we want to find
\(V=\int_0^\infty \log(1+x^2)e^{-x}dx\)
use simple simulation and antithetic variables. Use simulation to find their respective variances.
\(V=E\{\log(1+X^2)\}\), where \(X\sim Exp(1)\), so
u <- runif(1e4)
x <- -log(u)
c(mean(log(1+x^2)), var(log(1+x^2)))
## [1] 0.6906371 0.5938963
y <- (-log(u)-log(1-u))/2
c(mean(log(1+y^2)), var(log(1+y^2)))
## [1] 0.6863131 0.1489408
Let \(X_1,..,X_{10}\sim Pois(1)\) and independent. Find \(P(\max\{X_i\}>10)\)
\[ \begin{aligned} &P(\max\{X_i\}>10) =1-P(\max\{X_i\}\le10) = \\ &1-P(X_1\le30,..,X_{10}\le10) \\ &1-\prod_{i=1}^{10} P(X_i\le 10) = \\ & 1-P(X_1\le 10)^{10} \\ \end{aligned} \]
1-ppois(10, 1)^10
## [1] 1.004777e-07
Let’s use \(Y\sim Pois(\lambda)\), and play around a bit with the \(\lambda\). We find
\[ \begin{aligned} &F_{\max\{Y_i\}}(k) =P(\max\{Y_i\}\le k) = P(Y_1\le k)^{10} = ppois(k, \lambda)^{10}\\ &f_{\max\{Y_i\}}(k) = P(Y_1\le k)^{10}-P(Y_1\le k-1)^{10} ; k>0 \end{aligned} \]
\[w =\frac{f_{\max\{X_i\}}(k)}{f_{\max\{Y_i\}}(k)}\]
hw12p2 <- function(lambda=1, B=1e5) {
y=matrix(rpois(10*B, lambda), ncol=10)
ymax = apply(y, 1, max)
I=c(1:B)[ymax>10]
k=ymax[I]
w = (ppois(k, 1)^10-ppois(k-1, 1)^10)/
(ppois(k, lambda)^10-ppois(k-1, lambda)^10)
c(length(I)/B, sum(w)/B)
}
hw12p2(6)
## [1] 3.54780e-01 1.00513e-07
hw12p2(7)
## [1] 6.431000e-01 1.006184e-07
hw12p2(6.5)
## [1] 4.978900e-01 1.004634e-07
so here we have the event about 50% of the times, and so we use this result, which is very close to the true answer.