OBJECTIVE
The objectives of this study were to evaluate: a) the use of freshly cut (FCYT) and semi-decomposed (SDYT) yard trimmings as bulking agents (BA) on the composting process of organic wastes from a commercial slaughterhouse, and b) the chemical composition, stability and maturity of the end product with three commercial composts.

MATERIALS AND METHODS

Compost preparation
• Single or double layers of animal tissue wastes were placed in composting bins of identical volume, and were used as control treatment. In treatments containing animal tissue, SHW were placed between 0.5m layers of the bulking agent in a 2:1 proportion (w/w).
• The compost piles were hydrated to obtain an initial 60 to 70% moisture content which was maintained over the composting process.
• Triplicate samples from each original material (composting phase 1) were obtained to determine initial C and N content, C/N ratio, organic matter (OM) and inorganic matter (IM) (AOAC, 1995; Riddle, 1992).

Four core samples from each treatment were obtained in the seven composting phases (Figure 2). Composting phases 2 and 3 were achieved until the temperature reached its maximum value and dropped 10°C after the first and second heat cycles, respectively. Triplicate samples from each treatment were also collected at 0, 21, 43, 64 and 84 days of the maturation process, composting phases 4 through 7, respectively.

Samples for each treatment and composting phase were collected after turning the compost piles, composted, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

RESULTS
Even though there was a significant interaction between layers of SHW (none, single or double) and compost piles, composited, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

Conclusions
The results suggest that piles containing greater proportions of animal tissue compost slower than vegetative material composted alone, but reach higher temperatures during the longer periods of time seen in both composting piles. This greater heat production may contribute to the elimination of undesirable and pathogenic microorganisms during the composting process.

REFERENCES

• Samples for each treatment and composting phase were collected after turning the compost piles, composted, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

Conclusions
The results suggest that piles containing greater proportions of animal tissue compost slower than vegetative material composted alone, but reach higher temperatures during the longer periods of time seen in both composting piles. This greater heat production may contribute to the elimination of undesirable and pathogenic microorganisms during the composting process.

REFERENCES

• Samples for each treatment and composting phase were collected after turning the compost piles, composted, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

Conclusions
The results suggest that piles containing greater proportions of animal tissue compost slower than vegetative material composted alone, but reach higher temperatures during the longer periods of time seen in both composting piles. This greater heat production may contribute to the elimination of undesirable and pathogenic microorganisms during the composting process.

REFERENCES

• Samples for each treatment and composting phase were collected after turning the compost piles, composted, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

Conclusions
The results suggest that piles containing greater proportions of animal tissue compost slower than vegetative material composted alone, but reach higher temperatures during the longer periods of time seen in both composting piles. This greater heat production may contribute to the elimination of undesirable and pathogenic microorganisms during the composting process.

REFERENCES

• Samples for each treatment and composting phase were collected after turning the compost piles, composted, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

Conclusions
The results suggest that piles containing greater proportions of animal tissue compost slower than vegetative material composted alone, but reach higher temperatures during the longer periods of time seen in both composting piles. This greater heat production may contribute to the elimination of undesirable and pathogenic microorganisms during the composting process.

REFERENCES

• Samples for each treatment and composting phase were collected after turning the compost piles, composted, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

Conclusions
The results suggest that piles containing greater proportions of animal tissue compost slower than vegetative material composted alone, but reach higher temperatures during the longer periods of time seen in both composting piles. This greater heat production may contribute to the elimination of undesirable and pathogenic microorganisms during the composting process.

REFERENCES

• Samples for each treatment and composting phase were collected after turning the compost piles, composted, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

Conclusions
The results suggest that piles containing greater proportions of animal tissue compost slower than vegetative material composted alone, but reach higher temperatures during the longer periods of time seen in both composting piles. This greater heat production may contribute to the elimination of undesirable and pathogenic microorganisms during the composting process.

REFERENCES

• Samples for each treatment and composting phase were collected after turning the compost piles, composted, and analyzed to determine pH and chemical composition as described for the original material. Data were analyzed according to a completely randomized design with a factorial arrangement of treatments (composting phases X treatments) and analyzed using the General Linear Model (Steel and Torrie 1990) using the SAS (1990) General Linear Model procedure. Significant differences were found between treatments (Table 3).

Conclusions
The results suggest that piles containing greater proportions of animal tissue compost slower than vegetative material composted alone, but reach higher temperatures during the longer periods of time seen in both composting piles. This greater heat production may contribute to the elimination of undesirable and pathogenic microorganisms during the composting process.