axioms of Probability

For any probability P we have

if A1, A2, .. are mutually exclusive.
Note one difference between the axioms here and our discussion on coherence before. There
we showed that in order to avoid being a sure looser we have to have
P (A ∪B) = P (A) + P (B)
if A and B are disjoint. The extension to a finite collection of disjoint sets is straightforward
(via induction) but in the axioms we also allow an infinite collection. This is called countable
additivity, and is an extension to the requirements of coherence as discussed before. It can
be shown that without this extension there is another type of dynamic sure loss.

1.2.2.1 Example

say we have a sample space S = {e1, ..., en} and an event A = {ek1 , ..., ekm}. Let’s assume
that all the events are equally likely. Then:
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and so in this (very special) case finding a probability becomes a counting problem. We will
discuss some formulas for this soon.

1.2.3 Set Theory

Recall the following formulas for sets:
Commutativity:
A ∪B = B ∪ A and A ∩B = B ∩ A
Associativity
A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∩ (B ∩ C) = (A ∩B) ∩ C
Distributive Law
A ∪ (B ∩ C) = (A ∪B)) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
DeMorgan’s Law
(A ∪B)c = Ac ∩Bc

(A ∩B)c = Ac ∪Bc

1.2.4 Basic Theorems and Inequalities

Theorem (Addition Formula)
Let A and B be two sets, then
P (A ∪B) = P (A) + P (B)− P (A ∩B)
Proof: first note that
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A ∪B = (A ∩Bc) ∪ (A ∩B) ∪ (Ac ∩B)
and that all of these are disjoint. Therefore by the third axiom we have
P (A ∪B) = P (A ∩Bc) + P (A ∩B) + P (Ac ∩B)
but

P (A ∩Bc) + P (A ∩B) + P (Ac ∩B) =
{P (A ∩Bc) + P (A ∩B)}+ P (Ac ∩B) + P (A ∩B)− P (A ∩B) =
P ((A ∩Bc) ∪ (A ∩B)) + P ((Ac ∩B) ∪ (A ∩B))− P (A ∩B) =
P (A ∩ (Bc ∪B)) + P ((Ac ∪ A) ∩B))− P (A ∩B) =
P (A ∩ S) + P (S ∩B)− P (A ∩B) =
P (A) + P (B)− P (A ∩B)

Theorem (Bonferroni’s Inequality)
Let A and B be two sets, then
P (A ∩B) ≥ P (A) + P (B)− 1
proof follows directly from the addition formula and P (A ∪B) ≤ 1.
Theorem (Complement)
Let A be any set, then
P (A) = 1− P (Ac)
Proof: S = A ∪ Ac, so
1 = P (S) = P (A ∪ Ac) = P (A) + P (Ac)
Theorem (Subset)
Let A and B be two sets such that
A ∈ B then P (A) ≤ P (B)
proof:

B = B ∩ S = B ∩ (A ∪ Ac) =
(B ∩ A) ∪ (B ∩ Ac) =
A ∪ (B ∩ Ac)
so
P (B) = P (A ∪ (B ∩ Ac) =
P (A) + P (B ∩ Ac) ≥ P (B)

Theorem (Boole’s Inequality)
Let A1, .., An be a (finite) collection of sets, then
P (∪ni=1Ai) ≤

∑n
i=1 P (Ai)

proof follows by induction from the above
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1.2.5 Borel-Cantelli lemmas

Definition
Let {An, n ≥ 1} be a sequence of events. Then
a. the sequence is called increasing if An ∈ An+1

If {An, n ≥ 1} is an increasing sequence of events we define the new event limAn by
limAn = ∪∞n=1An

b) the sequence is called decreasing if An+1 ∈ An
If {An, n ≥ 1} is a decreasing sequence of events we define the event limAn by
limAn = ∩∞n=1An

Theorem
If {An, n ≥ 1} is either an increasing or a decreasing sequence of events then
limP (An) = P (limAn)
proof : Suppose first that {An, n ≥ 1} is an increasing sequence. Define the events Fn by
F1 = A1

Fn+1 = An+1 ∩ (∪ni=1Ai)c = An+1 ∩ Acn
That is, Fn consists of those points that were not in any earlier Ai, i = 1, .., n− 1
By their definition the Fn are mutually exclusive, so
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The proof for a decreasing sequence {An, n ≥ }$ follows directly from the fact that then
{Acn, n ≥ 1} is an increasing sequence.

1.2.5.1 Example

Consider a population consisting of individuals able to produce offspring of the same kind.
The number of individuals initially present, denoted by X0, is called the size of the zero’th
generation. All offspring of the zero’th generation constitute the first generation and their
number is denoted by X1. In general, let Xn denote the size of the nth generation.
Let An = {Xn = 0}. Now since Xn = 0 implies Xn+1 = 0, it follows that {Ak, k ≥ n} is an
increasing sequence and thus limP (An) exists. What is the meaning of this probability? We
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have
limP (Xn = 0) = limP (An) =
P (limAn) =
P (∪An) =
P (∪{Xn = 0}) =
P (the population eventually dies out)

Definition
Let {An} be an infinite sequence of events. Then
{An i.o.} (“An infinitely often”)
is the event that for any m there exists an n>m such that P (An) > 0.
Note: {An i.o.} = ∩m ∪n≥m An
Theorem (Borel-Cantelli lemma)
Let A1, A2, .. be sequence of events. If ∑P (Ai) <∞ then
P ({An i.o.}) = 0.
proof Let’s call the event that an infinite number of the Ai’s occur lim supAi. Then

lim supAi = ∩∞n=1 ∪∞i=n Ai

This is because if an infinite number of Ai’s occur, then for any n there exists an m >n such
that Am occurs, therefore
∪∞i=nAi occurs, and then the intersection occurs as well.
Now ∪∞i=nAi;n ≥ 1} is a decreasing sequence and so it follows that
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1.2.5.2 Example

Let X1, X2, .. be such that P (Xn = 0) = 1/n2 = 1− P (Xn = 1)
Let An = {Xn = 0}, then∑
P (An) = ∑ 1/n2 <∞.

so it follows that the probability that Xn equals 0 for an infinite number of n is also 0. Hence,
for an n sufficiently large Xn must equal 1.

1.2.6 Independence

Definition
a. Two events A and B are said to be independent if

P (A ∩B) = P (A)P (B)
b. A set of events {An, n ≥ 1} is said to be pairwise independent if for any i and j Ai

and Aj are independent.
c. A set of events {An, n ≥ 1} is said to be independent if for any set of indices {i_1

,..,i_n ) we have

P (∩ni=1Ai) =
n∏
i=1

P (Ai)

Theorem
Pairwise independence does not imply independence.
proof Consider the sample space S = {1, 2, 3, 4} where all outcomes are equally likely. Define
the events
A = {1, 2}, B = {1, 3} and C = {1, 4}
then we have
P(A) = P(B) = P(C) = 1/2
and
P (A ∩B) = P (B ∩ C) = P (A ∩ C) = 1/4
so we have pairwise independence, but
1/8 = P (A)P (B)P (C) 6= P (A ∩B ∩ C) = 1/4
Theorem (Second Borel-Cantelli lemma)
If A1, A2, .. are independent events such that∑
P (Ai) =∞ then

P ({Ani.o.}) = 1

13



proof : If an infinite number of the Ai’s occur, then by the same reasoning as in the first
Borel-Cantelli lemma we have lim supAn occur, so we need to show that
P (lim supAn) = 1
or equally
1− P (lim supAn) = 0
Now
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1.2.6.1 Example

consider the following game we start with an urn with one white ball and one black ball. Let
A1 ={“white ball drawn”}
next we add a black ball and let A2 again be the event {“white ball drawn”}. We continue
on like that.
Now P (An) = 1/(n+ 1). Clearly the Ai’s are independent and∑
P (Ai) = ∑ 1/(n+ 1) =∞

and therefore
P ({Ani.o.}) = 1
So no matter how many balls are already in the urn, at some point in the future we will
again pick a white one.
Say in each round we add k black balls, then the same∑
P (Ai) = 1/(1 + 1) + 1/(2 + k) + 1/(2 + 2k) + .. = ∑ 1/(2 + nk) =∞

for any k>0, so the same conclusion holds!

If we take the two Borel Cantelli lemmas together we have the following: Let {An} be a
sequence of independent events, then
P ({Ani.o.}) = 0 or 1
This is an example of a so called 0-1 law, of which there are quite a few in Probability Theory.
Here is one of the famous ones:
Definition
Let {An} be an infinite sequence of events. An event B is called a tail event if knowing
whether or not An occurred for each n determines B, but B is independent of any finite
collection of An’s.

1.2.6.2 Example

$P({A_n i.o.}) is a tail event.
Theorem (Kolmogorov’s 0-1 law)
Let B be a tail event of the sequence {An}. Then P(B) is either 0 or 1.

1.3 Conditional Probability and Independence

1.3.0.1 Example

A bag contains slips of paper. Each paper has a number and a letter written on them. They
are: A5, A7, B1, B2, C2, C4, D2, D4, E1, E3. A slip is chosen at random, what is the
probability it has a 2 on it?
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Easy: 3/10
Now say somebody picks a slip and tells you it has the letter B on it. Now what is the
probability it also has a 2 on it?
Again easy: 1/2
This is an example of a conditional probability. we write
P(#2 | Letter B)
(" probability of #2 given letter B)
Above we found the conditional probability by changing the sample space. First it was
S={A5, A7, B1, B2, C2, C4, D2, D4, E1, E3} but once we knew the slip of paper had the
letter B it changed to S={B1, B2}.
In general this changing of the sample space is too difficult, but we can find conditional
probabilities using the formula

P (A|B) = P (A ∩B)
P (B)

Note: this only works if P(B)>0.
Note: this formula can also be derived using the idea of coherence and the concept of the
sure looser discussed earlier.

1.3.0.2 Example (cont.)

P(#2 | Letter B) =P(#2 ∩ Letter B) /P(Letter B) = (1/10) / (2/10) = 1/2.
It is important to notice that conditional probabilities are just like regular ones, for example
they obey the axioms of Kolmogorov:
Axiom 1: P (A|B) = P (A∩B)/P (B), but P (A∩B) and P(B) are both regular probabilities,
so P (A ∩B) ≥ 0, P (B) > 0, so P (A|B) = P (A ∩B)/P (B) ≥ 0.
Also A ∩B ∈ B, so P (A|B) = P (A ∩B)/P (B) ≤ P (B)/P (B) = 1.
Axiom 2: P (S|B) = P (S ∩B)/P (B) = P (B)/P (B) = 1.
Axiom 3: say A1, .., An are mutually exclusive, then
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1.3.1 Multiplication Rule

A simple manipulation of the equation above yields

P (A ∩B) = P (A|B)P (B)

1.3.1.1 Example

You draw two cards from a standard 52-card deck. What is the probability to draw 2 Aces?
Solution:
Let A = “First card drawn is an ace” Let B = “Second card drawn is an ace”
Then

It’s easy to extend this to more than two events: What is the probability of drawing 4 aces
when drawing 4 cards?
Let Ai = “ith card drawn is an ace”
Then

even a little more complicated: In most Poker games you get in the first round 5 cards (Later
you can exchange some you don’t like but we leave that out). What is the probability that
you get 4 aces?
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1.3.2 Law of Total Probability and Bayes Rule

Definition
A set of events {Ai} is called a partition of the sample space S if

Ai ∩ Aj) = ∅ for all i 6= j

∪ni=1 Ai = S

1.3.2.1 Example

a student is selected at random from all the undergraduate students at the Colegio
A1 = “Student is female”, A2 = “Student is male”
or maybe
A1 = “Student is freshman”, .., A4 = “Student is senior”
Theorem (Law of Total Probability)
Let the set of events {A_i } be a partition, and let B be any event, then

P (B) =
n∑
i=1

P (B|Ai)P (Ai)

Proof

P (B) = P (B ∩ S) =
P (B ∩ (∪∞i = 1Ai) =
P (∪∞i=1(B ∩ Ai) =
∞∑
i=1

P (B ∩ Ai) =

∞∑
i=1

P (B|Ai)P (Ai)
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1.3.2.2 Example

A company has 452 employees, 210 men and 242 women. 15% of the men and 10% of the
women have a managerial position. What is the probability that a randomly selected person
in this company has a managerial position?
Let A1 = “person is female”, A2 = “person is male”.
Let B = “person has a managerial position”
Then

P (A1) = 242
452

P (A2) = 210
452

P (B) = P (B|A1)P (A1) + P (B|A2)P (A2) =

0.1242
452 + 0.15210

452 = 0.123

1.3.2.3 Example

Say you roll a fair die. If you roll an even number you roll the die again, otherwise you keep
the result of the first roll. What are the probabilities of rolling a 1, or a 2 or..,..,6?

and the same for 3-6
Theorem (Bayes’ Formula)
Let the set of events {Ai} be a partition, and let B be any event, then

P (Ak|B) = P (B|Ak)P (Ak)∑n
i=1 P (B|Ai)P (Ai)

Notice that the denominator is just the law of total probability, so we could have written the
formula also in this way
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P (Ak|B) = P (B|Ak)P (Ak)
P (B

only usually the first form is the one that is needed because of the available information.
proof:

P (Ak|B) =
P (Ak ∩B)/P (B) =
P (B ∩ Ak)/P (B) =
P (B|Ak)P (Ak)/P (B)

1.3.2.4 Example

In the company above a person is randomly selected, and that person is in a managerial
position. What is the probability the person is female?

P (A1|B) = P (B|A1)P (A1)
P (B =

0.1× 242/452
0.123 = 0.434

Bayes formula sometimes results in strange answers:

1.3.2.5 Example

As part of the attempt to avoid further terrorist attacks on the US some people have proposed
face-recognition technics for airports. Basically each person entering the security checkpoint
of the airport is photographed and the digital picture is then compared to a list of pictures of
known terrorist suspects. Such systems are never 100% correct, they do make an occasional
mistake. Say that the system classifies an actual terrorist as ok 50% of the time (many
terrorists won’t be in the database because they have never been investigated). This is called
a false-negative. Also say that the system wrongly classifies an ok person as a terrorist 0.1%
of the time (false-positive). Say at some large airport there are 10 million passengers per
year, 20 of whom are actually terrorists. What is the probability that a person classified as a
terrorist by the face-recognition system actually is not a terrorist?
Let’s use the following notation:
Let A1 = “person is not a terrorist”, A2 = “person is a terrorist”
B = “person is classified as a terrorist”
Now
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So only 1 in 1000 people “accused” by the system actually is a terrorist!
Note: in this calculation you need to carry along a lot of digits until the final answer.
Bayes’ Rule plays a very important role in Statistics and in Science in general. It provides a
natural method for updating your knowledge based on data.

1.3.3 Independence

Sometimes knowing that one event occurred does not effect the probability of another event.
For example if you through a red and a blue die, knowing that the red die shows a “6” will
not change the probability that the blue die shows a “2”.
Formally we have

P (A|B) = P (A)

or using the multiplication rule we get the previous formula for two independent events

P (A ∩B) = P (A|B)P (B) = P (A)P (B)

1.3.3.1 Example

Say you flip a fair coin 5 times. What is the probability of 5 “heads”?
Let Ai = “ith flip is heads”
Now it is reasonable to assume that the Ai’s are independent and so
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1.4 Combinatorics

We have previously seen that if we have a finite sample space S and all the outcomes are
equally likely, then P(A)=n(A)/n(S), so finding probabilities means counting the number
of outcomes in A and in S. The mathematical theory that deals with counting is called
combinatorics. Here we will consider some special cases and their formulas.

1.4.1 Fundamental Theorem of Counting

Theorem (Fundamental Theorem of Counting)**
If a job consists of k separate tasks, the ith of which can be carried out in ni ways, the entire
job can be done in n1 × n2 × ..× nk ways
proof
say k=2, say task 1 has outcomes a1 ,..,an and task 2 has outcomes b1 ,..,bm , then clearly
there are n×m combinations. The general case follows from mathematical induction.

1.4.1.1 Example

You possess 5 pairs of shoes, 10 pairs of socks, 4 pairs of trousers and 9 shirts. How many
combinations of outfits are there?
5× 10× 4× 9

1.4.2 Basic Counting Formulas

Many of the problems in combinatorics are variations of the following: say we have a box
with n balls, numbered 1 to n, and we select k of them. In how many ways can this be done?
In order to answer this question we need to be more specific on how the draws are done:
Case 1: with order and with repetition
Balls are drawn as follows: pick one ball, write down the number, replace the ball in the box,
draw a second ball etc. In this case we have the order in which the balls are drawn, and we
have repetition , that is the same ball can be chosen more than once.
Say n=10 and k=3, then some possible outcomes are: (7,2,3), (7,6,7), (6,7,7)
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According to the Fundamental Theorem of counting this each task (drawing a ball) can be
done in n ways, and there are k tasks, so the total number of ways is
n× n× n× ...× n = nk

Case 2: with order but without repetition
Balls are drawn as follows: pick one ball, write down the number, put the ball aside, not
back in the box, draw a second ball etc. In this case we have the order in which the balls are
drawn but each ball can be drawn only once, so there is no repetition
Say n=10 and k=3, then some possible outcomes are: (7,2,3), (7,6,4) but not (6,7,7)
According to the Fundamental Theorem of counting the first task (drawing the first ball) can
be done in n ways, the second task can be done in n-1 ways and so on until the kˆth task
which can be done in n-k+1 ways, so the total number of ways is
n× (n− 1)× (n− 2)× ...× (n− k + 1)
This is often call the number of permutations of n objects, k at a time, and we use the
notation P n

k .
An important special case is k=n, which is just called the permutations of n objects.
Definition
n!=n(n-1)(n-2)..1 is called “n factorial”
Note by definition 0!=1
with this definition we have P n

k = n!/(n− k)!.
Case 3: without order and without repetition
Balls are drawn as follows: pick all the balls simultaneously. In this case we have no order
and no repetition
Say n=10 and k=3, then some possible outcomes are: (7,2,3), (7,6,4) but (6,4,7) is the same
as (7,6,4)
This is called the number of combinations of n objects, k at a a time, and is denoted by Cn

k .
To do this think in terms of a two tasks: first select without order and without repetition
(which can be done in Cn

k ways) and then order the k selected objects (in k! ways) The result
is a selection with order but without repetition, but this is P n

k !. So we find:
P n
k = Cn

k × k!, or Cn
k = n!/(n− k)!/k!

Definition (of binomial coefficients)

Cn
k = n!

(n− k)!k! =
(
n

k

)

We say “n choose k”
Case 4: without order but repetition
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as is case 1, but the order is now irrelevant. This is somewhat more complicated, but the
answer is

(
n+ k − 1

k

)

1.4.2.1 Example

How many different license plates can there be in PR? A license plate has three letters and
three numbers, order is important and there is repetition, there are
26× 26× 26× 10× 10× 10 = 17, 576, 000
possible plates

1.4.2.2 Example: Poker

Poker is played in a large number of different ways. Here we will keep it simple: we have
a deck of 52 cards. Each card has a suit (Hearts, Diamonds, Clubs and Spades) and a
denomination (2-10, Jack, Queen, King and Ace). A “hand” is any selection of 5 cards. The
order is not important, and each combination of suit-denomination appears only once, so
selection is done without order and without repetition.
How many 5-card hands are there?
C525 = 52!/47!/5! = 2598960
What is the probability of a “four of a kind”, that is four cards of the same denomination?
First choose the denomination (13 ways), net select all those cards (1 way), finally choose a
card from the rest of the deck (48 ways) so

P (four of a kind) = 13× 1× 48/2598960 = 0.00024
.
What is the probability of a “full house”, that is three cards of one denomination and two
cards of a second denomination?
First choose the denomination for the three cards (13 ways) next pick the three cards (Cˆ4_3
=4 ways) then pick the denominations for the two cards (12 ways) and finally pick those two
cards (Cˆ4_2 =6 ways), so

P (full house) = 13× 4× 12× 6/2598960 = 0.00144

Notice that the probability of a “four of a kind” is smaller than the one for “full house”, and
there fore a “four of a kind” beats a “full house”
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1.4.3 Pidgeon Hole Principle

The Pidgeon Hole Principle states that if there are n pidgeons, m pidgeon holes and n>m,
there must be at least one hole with more than one pidgeon.
This completely obvious principle has many, often surprising, consequences. One of the most
famous is this one:
There must be at least two people in Puerto Rico with the exact same number of hairs on
their heads!
We can demonstrate thisas follows. Since a typical human head has an average of around
150,000 hairs, it is reasonable to assume (as an upper bound) that no one has more than
1,000,000 hairs on their head (m = 1 million holes). There are more than 1,000,000 people in
San Juan (n is bigger than 1 million items). Assigning a pigeon hole to each number of hairs
on a person’s head, and assigning people to pigeon holes according to the number of hairs
on their head, there must be at least two people assigned to the same pigeon hole by the
1,000,001st assignment.
Perhaps the first written reference to the pigeon hole principle appears in 1622 in a short
sentence of the Latin work Selectae Propositiones, by the French Jesuit Jean Leurechon,
where he wrote “It is necessary that two men have the same number of hairs, or other things,
as each other”.

Combinatorics is a huge area of mathematics, with applications in almost all fields of science.

1.5 Random Variables and Distribution Functions

Definition
A random variable (r.v.) X is set-valued function from the sample space into R. For any set
of real numbers A ∈ R we define the probability

P (X ∈ A) = P (X−1(A))

where X−1(A) is the set of all points in S such that X maps the points into A.

1.5.0.1 Example

Say we flip a fair coin three times. Let X be the number of “heads” in these three flips.
Now S=({H,H,H}, (H,H,T), .., (T,T,T)}.
X maps S into R, for example X({(H,H,H)})=3 and X({(H,H,T)})=2.
What is P(X=2)?
P(X=2) =
P(X-1(2)) =
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P( all the outcomes in S that are mapped onto 2 ) =
P({(H,H,T), (H,T,H), (T,H,H)} = 3/8

There are two basic types of r.v.’s:
• If X takes countably many values, X is called a discrete r.v.
• If X takes uncountably many values, X is called a continuous r.v.

1.5.0.2 Example

Consider the following experiment: we randomly select a point in the interval [A,B] for some
A<B. We allow all points in [A,B], so X takes uncountably many values, and therefore is a
continuous random variable. By “randomly” we mean that the probability for a chosen point
to be in some interval depends only on the length of the interval. Let X be the point chosen.
Clearly
1 = P(A<X<B)
Let A<a<b<B. Now the interval (a,b) has length b-a, the interval (A,B) has length B-A,
and we have
a-b = [(b-a)/(B-A)]*(B-A) = c(B-A)
where c=[(b-a)/(B-A)]
therefore
P(a<X<b) = cP(A<X<B) = c*1 = (b-a)/(B-A)
This is a standard random variable. We often use the following notation:
X ∼ U [A,B]

There are some technical difficulties when defining a r.v. on a sample space like R, it turns
out to be impossible to define it for every subset of R without getting logical contradictions.
The solution is to define a σ-algebra on the sample space and then define X only on that
σ-algebra.
The most commonly used σ-algebra is the Borel σ-algebra, which is the union and intersection
of all intervals of the type (a, b), (a, b], [a, b) where a and b can be ±∞. All of this belongs
to the brach of mathematics called measure theory. In what follows we will ignore these
technical difficulties.

1.5.0.3 Example

In the example of the uniform random variable above we defined probabilities only for intervals.
It turns out that this is all that is needed. In fact the set of all unions and intersections of
intervals forms a σ-algebra on the real line. There are however also sets on the real line that
can not be expressed as the union and intersection of intervals. For those probabilities are
then not defined.
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Almost everything to do with r.v.’s has to be done twice, once for discrete and once for
continuous r.v.’s. This separation is only artificial, it goes away once a more general definition
of “integral” is used (Riemann-Stilties or Lebesgue).

1.5.1 (Cumulative) Distribution Function

Definition
The (cumulative) distribution function (cdf) of a r.v. X is defined by

F (x) = P (X ≤ x) for all x ∈ R

1.5.1.1 Example

X ∼ U [A,B]
x<A: F(x) = P(X<x) = 0
A<x<B: F(x) = P(X<x) = P(A<X<x) = (x-A)/(B-A)
x>B: F(x) = P(X<x) = 1
Theorem
Let F be the cdf of some random variable X. Then
1. cdf’s are standard functions on R
2. 0 ≤ F (x) ≤ 1
3. cdf’s are non-decreasing
4. cdf’s are right-continuous
5.

lim
x→−∞

F (x) = 0

lim
x→∞

F (x) = 1

proof
1. probabilities are unique so F (x) = P (X ≤ x) = P ({ω ∈ S : X(ω) ≤ x}) is unique
2. 0 ≤ P (X ≤ x) = P ({ω ∈ S : X(ω) ≤ x}) ≤ 1 from axiom 1
3) say x<y, then
{ω ∈ S : X(ω) ≤ x} ⊂ {ω ∈ S : X(ω) ≤ y}
and so
F (x) = P (X ≤ x) ≤ P (X ≤ y) = F (y)
4) a function F is right continuous if
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the limit is the same as the intersection because if h<k Ax,h ⊂ Ax,k, and the intersection
is the empty set otherwise there exists y such y ∈ Ax,h for all h, that is x < y ≤ x + h, a
contradiction.
5) similar to 4.

Theorem
Let F be function that is increasing, right-continuous and has 0 ≤ F (x) ≤ 1, then there exists
a random variable that has F as its cdf.
proof : too deep for us
Theorem
Let F be the cdf of a rv X. Then F has at most countably many points of discontinuity.
proof
F is increasing so any point of discontinuity is a jump point up. Let An be the set of all point
where F jumps up by more then 1/n. Then |An|<n because 0<F<1. Let A be the set of all
jump points of F, then
A = ∪An
and therefore A is countable.
Note another consequence of this proof: for any ε > 0 there are at most finitely many points
where F jumps up by more then ε.

1.5.1.1.1 Example

We roll a fair die until the first “6”. Let the rv X be the number of rolls. Find the cdf F of X.
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Solution: note X ∈ {1, 2, 3, ...}
let Ai be the event “a six on the ith roll”, i=1,2,3, . . . . Then

P (X = k) = P (Ac1 ∩ Ac2 ∩ .. ∩ Ack−1 ∩ Ak) =

P (Ac1)P (Ac2)..P (Ack−1)P (Ak) = (5
6)k−1 1

6

P (X ≤ k) =
k∑
i=1

P (X = k) =

k∑
i=1

(5
6)i−1 1

6 =

k−1∑
j=0

(5
6)j 1

6 =

1
6

1− (5/6)(k−1)+1

1− 5/6 = 1− (5/6)k

so for k ≤ x < k + 1 we have F(x)=1-(5/6)k
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Notice that the cdf is a step function. This is always the case for a discrete random variable.

1.5.2 Probability Density Function

The probability density function (pdf) of a discrete r.v. X is defined by
f(x) = P (X = x)

1.5.2.1 Example

the pdf of X in the example above is given by f(x) = 1/6*(5/6)x-1 if x ∈ {1, 2, ..}, 0 otherwise.
Note that it follows from the definition and the axioms that for any pdf f we have
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f(x) ≥ 0∑
x

f(x) = 1

1.5.2.2 Example

Say f(x)=c/x2, x=1,2,3,. . . is a pdf. Find c
1 = ∑

x f(x) = ∑∞
i=1 c/i

2 = cπ2/6
so c = 6/π2.

1.5.2.3 Example

say we have a coin that comes up heads with probability p. Let X be the number of heads in
n flips of the coin. Find the pdf of X.
Let’s start with a couple of small n’s:
n=1:
S={H,T}
P(X=0)=P(T)=1-p P(X=1)=P(H)=p
n=2:
S={(H,H),(H,T),(T,H),(T,T)}
P(X=0) = P((T,T))=P(T)P(T) = (1-p)2

P(X=1) = P({(H,T),(T,H)}) = P(H)P(T)+P(T)P(H) = 2p(1-p)
P(X=2)=P((H,H))=P(H)P(H)=p2

n=3:
S={(H,H,H),(H,H,T),(H,T,H),(H,T,T),(T,H,H),(T,H,T),(T,T,H),(T,T,T)}
P(X=0) = P((T,T,T))=P(T)P(T)P(T)=(1-p)3

P(X=1) = P({(H,T,T),(T,H,T),(T,T,H)}) = 3P(H)P(T)P(T) = 3p(1-p)2

P({(H,T,T),(H,T,H),(T,H,H)}) = 3P(H)P(H)P(T) = 3p2(1-p)
P(X=3)=P((H,H,H))=P(H)P(H)P(H)=p3

apparently for some n we have something like
P (X = k) = cn,kp

k(1− p)n−k

what is c_n,k ? From the first few cases one might guess

cn,k =
(
n
k

)
Let’s verify this using an induction proof. For this we will use the law of total probability,
conditioning on whether the last flip was a heads or a tails. Also, Let Xn be X if we flip the
coin n times. Now
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Definition
f is the pdf of the continuous random variable X iff
F (x) =

∫ x
−∞ f(tdt)

or (if the cdf is differentiable at x)
f(x) = F ′(x)
Again it follows from the definition and the axioms that for any pdf f we have

f(x) ≥ 0∫ ∞
−∞

f(x)dx = 1

1.5.2.4 Example

X ∼ U [A,B]
x < A or x > B: f(x)=F’(x) = 0
A < x < B: f(x)=F’(x) = d/dx[ (x-A)/(B-A)] = 1/(B-A)
at x=A and x=B f is not defined because F is not differentiable

1.5.2.5 Example:

Show that f(x) = λ exp(−λx) if x>0, 0 otherwise defines a pdf, where λ > 0.
Solution: clearly f(x) ≥ 0 for all x.

∫ ∞
−∞

f(x)dx =∫ ∞
0

λ exp(−λx)dx =

− exp(−λx)|∞0 = 0− (−1) = 1
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This r.v. X is called an exponential r.v. with rate λ. We often write X ∼ Exp(λ).

1.5.2.6 Example

Say f(x)=c/x2, x>1 is a pdf. Find c.

1.5.2.7 Example

Say f(x) = cx sin(πx), 0 ≤ x ≤ 1, 0 otherwise, is a pdf. Find c.

1.5.2.8 Example

Say f(x)=cexp{-x2} is a pdf. Find c.
Unfortunately f does not have an anti-derivative, so this is tricky problem. Using Numerical
integration one can show that c=0.8547.

Although we usually deal with random variables that are either discrete or continuous, in
real life they can be mixed:
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1.5.2.9 Example

Consider the following experiment: first we flip a fair coin. If the coin comes up heads we roll
a fair die and X is the number on the die, otherwise we choose X ∼ U [1, 6]. Find the cdf of X
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1.5.2.10 Example (Simple Random Walk)

Let X0 =0, and P(Xn =1)=p, P(Xn =-1)=q=1-p
let Sn = ∑n

k=0 Xk and define the event An = {Sn = 0}.
We want to find P ({An i.o. }). By Kolmogorov’s 0-1 law we know that it is either 0 or 1.
But which is it?
Let P (n)

00 = P (An), then
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and by the Borel-Cantelli lemmas we see that P ({An i.o. }) = 1 if p=1/2 and 0 otherwise.

1.6 Random Vectors

A random vector is a multi-dimensional random variable.

1.6.0.1 Example 1

we roll a fair die twice. Let X be the sum of the rolls and let Y be the absolute difference
between the two rolls. Then (X,Y) is a 2-dimensional random vector. The joint pdf of (X,Y)
is given by:

0 1 2 3 4 5
2 1 0 0 0 0 0
3 0 2 0 0 0 0
4 1 0 2 0 0 0
5 0 2 0 2 0 0
6 1 0 2 0 2 0
7 0 2 0 2 0 2
8 1 0 2 0 2 0
9 0 2 0 2 0 0
10 1 0 2 0 0 0
11 0 2 0 0 0 0
12 1 0 0 0 0 0

where every number is divided by 36.

all definitions are straightforward extensions of the one-dimensional case.

1.6.0.2 Example

for a discrete random vector we have the pdf f(x,y) = P(X=x,Y=y)
Say f(4,0) = P(X=4, Y=0) = P({(2,2)}) = 1/36 or f(7,1) = P(X=7,Y=1) = P({(3,4),(4,3)})
= 1/18
Example
Say f(x,y)=cxy is a pdf with x ∈ {1, 2, 3} and y ∈ {0, 2}. Find c.
1 = ∑

x,y f(x, y) =
f(1, 0) + f(1, 2) + f(2, 0) + f(2, 2) + f(3, 0) + f(3, 2) =
c(1× 0 + 1× 2 + 2× 0 + 2× 2 + 3× 0 + 3× 2) = 12c so c = 1/12
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1.6.0.3 Example

Say f(x, y) = cxy, 0 ≤ x, y ≤ 1 is a pdf. Find c.

so c=4.

1.6.0.4 Example

Say f(x, y) = cxy, 0 ≤ x < y ≤ 1 is a pdf. Find c.

so c=8.

1.6.0.5 Example

Say (X,Y) is a discrete rv with joint pdf f(x, y) = cpx, x, y ∈ {0, 1, ..}, y ≤ x, 0 < p < 1. Find
c

1.6.0.6 Example

Say (X,Y,Z) is a continuous rv with f(x,y,z) = c(x+y)z if 0 < x, y, z < 1 and 0 otherwise.
Find c
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so c=2

1.6.0.7 Example

Let’s extend the idea of a uniform random variable to two dimensions. To begin, let’s start
with the unit square [0,1]2.
Again, the idea of uniform is taken to mean that the probability of a point (X,Y) being in
some area is proportional to the size of the area. Therefore if A is some area in [0,1]2 we have
P ((X, Y ) ∈ A) = area(A)
say 0 < x, y < 1, then
F (x, y) = P (X < x, Y < y) = area([0, x] ∗ [0, y]) = xy

f(x, y) = d2/dxdyF (x, y) = d/dx[d/dy(xy)] = d/dx[x] = 1
Now say (X,Y) is uniform on {(x, y} : 0 < x < yα < 1} for some α > 0. Find the joint pdf of
(X,Y).
First we need the total area:

so f(x, y) = α + 1 if 0 < x < yα < 1.

1.6.1 Marginal Distributions

Definition
Say (X,Y) is a discrete (continuous) r.v. with joint pdf (pdf) f. Then the marginal pdf fX is
given by
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1.6.1.1 Example

Say X is the sum and Y is the absolute difference of two dice. If we add the row and column
totals to the table above we get

0 1 2 3 4 5 X
2 1 0 0 0 0 0 1
3 0 2 0 0 0 0 2
4 1 0 2 0 0 0 3
5 0 2 0 2 0 0 4
6 1 0 2 0 2 0 5
7 0 2 0 2 0 2 6
8 1 0 2 0 2 0 5
9 0 2 0 2 0 0 4
10 1 0 2 0 0 0 3
11 0 2 0 0 0 0 2
12 1 0 0 0 0 0 1
Y 6 10 8 6 4 2 36

and these are the marginals. For example we find fX (2) = 1/36 or fY (3) = 6/36.

1.6.1.2 Example

Say (X,Y) is a rv with joint pdf f(x,y)=xy/12 with x ∈ {1, 2, 3} and y ∈ {0, 2} Now
fX (3) = f(3,0) + f(3,2) = 3x0x1/12 + 3x2x1/12 = 6/12 = 1/2
fY (0) = f(1,0) + f(2,0) + f(3,0) = 0
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1.6.1.3 Example

Say (X,Y) is a rv with joint pdf f(x,y)=8xy, 0 ≤ x < y ≤ 1. Find fY (y)

Note that f_Y (y) is s proper pdf: fY (y) ≥ 0 for all y and

1.6.1.4 Example

Say (X,Y,Z) is a continuous rv with f(x,y,z) = 2(x+y)z if 0 < x, y, z < 1 and 0 otherwise.

1.6.2 Conditional Random Variables

Definition
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let (X,Y) be a r.v. with joint pdf f(x,y) and marginal fY . For any y such that fY (y)>0 the
conditional pdf of X|Y=y is defined by

fX|Y=y(x|y) = f(x, y)
fY (y)

Note that a conditional pdf requires a specification for a value of the random variable on
which we condition, something like f_X|Y=y . An expression like f_X|Y is not defined!
Note that is is exactly the same as the definition for conditional probabilities of events. For
example if (X,Y) is a discrete rv, then

1.6.2.1 Example

Say X is the sum and Y is the absolute difference of two dice. Find fX|Y=5 (7|5) and fY|X=3
(7|3)

0 1 2 3 4 5 X
2 1 0 0 0 0 0 1
3 0 2 0 0 0 0 2
4 1 0 2 0 0 0 3
5 0 2 0 2 0 0 4
6 1 0 2 0 2 0 5
7 0 2 0 2 0 2 6
8 1 0 2 0 2 0 5
9 0 2 0 2 0 0 4
10 1 0 2 0 0 0 3
11 0 2 0 0 0 0 2
12 1 0 0 0 0 0 1
Y 6 10 8 6 4 2 36
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1.6.2.2 Example

f(x,y)=8xy, 0 ≤ x < y ≤ 1. Find fX|Y=y(x|y)
fX|Y=y(x|y) = f(x,y)/fY(y) = 8xy/4y3 = 2x/y2,
for x, y with 0 ≤ x ≤ y.
Here y is a fixed number!
Again, note that a conditional pdf is a proper pdf:

1.6.2.3 Example

Say (X,Y,Z) is a continuous rv with f(x,y,z) = 2(x+y)z if 0 < x, y, z < 1 and 0 otherwise.
Then all the marginals are:
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1.6.2.4 Example

say f(x, y) = α + 1 if 0 < x < yα < 1. Find the marginals and the conditional pdf’s. Verify
that they are proper pdf’s.
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1.6.3 Independence

Definition
Two r.v. X and Y are said to be independent iff

fX,Y (x, y) = fX(x)fY (y)

for all x,y
Notation: we will use the notation X ⊥ Y if X and Y are independent.

1.6.3.1 Example

Say X is the sum and Y is the absolute difference of two dice. Previously we found
fX,Y (7,1) = 1/18
but
fX (7)fY (1) = 1/6 x 10/36 = 5/108
so X and Y are not independent
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Theorem
say f(x,y) is the joint pdf of a random vector (X,Y). Then X and Y are independent if there
exist functions g and h such that
f(x,y)=g(x)h(y)
proof
the only difference between the definition and the theorem is that g and h need not be proper
densities. But first of all we can assume that g and h are non-negative, otherwise just take
|g| and |h|.
Moreover

where 0 < c <∞, so g/c = fX , and similarly h/d=fY

1.6.3.2 Example

say f(x,y)=exp(-x-y), x,y>0. Then
f(x,y) = exp(-x-y) = exp(-x)exp(-y) = g(x)h(y)
so X and Y are independent.

Mostly the concept of independence is used in reverse: we assume X and Y are independent
(based on good reason!) and then make use of the formula:

1.6.3.3 Example

Say we use the computer to generate 10 independent exponential r.v’s with rate λ. What is
the probability density function of this random vector?
We have fXi

(xi) = λ exp(−λxi) for i=1,2,..,10 so

f(X1,..,X10)(x1, .., x10) =
λ exp(−λx1)× ..× λ exp(−λx10) =
λ10 exp(−λ(x1 + ..+ x10))

1.6.3.4 Example

Say (X,Y) is a discrete random vector with
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## 1 2
## 1 1/10 1/10
## 2 1/10 1/2
## 3 1/10 1/10

1 2
1 1/10 1/10
2 1/10 1/2
3 1/10 1/10

Find the conditional pdf of X|Y=y
fX|Y=y (x|y)=f(x,y)/fY (y)
fY (y) = ∑

x f(x, y)
fY (1) = f(1,1)+f(2,1)+f(3,1)=3/10
fY (2) = f(1,2)+f(2,2)+f(3,2)=7/10
so
fX|Y=1 (1|1)=f(1,1)/fY (1) = (1/10)/(3/10) = 1/3
fX|Y=1 (2|1)=f(2,1)/fY (1) = (1/10)/(3/10) = 1/3
fX|Y=1 (3|1)=f(3,1)/fY (1) = (1/10)/(3/10) = 1/3
so

fX|Y=2 (1|2)=f(1,2)/fY (2) = (1/10)/(7/10) = 1/7
fX|Y=2 (2|2)=f(2,2)/fY (2) = (1/2)/(7/10) = 5/7
fX|Y=2 (3|2)=f(3,2)/fY (2) = (1/10)/(7/10) = 1/7
so
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1.6.3.5 Example

Let the continuous random vector (X,Y) have joint density f(x, y) = e−y, 0 < x < y <∞
Show that f is indeed a proper density

Find fY|X=x (y|x)
fY|X=x (y|x) = f(x,y)/fX (x)

so

Show that fY|X=x (y|x) is also a proper density
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1.6.3.6 Example

We have a “device” which generates a random number Y according to an exponential
distribution with rate λ. We don’t know exactly what λ is, but we do know that λ = x with
probability 0.5x where x=1,2,3,. . . Find the pdf of Y. Verify that your answer is a proper pdf.
We have a discrete r.v X with pdf
fX (x)=0.5x, x=1,2,..
and a conditional rv Y with pdf
fY|X=x (y|x)=xexp(-xy), y>0
We want fY (y). It turns out that if we are dealing with a continuous rv. it is often better to
first find the cdf FY (y) = P (Y ≤ y). Now first we have

a little bit of care: the geometric series ∑ qk only converges if |q|<1. Here y>0, so ey>1 so
1/2ey < 0.5 < 1, we are save.
Now
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This type of model is called a hierarchical model, with one rv defined conditional on another.
This way of describing a model is very useful in real live.

1.6.4 Law of Total Probability

We have previously seen the law of total probability for events. There are corresponding
versions for random variables:

• Discrete-Discrete
Say X and Y are discrete rv’s with pdf’s fX and fY , respectively. Let B={X=x} and Ay
={Y=y}.
Then {Ay, y ∈ S} forms a partition and we have

fX(x) = P (X = x) = P (B) =∑
y

P (B|Ay)P (Ay) =∑
y

fX|Y=y(x|y)fY (y)

• Discrete-Continuous
Say X is a discrete rv with pdf fX and Y is a continuous rv with pdf fY.
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Here we need to be careful: for a discrete rv fX (x)=P(X=x) makes sense, but for a continuous
one we have

P (Y = y) = lim
h→0

P (y ≤ Y ≤ y + h) =

lim
h→0

∫ y+h

y
fY (t)dt =

lim
h→0

(FY (y + h)− FY (y)) = 0

for all y!
first we condition on the discrete rv.: Now the event B={Y=y} does not work because
P(B)=0 for all y. Let’s instead consider the event B = {Y ≤ y}:

For conditioning on the continuous rv we need to define a new discrete rv Y’ with
Y ′ = ih if ih ≤ Y < (i+ 1)h
Then
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because this is a Riemann sum, so it converges to the corresponding integral.
• Continuous-Continuous

Actually, same as above, the same proof works for this case as well!

1.6.4.1 Example

back to the example above with the “device”. Now we have the following solution:
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1.6.4.2 Example

again the example above with the “device”, but now the rate X has a uniform distribution
on [0,1], that is fX (x)=1 if 0 < x < 1. Then:

54



1.7 Expectation and Correlation

1.7.1 Expectation and Variance

Definition
The expectation (or expected value) of a function g of a random variable X is defined by

if E[|g(X)|] <∞.
Let µ = E[X], then µ is called the mean of X.
σ2 = V ar(X) = E[(X − µ)2] is called the variance of X. The square root of the variance σ is
called the standard deviation.

1.7.1.1 Example

Say X is the sum of two dice. Find E[X], E[X2] and E[1/X].
we have
x <- 2:12
y <- c(1:5, 6, 5:1)
df <- data.frame(x=x, y=paste0(y, "/36"))
colnames(df) <- c("x", "P(X=x)")
kable.nice(df)

x P(X=x)
1 2 1/36
2 3 2/36
3 4 3/36
4 5 4/36
5 6 5/36
6 7 6/36
7 8 5/36
8 9 4/36
9 10 3/36
10 11 2/36
11 12 1/36

55



so E[X] = 2×1/36+3×2/36+4×3/36+ 5×4/36+6×5/36+7×6/36+8×5/36+9×4/36+
10× 3/36 + 11× 2/36 + 12× 3/36 = 7
E[X2] = 22 × 1/36 + 32 × 2/36 + 42 × 3/36+ 52 × 4/36 + 62 × 5/36 + 72 × 6/36 + 82 × 5/36+
92 × 4/36 + 102 × 3/36 + 112 × 2/36 + 122 × 3/36 = 54.83
E[1/X] = 1/2×1/36+1/3×2/36+1/4×3/36+ 1/5×4/36+1/6×5/36+1/7×6/36+1/8×5/36+
1/9× 4/36 + 1/10× 3/36 + 1/11× 2/36 + 1/12× 3/36 = 0.172

1.7.1.2 Example

we roll fair die until the first time we get a six. What is the expected number of rolls?
We saw that f(x) = 1/6*(5/6)x-1 if x ∈ {1, 2, ..}. Here we just have g(x)=x, so

How do we compute this sum? Here is a “standard” trick:

and so we find

This is a special example of a geometric rv, that is a discrete rv X with pdf f(x)=p(1-p)x-1,
x=1,2,..
Note that if we replace 1/6 above with p, we can show that

we write X ∼ Geom(p)
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Theorem
let X,Y be some random variables, and let a,b be some real numbers. Then

proof (all for X discrete)

1.7.1.3 Example

Say X is the sum of two dice. What is Var(X)?
Var(X) = E[X2]-(E[X])2 = 54.83-72 = 5.83

1.7.1.4 Example
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find the mean and the standard deviation of a uniform [A,B] r.v.
We will use a little trick for this: say X ∼ U [0, 1], and let Y=(B-A)X+A, then for A < y < B

FY (y) = P (Y < y) = P (((B − A)X + A < y) =
P (X < (y − A)/(B − A)) = (y − A)/(B − A)

fY (y) = 1/(B − A) for A < y < B

so Y ∼ U [A,B]

Definition
µk = E[Xk] is called the kth moment of X.
κk = E[(X − µ)k] is called the kth central moment of X.
γ1 = κ3/(κ2)(3/2) is called the skewness of X.
γ2 = κ4/κ

2
2(= µ4/σ

4 − 3) is called the kurtosis of X.
The kurtosis of a distribution measure its “peakness”, that is how sharp its maximum is. A
distribution with γ2 = 0 is called mesokurtic. This is the case for example for a standard
normal (see later), which is then a kind of baseline example. If γ2 < 0 it is called platykurtic
and has a broader peak and thinner tails. If γ2 > 0 it is called leptokurtic meaning it has a
sharper peak than the standard normal and heavier tails.

1.7.1.5 Example

say X has pdf

f(x) = 1√
2πτ

exp
{
−x

2

2τ

}
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for x ∈ R and τ > 0
Then E[Xk]=0 for all odd numbers k because then xkf(x) is an odd function. For even
moments we find

Theorem
Say X is a non-negative rv, that is P (X ≥ 0) = 1. Then
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1.7.1.6 Example

say X ∼ Geom(p), then
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1.7.1.7 Example

Say (X,Y) is a discrete rv with joint pdf f(x,y)=cpx, x,y in {0,1,..}, y ≤ x, and 0 < p < 1.
Find c.
We already did that before by summing first over y and then over x. We can use the above
for an even simpler proof:

where G is a geometric rv with rate 1-p

1.7.1.8 Example

Say X ∼ U[A,B]. Find E[Xk]. For the case A=0, B=1 find the kurtosis.
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so a U[0,1] is platykurtic

1.7.1.9 Example

Say x is a rv with f(x)=c/(1+x2). (X is called a Cauchy random variable). Find c and show
that EX does not exist.
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1.7.1.10 Example

Find the mean and the standard deviation of an exponential rv with rate λ.
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1.7.1.11 Example

Let X be a rv with pdf f(x)=(a+1)xa, 0 < x < 1, a > 0. For what values of a is X mesokurtic,
platykurtic or leptokurtic?

This is a rather complicated function of a, so it is best to use a computer to do a graph:
f <- function(a) {

muk <- function(a, k) (a+1)/(a+k+1)
mu <- muk(a, 1)
sig2 <- muk(a, 2) - mu^2
mu4 <- muk(a, 4) -

4*muk(a, 3)*mu +
6*muk(a, 2)*mu^2 -
4*muk(a, 1)*mu^3 + mu^4

mu4/sig2^2-3
}
a <- seq(0, 10, length=1000)
y <- f(a)
ggplot(data=data.frame(a=a, y=y), aes(a, y)) +

geom_line(color="blue", size=1.2)
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−1

0

1

2

3

0.0 2.5 5.0 7.5 10.0

a

y

max(a[y<0])

## [1] 1.851852

therefore X is platykurtic for a < 1.85 and leptokurtic for all other a.

There is a way to “link” probabilities and expectations is via the indicator function IA defined
as

because with this we have for a (continuous) r.v. X with density f:

Theorem
say we have a nonnegative rv X, that is P (X ≥ 0) = 1. Then P(X=0)=1 iff E[X]=0.
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proof
say P(X=0)=1, then X is a discrete rv with pdf f(0)=1 and so E[X] = 0× 1 = 0
say E[X]=0. Assume P(X=0)<1, therefore P(X>0) = 1-P(X=0) > 1-1 = 0, so there exists
δ > 0 and ε > 0 such that P (X > δ) > ε. Then

in either case we have a contradiction with EX=0.

1.7.2 Expectations of Random Vectors

The definition of expectation easily generalizes to random vectors:

1.7.2.1 Example

say (X,Y) is a discrete random vector with joint pdf
df <- data.frame(x=c(0.1, 0, 0.1), y=c(0.1, 0.5, 0.2))
dimnames(df) <- list(0:2, 1:2)
kable.nice(df)

1 2
0 0.1 0.1
1 0.0 0.5
2 0.1 0.2

Find E[XY]
E[XY ] = 0× 1× 0.1 + 0× 2× 0.1+ 1× 1× 0 + 1× 2× 0.5 + 2× 1× 0.1+ 2× 2× 0.2 = 2.0

1.7.2.2 Example

Let (X,Y) be a discrete random vector with f(x,y) = (1/2)x+y, x ≥ 1, y ≥ 1. Find E[XY2]
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First we have

because this is the mean of a geometric rv with p=1/2. Next

Note that if we replace 1/2 with p we have just shown that E[X]=1/p and Var(X)=(1-p)/p2

for X ∼ Geom(p).

1.7.2.3 Example

say (X,Y) is a continuous rv with f(x,y)=c if 0 < y < xa < 1 for some a>0. Find E[XY].
What we have here is a uniform rv on the area described by 0 < y < xa < 1, shown here for
a=1/2:
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So

1.7.3 Covariance and Correlation

Definition
Say X and Y are two random variables. Then the covariance is defined by
cov(X, Y ) = E[(X − µX)(Y − µY )]
and the correlation of X and Y is defined by
ρXY = cor(X, Y ) = cov(X, Y )/(σXσY )
Note cov(X,X) = Var(X)
As with the variance we have a simpler formula for actual calculations:
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cov(X,Y) = E(XY) - (EX)(EY)
Obviously, if cov(X,Y)=0, then
ρXY = cor(X, Y ) = cov(X, Y )/(σXσY ) = 0
as well

1.7.3.1 Example

Let X and Y be the sum and absolute value of the difference of two rolls of a die. What is
the covariance of X and Y?
So we have
µX = E[X] = 2 ∗ 1/36 + 3 ∗ 2/36 + ...+ 12 ∗ 1/36 = 7.0
µY = E[Y ] = 0 ∗ 6/36 + 1 ∗ 12/36 + ...+ 5 ∗ 2/36 = 70/36
E[XY ] = 0 ∗ 2 ∗ 1/36 + 1 ∗ 2 ∗ 0/36 + .2 ∗ 2 ∗ 0/36..+ 5 ∗ 12 ∗ 0/36 = 490/36
and so
cov(X, Y ) = E[XY ]− E[X]E[Y ] = 490/36− 7.0 ∗ 70/36 = 0
Note that in the example above we previously saw that X and Y are not independent, so we
here have an example that a covariance of 0 does not imply independence! It does work the
other way around, though:
Theorem
If X and Y are independent, then cov(X,Y) = 0
proof (in the case of X and Y continuous):
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We saw above that E[X+Y] = E[X] + E[Y]. How about Var(X+Y)?

and if X ⊥ Y we have Var(X+Y) = Var(X) + Var(Y)

1.7.3.2 Example

Consider again the example from before: we have continuous rv’s X and Y with joint density
f(x,y)=8xy, 0 ≤ x < y ≤ 1. Find the covariance and the correlation of X and Y.
cov(X,Y)=E[XY]-E[X]E[Y].
We have seen before that fY (y)=4y3, 0 < y < 1, so
E[Y ] =

∫∞
−∞ yfY (y)dy =

∫ 1
0 y4y3dy = 4/5y5|10 = 4/5
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Now

and

and so cov(X, Y ) = 4/9− 8/15× 4/5 = 12/675
Also

1.7.3.3 Example

say (X,Y) is a discrete rv with joint pdf f given by
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where a,b,c and d are numbers such that f is a pdf, that is a,b,c,d≥ 0 and a+b+c+d=1. Note
that this is the most general case of a discrete random vector where X and Y just take two
values.
What can be said in this generality?
Now the marginals of X and Y are given by
fX (0)=a+b, fX (1)=c+d
fY (0)=a+c, f~Y‘ (1)=b+d
so
EX = 0× (a+ b) + 1× (c+ d) = c+ d

EY = 0× (a+ c) + 1× (b+ d) = b+ d

also
EXY = 0× 0× a+ 1× 0× b+ 0× 1× c+ 1× 1× d = d

and so
cov(X,Y) =
d-(c+d)(b+d) =
d-cb-cd-bd-dˆ2 =
d-bc-(c+b)d-dˆ2 =
d-bc-(1-a-d)d-dˆ2 = d-bc-d+ad+d2-d2 = ad-bc
so X and Y are uncorrelated iff ad-bc=0
Of course
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is the determinant of this matrix.
When are X and Y independent? For that we need f(x,y)=fX (x)fY (y) for all x and y, so we
need
a=(a+b)(a+c)
b=(a+b)(b+d)
c=(a+b)(b+d)
d=(c+d)(b+d)
but
a = (a+b)(a+c) =
aˆ2+(c+b)a+bc =
aˆ2+(1-a-d)a+bc =
a-ad+bc
or
ad-bc=0
Similarly we find that each of the other three equations holds iff ad-bc=0. So
X ⊥ Y iff ad− bc = 0
and here we have a case where X ⊥ Y iff cov(X,Y)=0.
Notice that if X ⊥ Y then rX + s ⊥ Y for any r,s with r 6= 0, so the above does not depend
on the fact that X and Y take values 0 and 1, although the proof is much easier this way.

If you know cov(X,Y)=2.37, what does this tell you? Not much, really, except X and Y are
not independent. But if I tell you cor(X,Y)=0.89, that tells you more:
Theorem
1. |ρXY | ≤ 1

2. ρXY = ±1 iff there exist a 6= 0 and b such that P(X=aY+b)=1
proof
1. Consider the function

h(t) = E[(X − µX)t+ (Y − µY )]2

Now h(t) is the expectation of a non-negative function, so h(t) ≥ 0 for all t. Also
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because the quadratic function h(t) ≥ 0, so it has at most one real root and so the discriminant
has to be less or equal to 0.
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2. Continuing with the argument above we see that |ρXY | = 1 iff D=0, that is if h(t) has a
single root. But

[(X − µX)t+ (Y − µY )]2 ≥ 0
for all t and we have
h(t)=0 iff P ([(X − µX)t+ (Y − µY )]2 = 0) = 1
This is the same as
P ((X − µX))t+ (Y − µY ) = 0) = 1
so P(X=aY+b)=1 with a=-t and b=µXt+ µY , where t is the single root of h(t).
This theorem is also a direct consequence of a very famous inequality in mathematics. To
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state it in some generality we need the following
Definition
Let V be some vector space V. A mapping <.,.>:V 2 → R is an inner product on V if for
x, y, z ∈ V and a ∈ R

where the line denotes complex complement.
A vector space with an inner product is called an inner product space.
Often we also write <x,x>=||x||2 and then ||x|| is called the norm.

1.7.3.4 Example

1. Rn with <x,y>=∑xiyi

2. the space of continuous functions C with
< f, g >=

∫
f(x)g(x)dx

Note that in an inner product space we have a version of the Pythagorean theorem: if x and
y are such that
<x,y>=0
they are said to be orthogonal, and then we have
||x+y||ˆ2 =
<x+y,x+y> =
<x,x>+<x,y>+<y,x>+<y,y> =
||x||2+||y||2
Theorem (Cauchy-Schwartz)
say x and y are any two vectors of an inner product space, then
< x, y >2≤ ||x||||y||
and “=” holds iff x=ay+b for some a, b ∈ R.
The Cauchy-Schwartz inequality is one of the most important results in Mathematics. It has
a great many consequences, for example the general formulation of the Heisenberg uncertainty
principle in Quantum Mechanics is derived using the Cauchy–Schwarz inequality in the
Hilbert space of quantum observables.
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1.7.3.5 Example

Let X and Y be some rv, and define <X,Y>=E[XY]. Then <X,Y> is an inner product.
Moreover if E[X]=µ and E[Y]=ν by Cauchy-Schwartz

Cov(X, Y )2 = (E[(X − µ)(Y − ν)])2 =
< X − µ, Y − ν >2≤
< X − µ,X − µ >< Y − ν, Y − ν >=
E(X − µ)2E(Y − ν)2 = V ar(X)V ar(Y ) =

and so

and we have “=” iff P(aX+b=Y)=1

It is one of the fascinating features in Mathematics that a theorem is sometimes easier to
prove in greater generality:
proof (Cauchy-Schwartz)
Let x and y be two vectors in an inner product space. If y=0 the inequality is true (and an
equation), so assume y 6= 0. Let
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and “=” iff z=0, in which case x=ay

A little bit of care with covariance and correlation: they are designed to measure linear
relationships. Consider the following:

1.7.3.6 Example

let X ∼ U[-1,1], and let Y=X2. Then E[X]=0 and
E[Y] = EX2 =
Var(X)+(E[X])2 =
Var(X) = (1-(-1))2/12 = 4/12 = 1/3.
Also
E[XY] = E[X3] = (14-(-1)4)/4/(1-(-1)) = 0
so cov(X,Y)=0− 0× 1/3 = 0.
So here is a case of two uncorrelated rv’s, but if we know X we know exactly what Y is!
Correlation is only a sensible measure of linear relationships, not any others.
So as we said above, if you know cov(X,Y)=2.37, that does not tell you much. But if you
know cor(X,Y)=0.89 and if there is a linear relationship between X and Y, we know that it
is a strong positive one.
Theorem
The correlation is scale-invariant, that is if a 6= 0 and b are any numbers, then
cor(aX+b,Y)=cor(X,Y)
proof
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so for example the correlation between the ocean temperature and the windspeed of a
hurricane is the same whether the temperature is measured in Fahrenheit or Centigrade.

1.7.4 Conditional Expectation and Variance

Definition
Say X|Y=y is a conditional r.v. with pdf f. Then the conditional expectation of g(X)|Y=y is
defined by

1.7.4.1 Example

Say (X,Y) is a discrete rv with joint pdf f(x,y)=(1-p)2px, x,y in {0,1,..}, y ≤ x, and 0 < p < 1.
Find E[Y|X=x]
first we need fY|X=x (y|x), and for that we need fX (x):
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so
fY|X=x (y|x) = f(x,y)/fX (x) = (1-p)2px/((1-p)2(x+1)px) = 1/(x+1)
so Y|X=x has a discrete uniform distribution on {0,1,..,x}.
Therefore

1.7.4.2 Example

Say X and Y have a joint density f(x,y)=8xy, 0 ≤ x < y ≤ 1.
We previously found fY (y) = 4y3, 0<y<1, and fX|Y=y (x|y) = 2x/y2, 0 ≤ x ≤ y. So

Throughout this calculation we treated y as a constant. Now, though, we can change our
point of view and consider E[X|Y=y] = 2y/3 as a function of y:
g(y)=E[X|Y=y]=2y/3
What are the values of y? Well, they are the observations we might get from the rv. Y, so
we can also write
g(Y)=E[X|Y=Y]=2Y/3
but Y is a rv, then so is 2Y/3, and we see that we can define a rv Z=g(Y)=E[X|Y]
Recall that the expression fX|Y does not make sense. Now we see that on the other hand the
expression E[X|Y] makes perfectly good sense!
Let’s continue this example and find the conditional variance of X|Y=y:
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and again we can consider the conditional variance of X|Y:
Var(X|Y)=Y22/18

1.7.4.3 Example

An urn contains 2 white and 3 black balls. We pick two balls from the urn. Let X be denote
the number of white balls chosen. An additional ball is drawn from the remaining three. Let
Y equal 1 if the ball is white and 0 otherwise.
For example
f(0, 0) = P (X = 0, Y = 0) = 3/5 ∗ 2/4 ∗ 1/3 = 1/10
(choose black-black-black)
The complete pdf is given by:

0 1 2
0 1/10 2/5 1/10
1 1/5 1/5 0

Now for the marginals we have, for example
fX (0)=1/10+1/5=3/10
or in general:

x 0 1 2
P(X=x) 3/10 3/5 1/10

for Y we have

y 0 1
P(Y=y) 3/5 2/5
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The conditional density of X|Y=0 is

x 0 1 2
P(X=x|Y=0) 1/6 2/3 1/6

and so
E[X|Y = 0] = 0× 1/6 + 1× 2/3 + 2ů1/6 = 1.0
The conditional distribution of X|Y=1 is

x 0 1 2
P(X=x|Y=1) 1/2 1/2 0

and so
E[X|Y = 1] = 0× 1/2 + 1× 1/2 + 2ů0 = 1/2
Finally the conditional r.v. Z = E[X|Y] has pmf

z 1 1/2
P(Z=z) 3/5 2/5

with this we can find
E[Z] = E[E[X|Y ]] = 1× 3/5 + 1/2× 2/5 = 4/5
Theorem say X and Y are random variables. Then
E[X] = E{E[X|Y]}
and
Var(X) = E[Var(X|Y)] + Var[E(X|Y)]
(There is a simple explanation for this seemingly complicated formula!)
proof (for continuous X and Y)
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1.7.4.4 Example

above we found E[E[X|Y]] = 4/5. Now
E[X] = 0× 3/10 + 1× 3/5 + 2× 1/10 = 4/5

1.7.4.5 Example

let’s say we have a continuous bivariate random vector with the joint pdf f(x,y) = c(x+2y) if
0 < x < 2, 0 < y < 1, 0 otherwise.
Now
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1.7.4.6 Example

say X has a density fX (x) = (a+1)xa, 0 < x < 1, a > 1. Y |X = x ∼ Exp(x). Find E[Y] and
Var(Y).
To find E[Y] we first need the density of Y:

and this integral can not be found explicitely, so this won’t work.
But

1.7.4.7 Example

Let’s have another look at the example of the “device” which generates a random number Y
according to an exponential distribution with rate λ where λ = x with probability 0.5x where
x=1,2,3,. . . We previously found that fY (y) = 2ey/(2ey-1)ˆ2, y ≥ 0.
Let’s find E[X|Y]
Note E[Y|X] would be easy (=1/X because Y ∼ Exp(X)), E[Y] would be a simple calculus
problem (

∫
y2ey/(2ey − 1)2dy ) and E[X] would be the easiest (=2 because X ∼ Geom(1/2)),

just E[X|Y=y] needs a little work:
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we said above that E[X]=2.
Let’s check the formula E[X]=E{E[X|Y]}:
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1.7.5 Moment Generating and Characteristic Functions

Definition
The moment generating function of a rv X is defined by

Φ(t) = E[exp(tX)]

The characteristic function of a rv X is defined by

Φ(t) = E[exp(itX)]

In general characteristic functions are much more useful in Probability Theory, but they
require some knowledge of complex analysis, and so we will just consider moment generating
functions.

1.7.5.1 Example

Let X ∼ Exp(λ), find the mgf Φ.
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The name comes from the following theorem
Theorem
Say Φ(t) is the mgf of a rv X. Say there exists an ε > 0 such that |Φ(t)| < ∞ for all t in
(−ε, ε). Then
Φk(0) = E[Xk] for all k.
proof
say X is a discrete rv with pdf f(x) and X takes finitely many values. Then

The extension to an infinite sample space and to a continuous rv requires some real analysis
theorems.

1.7.5.2 Example

For the exponential rv we have
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Warning nobody uses the moment generating function to generates moments! It has other
uses:
Theorem
let X1 ,. . . , Xn be a sequence of independent rv.s with mgf’s Φi , and let Z = ∑

Xi , then

ΦZ(t) =
∏

Φi(t)

if the distributions of the Xi are the same as well, then Φi = ΦX for all i and

ΦZ = (Φ(t))n

proof

here is a very deep theorem, without proof:
Theorem
let X and Y be rv.s with mgf’s ΦX and ΦY , respectively. If both mgf’s are finite in an open
neighborhood of 0 and if ΦX(t) = ΦY (t) for all t in this neighborhood, then FX(u) = FY (u)
for all u.
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In other words, the cdf determines the mgf and vice versa. This means that one way to
show that two random variables have the same distribution is to show that they have the
same mgf.

1.7.5.3 Example

show that the sum of two independent exponential rv. is not an exponential rv.
say X ∼ Exp(λ) and Y ∼ Exp(ρ), then
ΦX(t) = λ/(λ− t) and ΦY (t) = ρ/(ρ− t), so
ΦX+Y (t) = λ/(λ− t)ρ/(ρ− t) 6= a/(a− t)
for any a and all t.

1.7.5.4 Example

Consider the two pdfs given by

(f1 is called a log-normal distribution).
Now it turns out that if X1 has density f1 , then
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where we use the change of variables t=log(x)
but

(use change of variables t=log(x)-r)
and so here is an example that shows that the condition of the theorem above is also necessary,
without it you can have two rv’s with all their moments equal but different distributions.

1.8 Functions of a Random Variable - Transformations

1.8.0.1 Example

say X ∼ U[0,1] and λ > 0. What is the pdf of the random variable Y = −λ log(X)?
Solution: we first find the cdf and then the pdf as follows:

if y>0. For y < 0 note that P (− logX < y) = 0 because 0 < X < 1, so logX < 0, so
− logX > 0 always.
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This is an example of a function (or transformation) of a random variable. These transforma-
tions play a major role in probability and statistics. We will see how to find their pdf’s on a
few examples.

1.8.0.2 Example

say X is the number of roles of a fair die until the first six. We have already seen that P(X=x)
= 1/6*(5/6)x-1, x=1,2,.. Let Y be 1 if X is even, 0 otherwise. Find the pdf of Y.
Note: here both X and Y are discrete.
Solution:

and P(Y=0) = 1 - P(Y=1) = 5/11

1.8.0.3 Example

say X is a continuous r.v with pdf
fX(x) = 1

2 exp(−|x|), x ∈ R
(this is called a double exponential)
Let Y=I_[-1,1] (X). Find the pdf of Y.
Note: here X is continuous and Y is discrete.
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1.8.0.4 Example

again let X have pdf fX(x) = 1
2 exp(−|x|). Let Y =X2. Then for y < 0 we have P (Y ≤ y) = 0.

So let y>0. Then

1.8.0.5 Example

Let X ∼ U[0,2], and let Y = sin(2πX). Find fY (y).
First of course we always have −1 ≤ sin(x) ≤ 1 and therefore FY (y)=0 if y<1 and F~Y(y)=1
if y>1.
Now if -1<y<1 we have
P (Y ≤ y) = P (sin(2πX) ≤ y)
the hard part is solving the inequality
sin(2πX) ≤ y

The points were we have sin(2πX) = y are of course y = arcsin(y)/2/π. Let a = arcsin(y)/2/π
and note that arcsin(-y)=-arcsin(y).
Consider the case y=-0.3, then arcsin(−0.3)/2/π = −0.0485
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and therefore

Similarly for 0<y<1 we get
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if |y|<1
Notice that arcsin is a strictly increasing function, so its derivative is positive. Also

lim
y→−∞

FY (y) = lim
y→−∞

[arcsin(y)/π + 1/2] = 0

lim
y→∞

FY (y) = lim
y→∞

[arcsin(y)/π + 1/2] = 1

Next up some examples of functions of random vectors:

1.8.0.6 Example

Say (X,Y) is a discrete rv with joint pdf fX,Y(x,y)=(1-p)2px, x,y in {0,1,..}, y ≤ x, and 0<p<1.
Let U=X and V=X-Y. Find fU,V (u,v).
First what are the possible values of (U,V)? We have u = x ∈ {0, 1, ..} and y ≤ x or
0 ≤ x− y = v and so v ∈ {0, 1, ..}.
Finally v = x− y = u− y ≤ u because y ≥ 0.
Now for any (u, v) ∈ {0, 1, ..} with v ≤ u we have
fU,V (u,v) =
P(U=u,V=v) =
P(X=u,X-Y=v) =
P(X=u,u-Y=v) =
P(X=u,Y=u-v) =
(1-p)2pu

So we see that fU,V (u,v)=fX,Y (u,v), or (X,Y) has the same distribution as (U,V)!

Before we go on let’s revisit the first example above, where we had X ∼ U[0,1], λ > 0 and
Y = −λ log(X). We found fY (y) = 1/λ exp(−y/λ) Now let g(x) = −λ log(x) and notice that
g is strictly decreasing. Then
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This can be generalized as follows:
Lemma
Let X be a continuous rv with cdf F, and F is strictly increasing. Then F (X) ∼ U[0,1].
proof
F is strictly increasing, therefore F-1 exists, and so
P (F (X) ≤ x) = P (X ≤ F−1(x)) = F (F−1(x)) = x

and even a bit more:
Theorem (Probability Integral Transform)
Let X be a continuous rv with cdf F. Then F (X) ∼ U[0,1]
proof let F be the cdf and define the generalized inverse function F ∗ by

F ∗(x) = min{t : F (t) ≥ x}

First note that if F is strictly increasing we have F ∗ = F−1.
Moreover we have F(F*(x))=x. This is easiest to see whith a graph:
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Now the proof is the same as the one for the lemma!

In one dimension this is rarely useful, it is usually easier to just do the problem directly as
above. It does become useful in higher dimensions.

1.8.0.7 Example

say (X,Y) is a bivariate standard normal r.v, that is it has joint density given by

f(x, y) = 1
2π exp

{
−1

2(x2 + y2)
}

98



for (x, y) ∈ R2

Let the r.v. (U,V) be defined by U=X+Y and V=X-Y. Find the joint pdf of (U,V).
To start let’s define the functions g1 (x,y) = x+y and g2 (x,y) = x-y, so that U=g1 (X,Y)
and V = g2 (X,Y).
For what values of u and v is f_(U,V) (u,v) positive? Well, for any values for which the
system of 2 linear equations in two unknowns u=x+y and v=x-y has a solution. These
solutions are
x = h1 (u,v) = (u + v)/2 y = h2 (u,v) = (u - v)/2
From this we find that for any (u, v) ∈ R2 there is a unique (x, y) ∈ R2 such that u=x+y
and v=x-y. So the transformation (x, y)→ (u, v) is one-to-one and therefore has a Jacobian
given by

Now from multivariable calculus we have the following:

Note that the density factors into a function of u and a function of v. As we saw beforethis
means that U and V are independent.

1.8.0.8 Example

Say X1 , .., X~n‘ are iid U[0,1] Let Y1 =X1 , Y2 =X2 -X1 ,..,Yn =Xn -Xn-1. Now
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so (Y1 , .., Yn ) is uniform. But careful, uniform on what set? y2 =x2 -x1 , 0 ≤ xi ≤ 1,
therefore −1 ≤ y2 ≤ 1.
We have
0 ≤ y1 ≤ 1
−yk − 1 ≤ yk ≤ 1− yk − 1, k=2,..,n
For n=2 the set is shown here:
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1.8.0.9 Example

A rv X is called a normal (or Gaussian) rv with mean µ and standard deviation σ if it had
density

f(x) = 1√
2πσ2

exp
{

(x− µ)2

2σ2

}

a special case is a** standard normal rv**, which has µ = 0 and σ = 1.
Say X and Y are independent standard normal rv’s. Let Z = X + Y. Find the pdf of Z.
Note: now we have a transformation from R2 → R.
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Z = X + Y = U in the example above, so the pdf of Z is just the marginal of U and we find

Say X and Y are two continuous independent r.v with pdf f’s fX and f~Y‘ , and let Z = X+Y.
If we repeat the above calculations we can show that in general the pdf of Z is given by

This is called the convolution formula.
There is a second method for deriving the convolution formula which is useful, using the law
of total probability for rv’s:
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1.8.0.10 Example

say X and Y are independent exponential rv’s with rate λ. Find the pdf of Z=X+Y

1.8.0.11 Example

Say (X,Y) is a discrete rv with joint pdf fX,Y (x,y)=(1-p)2px, x, y ∈ {0, 1, ..}, y ≤ x, 0 < p < 1.
Let U=I(X=Y). Find fU (u)

1.8.0.12 Example

Say X1 , .., X~n‘ are iid U[0,1]. Let M=max{X1 , .., Xn }.
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Find E[M] and Var(M).
First we find fM

Now

This is a special case of what are called Order Statistics. Many statistical methods, for
example the median and the range, are based on an ordered data set.
One of the difficulties when dealing with order statistics are ties, that is the same observation
appearing more than once. This should only occur for discrete data because for continuous
data the probabiltity of a tie is zero. They may happen anyway because of rounding, but we
will ignore them in what follows.
Say X1, .., Xn are iid with density f. Then X(i) is the ith order statistics if X(1)< . . . < X(i) <
. . . <X(n).
Note X(1) = min {Xi} and X(n) = max {Xi}.
Let’s find the pdf of X(i). For this let Y be a r.v. that counts the number of Xj ≤ x for some
fixed number x. We will see shortly that if p=F(x)

Note also that the event {Y ≥ i} means that more than i observations are less or equal to x,
so the ith largest is less or equal to x. Therefore
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with that we find

1.8.0.13 Example

Say X1, .., Xn are iid U[0,1]. Then for 0<x<1 we have f(x)=1 and F(x)=x. Therefore
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1.8.0.14 Example

Say X1, .., Xn are iid U[0,1]. Let g be the density of the order statistic (X(1), .., X(n)). Then
g(x(1), ..,x(n))=n! for 0<x(1)< ..<x(n)<1
The simple “proof” is as follows: for any set of n distinct numbers there are n! permutations,
exactly one of which has 0<x(1)< ..<x(n)<1.
A “formal” proof can be done using a generalization of the change of variables formula. The
problem is that the inverse transform is not unique, in fact there are n! of them because the
ordered set of numbers could have come from any of the n! permutations. Once the inverse
transform is fixed, though, the Jacobian is just the identity matrix with the rows rearranged,
and therefore has determinant 1. Then
g(x(1), ..,x(n)) = n!f(x1, ..,xn)|J| = n!

2 Standard Probability Distributions

2.1 Discrete Distributions

2.1.1 Discrete Uniform

Let N ≥ 2 be an integer and consider the rv X that chooses a number from 1 to N with equal
probability, that is
P (X = k) = 1/N for 1 ≤ k ≤ N

Then
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2.1.2 General Discrete RV on a Finite Set

Let N ≥ 2 be an integer and consider the rv X with
P (X = k) = pk for 1 ≤ k ≤ N

Nothing more can be said until the pk are specified.

2.1.2.1 Example

say pk = 2pk-1
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2.1.3 Bernoulli Distribution

A r.v. X is said have a Bernoulli distribution with success parameter p if
P(X=0)=1-p and P(X=1)=p.
Sometimes we call the outcomes “success”(=1) and “failure”(=0)
Note: often we use q = 1-p
Shorthand: X ∼ Ber(p)

EX = 0 ∗ q + 1 ∗ p = p

EX2 = 02 ∗ q + 12 ∗ p = p

V ar(X) = EX2 − (EX)2 = p− p2 = pq

ψ(t) = E[exp(tX)] = exp(t0)q + exp(t1)p = q + etp

2.1.4 Binomial Distribution

Say Y1 , . . . , Yn are iid Ber(p) and let X=Y1 +..Yn, then X is said to have a binomial
distribution with parameters n and p. (X ∼ Bin(n,p)).
We have

because “X=k” means k successes and n-k failures. Any specific sequence of k successes and
n-k failures has probability pkqn-k, and there are n choose k such sequences.
It is easy to see that this defines a proper pdf:
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which also explains the name binomial.
For the mean and variance we have

and
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2.1.4.1 Example

A company wants to hire 5 new employees. From previous experience they know that about
1 in 10 applicants are suitable for the jobs. What is the probability that if they interview 20
applicants they will be able to fill those 5 positions?
Consider each interview a “trial” with the only two possible outcomes: “success” (can be
hired) or “failure” (not suitable). Assumptions:
1. “success probability” is the same for all applicants (as long as we know nothing else

about them this is ok.)
2. trials are independent (depends somewhat on the setup of the interviews but should be

ok)
then if we let X = “#number of suitable applicants in the group of 20” we have X ∼
Bin(20,0.1) and we find

2.1.5 Geometric Distribution

Say Y1 , Y2 , .. are iid Ber(p) and let X be the number of trials needed until the first success.
Then X is said to have a geometric distribution with rate p (X ∼ G(p) ), and we have

Note: sometime the geometric is defined as the number of failures before the first success.
Clearly this is then X-1.
This defines a proper pdf:
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For the mean and variance we have
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2.1.5.1 ** Example**

(same as above) How many applicants will the company need to interview to be 90% sure to
be able to fill at least one of the five positions?
If we let Y be the number of trials until the first success (= an applicant is suitable) we have
Y ∼ G(0.1). Then
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In general the geometric rv. is a model for “lifetimes” or “times until failure” of components,
that is for the number of time periods until a component fails. But how do we know in real
live whether the geometric might be a good model for a specific case? The next theorem
helps:
Theorem
Say X is a discrete rv. on {1,2,3,..} Then
P(X>k)=P(X>k+j|X>j) for all k and j iff X ∼ G(p)
Note P(X>k)=P(X>k+j|X>j) for all k and j is called the memoryless property, and the
theorem states that for discrete rv.s on the positive integers this property is unique to the
geometric rv.
proof
Say X ∼ G(p), then

P (X > k) = 1− P (X ≤ k) =

1−
k∑
i=1

pqi−1 = 1− p
k−1∑
i=0

qi =

1− p(1− q(k−1)+1)/(1− q) = qk

and then
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now assume X ∈ {1, 2, ..} has the memoryless property. Let the event A={X>1}, then

So the geometric is a reasonable model if it is reasonable to assume an experiment has the
memoryless property.

2.1.5.2 Example

Say we want to model the number of days until a light bulb burns out. Is the geometric
a good model for this? The question is whether the number of days has the memoryless
property?

2.1.5.3 Example

Say we want to model the number of years until a person dies. Is the geometric a good model
for this? The question is whether the number of years has the memoryless property?

2.1.6 Negative Binomial Distribution

Despite the different name this is actually a generalization of the geometric, namely where X
is the number of trial needed until the rth success. (X ∼ NB(p, r)).
The pdf is given by
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because we have to have r successes (with probability p each) and k-r failures (with probability
q) Moreover the r -1 success (before the last) one can be at any point during the k-1 trials
(before the last one).
As an alternative definition one often uses the number of failures until the first success,
Y=X-r. With this we find

Does this define a proper pdf? To show this takes a bit of work. First need an extension of
binomial coefficients:

for any α ≥ k and 0 otherwise.
Next we need the Taylor series expansion of (1 + x)α at x=0:
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This is called the Binomial series and is correct for any (even complex) number α. Notice
that it is of course a generalization of the Binomial formula for non-integer powers:

Finally
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and here we also have an explanation for the name “negative binomial”!
Theorem
Let Y1, .., Yr ∼ G(p) and independent, the X = Y1 + ..+ Yr ∼ NB(p, r).
proof (by induction)
if r=1 X=Y1 , so

say assertion is true for r, then
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Note that we don’t need to worry about the constant term, it has to be what it needs to be
to make this a proper random variable!
We also find

Theorem:
Say X ∼ Bin(n,p) and Y ∼ NB(p,r). Then FX (r-1)=1-FY (n)
proof (probabilistic)
FX (r-1) = P(X<r) is the probability of less than r successes in n trials
1-FY (n) = P(Y>n) is the probability of not having r successes in n trials
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same thing!

2.1.7 Hypergeometric Distribution

One of the problems with the use of the Binomial distribution in real life is that most sampling
is done in such a way that the same object can not be selected a second time.

2.1.7.1 Example

In a survey of 100 likely voters, 45 said they would vote for party AA.
Obviously this “selecting” would not allow the same person to be chosen twice.
If the selection is done without repetition, we get to the hypergeometric distribution. Of
course, if the sample size is small compared to the population size the probabilities are almost
the same.
In general the hypergeometric can be described as follows:
Consider an urn containing N+M balls, of which N are white and M are black. If a sample
of size n is chosen at random and if X is the number of white balls chosen, then X has a
hypergeometric distribution with parameters (n,N,M).
X ∼ HG(n,N,M)
We have

P (X = k) =

(
N
k

)(
M
n−k

)
(
N+M
n

)
because there are

(
N
k

)
ways to select k objects from N without repetition and without order.

Likewise there are
(
M
n−k

)
selections of n-k out of M and

(
N+M
n

)
selections of n objects from

N+M.

Does this define a proper pdf? This is a consequence of
Theorem (Vandermonde)
For any N,M, n ≥ 0 we have

(
N +M

n

)
=

n∑
k=0

(
N

k

)(
M

n− k

)

We will give two very different proofs of this identity:
proof (Combinatorial)
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Consider an urn with N white and M black balls. We randomly select n of these without order
and without repetition. How many different arrangements are there? Clearly the answer is(
N+M
n

)
How many arrangements are there if we want k white balls (and therefore also have to have
n-k black balls)? Again, clearly the answer is

(
N
k

)(
M
n−k

)
but the first selection is the the same

as the second, where we allow k to be any number between 0 and n, and the identity follows.
proof (Algebraic)
First note that

where we define ai =0 for i=N+1,..,N+M and bj =0 for j=M+1,..,N+M.
Now using the binomial formula we have
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and the identity follows from the fact that if two polynomials are equal for all x they have to
have the same coefficients.
This identity is named after the French mathematician [Alexandre Theofile Vander-
monde](https://en.wikipedia.org/wiki/Alexandre-Th%C3%A9ophile_Vandermonde (1772),
famous mostly for his matrix. It really should be named after Zhu_Shijie who invented it
much earlier in 1303.

To find the expected value of X we need the following identity:
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similarly we find

Note that as the population size gets large we find if
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so as one would expect the mean and the variance approach those of the Binomial distribution
as the population size gets large. As a ballpark one uses the hypergeometric if the sample
size is more than 10% of the population size.

2.1.7.2 Example

say our company has a pool of 100 candidates for the job, 10 of whom are suitable for hiring.
If they interview 50 of the 100, what is the probability that they will fill the 5 positions?
Here X ∼ HG(50, 10, 90) and so
P (X ≥ 5) = 1− P (X ≤ 4) = 1− 0.3703 = 0.6297
using the binomial distribution for our example we would have found P (X ≥ 5) = 0.5688,
quite different from the hypergeometric. On the other hand if our candidate pool had 1000
applicants, 100 of whom are suitable we would have found P (X ≥ 5) = 0.5731.

2.1.8 Poisson Distribution

A random variable X is said to have a Poisson distribution with rate λ, (X ∼ P (λ)) if

123



this defines a proper pdf:

for the mean and variance we have

One way to visualize the Poisson distribution is as follows:
Theorem
X ∼ Bin(n,p) such that n is large and p is small. That is, the number of trials is large but
the success probability is small. Then X is approximately Poisson with rate λ = np.
proof 1
let B ∼ Bin(n,p) and M ∼ Pois(λ). A well-known result in calculus is
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proof 2

so the approximation works for x=0, and then the recursion relationship assures that it works
for all x as well.

2.1.8.1 Example

say you drive from Mayaguez to San Juan. Assume that the probability that on one kilometer
of highway there is a police car checking the speed is 0.04. What is the probability that you
will encounter at least 3 police cars on your drive?
If we assume that the police cars appear independently (?) then X = # of police cars
∼ Bin(180, 0.04), so
P (X ≥ 3) = 1− pbinom(2, 180, 0.04) =
1− 0.0234 = 0.9766
One the other hand X is also approximately P(180*0.04) = P(7.2) and so
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P (X ≥ 3) = 1− ppois(2, 7.2) = 1− 0.0254 = 0.9746
The main questions with approximations are always:
1) how good is it?

2) when does it work?

Here is another connection between the Poisson and the Binomial Distribution. To proof it
we first need
Theorem
Let X ∼ Pois(λ), Y ∼ Pois(µ) and X and Y independent. Then X + Y ∼ Pois(λ+ µ).
proof
using moment generating functions we have

Now:
Theorem Let X ∼ Pois(λ), Y ∼ Pois(µ) and X and Y independent. Then
X|X + Y = n ∼ Bin(n, λ/(λ+ µ))
proof :
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2.1.8.2 Example

say the number of men and women that come into a store during one day have Poisson
distributions with rates 20 and 50, respectively. If a total of 100 came to the store today,
what is the probability that at most 25 were men?

Of course the assumption that men and women come to the store independently is probably
questionable!

2.1.9 Multinomial Distribution

Let p1 ,..,pn be numbers with 0 ≤ pi ≤ 1 and ∑
pi = 1. Then the rv (X1 ,..,Xn ) has a

multinomial distribution with m trials if

We write (X1, .., Xn) ∼M(m, p1, .., pn)
That this defines a proper pdf follows from the multinomial theorem for 1 = (p1 + ..+ pn)m

2.1.9.1 Example

we roll a fair die 100 times. Let X1 be the number of “1”s, X2 be the number of “2”s,.., X6
be the number of “6”s. Then
(X1, .., X6) ∼M(100, 1/6, .., 1/6)
Note: if n=2 we have x1 +x2 =m, or x2 =m-x1 and p1 +p2 =1, so
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and so X1 ∼ Bin(m, p1). The multinomial distribution is therefore a generalization of the
binomial distribution where each trial has n possible outcomes.
Theorem
Let (X1, .., Xn) ∼M(m, p1, .., pn). Then the marginal distribution of X~k‘ is Bin(m,pk )
proof :
let’s denote by
Bx = {(x1, .., xk−1, xk+1, .., xn) : x1 + ..+ xk−1 + xk+1 + ..+ xn = m− x}
then:

where the sum is 1 because we summing over all possible values of a multinomial rv
(Y1, .., Yn−1) ∼ M(m − x, p1/(1 − pk), .., pn/(1 − pk), or because we use the multinomial
theorem from calculus.
From this it follows that E[Xk ]=mpk and Var(Xk)=mpk (1-pk )

Next we will find the moment generating function of a multinomial. For this we need a
generalization of the mgf for random vectors:
ψ(t1, .., tn) = E[exp(t1X1 + ..+ tnXn)]
then
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Theorem
Let (X1, .., Xn) ∼M(m, p1, .., pn). Then the conditional distribution of
(X1, .., Xn)|Xk = x ∼M(m− x, p1/(1− pk), .., pn/(1− pk)
proof
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Theorem
Let (X1, .., Xn) ∼M(m, p1, .., pn). Then
Cov(Xi, Xj) = −mpipj
proof

we will use the mgf. Note that one can show for a random vector that
the fact that the covariance is always negative makes sense because if X1 is larger Xj is likely
to be smaller as the sum of the Xk ’s has to be n.
Calculating the correlation we get
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and the somewhat surprising fact that the correlation does not depend on n!

2.2 Continuous Distributions

2.2.1 Uniform Distribution

X is said to have a uniform distribution on the interval [A,B] if

2.2.2 Exponential Distribution

X is said to have an exponential distribution rate λ if
f(x) = λe−λx, x > 0, λ > 0
we write X ∼ Exp(λ)
Note
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The “trick” we used here, namely showing a result for a special case (λ = 1) and then doing
the general case, is often a good idea! Let’s use it again to find the moment generating
function:
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We have previously talked about the memoryless property, and the fact that among discrete
distributions on N it is unique to the geometric rv. Now we have
Theorem
X has an exponential distribution iff X is a positive continuous r.v. and
P (X > s+ t|X > s) = P (X > t)foralls, t > 0
proof :
Assume X ∼ Exp(λ). Then
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on the other hand assume X is continuous with density f and
P (X > s+ t|X > s) = P (X > t)foralls, t > 0
Above we saw that this implies
P (X > s+ t) = P (X > s) ∗ P (X > t)
Let h(x) = P(X>x) and let ε > 0. Note h(0) = P(X>0) = 1 because X is positive.

and so we see X ∼ Exp(β)

2.2.3 The Gamma Distribution

Recall the Gamma function:
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The Gamma function is famous for many things, among them the relationship
Γ(α + 1) = αΓ(α)
which follows from:

This implies
Γ(n) = (n− 1)!
so the Gamma function is a continuous version of the factorial. It has many other interesting
properties, for example
Γ(1/2) =

√
π

Now X is said have a Gamma distribution (X ∼ Γ(α, β)) with parameters (α, β) if
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By definition we have X>0, and so the Gamma is the basic example of a r.v. on (0,∞), or a
little more general (using a change of variables) on any open half interval.
Note if X ∼ Γ(1, β) then X ∼ E(1/β).
Another important special case is if X ∼ Γ(n/2, 2), then X is called a Chi-square r.v. with n
degrees of freedom, denoted by X ∼ χ2(n).
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2.2.3.1 Example

Find the kurtosis of X where X ∼ Exp(λ)

so the kurtosis is greater than 0, therefore an exponential is leptocurtic.
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There is an important connection between the Gamma and the Poisson distributions:
Theorem
if X ∼ Γ(n, β) and Y ∼ Pois(x/β) then
P (X ≤ x) = P (Y ≥ n)
proof (by induction)
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2.2.4 The Beta Distribution

X is said to have a Beta distribution with parameters α and β (X ∼ Beta(α, β)) if
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it is easy to calculate the moments of a Beta distribution:

The mgf is given by
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Note that the Taylor expansion of the moment generating function is completely general.
By definition we have 0<X<1, and so the Beta is the basic example of a r.v. on [0,1], or a
little more general (using a change of variables) on any open finite interval.
Special cases:
1. Beta(1,1) = U[0,1]

2. X ∼ Beta(p, 1) then
f(x) = cxp−1(1− p)1 = cxp−1 = pxp−1, 0 < x < 1, p > 0
and for this pdf we have E[X]=p/(p+1), Var[X]=p/[(p+1)2(p+2)]

Let’s go back to the Gamma distribution for a moment. Say X and Y are independent Γ(α, β)
and let Z=X+Y. Then
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so we see that Z ∼ Γ(2α, β). In other words, the sum of independent Gamma r.v.’s is again
Gamma.
Some special cases:
1. X,Y iid Exp(λ) then X + Y ∼ Γ(2, λ) (and not exponential)
2. X ∼ χ2(n), Y ∼ χ2(m) and X ⊥ Y , then X + Y ∼ χ2(n+m).

Previously we found a curious relationship between the Poisson and the gamma distributions.
There is a similar one between the Beta and the Binomial:
Theorem
if X ∼ Beta(n,m) and Y ∼ Bin(n+m− 1, 1− x) then
P (X ≤ x) = P (Y < m)
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proof (by induction on m)

2.2.5 Cauchy Distribution

A rv. X has a Cauchy distribution if
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As we saw before the Cauchy has one interesting property:
E[|X|] =∞
so the Cauchy has no mean (and therefore no moments at all). The reason is that it has
thick “tails”, that is the probability of observing a large value (+ or -) is large.

2.3 The Normal (Gaussian) Distribution

2.3.1 Normal Distribution

X is said to have a normal distribution with mean µ and variance σˆ2 (X ∼ N(µ, σ)) if it
has density

f(x) = 1√
2πσ2

exp
{ 1

2σ2 (x− µ)2
}

If µ = 0 and σ = 1 it is called a standard normal, and often denoted by Z instead of X.
Careful: some papers and textbooks define the normal as X ∼ N(µ, σ2), that is they use
the variance instead of the standard deviation.
Theorem
a. Z ∼ N(0, 1) then X = µ+ σZ ∼ N(µ, σ)
b. X ∼ N(µ, σ), then Z = (x− µ)/σ ∼ N(0, 1)

proof
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one consequence of this theorem is that we can often do a proof for the standard normal, and
then quickly generalize it to all normals.
Theorem
show that the function above is indeed a pdf for all µ and σ > 0.
proof

• f(x) ≥ 0 for all x
• first we show this for a standard normal:

the change of variables above is of course called the change to polar coordinates.
the general case now follows easily:

P (−∞ < X <∞) =
P (−∞ < (X − µ)/σ <∞) =
P (−∞ < Z <∞) = 1

2.3.1.1 Example

we previously said that Γ(1/2) =
√
π. Here is a proof that uses the standard normal

distribution:
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Theorem
Say X ∼ N(µ, σ) then
1. E[X] = µ and V ar(X) = σ2

2. ψ(t) = exp(µt+ σ2t2/2)

3) P (X > µ) = P (X < µ) = 1/2 and P (X > µ+ x) = P (X < µ− x)

4)

proof
1.
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2.
Let Z be a standard normal, then

now let X ∼ N(µ, σ), then

ψX(t) =
E[exp(tX)] =
E[exp(t(µ+ σZ)] =
E[exp(µt+ σtZ)] =
E[exp(µt) exp(σtZ)] =
exp(µt)E[exp(σtZ)] =
exp(µt)ψZ(σt) =
exp(µt) exp((σt)2/2) =
exp(µt+ σ2t2/2)

3. first we show P (X > µ+ x) = P (X < µ− x):
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now with x=0 it follows that
P (X > µ) = P (X < µ) = 1− P (X > µ), and so P (X > µ) = 1/2.
4.
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and this last integral requires numerical integration because the cdf of a normal does not
exist explicitly. At least we have shown that the probabilities are independent of µ and σ.

2.3.1.2 Example

We have seen before that the Cauchy rv. has very thick tails, that is the probabilities P(X>t)
are large. On the other hand the normal distribution has very thin tails. There is also a
distribution that is somewhat in between, called the t distribution with n degrees of freedom.
It has density
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For n=1 this is the Cauchy, as n→∞ it approaches the standard normal
Theorem
Say X ∼ N(µ, σ), Y ∼ N(ν, τ) and X and Y are independent. Then X+Y and X-Y are also
normal.
proof

ψX+Y (t) =
ψX(t)ψY (t) =
exp(µt+ σ2t2/2) exp(νt+ τ 2t2/2) =
exp((µ+ ν)t+ (σ2 + τ 2)t2/2)

and so X + Y ∼ N(µ+ ν, σ2 + τ 2)

ψ−Y (t) =
E[exp(t[−Y ])] =
E[exp((−t)Y )] =
exp(ν(−t) + τ 2(−t)2/2) =
exp(−νt+ τ 2t2/2) =

and so −Y ∼ N(−ν, τ 2)
finally X − Y ∼ N(µ− ν, σ2 + τ 2)
‘

Because of the importance of the normal distribution a number of theorems have been found
to characterize it. Here is one such result:
Theorem (Bernstein)
If X ⊥ Y and X + Y ⊥ X − Y , then X and Y are normal.
proof
We will do this proof through a couple of lemmas:
Lemma
If X and Y are iid normal, then X+Y and X-Y are also independent normal we have just
shown that X+Y and X-Y are normal. Now
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Cov(X-Y,X+Y) =
Cov(X,X) + Cov(X,Y) + Cov(-Y,X) + Cov(-Y,Y) =
Var(X) + Cov(X,Y) - Cov(Y,X) -Var(Y) = 0
and as we shall see in a little bit this implies X-Y and X+Y are independent.
Lemma
If X and Z are independent such that Z and X+Z are normal, then X is normal as well
because

so the mgf of X is of the form
ψ(t) = exp{µt+ 1

2τt
2}

so X ∼ N(µ,
√
τ)

Lemma
If X, Z are independent random variables and Z is normal, then X+Z has a non-vanishing
probability density function which has derivatives of all orders.
wlog assume Z ∼ N(0, 1/

√
2). Consider

f(x) = E[exp(−(x−X)2]
Then f(x) 6= 0 for each x because exp(-(x-X)2>0. Moreover all derivatives exist and are
bounded uniformly ( xkexp(-x2) has a finite minimum and maximum for all k), and therefore
f has derivatives of all orders.
Now
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so f is the density of X+Z.
Now for the finish of Bernstein’s theorem: First we change notation and use rv’s X1 and X2 .
So we know X1 and X2 are independent and so are X1 +X2 and X1 -X~2‘.
Let Z1 and Z2 be iid normal rv’s, independent of X1 and X2. Then define rv’s
Yk = Xk +Zk

By the third lemma each of the Yk’s have a smooth non-zero pdf.
The joint density of the (Y1 +Y2, Y1 -Y2 ) is
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and because Y1 +Y2 and Y1 -Y2 are independent by assumption this factors into two functions,
one of x and the other of y, say a(x) and b(y).
Consider the functions
Qk (x) = log(fk (x))
then the Q’s are twice differentiable and we have

Q1(x+ y) +Q2(x− y) =
log(f1(x+ y)) + log(f2(x− y)) =
log(f1(x+ y)f2(x− y)) =
log(2a(2x)b(2y)) =
log 2 + log a(2x) + log b(2y)

so

156



d

dx
{Q1(x+ y) +Q2(x− y)} =

d

dx
{log 2 + log a(2x) + log b(2y)} =

d

dx
{log a(2x)}

d2

dxdy
{Q1(x+ y) +Q2(x− y)} =

d

dy

d

dx
{log a(2x)}) = 0

but also
d2

dxdy
{Q1(x+ y) +Q2(x− y)} = Q′′1(x+ y)−Q′′2(x− y)

and so
Q′′1(x+ y) = Q′′2(x− y)
taking x=y we have
Q′′1(2x) = Q′′2(0) = const
and taking x=-y we have
Q′′2(2y) = Q′′1(0) = const
so
Qk(x) = akx

2 + bkx+ ck

and
fk(x) = exp(akx2 + bkx+ ck)
as a pdf fk has to be integrable, so ak < 0, and by integrating fk over R we find ck =
−1

2 log(2πak). Therefore fk is a normal density, and so Y1 and Y2 are normal.
Now Y1 and Y2 are iid normal and the independence of Y1 +Y2 and Y1 -Y~2‘ follows from
the first lemma.
The theorem then follows from the second lemma.

2.3.2 Bivariate Normal RV

Definition
Let µ1, µ2 ∈ R, σ1, σ2 ∈ R+ and ρ ∈ [−1, 1], then the random vector (X,Y) is said to have a
bivariate normal distribution if

Theorem
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a. Let (X,Y) be a bivariate normal. Let U = (X − µ1)/σ1 and V = (Y − µ2)/σ2. Then
(U,V) is a bivariate normal random vector with

µU = µV = 0, σU = σV = 1 and ρUV = ρ

b. Let (U,V) be a bivariate normal random vector with µU = µV = 0, σU = σV = 1. Let
X = µ1 + σ1U and Y = µ2 + σ2V . Then (X,Y) a bivariate normal with parameters
µ1, µ2, σ1, σ2 and ρ

proof
follows from a simple application of the transformation theorem
Theorem
Let (X,Y) be a bivariate normal. Then X ∼ N(µ1, σ1).
proof
we will do this under the assumption µ1 = µ2 = 0 and σ1 = σ2 = 1. The proof of the general
case is exactly the same, only the arithmetic is a bit ugly.

Theorem
Let (X,Y) be a bivariate normal. Then Cor(x,y) = ρ.
proof
again we will do this under the assumption µ1 = µ2 = 0 and σ1 = σ2 = 1.
We already have E[X]=E[Y]=0. Now
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and so Cor(X,Y) = Cov(X,Y)/[sd(X)sd(Y)] = E[XY] = ρ.
Theorem
let X and Y be two normal rv’s, then
X ⊥ Y iff Cor(X,Y)=0
proof
one direction is always true. For the other we have if ρ = 0

2.3.2.1 Example

the joint distribution of two normal rv’s need not be bivariate normal
Say X ∼ N(0, 1) and let Y=-X is |X|>1 and Y=X if |X| < 1, then
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so Y ∼ N(0, 1) as well, but for example f(-2,-2)=0.
Theorem
say (X,Y) is a bivariate normal rv, then

a. Z = X + Y ∼ N(µ1 + µ2,
√
σ2

1 + σ2
2 + 2σ1σ1ρ))

b. Z = X|Y = y ∼ N(µ1 − ρ(σ1/σ1)(y − µ2), σ1

√
1− ρ2))

proof
a. is obvious: if (X,Y) is a bivariate normal rv, then X ∼ N(µ1, σ1), Y ∼ N(µ2, σ2) and

Cor(x,y)=ρ. Therefore
X+Y has a normal distribution, E[X+Y] = µ1+µ2 and Var(X+Y) = Var(X)+Var(Y)+2Cov(X,Y)
= σ2

1 + σ2
2 + 2σ1σ2ρ.

b. assume µ1 = µ2 = 0 and σ1 = σ2 = 1, then

and so X|Y = y ∼ N(ρy,
√

1− ρ2)

2.3.3 Multivariate Normal RV

Let µ = (µ1, .., µn)T be a vector and Σ = [σij] be a symmetric positive semi-definite matrix
(ie xTΣx ≥ 0 for all x), then the random vector
X = (X1, .., Xn)T

has a multivariate normal distribution if it has joint density
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where |Σ| is the determinant of Σ.

2.3.3.1 Example

n=1
Σ = [a], xTΣx = ax2 ≥ 0 iff a ≥ 0
|Σ| = a,Σ−1 = 1/a, and

so a is the variance of X.

2.3.3.2 Example

n=2: we have a symmetric 2x2 matrix Σ
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then we want
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so in order for Σ to be positive semidefinite we need a, c ≥ 0 and |d| = |b/
√
ac| ≤ 1 or

|b| ≤
√
ac.

Inspired by the above calculation let’s write Σ as follows:

Note that this is just as general as before, with a = σ2
x , c = σ2

y and b = ρσxσy. Then
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so we have a bivariate normal.
Theorem
Say X has a multivariate normal distribution. Then
Z = ((X1 − µ1)/σ11, .., (Xn − µn)/σnn)T

has a multivariate normal distribution with mean vector µ=(0,..,0)T and variance-covariance
matrix diag[ σij ]. Then
Xi ∼ N(µi, σii)
b. cov(Xi, Xj) = σij

without proof
We have the following characterization of a multivariate normal distribution, in some ways a
generalization of Bernstein’s theorem:
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Theorem
Let X=(X1 ,..,Xn )T. Then X has a multivariate normal distribution if and only if every
linear combination t1X1 + ..+ tnXn has a normal distribution.
proof
one direction is obvious because the marginals of a multivariate rv are normal and the sum
of normals is normal. The other direction can be shown using mgf’s, where the mgf M of X
is given by

2.3.4 Theory of Errors

In real life almost any measuring device makes some errors. Some instruments are lousy and
make big ones, other instruments are excellent and make small ones. Example
You want to measure the length a certain streetlight is red. You ask 10 friends to go with
you and everyone makes a guess. Example
You want to measure the length a certain streetlight is red. You ask 10 friends to go with
you. You have a stopwatch that you give to each friend.
Clearly in the second case we expect to get much smaller errors.
Around 1800 Karl Friedrich Gauss was thinking about what one could say in great generality
about such measurement errors. He came up with the following rules that (almost) all
measurement errors should follow, no matter what the instrument:

• Small errors are more likely than large errors.
• an error of ε is just as likely as an error of −ε
• In the presence of several measurements of the same quantity, the most likely value of

the quantity being measured is their average.
Now it is quite astonishing that JUST FROM THESE THREE rules he was able to derive
the normal distibution!

3 Inequalities and Limit Theorems

3.1 Inequalities

Inequalities are very important in probability theory, both for the theory and for practical
applications.
We start with a lemma that has nothing to do with probability:
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Lemma
let a and b be any positive numbers, and let p and q be any positive numbers with 1/p+1/q=1.
Then

ap

p
+ bq

q
≥ ab

with “=” iff ap=bq

proof
fix b, and consider the function g with

so g has a minimum at ap-1=b. So

because (p− 1)q = p. This follows from
1/p+1/q=1 implies 1+p/q=p implies p/q=p-1.
Moreover the minimum of g is unique because g is convex for all a, so “=” holds iff ap-1=b,
which is the same as ap=bq.
Theorem (Holder’s Inequality)
Let X and Y be any two rvs, and let p and q be as above. Then

|E[XY ]| ≤ E[|XY |] ≤ (E[|X]p)1/p(E[|Y ]q)1/q

proof
The first “≤” follows from
−|XY | ≤ XY ≤ |XY |. For the second ≤ define
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This is actually a generalization of the Cauchy-Schwartz inequality we discussed earlier: if
p=q=1/2 we get

|E[XY ]| ≤ E[|XY |] ≤
√
E[X2]

√
E[Y 2]

These inequalities are stated here in terms of expectations, but they hold in general for sums
and integrals as well.
Some other useful cases are:
If we set Y=1 we get

E|X| ≤ E|X|p1/p, 1 < p <∞
For 1<r<p, if we replace |X| by |X|r, we get
E|X|r ≤ {E|X|pr}1/p

and writing s=pr (which implies s>r) we get
Liapunov’s Inequality
(E|X|r)1/r ≤ (E|X|s)1/s for 1 < r < s <∞

3.1.0.1 Example

If a rv X has a finite kth moment, it has a finite jth moment for all j ≤ k.
By Liapunovs inequality
E[|X|j] ≤ (E[|X|k])j/k <∞

The inequalities above are not really probability theory but are inequalities from real analysis.
Next we consider a new type of inequality true specifically in probability theory:
Theorem (Markov’s Inequality)
If X takes on only non negative values, then for any a>0
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Markov’s inequality implies what is perhaps the most famous inequality in probability:
Theorem (Chebyshev’s Inequality)
If X is a r.v. with mean µ and variance σ2, then for any k>0:

Theorem (Chernoff Bounds)
Let X be a rv with moment generating function ψ(t) = E[etX ]. Then for any a>0
P (X ≥ a) ≤ e−taψ(t) for all t>0
P (X ≤ a) ≤ e−taψ(t) for all t<0
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proof
For t>0

P (X ≥ a) =
P (etX ≥ eta) ≤
E[etX ]
eta

= e−taψ(t)

The proof for t<0 is similar.

As we know a random variable that has a moment generating function that is finite in an
open neighborhood of 0 has all its moments, that E[|X|k] <∞ for all k. So this is a rather
strong condition, and therefore leads to very good bounds.

3.1.0.2 Example

say Z ∼ N(0, 1), then

which is a very useful upper bound on the tail probabilities of a standard normal.

For the last inequality first recall
Definition
A function g is said to be convex if for all x and y and 0 < λ < 1
g(λx+ (1− λ)y) ≤ λg(x) + (1− λ)g(y)
Theorem (Jensen’s Inequality)
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For any rv X, if g is a convex function we have
Eg(X) ≥ g(EX)
proof
let l(x) be a tangent line to g(x) at the point g(EX). Write l(x)=a+bx for some a and b. Now
by the convexity of g we have
g(x) ≥ a+ bx

and so
Eg(X) ≥ E(a+ bx) = a+ bEX = l(EX) = g(EX)
Of course if g is a concave function, the -g is convex and we have
E[g(X)] = −E[−g(X)] ≤ −(−g(E[X]) = g(E[X])

3.1.0.3 Example

g(x)=x2 is convex, and so
EX2 ≥ (EX)2

which implies
V ar(X) = EX2 − E[X]2 ≥ 0

3.1.0.4 Example

If x>0 g(x)=1/x is convex, so E(1/X) ≥ 1/EX

3.2 Limit Theorems

3.2.1 Convergence Concepts

Say we have a sequence of numbers an . Then there is just one definition of a “limit”, namely
an → a iff for every ε > 0 there exists an nε such that |an − a| < ε for all n > nε.

3.2.1.1 Example

say an = (1 + 1/n)n. Show that an → e

Fix n, and let t be such that 1 ≤ t ≤ 1 + 1/n. Then
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so fix an ε > 0. Then if n > e/ε− 1 we have
|(1 + 1/n)n − e| < ε

and therefore
(1 + 1/n)n → e

Things already get a little more complicated if we go to sequences of functions. Here there
are two ways in which they can converge:

• Pointwise Convergence: fn(x)→ f(x) pointwise iff for every x in S and every ε > 0
there exists an nε,x such that |fn(x)− f(x)| < ε for all n > nε,x.

• Uniform Convergence: fn(x)→ f(x) pointwise iff for every x in S and every ε > 0
there exists an nε such that |fn(x)− f(x)| < ε for all n > nε.

and there is a simple hierarchy: uniform convergence implies pointwise convergence but not
vice versa.

3.2.1.2 Example

say fn(x) = 1 + x/n, x ∈ S = [A,B] where A<B, f(x)=1, then fn(x)→ f(x) uniformly.
|fn(x)− f(x)| = |1 + x/n− 1| =
|x/n| ≤ max(|A|, |B|)/n < ε

if n ≥ max(|A|, |B|)/ε

3.2.1.3 Example

say fn(x) = xn, S = [0, 1], f(x) = I1(x), then fn(x)→ f(x) pointwise but not uniformly.
say x<1 then |fn(x)− f(x)| = xn < ε for all n > nε,x = log(ε)/ log(x).
say x=1 then |fn(x)− f(x)| = 0 < ε for all n > nε,x = 1
but
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Now when we go to probabilities it gets a bit more complicated still. Say we have a sequence
of rv’s Xn with means µn and cdf’s Fn , and a rv X with mean µ and cdf F. Then we have:
Definition

• Convergence in Mean: Xn → X in mean iff µn → µ.
• Convergence in Quadratic Mean: Xn → µ in quadratic mean iff E[Xn]→ µ and
V ar(Xn)→ 0.

• Convergence in Lˆp: Xn → X in Lp iff E[|Xn −X|p]→ 0.
• Convergence in Distribution (Law) Xn → X in law iff Fn(x)→ F (x) pointwise for

all x where F is continuous.
• Convergence in Probability: Xn → X in probability iff for every ε >

0 limn→∞ P (|Xn −X| ≥ ε) = 0.
• Almost Sure Convergence: Xn → X almost surely iff for every ε > 0
P (limn→∞ |Xn −X| < ε) = 1.

3.2.1.4 Example

Let Xn have density fn(x) = nxn−1, 0 < x < 1 and let X be such that P(X=1)=1. Then
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so Xn → X in all the ways possible.

3.2.1.5 Example

Say Xn has density f(x) = n/(n+ 1)x1/n, 0 < x < 1 and X ∼ U[0,1]. Then
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so V ar[Xn] → 1/3 − (1/2)2 = 1/12 6= 0, so we don’t have convergence in quadratic mean.
We do have convergence in distribution, though:

How about convergence in probability? As stated here that can not be decided because we
would need the joint density of Xn and X. If they are independent Xn will not converge to X
in probability:
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3.2.2 Relationships between Convergences

Unfortunately there is no simple hierarchy between the different modes of convergence. Here
are some relationships:
Theorem
a. convergence in quadratic mean implies convergence in probability.
b. convergence in probability implies convergence in distribution. The reverse is true if the

limit is a constant.
c. almost sure convergence implies convergence in probability, but not vice versa.

proof:
a. convergence in quadratic mean implies that the limit is a constant, say µ. Then

b. say Xn → X in probability. We will do the proof in the case where say Xn and X are
continuous r.vs (so we need not worry about terms of the form P(X=x)). Now
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say Xn → c in law, then
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c. is done with a counter example: Let X ∼ U[0,1] and define

and so Yn → Y in probability.
However, for every x in [0,1] Yn (x)=0 infinitely often and Yn (x)=1 infinitely often, therefore
Yn does not converge to Y almost surely.
Theorem
If Xn → 0 in Lp then Xn → 0 in probability.
Note: Xn → X iff Xn −X → 0.
proof
Say Xn → 0 in Lp, and let g(x)=|x|p, then by Chebyshev’s inequality
P (|Xn| ≥ ε) ≤ E[|Xn|p)/εp → 0
and so Xn → 0 in probability.
Theorem (Slutsky)
Say Xn → X in distribution and g is any continuous function, then g(Xn) → g(X) in
distribution.
Lemma
From the above results, it is easy to show that if Xn → X in distribution and Yn → c in
distribution, then

• Xn + Yn → X + c in distribution.
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• XnYn → cX in distribution
which is the most common version of Slutsky’s theorem.
In loose terms, the theorem states that if a rv converges to a constant, then it essentially
behaves as a constant for addition and multiplication.
Note that the condition that Yn converge to a constant is necessary.

3.2.3 Almost Sure Convergence

Consider a number ω in [0,1], and let’s write the number using its decimal expansion as
ω = 0.x1x2x3...

Let Tn be the set of ω’s with xn >0 and xm =0 for m>n. Then Tn has finitely many numbers.
Let T be the set of ω’s with a terminating expansion, then
T = ∪nTn
and so T is countable. If we consider the game: pick a number in [0,1] at random, we therefore
have P(T)=0 because the total number of real numbers in [0,1] is uncountable!
Now let k be such that 0 ≤ k ≤ 9, and define ν(ω, n, k) to be the number of xi’s among the
first n digits in the expansion of ω with xi =k. Define (if it exists)

so φk(ω) is the long run relative frequency of the digit k in the expansion of ω.
Intuitively it seems obvious that φk(ω) = 1/10 for all k for “most” ω’s, but is actually very
simple to write down numbers for which this is not true: 0.1111. . . , 0.121212. . . etc.
Numbers for which φk(ω) = 1/10 for all k are called simply normal, and how many such
numbers there are was an open question in Number Theory for a long time.
Theorem (Borel)
Let N be the set of simply normal numbers. Then P(N)=1
proof (outline)
Let ζi be a random variable with P (ζi = k) = 1/10. Let the sequence of ζi’s be independent
and set
ω = 0.ζ1ζ2ζ3...

Let Sn = ζ1 + ...+ ζn , then by the strong law of large numbers
Sn/n→ 1/10 almost surely
therefore P (φk = 1/10) = 1 for all k, and finally
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Considered as a problem in probability theory this seems almost trivial. 100 years ago,
though, probability theory was considered a branch of mathematics hardly worthy of the
name, and indeed before the advent of modern probability theory in the 1930’s it was a
strange field of strange results. When Borel published his proof it came as a shock to many
mathematicians that this strange field could yield interesting results in the purest of fields,
Number Theory.
Note that although N has probability 1, Nˆc is still uncountable. For example, take all the
numbers in N and remove all the 0’s, then all these numbers are in Nc, but there are clearly
still uncountably many of these!
So, is π− e = 0.423310825131.. simply normal? Actually there does not exist a mathematical
theory even today that would allow us to answer that question easily.
Let’s consider the following generalization: Let k1..kr be a “block” of r consecutive numbers
in the expansion of ω, let ν(ω, n, k1..kr) be the number of times the block occurs in ω up to
n and let
φ(ω, k1..kr) = limn→∞ν(ω, n, k1..kr)/n
Consider the set A ∈ [0, 1] such that for ω ∈ A φ(ω, k1..kr) = 1/10r for all possible blocks
k1..kr.
Now the same reasoning as above shows that P(A)=1.
A number for which this is true not only for any r but also if we change from base 10 to any
other base is called normal.
Consider what this to imply: Take your name, “code” it into a string of numbers. Pick a real
number ω at random, then with probability 1 somewhere in the extension of that number
you will find your name!
It gets weirder:

• you will not find it it just once but over and over again.
• let x be any real number and let ε > 0, then this not only true for the interval [0,1] but

also for the interval [x, x+ ε]
• It does not matter how large r is! Take the complete works of Shakespeare, they are in

there too!
Is this really true? Our math seems to say yes, but so far no direct prove has been done.
To read more about normal numbers go here: Normal Number
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3.2.4 Laws of Large Numbers

Theorem (Weak Law of Large Numbers WLLN)
Let X1, X2, ... be a sequence of independent and identically distributed (iid) r.v.’s having
mean µ. Then X̄ converges to µ in probability.
proof (assuming in addition that V (Xi) = σ2 <∞)

so X̄ → µ in quadratic mean and therefore in probability.

It is best to think of this (and other) limits theorems not as one theorem but as a family of
theorems, all with the same conclusion but with different conditions. For example there are
weak laws even if the Xn’s are not independent, don’t have the same mean and don’t even
have finite standard deviations.
This theorem forms the bases of (almost) all simulation studies: say we want to find a
parameter θ of a population. We can generate data from a random variable X with pdf f(x|θ)
such that Eh(X) = θ. Then by the law of large numbers

Theorem (Strong Law of Large Numbers SLLN)
Let X1, X2, ... be a sequence of independent and identically distributed (iid) r.v.’s having
mean µ. Then X̄ converges to µ almost surely.
proof needs some measure theory, can be found in most standard textbooks

3.2.4.1 Example

in a game a player rolls 5 fair dice. He then moves his game piece along k fields on a board,
where k is the smallest number on the dice + largest number on the dice. For example if his
dice show 2, 2, 3, 5, 5 he moves 2+5 = 7 fields. What is the mean number of fields θ a player
will move?
To do this analytically would be quite an exercise. To do it via simulation is easy. Using R
we can this as follows:
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x <- matrix(sample(1:6,
size=5*10^5,
replace=TRUE), nrow=5)

z <- apply(x, 2, min) + apply(x, 2, max)
round(mean(z), 1)

## [1] 7

Theorem (Weierstrass Approximation Theorem)
Let f be a continuous function on [0,1], and let ε > 0. Then there exists a polynomial p such
that
|f(x)− p(x)| < ε for all x ∈ [0, 1]
Note that this theorem is from real analysis, it has nothing what so ever to do with probability
theory. It is actually a special (early) version of one of the most famous theorems in Real
Analysis, the Stone-Weierstrass theorem.
proof
We will consider polynomials of the form

which are called Bernstein polynomials after Sergei Bernstein. Note their connection to the
binomial distribution as well as the Beta distribution.
We will show that for any ε > 0 there exists an n(ε) such that
|f(x)− pn(ε)(x)| < ε for all x ∈ [0, 1].
For each x, consider a sequence of Bernoulli trials {Xn} with success probability x, and let
Sn = ∑n

k=1 Xk. We know that Sn ∼ Bin(n, x), so that

Sn is a sum of independent random variables with a finite variance, so by the weak law of
large numbers
Sn/n→ E[f(x)] = f(x)
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in probability, and we have shown pointwise convergence of p_n (x) to f(x). It remains to
show uniform convergence. Let δ > 0, then

where (*) follows from the triangle inequality |a+ b| ≤ |a|+ |b|.
Now f is continuous on a compact interval, so f is uniformly continuous. Therefore for
any ε > 0 there exists a δ > 0 (independent of x and y ) such if |x − y| < δ we have
|(f(x)− f(y)| < ε/2.
With this choice of δ the second term above is bounded by ε/2.
On the other hand again using the triangle inequality and the fact that [0,1] is a compact set
we have
|f(x)− f(y)| ≤ |f(x)|+ | − f(y)| ≤
2 max |f |, 0 ≤ x ≤ 1 =: M <∞
and so the first term is bounded above by MP (|Sn/n− x| > δ)
Finally we have E[S~n‘ ]=nx and V ar(Sn) = nx(1− x) ≤ n/4 for 0 ≤ x ≤ 1.
By Chebyshev’s inequality we have

P (|Sn/n− x| > δ) ≤
V ar(Sn)/δ2 =
nx(1− x)/(δ2n2) ≤
1/(4δ2n)

and so we have bounded the first term above as well.
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3.2.5 Convergence of Series

Let {Xn;n = 1, 2, ..} be a sequence of random variables. Let Sn = X1 + ..+Xn. What can
be said about the convergence of such a series? The most famous result is
Theorem (Kolmogorov’s Three Series 1929)
Let {Xn} be independent and define for some fixed A>0 a random variable Yn as Yn=Xn if
|X n | ≤ A and 0 otherwise. (Essentially, Yn is Xn truncated at ±A).
Then the series ∑Xn converges almost surely if and only if the following three series converge:

3.2.5.1 Example

As we know∑ 1/n = 1 + 1
2 + 1

3 + 1
4 + ... =∞

and∑(−1)n+1/n = 1− 1
2 + 1

3 −
1
4 + ... = log(2) <∞.

How about something in between, namely if in each term of the sum we choose -1 with
probability p and 1 with probability 1-p? That is let Zn ∼ Ber(p), and Xn = (−1)Zn/n.
In the three-series theorem let’s take A=1, then Yn = Xn , and the sum in 1) is 0.
For 2) we have

and so the sum can only converge if p=1/2. To see whether it
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really does we need to check 3):

and so indeed the sum converges almost surely

3.2.5.2 Example

and so this random sum does not converge almost surely, although the ’fixed-sign" sum∑(−1)n/
√
n does.

3.3 Central Limit Theorems

Recall: a random variable X is said to be normally distributed with mean µ and variance σ2

if it has density:
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We use the symbol Φ for the distribution function of a standard normal r.v., so

Let X1, X2, .. be a sequence of r.v.’s with means E[Xi] = µi and sd(Xi) = σi. Let X̄n be the
sample mean of the first n observations. Then a central limit theorem would assert that

for all x, or that this standardized sum converges to a standard normal in distribution.
Note that plural “s” in the title. As with the laws of large number there are many central
limit theorems, all with different conditions on
a. dependence between the Xi ’s

b. µi’s

c. σi’s
as a rough guide we have to have some combination of
a. not to strong a dependence

b. µi → µ finite

c. σi goes neither to 0 nor to ∞ to fast

The version of the CLT for Bernoulli rv’s is famous all by itself, it is called the DeMoivre-
Laplace theorem. It was the first CLT with a rigorous proof.
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Theorem (DeMoivre-Laplace)
let {Xn} be independent rv’s with Xi ∼ Ber(p). Let Sn = ∑n

i=1 Xi and let Z ∼ N(0, 1) then

in distribution.
The theorem was proven by Abraham de Moivre in 1738 for the case p=1/2, and generalized
to p 6= 1/2 by Pierre-Simon Laplace in his famous book Theorie Analytique des Probabilites,
published in 1812.
proof
We begin by showing that if for a large n we let k be in the neighborhood of np, then

We will make use Sterling’s formula for n!:

Now
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Define
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and then
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and so we have the first term in the expression in the theorem.
Next

where the last expression follows from the definition of x.

191



Next we will use the Taylor expansion of log(1± x), which says if x is close to 0 then
log(1± x) ≈ ±x− x2/2
so

where we use the fact that as n→∞ x→ 0.
Finally we can show that

in distribution. For this let
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and we are done!
Notice that the proof here is still incomplete in two ways: first we did not discuss the
remainder term of the Taylor polynomial and second we should have been more precise about
the as n→∞ x→ 0 part. For a truly rigorous proof see for example the following derivation
by Steven Dunbar

3.3.0.1 Example

For example say p=0.5 and x=1.0, then

the following graph shows these probabilities together with Φ(1) for n=1:1:500:
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Here is the most basic version of a general CLT:
Theorem (Liapunov 1901)
{Xn} are independent and identically distributed with mean µ and standard deviation σ.
Moreover the mgf of Xn exists in an open neighborhood of 0. Then

for all x ∈ R.
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proof
We will show that the mgf’s of

√
n(X̄n − µ)/σ converge to the mgf of a standard normal rv.

Let Yn = (Xn − µ)/σ, then
√
n(X̄n − µ)/σ = 1/

√
n
∑
Yi

so

We now expand this into a Taylor series:

because EY0=E1=1, EY1=0 and EY2=1.
An application of Taylor’s theorem shows the remainder term
nR(t/

√
n) goes to 0 as n→∞. So

where we use a well-known lemma from real analysis: if an → a, then (1 + an/n)n → ea.

3.3.0.2 Example

Maybe the most important quantity in Statistics is the sample mean X̄ = 1/n∑Xi . Here
is an example: say the ages of people in a town have some distribution with mean 31.37 and
standard deviation 12.34. If we randomly select a person, what is the probability that person
is over 35 years old?
We have a rv X with µ = 31.37 and σ = 12.34. We want P(X>35.0) but we don’t know the
density of X, so there is no way to do this.
Let’s say we could sample 25 people, what is the probability that their mean age is over 35?
Now we want
P (X̄ > 35.0)
and we have
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3.3.0.3 Example

Say we want to do a mail survey, that is we send letters with questionnaires to randomly
selected people and hope they fill it out and send it back. From long experience it is known
that such surveys have a “return rate” of about 25%, that is only 1 in 4 people send their
survey back. How many surveys do we need to send out to be 99% sure to get more than 100
back?
Say we send out n questionnaires. Let the rv X be the number of questionnaires we get back,
then X ∼ Bin(n, 0.25). We need to solve the equation P(X>100) = 0.99.
How do we find n? Note that
µX = np = 0.25n and
σX = √npq =

√
n0.25× 0.75 = 0.433

√
n

and so X ∼ N(0.25n, 0.433
√
n)

We need n such that
0.99 = P (X > 100) = 1− P (X ≤ 100)
or
P (X ≤ 100) = 0.01
so

and so
(100− 0.25n)/(0.433

√
n) = Φ−1(0.01) = −2.326

now:
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which gives either n=(51.0144-10.12)/0.125=327 or n=(51.0144+10.12)/0.125=489.
So the quadratic equation gives us two possible solutions, so let’s check which one is right.
We find
Φ((327− 100)/0.25) = 0.9906
Φ((489− 100)/0.25) = 0.0103
so we see n=489 is the correct answer.
This solution is quite general. Say this company sends out questionnaires all the time, but
with different return rates p, different desired number of returns m and a different probability
pm of at least m returns. Repeating the above calculation for this general case we find

As we saw above, the CLT is really a family of theorems, all with the same conclusion but
with different assumptions. In fact, there are probably a 1000 different CLT’s! Here is what
is probably the most famous of them:
Theorem (Lindeberg-Feller 1922)
let Xn be independent random variables with E[Xn ]=0 and Var(Xn )=σ2

n <∞. Let
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then if
Λn(ε)→ 0 as n→∞ for any ε > 0, Sn/sn converges to a standard normal in distribution.
Note: The condition on Λn(ε) of the theorem is known as the Lindeberg condition. Feller
showed that it is in some sense not only necessary but also sufficient. In that sense it is the
ultimate CLT for independent rv’s.

3.3.0.4 Example

Say Y1 , Y2 ,..iid with mean µ and sd σ. Set Xi =Yi -µ. Now
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but the left term converges to σ2, so the right term has to converge to 0.

3.3.0.5 Example

The CLT has found applications in just about any field of mathematics or science. Here is an
application in number theory:
Erdos-Kac CLT
Say we pick an integer at random from {1,2,..,n}. Then the integer has about log log(n) +
Φ(
√

log log(n)) prime divisors.

In all approximation theorems like the central limit theorem a major issue is always how
good the approximation is for finite n, that is in a specific case how far we still are from the
limit. The following theorem gives some answers:
Theorem (Berry-Esseen)
Let X1, X2, .. be iid rv with E[X1] = 0, V ar(X1) = σ2 and E[|X1|3] = ρ <∞, then if Fn is
the cdf of

√
nSn/σ we have
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Calculated values of the constant C have decreased markedly over the years, from the original
value of 7.59 by Esseen (1942), to 0.7882 by van Beek (1972), then 0.7655 by Shiganov (1986),
then 0.7056 by Shevtsova (2007), then 0.7005 by Shevtsova (2008), then 0.5894 by Tyurin
(2009), then 0.5129 by Korolev & Shevtsova (2009), then 0.4785 by Tyurin (2010). The
detailed review can be found in the papers Korolev & Shevtsova (2009), Korolev & Shevtsova
(2010). The best estimate as of 2012 is C=0.4748.

3.3.0.6 Example

say Zi ∼ Ber(p), and let Xi = Zi/p− 1, then

If p=1/2 the bound is 0.4748. As p gets close to 0, or 1 the bound goes to ∞.
Here are four examples:
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3.4 Law of the Iterated Logarithm

Let X1, X2, .. be iid rv’s with mean 0 and std 1. Let Sn = X1 + ..+Xn . As we saw before,
by the strong law of large numbers we have Sn/n→ 0 almost surely, and in the last section
we saw that by the central limit theorem we have Sn/

√
n converges in distribution to a

standard normal random variable. So in some sense Sn/n “squeezes” down to one point
whereas Sn/

√
n “spreads out”, roughly between -3 and 3. It is a reasonable question then

whether there is an in-between case, namely a sequence {an} such that
√
n < an < n

and Sn/an converges to something between a constant and a distribution. The answer is
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given by
Theorem (Law of the Iterated Logarithm, Kolmogorov 1929)

by symmetry the corresponding liminf is −
√

2, so this sequence oscillates between ±
√

2.
proof (outline)
If the Xi’s are Bernoulli rvs, we have a random walk and one can show that P (Sn = 0) =
1/
√
πn.

A similar argument (again starting with Sterling’s formula) can be used to show that if n+k
is even

next with some arithmetic one can show that there exists a c>0 such that

and finally on applies the Borel-Cantelli lemma to show that for any ε > 0

3.4.0.1 Example

let ~Y_1 , Y_2 , ..~ be iid Ber(1/2), then E[Yi ]=1/2 and Var(Yi )=1/4. Let Xi = (Y~i
-1/2)/(1/2) = 2Yi -1, then E[X~i‘ ]=0 and Var(Xi )=1. Let Sn = X1 + ..+Xn.
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The following graph has 100 simulated sequences with n=10000 and the four different
“normalizations”
K <- 20
df <- data.frame(n=rep(1:1e4, K),

y=0*K*1e4,
z=rep("1", K*1e4))

for(i in 1:K) {
df$y[((i-1)*1e4+1):(i*1e4)] <-

cumsum(2*sample(0:1, size=1e4, replace = TRUE)-1)
df$z[((i-1)*1e4+1):(i*1e4)] <- rep(paste(i), 1e4)

}
df$z <- factor(df$z)

1. S_n
ggplot(data=df, aes(n, y, color=z)) +

geom_line(size=0.5) +
theme(legend.position = "none") +

stat_function(fun = function(x) 2*sqrt(x),
size=1.2, color="blue") +

stat_function(fun = function(x) -2*sqrt(x),
size=1.2, color="blue")
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2. S_n /n
ggplot(data=df, aes(n, y/n, color=z)) +

geom_line() + theme(legend.position = "none")
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3. Sn/
√
n

ggplot(data=df, aes(n, y/sqrt(n), color=z)) +
geom_line(size=0.5) +
theme(legend.position = "none")
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4. Sn/
√
n log log n

ggplot(data=df, aes(n, y/sqrt(log(log(n))*n), color=z)) +
geom_line(size=0.5) +
theme(legend.position = "none") +
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stat_function(fun = function(x) 2,
size=1.2, color="blue") +

stat_function(fun = function(x) -2,
size=1.2, color="blue")
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3.5 Approximation Methods

3.5.1 Approximations based on Taylor’s Theorem

Say we have a r.v. X with density f, a function h and we want to know Var(h(X)). Of course
by definition we have

but sometimes these integrals (sums) are very difficult to evaluate. In this section we discuss
some methods for approximating the variance.
Recall: If a function h(x) has derivatives of order r, that is if g(r)(x) exists, then for any
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constant a the Taylor polynomial of order r is defined by
[](graphs/prob516.png>
One of the most famous theorems in mathematics called Taylor’s theorem states that the
remainder of the approximation h(x)-Tr(x) goes to 0 faster than the highest order term:
Taylor’s theorem

There are various formulas for the remainder term, but we won’t need them here.

3.5.1.1 Example

say h(x) = log(x+1) and we want to approximate h at x=0. Then we have

The approximation is illustrated here:
a <- 0; r <- 3
x <- seq(-0.9, 0.9, length = 250)
h <- rep(0, r+1)
h[1] <- log(a+1)
for (n in 1:r) h[n+1] <- (-1)^(n+1)/n/(a+1)^n
y <- matrix(0, 250, r+1)
y[, 1] <- rep(log(a+1), 250)
for (k in 1:r) y[ , k+1] <- y[, k] + h[k+1]*(x-a)^k
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df <- data.frame(x=x, ly=log(x+1))
plt <- ggplot(df, aes(x, ly)) +

geom_line(size=1.2) + ylab("")

for (k in 1:(r + 1))
plt <- plt +

geom_line(data=data.frame(x=x, y=y[, k]), aes(x, y), color=k)
plt
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One application of this is the

3.5.2 Delta Method

Let Yn be a sequence of rv’s that satisfies

√
n(Yn − θ)→ N(0, σ)

in distribution. For a given function g and a specific value of θ, suppose that g′(θ) exist and
and is not 0. Then

√
n (g(Yn)− g(θ))→ N(0, σg′(θ))

proof
the Taylor expansion of g(Yn) around Yn = θ is
g(Yn) = g(θ) + g′(θ)(Yn − θ) +R

where R→ 0 as Yn → θ. Now
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√
n[g(Yn)− g(θ)] =
√
n[g(θ) + g′(θ)(Yn − θ) +R− g(θ)] =

g′(θ)
√
n(Yn − θ) +

√
nR→ g′(θ)X

where X ∼ N(0, σ)

3.5.2.1 Example

say X1, .., Xn iid Exp(1), so EX=VarX=1, then by the CLT
√
n(X̄ − 1)→ N(0, 1)

Let g(x)=xp, so g’(x)=pxp-1 and by the delta method
√
n(X̄p − 1)→ N(0, p)

n <- 100; p <- 2; B <- 10000
x <- matrix(rexp(n*B, 1), ncol=n)
xbar <- apply(x, 1, mean)
print(mean(xbar))

## [1] 0.9986222

y <- sqrt(n)*(xbar^p-1)
bw <- diff(range(y))/50
df <- data.frame(x=y)
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

stat_function(fun = dnorm,
colour = "blue",
args=list(mean=0, sd=p))
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say we have a sequence of iid rv’s X1, .., Xn, each with mean µ 6= 0 and standard deviation σ.
We know from the law of large numbers that
√
n(X̄ − µ)→ N(0, σ)

Now let g(x)=1/x, then g’(x)=-1/x2 and we get
√
n(1/X̄ − 1/µ)→ N(0, σ/µ2)

say for example Xi ∼ U [0, 1], then µ = 1/2 and σ = 1/
√

12, so according to the delta method
√
n(1/X̄ − 1/µ) ∼ N(0, σ/µ2) = N(0, 2/

√
3)

n <- 100; B <- 10000
x <- matrix(runif(n*B), ncol=n)
xbar <- apply(x, 1, mean)
y <- sqrt(n)*(1/xbar - 1/0.5)
bw <- diff(range(y))/50
df <- data.frame(x=y)
ggplot(df, aes(x)) +

geom_histogram(aes(y = ..density..),
color = "black",
fill = "white",
binwidth = bw) +
labs(x = "x", y = "Density") +

stat_function(fun = dnorm,
colour = "blue",
args=list(mean=0, sd=2/sqrt(3)))
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For our purposes we will need only first-order approximations (that is using the first derivative)
but we will need a multivariate extension as follows: say X1, ..,Xn are r.v. with means µ1, .., µn
and define X=(X1, ..,Xn) and µ = (µ1, .., µn). Suppose there is a differentiable function h(X)
for which we want an approximate estimate of the variance. Define

The first order Taylor expansion of h about µ is

Forgetting about the remainder we have

and
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3.5.2.2 Example

Say we have just one rv X, then the formula simplifies to

say X ∼ N(µ, 1) with µ large enough so that P(X>0)=1. We want to find Var[log(X)]. Set
h(x)=log(x), then h’(x)=1/x and

check with
var(log(rnorm(10000, 10)))

## [1] 0.01037173

3.5.2.3 Example

Say we have two rv’s X and Y and X ⊥ Y , then the formula simplifies to

say X and Y have a geometric distribution with parameters p and r, respectively. We want
to approximate the variance of

√
X2 + Y 2

Now µX = 1/p, V [X] = (1− p)/p2, µY = 1/r, V [Y ] = (1− r)/r2

let h(x, y) =
√
x2 + y2, then
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p <- 0.2; r <- 0.3; B <- 10000
x <- rgeom(B, p)+1
y <- rgeom(B, r)+1
round(c(var(sqrt(x^2+y^2)),

(1-p)/(p^2*(1+(p/r)^2))+(1-r)/(r^2*(1+(r/p)^2))), 3)

## [1] 19.284 16.239

3.5.2.4 Example

say we have a sample X1, ..,Xn from a Bernoulli r.v. with success parameter p, that is
P(X=1)=p=1-P(X=0). One popular measure of the probability of winning a game is the
odds p/(1-p). For example when you roll a fair die the odds of getting a six are (1/6)/(1-(1/6)
= 1:5.
An obvious estimator for p is p̂, the sample mean, or here the proportion of “successes” in
the n trials. Then an obvious estimator for the odds is p̂/(1− p̂). The question is, what is
the variance of this estimator?
First note that

V ar[p̂] ==
V ar[1/n

∑
Xi] =

1/n2∑V [Xi] =
1/nV [X1] =
p(1− p)/n

Using the above approximation we get the following: let h(p)=p/(1-p), so h’(p)=1/(1-p)2 and
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p <- 0.25; n <- 25; B <- 10000
x <- matrix(rbinom(B, 1, p), ncol=n)
phat <- apply(x, 1, mean)
odds <- phat/(1 - phat)
round(c(var(odds), p/n/(1 - p)^3), 4)

## [1] 0.0301 0.0237

3.5.2.5 Example

let’s consider the random vector with joint pdf
f(x,y) = 1, 0<x,y< 1
Say we want to find Var(X/Y). Of course X, Y ∼ U [0, 1] and independent, so
E[X]=E[Y]=1/2
Var[X]=Var[Y]=1/12 and
Cov(X,Y)=0.
Then if we consider the function h(x,y) = x/y we have
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How good is this approximation?
var(runif(10000)/runif(10000))

## [1] 5022.664

shows that it is actually very bad! The reason is that occasionally the denominator is very
small, so the ratio is very big. Let’s change the problem a little: now
f(x,y) = 1, 1<x,y<2
that is X, Y ∼ U [1, 2], so E[X]=E[Y]=3/2, Var[X]=Var[Y]=1/12 and Cov(X,Y)=0. Now

and this is actually quite good:
round(c(2/27, var(runif(10000,1,2)/runif(10000,1,2))), 4)

## [1] 0.0741 0.0848

Generally ratios are often trouble!

3.5.2.6 Example
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let’s consider the random vector with joint pdf
f(x,y) = 6x, 0<x<y< 1
Say we want to find Var(X/Y)
First we have

so

and this is quite good:
x <- rbeta(10000, 2, 2)
y <- runif(10000, x, 1)
round(var(x/y), 4)

## [1] 0.0555

3.5.3 Importance Sampling

3.5.3.1 Example

say we have a rv X geometric with p=0.5. We want to find P(log(X!)>50).
Let’s try to solve this problem analytically. First, log(x!) is an increasing function of x, so
there exists x50 such that
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log(x!)>50 iff x>x50

so that P (log(X!) > 50) = P (X ≥ x50). Finding x50 analytically is hopeless, though. We
can do it with R by trial and error, using log(factorial(n)) for different values of n. We find
n=22.5, so

or about 2.38× 10−7

How about an R check? The problem with this is that the probability p we want to find is
very small, so in a simple simulation we can expect the outcome of interest only about every
1 in 4.2 million runs. In order to get some reasonably good estimate we probably need to run
the simulation with n=109.
Here is a strange idea: the problem is that our event of interest, log(X!)>50, is very rare, it
almost never happens. Let’s instead sample from a distribution Y which has large values
much more often, so that log(Y!)>50 happens more often. For example, let’s try Y geometric
with p=0.05:
B <- 100000
y <- rgeom(B, 0.05)+1
sum(log(factorial(y))>50)/B

## [1] 0.3199

It seems P(log(Y!)>50)=0.32, but there is a problem, we get a warning from R: value out
of range in ‘gammafn’. The reason is that R calculates log(y!) by first calculating y! and
then taking log, and it finds y! via the gamma function, but for y bigger than about 170 y!
can no longer be found that way. But log(175!)=732.33, not so big at all. The routine logfac
is based on on Stirling’s’ approximation:

logfac <- function(n)
ifelse(n<20, log(factorial(n)),

0.918938533+(n+0.5)*log(n)-n+(1/12-1/(360*n^2))/n)

So P(log(Y!)>50)=0.35. But what good is that? I want X! Well:
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so if we sample from Y and find the sum here we still get an estimate of the probability for
X. This is done here:
y <- y[logfac(y) >= 50]
w <- dgeom(y-1, 0.5)/dgeom(y-1, 0.05)
sum(w)/B

## [1] 2.358689e-07

In general we have the following: Let X be a rv’ with pdf f and and Y a rv’ with pdf g. Say
we want to find E[h(X)]. Then
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Note this was done for discrete rv’s but it works just as well for continuous ones.
Note how to choose Y? Obviously we need Y such that it can’t happen that P(Y=x)>0
and P(X=x)=0. In general we should choose a Y with the same “support” as X, that is
P(X=x)>0 iff P(Y=x)>0. It is not necessary to have a Y that “looks like” X. For example in
the case above we could have choosen Y with pdf
fY (x) = 6/(π2x2)
It is also a good idea to choose Y such that the event of interest (log(Y!)>50) happens about
50% of the time.

3.5.3.2 Example

say X, Y and Z have a standard normal distribution. Find P(|XYZ|>K), for example K=10.
Now there is no way to do this analytically, and again the probability is very small. So we
will use IS with X’, Y’ and Z’ generated from normal distributions with mean 0 and standard
deviation s. For our case of K=10 s=3 works good. In general, for some K play around a bit
to find a good s.
B <- 10000; s=3
x <- rnorm(B, 0, s)
y <- rnorm(B, 0, s)
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z <- rnorm(B, 0, s)
T <- abs(x*y*z)
I <- c(1:B)[T > 10]
print(length(I)/B)

## [1] 0.3497

w <- dnorm(x[I])/dnorm(x[I], 0, s) *
dnorm(y[I])/dnorm(y[I], 0, s) *
dnorm(z[I])/dnorm(z[I], 0, s)

sum(w)/B

## [1] 0.0003887312

4 Statistics

4.1 Basic Concepts of Statistics

Statistics is of course a whole branch of Science all by itself. Here we will just introduce a
few basic ideas.
Probability theory and Statistics have in common that both start with a probability model.
Typically such models have parameters, for example the success probability p in a Bernoulli
rv or the rate λ in an exponential distribution. In probability theory we then have problems
such as: if p=0.2, what is the mean of the Bernoulli rv? In other words we assume we know
the parameters and then ask questions about possible outcomes.
In Statistics it is exactly the other way around: we already have observed outcomes from a
rv and we are asking what the parameters might be.

4.1.0.1 Example

Say a Bernoulli trial has been carried out 1000 times, and resulted in 345 successes and 655
failures. What can be said about p?
The answer seems obvious: a good guess for p should be
p̂ = 345/1000 = 0.345
but of course it may not be obvious in other problems. Moreover, even in this most simple
of problems there are issues. For example, say we strongly suspect that p=0.4. Is this
compatible with our experiment?
Let’s do a little probability: Each Bernoulli trial is a rv Yi ∼ Ber(p). Moreover we can assume
(here) that the Bernoulli trials are independent, so the number of success is
X = Y1 + ..+ Yn ∼ Bin(n,p)
with n=1000. So our probability model is
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f(x|p) =
(
n

x

)
px(1− p)n−x

notice the notation here: f(x|p), reminiscent of our notation for conditional pdf’s. This is
intentional, because we want to think of this as
“Probability of some outcome given some value of the parameter”
In Statistics, though, the “unknown” is the parameter p, and we already know x=345, so we
formally we can turn this around and write

L(p|x) =
(
n

x

)
px(1− p)n−x

This is then called the likelihood function.
Notice that the right side is exactly the same, but we have shifted our point of view: instead
of p being fixed and x being a variable, now x is fixed and p is a variable!
The likelihood function is the most fundamental entity in (almost) any statistical analysis.
What does it look like? Here is its graph:
p <- seq(0.2, 0.5, length=250)
y <- dbinom(345, 1000, p)
df <- data.frame(p=p, y=y)
ggplot(data=df, aes(p, y)) +

geom_line(size=1.1, color="blue")
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We see that L(p|345) has a unique maximum. This of course is the value of p that is most
likely given the data. Let’s find it analytically.
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Clearly we want to find
argmax{L(p|x)}
so we could find
d/dp{L(p|x)}
It turns out that often it is easier to find
d/dp{log(L(p|x))}
but this is of course the same because
d/dp{log(L(p|x))} =
d/dp{L(p|x)}/L(p|x) = 0
iff d/dp{L(p|x)}=0
So now

and we found the same “obvious” answer!
The estimator p̂ of p arrived at in this way is called the maximum likelihood estimator.
Here is a completely different solution to the same problem: We will now think of p as an
unknown quantity. As with all things unknown we might already have some idea what p
might be, just not exactly. It then makes sense to treat p as a rv, with some probability
distribution. Of course p is a parameter, a fixed quantity and therefore not a random variable.
It is our uncertainty regarding its value that makes it appear “random”.
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So, how should we model p? One thing is clear: p ∈ [0, 1], so maybe a Beta distribution
might work. Now we have two random variables, and their distributions:

• X ∼ Bin(n, p)

• p ∼ Beta(α, β)
Don’t worry about the introduction of yet other parameters - α and β. We will talk about
them soon.
Assuming that X and p are independent we can the find the joint pdf of (X,p):

The logic is this: π is what we knew about p before our experiment, f(x|p) is the outcome
of the experiment. An obvious question then is: how has the experiment changed what we
know about p? This should be “encoded” in the posterior distribution f(p|x):

so p|X = x ∼ Beta(x+ α, n− x+ β).
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Finally, to get an estimate of p we need to “extract” one value from this posterior distribution.
One choice would be to use the mean:

p̂ = E[p|X = x] = x+ α

n+ α + β

Now, though, we need to say what α and β are. These are meant to “encode” what we knew
about p before the experiment. Here are two examples:

• we knew absolutely nothing about p, any value between 0 and 1 was just as likely as
any other. Then we might use

p ∼ U [0, 1] = Beta(1, 1)
This type of prior is called non-informative because it does not make any one value of p more
likely than any other. Now we find p = (x+1)(n+2) = 346/1002 = 0.3453.

• we were quite certain that p is somewhere between 0.3 and 0.5, with 0.4 the most likely
and the pdf of p symmetric around 0.4.

This type of prior is called subjective because it encodes our subjective belief about p. Now
E[p]=0.4 and sd(p)=0.2/4 = 0.05 (using the ballpark estimate range=4sd) and therefore
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and then we get
p = (x+ α)/(n+ α + β) = (345 + 38)/(1000 + 38 + 57) = 0.3498
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The two solutions outlined above are examples of the two fundamentally different approaches
to Statistics we have today: the first one is based on a definition of probability as the long
run relative frequency of an event, in fact in this example that is exactly what the maximum
likelihood estimator is:
x/n = relative frequency of successes
This type of statistical analysis is called Frequentist. The second solution uses Bayes’ theorem
to combine a prior distribution on the parameter with the data likelihood to calculate the
posterior distribution, and this approach is called Bayesian Statistics.
The essential difference between the two is not the use of Bayes’ theorem but the use of a
prior in Bayesian statistics.

4.1.0.2 Example

let’s continue the discussion of the experiment above. So far we have found a point estimates
for p, that is a single number we think is a good guess. But of course it is highly unlikely
that we got the true value of p exactly right, for example if we were to repeat the experiment
maybe next time we would see 376 successes, and our (frequentist) estimate would then be
0.376. Instead of a single best guess, maybe we should give a range of values (almost) certain
to include the true p. This is done by quoting an interval estimate:
Frequentist Solution
Definition
A 100(1− α)% confidence interval for a parameter θ is an interval (L(x),U(x)) such that
P (L(X) < θ < U(X)) ≥ 1− α for all θ
To find a confidence interval for our example we can make use of the central limit theorem:
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and so a 90% confidence interval for p is (0.32,0.37)
Bayesian Solution
Definition
A 100(1− α)% credible interval for a parameter θ is an interval (L,U) such that
P (L < θ < U |X = x) = 1− α
so again the answer comes from the posterior distribution p|X=x. In our case (using again
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the Beta prior) we have found the posterior distribution to be
p|X = x ∼ Beta(x+ α, n− x+ β)
and so we need L and U such that
P (L < p < U |X = x) = 1− α
there are many such intervals, for example we could take L=0 and find U accordingly. One
idea often used is to split up the probability α into α/2 on the left and α/2 on the right
(actually that is just what we did in the frequentist solution as well) Then we get

and the corresponding equation for U. These are equations that have to be solved numerically:
x <- 345; n <- 1000; alpha <- 1; beta <- 1
round(qbeta(c(0.025, 0.975), x+alpha, n-x+beta), 3)

## [1] 0.316 0.375
alpha <- 38; beta <- 57
round(qbeta(c(0.025, 0.975), x+alpha, n-x+beta), 3)

## [1] 0.322 0.378

Notice that the credible interval using the Beta(1,1) prior is the same as the frequentist
confidence interval. This happens quite often (but not always) when we use a non-informative
prior. Also notice that although the Beta(1,1) prior is very different from the Beta(38,57),
the resulting intervals are almost the same. This is what we expect (and hope) to see if there
is a lot of data. To what degree the result of an analysis depends on the chosen prior is
always an important consideration in Bayesian analysis, and is studied in what is called a
sensitivity analysis.

5 Stochastic Processes

5.1 Introduction

Up to now when we had a sequence of random variables X1, X2, .. we assumed them to be
independent. we have gone about as far as one can with this assumption. So from now on we
will consider situations were the rv’s are dependent.
There is exactly one way in which a collection of rv’s can be independent, but there are
infinitely many ways in which they can depend on one another. In order to make any progress
we then need to say something about the dependence structure.
Definition
Any collection of random vectors {Xt, t ∈ T} is called a stochastic process. All the values
that the random variables Xt can take on are called the state space. Because Xt is a regular
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random variable (or vector) we again differentiate between continuous and discrete state
space cases. Moreover T can be discrete (1,2,..) or continuous (t>0) as well.

5.1.0.1 Example

Let Xi ∼ U [0, 1], i = 1, 2, ..;Xi ⊥ Xj , then {Xi, i=1,2,..} is a continuous state space discrete
time process.

5.1.0.2 Example

Let Xi ∈ {0, .., 39} the position on the board of your token after i roles of the dice in a game
of Monopoly. Then {Xi, i = 1, 2, ..} is a discrete state space discrete time process.

5.1.0.3 Example

Let P (Zi = −1) = p = 1− P (Zi = 1), Zi ⊥ Zj if i 6= j. Let
Xn = ∑n

i=1 Zi

then Xn ∈ {0,±1,±2, ..} and so {Xn, n = 1, 2, ..} is a discrete state space discrete time
process. This is a very famous stochastic process called a random walk.
Here is a list of things we often want to know about a stochastic process: - what is the
distribution of Xn, especially in the limit?
- what is EXn, especially in the limit?
- what is cor(X~n, Xn+k)?
- Do certain events ever occur, and if so with what probability? For example in the random
walk, if we start at 0 what is the probability to reach 100?

5.2 Poisson Process

Definition
A stochastic process {N(t), t > 0} is called a counting process if N(t) is the number of times
an event occurred up to time t.

5.2.0.1 Example

Consider an ATM machine and let N(t) be the number of customers served by the ATM
machine at time t.
Because of the way it is defined every counting process has the following properties:
1. N(t) ≥ 0

2. N(t) is an integer

3. If s<t then N(s) ≤ N(t)
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4. If s<t then N(t)-N(s) is the number of events that have occurred in the interval (s,t].
Definition
Let {N(t); t ≥ 0} be a counting process. Then
a. {N(t); t ≥ 0} is said to have independent increments if the number of events that occur

in disjoint intervals are independent.
b. {N(t); t ≥ 0} is said to have stationary increments if the distribution of the number of

events that occur in any interval of time depend only on the length of the interval.

5.2.0.2 Example

The process of our ATM machine probably has independent increments but not stationary
increments. Why?

The most important example of a counting process is the Poisson process. To define it we
need the following notation, called Landau’s o symbol:
Definition (Landau’s o symbol)
a function f is said to be o(h) if

lim
h→0

f(h)
h

= 0

5.2.0.3 Example

f(x)=x2 is o(h) but f(x)=x is not.
Definition
A counting process {N(t); t ≥ 0} is said to be a Poisson process with rate λ > 0 if
1. N(0)=0
2. N(t) has stationary and independent increments
3. P (N(h) = 1) = λh+ o(h)
4. P (N(h) ≥ 2) = o(h)

Notice that this implies that during a short time period the probability of an event occurring
is proportional to the length of the interval and the probability of a second (or even more)
events occurring is very small.
Theorem
Let {N(t); t ≥ 0} be a Poisson process, then

N(t+ s)−N(s) ∼ Pois(λt)
for all s ≥ 0.
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proof
Let pn(t) = P(N(t)=n). Then

where the last equation follows from
P (N(h) = 0) =
1− P (N(h) ≥ 1) = 1− P (N(h) = 1)− P (N(h) ≥ 2)
Now

The same basic idea works for the case pn (t) as well to finish the proof.
Remark It is intuitively clear why the definition above should lead to the Poisson distribution.
Take the interval (0,t] and subdivide it into k equal size intervals (0,t/k], (t/k, 2t/k) .. ((k-
1)t/k,t]. The probability of 2 or more events in any one interval goes to 0 as k goes to ∞
because
P(2 or more events in any subinterval)
≤ ∑ P(2 or more events in the kˆth subinterval)
= ko(t/k)
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t× o(t/k)/(t/k)→ 0 as k →∞.
Hence N(t) will (with probability going to 1) just equal the number of subintervals in which
an event occurs. However, by independent and stationary increments this number will have
a binomial distribution with parameters k and p = λt + o(t/k). Hence by the Poisson
approximation to the binomial we see that N(t) will have a Poisson distribution with rate λt.

5.2.0.4 Example

Suppose that N points are uniformly distributed over the interval (0, N). Let X be the number
of points in (0,1). Find the pdf of X if N is large.
Let’s try this directly first:

and this get’s ugly fast. Instead consider the following: Let N(t) be the points in (0,t), then
for t small (relative to N) {(N(t), t ≥ 0} will be a Poisson process with rate λ. Now
P(N(1)=0) = P(X=0) = e-1, so λ = 1 and so
P(X=n) = P(N(1)=n) = e-1/n!
Definition
Let T1 be the time when the first event occurs, T2 the time from the first event until the
second event etc. The sequence T1, T2, .. is called the sequence of interarrival times.
Theorem
Let {N(t); t ≥ 0} be a Poisson process, and {Ti; i ≥ 1} be the interarrival times. Then
T1, T2, .. ∼ Exp(λ) and Ti ⊥ Tj

proof
Note that {T1 >t} is equivalent to {no events occurred in (0,t]} and so
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and we see that T1 ∼ Exp(λ). But

because of independent and stationary increments. So we find that T2 ∼ Exp(λ) and that
T1 ⊥ T2. By induction it is clear that the sequence {Tn, n = 1, 2, ..} is an iid sequence of
exponential r.v. with mean 1/λ.
Remark This result should not come as a surprise because the assumption of independent
and stationary increments means that the process from any moment on is independent of all
that occurred before and also has the same distribution as the process started at 0. In other
words the process is memoryless, and we have previously shown that any continuous rv on
(0,∞) with the memoryless property has to have an exponential distribution.
Definition
Let Sn be the arrival time of the nth event. (This is also often called the waiting time until
the nth event).
Theorem
Let {N(t); t ≥ 0} be a Poisson process, and {Sn;n ≥ 1} be the waiting times. Then
Sn ∼ Γ(n, λ)
proof
Clearly Sn = ∑n

i=1 Ti, and so we find
Sn ∼ Γ(n, λ)
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5.2.0.5 Example

Up to yesterday a store has 999,856 customers. They are planning to hold a little party
when the 1,000,000th customer comes into the store. From experience they know that a
customer arrives about every 4 minutes, and the store is open from 9am to 6pm. What is the
probability that they will have the party today?
They will have the party if at least 144 customers come into the store today. Let’s assume
that the customers arrive according to a Poisson process with rate 4min (?), then we want
the probability P(S_144 < 9*60).
Now S144 ∼ Γ(144, 4)
and so
round(pgamma(9*60, 144, 1/4), 4)

## [1] 0.2302

Here is another proof of the last theorem. We use the fact that the nth event occurs at or
before time t if and only if the number of events occurring by time t is at least n. So

N(t) ≥ n iff Sn ≤ t

This is a very useful equivalence, and much more general than just for the Poisson process, so
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here is an illustration:
With this we find
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5.2.0.6 Example

Say that on any given day hundreds of cars pass through a certain intersection. Any one of
them has a (hopefully small) probability of having an accident at that intersection. Let X(t)
be the number of accidents in the t days, then is X(t) a Poisson process?
There are two problems with the assumptions of the Poisson process here:

• different days might have different numbers of cars going through (weekdays vs. week-
ends?)

• the probability of having an accident is probably very different for different cars.
The first problem might be handled by considering a different time-scale (accidents per
week?), the second problem actually is not a problem at all:
let Z1, Z2, .. be independent Bernoulli rv’s with P(Zi =1)=pi. Let Sn =Z1 +..+Zn. Then if
λ = p1 + ..+ pn it can be shown that

In the “classic” case where p1 = .. = pn = p = λ/n we have

and we see that this theorem not only gives us reason to think that the Poisson approximation
works in the example above, it also provides a useful estimate of the error in the Poisson
approximation to the Binomial.
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We have seen previously that if
U1, .., Un ∼ U [0, 1]
and independent, then (U(1),..,U(n)) has joint density f(u(1),..,u(n))=n!, 0<u(1)< ..<u(n)<1.
Clearly if U1, .., Un ∼ U [0, t] and independent, then (U(1),..,U(n)) has joint density
f(u(1),..,u(n))=n!/tn, 0<u(1)< ..<u(n)<t
Let Wi =U(i). Now
Theorem
let W1, W2,.. be the arrival times in a Poisson process with rate λ. Then

In other words, conditional on the total number of arrivals the arrival times have the same
distribution as the order statistic of a uniform.

5.2.0.7 Example

say {N(t), t ≥ 0} is a Poisson process with rate λ. Find the mean time of the first event,
given that N(1) = n, n ≥ 1.
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5.2.0.8 Example

Customers arrive at a store according to a Poisson process of rate λ. Each customer pays $1
on arrival, and we want to evaluate the expected value of the total sum collected during (0,t]
discounted back to time 0. If the discount (inflation) rate is β, then this is given by

Now
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Theorem
Consider a Poisson process {(N(t), t ≥ 0} with rate λ, and suppose each time time an event
occurs it is classified as either type I or II, with probabilities p and q=1-p, respectively,
independent of anything else. Let N1(t) and N2(t) be the respective number of type I and II
arrivals by time t, then {N1(t), t ≥ 0} and {N1(t), t ≥ 0} are both Poisson process with resp.
rate pλ and (1− p)λ. Furthermore the processes are independent.
proof
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where the equation in the middle follows from the fact that if there were a total of n+m
events the probability that n where of type I and m were of type II is just the binomial
probability.
The theorem easily generalizes to r types.

5.2.0.9 Example

Customers arrive at a store according to a Poisson process with rate of 2 per hour. Each
customer is a “Buyer” with probability 0.3 or a “Window-Shopper” with probability q=0.7.
What is the probability of at least 1 sale during a 2 hour period?
P(at least 1 sales) =
P (N1(t) ≥ 1) = 1− P (N1(t) = 0) = 1− exp(−2 ∗ 2 ∗ 0.3) = 1− e−1.2 = 0.7

5.2.0.10 Example (Coupon Collection Problem)

There are m different coupons. Each time a person collects a coupon it is, independently of
those previously obtained, of type j with probability pj. Let N denote the number of coupons
one needs in order to have a complete collection of at least one of each type. Find E[N].
Let Nj be the number of coupons needed until we have one of type j, then N = max{Nj ; 1 ≤
j ≤ m}.
It is easy to see that Nj ∼ G(pj), but they are not independent and so finding the distribution
of their maximum is very difficult.
Let’s assume that that coupons are collected according to a Poisson process with rate 1,
and say an event is of type j if the coupon collected was of type j. If we let Nj (t) denote
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the number of type j coupons collected by time t, then it follows that {Nj(t), t ≥ 0} are
independent Poisson processes with rates pj.
Let Xj denote the time of the first event of type j, and let X = max{Xj; 1 ≤ j ≤ m} be the
time when we have all the coupons. Now the Xj are the waiting times of independent Poisson
processes, so they have an exponential distributions and are independent, so

Now let Ti be the ith interarrival time, that is the time between finding the (i-1)st and the ith
coupon. X = ∑

Ti, but Ti ∼ Exp(1), and they are independent, so
E[X|N ] = E[∑Ti|N ] = NE[T1|N ] = N

so
E[X]=E{E[X|N]}=E[N]
For example, say p1 =..=p~n =p=1/m, then
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m E[N]
10 3.00
10 5.50
10 8.33
10 11.42
10 14.70
10 18.15
10 21.74
10 25.46
10 29.29

What if m-1 have the same probability, but one is rarer, say only half of the probability of
the others? So (wlog) 2p1 ==p2 =..=pm =1, then p~i =1/(m-1/2) for i ≤ 2 ≤ m and p1
=1/[2(m-1/2)]

this integral has to be found numerically, using some numerical integration method. We find

m E[N]
10 3.00
10 5.50
10 8.33
10 11.42
10 14.70
10 18.15
10 21.74
10 25.46
10 29.29

Proposition: If {Ni(t); t ≥ 0}, i=1,..,k represent the number of type i events occurring in
(0,t] and if Pi(t) is the probability that an event occurring at time t is of type i, then
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5.2.0.11 Example (HIV-Aids)

one of the difficulties in tracking the number of HIV infected people is its long incubation
time, that is an infected person does not show any symptoms for a number of years, but is
capable of infecting others.
Let us suppose that individuals contract HIV according to a Poisson process with unknown
rate λ. Suppose that the incubation time until symptoms appear is a rv with cdf G, which is
known, and suppose incubation times are independent. Let N1(t) be the number of individuals
that have shown symptoms at time t, and let N2(t) be the number that have contracted HIV
at time t but not yet shown symptoms. An individual that contracts HIV at time s will show
symptoms at time t with probability G(t-s), so it follows from the above proposition that

say we know the number of individuals with system as time t is n_1 , then
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for example if t=16 years, µ = 10 years and n1 =220,000, then n2 =219,00.

5.3 Markov Chains

5.3.1 Basic Definition

Definition
The sequence of r.v. X1, X2, .. is said to be a Markov chain if for any event A we have
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P (Xn ∈ A|X1 = x1, .., Xn−1 = xn−1) = P (X n ∈ A|Xn−1 = xn−1)
that is Xn depends only on Xn-1 but not on any of the r.v. before it.
Clearly a Markov chain is a discrete-time space stochastic process. It can have either a
discrete or continuous state space.
If we think of the index n as a time variable, then all that matters for the state of the system
at time n is where it was at time n-1, but not on how it got to that state.

5.3.1.1 Example (Random Walk)

Say we flip a coin repeatedly. Let the random variable Yi be 1 if the ith flip is heads, -1
otherwise. Now let Xn = ∑n

i=1 Yi.
Clearly we have

For a Markov chain all the relevant (probability) information is contained in the probability
to get from state i to state j in k steps. For k=1 this is contained in the transition matrix P
= (pij ), and in fact as we shall see P is all we need.

5.3.1.2 Example (Random Walk, cont)

Here we have pij = 1/2 if |i-j|=1, 0 otherwise.

5.3.1.3 ** Example (Asymmetric Random Walk)**

As above the state space are the integers but now we go from i to i+1 with probability p, to
i-1 with probability q and stay at i with probability 1-p-q.

5.3.1.4 Example (Ehrenfest chain)

Say we have two boxes, box 1 with k balls and box 2 with r-k balls. We pick one of the balls
at random and move it to the other box. Let Xn be the number of balls in box 1 at time n.
First note that we have Xn ∈ {0, 1, .., r}. Now say Xn =k, so there are k balls in urn 1,
therefore r-k balls in urn 2. In the next step we either move a ball from urn 1 to urn 2, or
vice versa, so Xn+1 =k+1 or Xn+1 =k-1. Now
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pk,k+1 = P(Xn+1 =k+1|Xn =k) =
P(move ball from urn 2 to urn 1 | k balls in urn 1) =
P(pick one of the r-k balls in urn 2) = (r-k)/r
also
pk,k-1 = 1-pk,k+1 = k/r and pi,j = 0 otherwise.
Ehrenfest used this model to study the exchange of air molecules in two chambers connected
by a small hole.

5.3.1.5 Example (Umbrella)

Say you own r umbrellas, which are either at home or in your office. In the morning if it
rains you take an umbrella, if there is one at home, equally in the evening in the office. Say
it rains in the morning or in the evening independently with probability p. Analyze this as a
Markov chain and find the transition matrix.
Solution 1: Say Xn is the number of umbrellas at home in the morning of the nth day, then
Xn ∈ {0, 1, .., r}. Now
P(Xn =i|Xn-1 =i) =
P(it is raining in the morning and evening or it is not raining in the morning and evening) =
p2 + q2, 1 ≤ i ≤ r

P(Xn =i-1|Xn-1 =i) =
P(it is raining in the morning but not in the evening) =
pq, 1 ≤ i ≤ r

P(Xn =i+1|Xn-1 =i) =
P(it is not raining in the morning but it is raining in the evening) =
qp, 1 ≤ i ≤ r − 1
P(Xn =0|Xn-1 =0) =
P(it is not raining in the evening) = q
P(Xn =1|Xn-1 =0) =
P(it is raining in the evening) = p
P(Xn =r|Xn-1 =r) =
P(it is not raining in the morning or it is raining both times) = q+p2

so
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Solution 2: Say Xn is the number of umbrellas at your present location (home or work),
then Xn ∈ {0, 1, .., r}. Now
P(Xn =r|Xn-1 =0) = P(no umbrellas where you were last) = 1
P(Xn =r-i|Xn-1 =i) = P(it is not raining) = q, 1 ≤ i ≤ r
P(Xn =r-i+1|Xn-1 =i) = P(it is raining) = p, 1 ≤ i ≤ r
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both of these describe the “experiment”.

Say we have a Markov chain Xn, n=1,2,.. with transition matrix P. Define the n-step transition
matrix
P (n) = (p(n)

ij )
by

p
(n)
ij = P (Xn = j|X0 = i)

Of course P(1) = P. Now

5.3.1.6 Example (Ehrenfest chain)

Let’s find the 2-step transition matrix for the Ehrenfest chain with r=3. The transition
matrix is given by
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and so the 2-step transition matrix is
[](graphs/mark14.png" >
For example , P(X3=2|X1=2) = 7/9 because if X1 = 2 the chain could have gone to 1 (with
probability 2/3) and then back to 2 (with probability 2/3) or it could have gone to 3 (with
probability 1/3) and then back to 2 (with probability 1), so we have
P (X3 = 2|X1 = 2) = 2/3 ∗ 2/3 + 1/3 ∗ 1 = 7/9

5.3.1.7 Example (Umbrellas)

Finding P2 for solution 1 (in this generality) is difficult, but for solution 2 we have
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5.3.2 Eigenvalues and Eigenvectors

In order to find P(n) we could just find PPP..P n-times. With a little linear algebra this
becomes easier: For many matrices P there exists a matrix U and a diagonal matrix D such
that P=UDU-1. Here is how to find U and D:
First we need to find the eigenvalues of the matrix P, that is we need to find the solutions of
the equations Px = λx. This is equivalent to (P − λI)x = 0 or to det(P − λI) = 0. So we
have:
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The D above now is the matrix with the eigenvalues on the diagonal. The columns of the
matrix U are the corresponding eigenvectors (with Euclidean length 1), so for example

Of course we have det(P −λI) = 0, so this system is does not have a unique solution. Setting
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x1 =1 we can then easily find a solution x=(1,-1,1,-1).

This vector has Euclidean length
√

(12 + (−1)2 + 12 + (−1)2) = 2, so the normalized eigen-
vector is x=(1/2,-1/2,1/2,-1/2)
Similarly we can find eigenvectors for the other eigenvalues.
Why does this help in computing Pˆ(n)? It turns out that we have
P(2) = PP = UDU-1UDU-1 = UDDU-1 = UD2U-1 and

and in general we have P(n) = UDnU-1.
Note

so λ = 1 is always an eigenvalue of a transition matrix P, with (unnormalized) eigenvector
(1,1,..,1)T.

5.3.2.1 Example (Umbrella)

solution 2 and r=2, then
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and in this generality that’s about it

An important consequence of the Markov property is the fact that given the present the past
and the future are independent. This is formalized in the
Theorem (Chapman-Kolmogorov equation)
Let {Xn, n ≥ 0} be a Markov chain. Let x,y,z be in the state space, then

proof
is an immediate consequence of the law of total probability and the Markov property.

5.3.3 Classification of States

There are a number of properties a Markov chains may or may not have. Here are some:
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Definition
A Markov chain is said to be irreducible if for each pair of states i and j there is a positive
probability that starting in state i the chain will eventually move to state j.

5.3.3.1 Example

Both the two random walks, the Ehrenfest chain and the Umbrella chains are irreducible.

5.3.3.2 ** Example (Casino)**

Consider the following chain: you go to the Casino with $10. You play Blackjack, always
betting $5. Let Xn be your “wealth” after the nth game. Then Xn is in {0,5,10,15,..} and
P (Xn+k = j|Xk = 0) = 0 for all n > 1.
(“0” is called a coffin or absorbing state). So this chain is not irreducible.
Definition
A Markov chain is said to be aperiodic if for some n ≥ 0 and some state j we have
P (Xn = j|X0 = j) > 0 and P (Xn + 1 = j|X0 = j) > 0
In other words there should be a chance to return to state j in either n steps or in n+1 steps.

5.3.3.3 Example

Random walk I, the Ehrenfest chain and the Umbrella chain are not aperiodic because it is
only possible to return to the same state in an even number of steps, but not an odd number.
Random Walk II is aperiodic.
Definition
A state x of a Markov chain is said to be recurrent if P(the chain returns to x infinitely often)
= 1. A Markov chain is called recurrent if all its states are recurrent. A state that is not
recurrent is called transient.
A recurrent state i is said to be positive recurrent if starting at i the expected time until the
return to i is finite, otherwise it is called null recurrent.
Theorem
In a finite-state chain all recurrent states are positive recurrent. proof
Say S={x1 ,..,xm } and assume (wlog) {x1 ,..,xk } are recurrent. Then for any i 6= j, i, j ≤ m

P (Xn = xi|X0 = xj) > 0
because x_i is recurrent, so we have to be able to get there infinitely often no matter where
we start. Therefore any recurrent state is reachable from any other recurrent state.
Assume that there is no positive recurrent state. Then all states are either transient or null
recurrent. So the expected return time to all the states is infinite. But there are only finitely
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many states, so this is impossible. Therefore there has to be at least one positive-recurrent
state.
Say x is a positive-recurrent state, and y is recurrent. Then

and so y is positive recurrent

5.3.3.4 Example

The Ehrenfest chain and the Umbrella chains are clearly poitive recurrent. In the Casino
example “0” is a recurrent state, the others are not.
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Are the random walks recurrent? Good question! It seems clear that the asymmetric r.v. is
not (if p 6= 0.5), because eventually one expects the walk to run off to infinity (or - infinity).
How about Random Walk I? Actually let’s consider a more general problem:

5.3.3.5 Example (Random Walk III)

let the state space be the lattice of integers on Rd, that is Xn =(i1 , .., id ) for ik any integer.
Then the chain goes from one point on the lattice to any of the 2d points that differ by one
in one coordinate with probability 1/2d.
One of the great results in probability states:
Theorem
The simple random walk is recurrent if d ≤ 2, transient otherwise
or as Kakutani once said “A drunk man will find his way home but a drunk bird may get
lost”.
Definition
Positive recurrent aperiodic states are called ergodic.

5.3.4 Stationary Distribution

Until now we started the chain at time 0 in some specified state j. Let’s consider what
happens if we choose that state according to some distribution π:

and clearly an interesting case is if the probability to be in a certain state does not change,
that is if
πTP = πT

Note:
πTP (n) = πTPP (n−1) = πTP (n−1) = ... = πT
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so this immediately implies that the probability for the chain to be in state k is always πk.
With this idea we have the
Definition
Let S be the state space of a Markov chain X with transition matrix P. Let π be a “measure”
on S. Then π is called a stationary measure of X if πTP = πT .
We won’t discuss exactly what it means for π to be a “measure”. You can think of it in the
same way as a probability distribution, only that we don’t have ∑ πi = 1.
Note:
πTP = πT iff (P Tπ)T = πT iff
P Tπ = π iff
(P T − I)π = 0
so again this leads to a system of equations is singular. Often we can get a unique solution
by requiring that π be a proper probability distribution, that is that ∑ πi = 1.
The interpretation is the following: Say we choose the initial state X0 according to π, that is
P (X0 = i) = πi. Then πi is the long-run proportion of time the chain visits state i, that is
πi = lim 1

N

∑N
k=1 I[Xi = i]

There is an extension of the WLLN to Markov chains. That is, say h is a function on the
state space, then

where Z is a r.v. with pdf π.
One of the main results for Markov chains is the following:
###Theorem
If the Markov chain {Xn } is irreducible and ergodic, then

proof omitted

5.3.4.1 Example (Ehrenfest chain)

To find a (?) stationary measure we have to solve the system of equations
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πTP = πT

Let’s start with the case r=3:

Here this means the system
π0 = 1/3π1
π1 = π0 + 2/3π2
π2 = 2/3π1 + π3
π3 = 1/3π2
π0 + π1 + π2 + π3 = 1
and so π = (1/8, 3/8, 3/8, 1/8)
Before doing the general case it is often a good idea to do a specific case that has all the
“parts” (ie equations), so let’s do next r=5:
First the transition matrix:
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and now the equations:
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Finally, for the general case:
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5.3.4.2 Example (Umbrellas)

For solution 1 the system of equations is

and so on shows x=c(q,1,..,1) solves the system. Now q+1+..+1=q+r, so the stationary
distribution is π0 = q/(q + r), πi = 1/(q + r)i = 1, .., r.
For solution 2 we have

262



and we see that we get the same stationary distribution as in solution 1.
So, what percentage of times do you get wet? Clearly this is
P(no umbrella and it rains) = qπ0 = q2/(q + r)

5.3.4.3 Example (Random Walk)

Let S be the integers and define a Markov chain by pi,i+1 = p and pi,i-1 = q = 1-p. A stationary
measure is given by πi = 1 for all i because (πP )i = 1p+ 1q = 1.
Now assume p 6= q and define πi = (p/q)i. Then

Note that this shows that stationary measure are not unique.

Here is another property of Markov chains: A Markov chain is said to be time-reversible if
πiPij = πjPji

for all i 6= j. It can be shown that for a time reversible Markov chain if the chain is started
from π and run backwards in time it again has transition matrix P.

5.3.4.4 Example

The Ehrenfest chain is time-reversible. We will show this for the case i=k, j=k+1:
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5.3.5 The Gambler’s Ruin Problem

Suppose you go to the casino and repeatedly play a game where you win and double your
“bet” with probability p and loose with probability q=1-p. For example, if you play roulette
and always place your bet on “red” we have p=18/38.
Suppose you go in with the following plan: you have $i to start, you always bet $1 in each
round and you stay until you either lost all your money or until you have reached $N. What
is the probability of reaching $N before going broke?
If we let Xn denote your “fortune” after n rounds {Xn} is a Markov chain on {0,1,..,N} with
transition probabilities
p00 =pNN =1
pi,i+1 =p
pi,i-1 =q
for i in {1,..,N-1}
Also we X0 =i.
Let Pi denote the probability that, starting at i the fortune will eventually reach N. We have:
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Note that PN =1 and that the formula above also holds for i=N, so we have
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The main “trick” in this calculation was to condition on the “right” event (here X1). This is
often the case when doing math with Markov chains.
Say in our example playing roulette you start with $100. What is the probability of reaching
N before going broke? We find
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Is it the same probability to start with $100 and reach $110 or to start with $200 and reach
$220? The answer is no, P220 =0.12 for i=100.

5.3.5.1 Example (two-state process)

Here Xn takes only two possible states, coded as 0 and 1. Therefore the transition matrix is
given by

267



Now
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For the stationary distribution we find
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Finally

5.4 Continuous-time Markov Chains

Definition
Say {X(t), t ≥ 0} is a continuous-time stochastic process taking values on the nonnegative
integers. Then X(t) is a Markov chain if for all s, t ≥ 0, and nonnegative integers i,j, x(u),
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0 ≤ u < s we have

The main result for such chains is
Theorem
let {X(t), t ≥ 0} be a continuous-time Markov chain with X(0)=i. Let Ti be the time the
process stays in state i. Then Ti has an exponential distribution.
proof

But this means that Ti is memoryless! Of course Ti is also non-negative and continuous, and
therefore Ti has to have an exponential distribution.

With this we have the following characterization of a continuous-time Markov chain:
1. the amount of time spent in state i is an exponential distribution with mean vi.
2. when the process leaves state i it next enters state j with some probability, say Pij.

So a continuous-time Markov chain is a process that moves from state to state in accordance
with a discrete-space Markov chain, but also spends an exponentially distributed amount of
time in each state.

Let’s consider a finite- statespace continuous-time Markov chain, that is X(t) ∈ {0, .., N}.
Let
Pij(t) = P (X(t) = j|X(0) = i)
then the the Markov property asserts that {X(t), t ≥ 0} satisfies
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where c) follows from the Chapman-Kolmogorov equations.
d*) is not strictly a consequence of the Markov property but is usually a sensible additional
condition.
Let P(t)=(pij) denote the matrix of transition probabilities at time t, so P is a matrix whose
entries are functions of t.
Now c) can be written as
P (s+ t) = P (s)P (t) for all t, s ≥ 0
and d*) as
limh→0 P (h) = I

this implies that P(t) is (right)-continuous at time 0, meaning each entry is continuous at
t=0. Now
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and so P(t) is continuous for all t ≥ 0. Actually, we have even more:

which shows that P(t) is even differentiable
The rates qi and qij give as a second way to describe a Markov chain, called the infinitesimal
description:
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Let

5.4.0.1 Example (Two-state Chain)

say {X(t), t ≥ 0} is a Markov chain with X(t) ∈ {0, 1} and
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We need An, so
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it is easy to find the stationary distribution of a continuous-time discrete-space Markov chain
in terms of the infinitesimal matrix. If all states communicate, that is if Pij (t)>0 for all i,j
and some t>0, then
limt→∞ Pij(t) = πj > 0
exists, and

otherwise the chain would never leave i, and so we have πA = 0 or
πjqj = ∑

i 6=j πiqij

j=0,..,N

5.4.0.2 Example (Redundancy)

A company has a computer for its website. If the computer is down they can’t sell anything,
so they have a backup, which takes over if the first computer is down. The operating computer
fails after an exponentially distributed time (with rate µ). Repair times are also exponentially
distributed (with rate λ). Let’s assume that µ is fixed but we have a choice of λ (by hiring
more technicians). We want to make sure that in the long run at most 1% of the time both
computers are down. How should we choose λ?
Let X(t) be the number of computers in operating condition at time t, so X(t) is 0, 1 or2.
Then X(t) is a Markov chain with infinitesimal matrix

What is the average “total downtime”, that is the time when neither computer is working?
The system of equations for the stationary distribution is
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and we see that the probability only depends on the ratio λ/µ. Set x = λ/µ, then
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5.4.1 Continuous-time Markov Chains with Infinite Statespace

5.4.1.1 Example (Pure Birth process)

Many webpages have a counter that keeps track of the number of people who have visited
the site. We can model such a counter as a Markov Chain called a “Pure Birth” process. At
time 0 there have been 0 visitors. Say at time t there have been X(t)=n. The counter stays
at n for time T that has an exponential distribution with rate λ.

5.4.1.2 Example (Birth and Death Processes)

Consider a system whose state at any time is the number of “people” in the system. Suppose
if there are n people in the system then
(i) new arrivals enter the system at an exponential rate λn (“births”)
(ii) people leave the system at and exponential rate µn (“deaths”)
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(iii) births and deaths occur independently of each other
Thus a birth and death process is a Markov chain with state-space {0,1,..} and
1. v0 = λ0

2. vi = λi + µi

3. P01 = 1

4. Pi,i+1 = λi/(λi + µi)

5. Pi,i−1 = µi/(λi + µi)
where 4) is because we go from i to i+1 if there is a birth before a death. LetX ∼ Exp(λ), Y ∼
Exp(µ) and X ⊥ Y . Now
[](graphs/mark117.png" >

5.4.1.3 Example (A simple epidemic model)

Consider a population of m individuals that at time 0 consists of 1 “infected” and m-
1 “susceptible” (individuals that might get infected, maybe because they have not been
immunized. Once infected an individual remains so forever and we suppose that in any
time interval h any given infected person will cause, with probability αh+ o(h) any given
susceptible to become infected. If we let X(t) denote the number of infected people in the
population at time t, X(t) is a pure birth process with
λn = (m− n)nα, n = 1, ..,m− 1
because if there are n infected people the m-n uninfected ones get infected at a rate of nα.
Let Ti be the time to go from i to i+1 infected, and let T be the time until the total population
is infected, then
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5.5 Martingales

A martingale is a stochastic process that formalizes the idea of a fair game.
Definition
A stochastic process {Zn, n ≥ 1} is said to be a martingale process if
E[||Zn||] ≤ ∞ for all n
and
E[Zn+1|Z1, .., Zn] = Zn

so if we think of Zn as the fortune of a gambler than for a martingale process the expected
fortune stays constant. Note
E[Zn+1]=E{E[Z_n+1|Z1,..,Zn]}=E[Zn]=..=E[Z1]

5.5.0.1 Example

let X1, X2,.. be independent rv’s with mean 0 and let Zn =X1 +..+Xn , then
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5.5.0.2 Example

let X1, X2,.. be independent rv’s with mean 0 and let Zn = ∏n
i=1 = Xi , then

Definition
A positive integer-valued, possibly infinite, rv N is said to be a random time for the process
Zn if the event {N=n} is determined by the random variables Z1,.., Zn. That is, knowing
Z1,..,Zn tells us whether or not N=n. If P (N <∞) = 1, then N is called a stopping time.

5.5.0.3 Example

say a gambler plays roulette. He starts with $100 and bets $1 in each round. He decides
to stop if he reaches $200 (or goes broke). Then if N is the number of games he plays N is
stopping time.
Definition
Let N be a random time for the process {Zn, n ≥ 1}, then

is called the stopped process.
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Proposition
If N is a random time for the martingale {Zn, n ≥ 1}, then the stopped process is also a
martingale.
without proof
Here is the main result for martingales:
Theorem (The Martingale Stopping Theorem}
If either

i. the stopped process is uniformly bounded
ii. N is bounded, or
iii. E[N ] <∞

and there is an M <∞ such that
E[|Zn+1 − Zn||Z1, .., Zn] < M

then E[Zn] = E[Z1]
In other words in a fair game if a gambler uses a stopping time to decide when to quit,
then his expected final fortune is equal to his expected initial fortune. Thus in the sense of
expected value, no successful gambling strategy is possible if one of the conditions of the
theorem are satisfied.

5.5.0.4 Example

There are many supposedly “guaranteed” strategies on how to win in a casino. A popular
one is this: bet $1 on red in roullette. if you loose double your bet and so on. Say you loose 3
times and then win, then your net-win is -1+(-2)+(-4)+8=+1, so you win $1. In fact as soon
as you win a “sequence” of n losses followed by a win always ends with an overall win of $1!
Great!
Unfortunately according to the martingale stopping theorem, even if roulette were a fair
game this would still not work! Why not?
By the way, strategies of this type have a name, the St. Petersburg strategy.
Corollary (Wald’s equation)
If Xi, i ≥ 1 are iid with E[|X|] <∞ and if N is a stopping time for X1, X2, .. with E[N ] <∞,
then

E

[
N∑
i=1

Xi

]
= E[N ]E[X1]

5.5.0.5 Example

suppose a computer randomly generates integers. Let N be the number of integers it has to
generate before we see a predetermined sequence, for example say 0 0 0 0.
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To compute E[N] imagine a sequence of gambles, each initially having 1 unit, playing a fair
game. Gambler i begins playing at the beginning of the ith day bets 1 unit that the value on
that day is equal to 0. If he wins (and so has 10 units) he bets those 10 units on the second
day, again to get 0. If he wins again he will have 100 units and so on. If 0 0 0 0 happens he
wins $10000-$1 = $9999, if any of his bets fail he looses $1.
At the beginning of each day another gambler starts to play. If we let Xn denote the total
winings of the casino after the nth day, then since all bets are fair Xn is a martingale with
mean 0.
Let N denote the time until 0 0 0 0 happens. Now at the end of day N each of the gamblers
1, .., N-4 would have lost 41, gambler N-3 would have won $9999, gambler N-2 would have
won $999, gambler N-1 $99 and gambler N $9. So
XN = N − 4− 9999− 999− 99− 9 = N − 11110 = 0
so E[N]=11110

5.6 Brownian Motion and Stationary Processes

In 1827 the English botanist Robert Brown observed that microscopic pollen grains suspended
in water perform a continual swarming motion.
This phenomenon was first explained by Einstein in 1905 who said the motion comes from
the pollen being hit by the molecules in the surrounding water. The mathematical derivation
of the Brownian motion process was first done by Wiener in 1918, and in his honor it is often
called the Wiener process.
Brownian motion is a continuous-time continuous state-space stochastic process defined as
follows: the process {X(t), t ≥ 0} is a Brownian motion process iff
1. X(0)=0
2. {X(t), t ≥ 0} has stationary and independent increments
3. for all t>0 X(t) ∼ N(0, σ

√
t)

One way to visualize a Brownian motion process is as the limit of symmetric random walks:
Let {Zn, n ≥ 1} be the symmetric random walk on the integers. If we now speed the process
up and scale the jumps accordingly we get a Brownian motion process in the limit. More
precisely, suppose we jump every δt and make a jump of size δx. If we let Z(t) denote the
position of the process at time t then
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The Brownian motion process plays a role in the theory of stochastic processes similar to the
role of the normal distribution in the theory of random variables.
If σ = 1 the process is called standard Brownian motion.
Next we draw sample paths of a standard Brownian motion process.
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x

y

Here are some properties of Brownian motion:
1. BM will eventually hit any and every real value, no matter how large or how negative!

It may be a million units above the axis, but it will (with probability 1) be back down
again to 0, by some later time.

2. Once BM hits zero (or any particular value), it immediately hits it again infinitely often,
and then again from time to time in the future.

3. Spatial Homogeneity: B(t) + x for any x ∈ R is a BM started at x.
4. Symmetry: -B(t) is a Brownian motion
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5. Scaling:
√
cB(t/c) for any c > 0 is a BM

6. Time inversion:

is a BM.
7. BM is time reversible
8. BM is self-similar (that is its paths are fractals):

Consider the four graphs of BM paths drawn here:
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They are drawn without labeling on the axis. They appear completely the same, but if we
add the tick marks
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we see that the scales are completely different. This phenomena is called self-similarity.
Brownian Motion is an example of a process that has a fractal dimension of 2. One of its
occurrences is in microscopic particles and is the result of random jostling by water molecules
(if water is the medium). So in moving from a given location in space to any other, the path
taken by the particle is almost certain to fill the whole space before it reaches the exact point
that is the ‘destination’ (hence the fractal dimension of 2).
9. The last property of BM is so much fun we will give it its own section:

5.6.1 Continuity and Differentiability

When studying a continuous-time stochastic process it is often useful to think of any particular
realization of the process as a function. Say S is the sample space of the process, that is the
set of all possible paths {X(t), t ≥ 0}, and let ω ∈ S.
Then f(t) = X(t, ω) is a function. (Usually we suppress ω, though).
In the case of BM, what are the properties of a typical realization B(t)? First let’s look at
continuity:
Now by the definition we have that
B(t+ h)−B(t) ∼ N(0,

√
h)

therefore E[(B(t+h)-B(t))2] = h, and so the size of an increment of |B(t+h)-B(t)| is about√
h. So as h→ 0,

√
h→ 0 which implies continuity.

How about differentiability? Now we have
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and we see that BM is nowhere differentiable!
(Of course this is rather heuristic but it can be made rigorous).
The idea of functions that are continuous but nowhere differentiable has a very interesting
history. It was first discussed in 1806 by André Marie Ampère and trying to show that such
a function exists was one of the main open problems during the 19th century. More than fifty
years later it was Karl Theodor Wilhelm Weierstrass who finally succeeded in constructing
such a function as follows:

Here is what this looks like for b = .2 and a = 5 + 7.5π(and a finite sum!)
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f

The hard part here was not the construction but to show that the function existed! For the
proof he developed what is now known as the Stone-Weierstrass theorem.
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Shorty after that a new branch of mathematics called functional analysis was developed. It
studies the properties of real-valued functions on function space. Here are some examples of
such functionals:

Of course one needs to specify the space of functions for which a certain functional applies.
Standard “function spaces” are C, the space of all continuous functions and C1, the space of
all continuous functions with a continuous derivative.
One of the results of functional analysis is that C is much larger than C1, actually of a higher
order of infinity, shown with the Baire category theorem.
So consider the following “experiment”: pick any continuous function in C. Then the
probability that it has a continuous derivative anywhere is 0! So functions such as Weierstrass
(or the paths of BM) are not the exception, they are the rule. Or, all the functions we study
in mathematics are completely irrelevant in nature!

5.6.2 Stochastic Differential Equations

Theorem
let g(x) be a continuous function and let {B(t), t ge0} be a standard Brownian motion. For
each fixed t>0, there exists a random variable

which is the limit of the approximating sums
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as n→∞. The random variable Ψ(g) is normally distributed with mean 0 and variance

If f(x) is another continuous function of x, then Ψ(f) and Ψ(g) have a joint normal distribution
with covariance

There is a version of the integration by parts formula:
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