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Abstract

Floods are one of the most costly types of natural disasters in the world. This is an attempt to introduce a Flood Alert System at the Puerto Rico Western area, using radars with high temporal and spatial resolution and developing a forecasting model to convective precipitation for time periods less than a few hours (nowcasting).  

The accuracy of these forecasts generally decreases very rapidly during the first 30 min because of the very short lifetime of individual convective pixels, a number of observation studies have shown that individual convective cells have mean lifetimes of about 20 mins. Numerical simulation studies have contributed significantly to the understanding of storm composition and duration; this is just beginning to be recognized in currents nowcasting systems. Before mentioning nowcasting techniques and systems, it is useful to review what is known from numerical and observational studies about the organization, lifetime and motion of storms. 

The techniques nowcast proposed here is a special kind of nonlinear model with stochastic and deterministic components. The rainfall forecasts obtained using the considered method is then routed through a rainfall runoff model Vflo, this implementing a coupled rainfall-runoff forecasting procedure for the watershed Puerto Rico Western area. The study analyses and compares the  relatives advantages and limitations of each lead-times varying from 5  to 30 mins, the output hydrograph developed for the hydrological model and the hydrograph obtained for observed data using the variables time to peak, runoff depth and peak flow are furthermore compared.













RESUMEN

Las inundaciones son el tipo de desastres naturales más costoso mundialmente. Este es el primer intento para introducir un Sistema de Alerta de Inundaciones en el oeste de Puerto Rico, usando radares con alta resolución espacial y temporal,  y desarrollando un modelo de predicción para lluvias convectivas en periodos menores de unas pocas horas, este método es llamado “Nowcasting” o predicciones en corto tiempo. La precisión de estas predicciones generalmente decrece durante los primeros 30 minutos debido a la corta vida de la convectividad en cada uno de los pixeles, un número de estudios de observaciones han mostrado que las celdas convectivas tienen un promedio de vida alrededor de 20 minutos. Estudios en simulaciones numéricas han contribuido significantemente al entendimiento de la composición y la duración de las tormentas, este es solo el comienzo de para el uso de sistemas de predicciones en corto tiempo. Antes de utilizar las técnicas de sistemas de predicciones a corto tiempo, es necesario conocer estudios numéricos y observaciones de la formación, el tiempo de vida y el movimiento de una tormenta. La técnica de predicciones a corto tiempo propuesta aquí es una clase especial de modelo no-lineal con componentes estocásticos y deterministicos. La lluvia obtenida a través del modelo de predicción será aplicada al modelo hidrológico de lluvia y escorrentía Vflo,  esta implementación de pronóstico de lluvia y escorrentía es aplicada a  la cuenca del aérea oeste de Puerto Rico. El estudio analiza y compara las ventajas y limitaciones de cada tiempo de predicción comenzando desde 5 minutos hasta 30 minutos, también se comparara el resultados de los hidrógramas desarrollados por el modelo hidrológico contra los obtenidos de las observaciones, las variables a comparar son tiempo pico de la escorrentía, profundidad de la escorrentía y flujo pico.
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Portions of Puerto Rico Western area are subject to flash flooding due to sudden, extreme rainfall events, some of which fail to be detected by NEXRAD radar located 104 km away in the town of Cayey, Puerto Rico and partially obstructed by topographic features. The use of new radars with higher spatial resolution and covering areas missed by the NEXRAD radar, are important for flood forecasting efforts, and for studying and predicting atmospheric phenomena. 
Recently, the University of Puerto Rico in Mayagüez Campus, Trabal et al., [2011] initiated investigations using two (2) types of radars, namely: Off-the Grid (OTG) and TropiNet, with radius of coverage of 15 km and 40 km, respectively. This network will monitor the lower atmosphere where the principal atmospheric phenomena occur.  This work represents the first time that TropiNet radar technology will be used for hydrologic analyses and specifically for rainfall forecasting in Puerto Rico western area. 
Short-term rainfall forecasts have commonly been made using Quantitative Precipitation Forecast (QPF).  The introduction of quantitative precipitation forecasting (QPF) in flood warning systems has been recognized to play a fundamental role, QPF is not an easy task, rainfall being one of the most difficult elements of the hydrological cycle to forecast [French et al., 1992] and great uncertainties still affect the performances of stochastic and deterministic rainfall prediction models [Toth et al., 2000].
This capability currently does not exist in Puerto Rico Western area, and is needed because of the potential for flooding in certain areas (e.g., in flood plains near the principal rivers).   In this research, short-term rainfall forecast analysis performed using nonlinear stochastic methods. Once obtained, the rainfall forecast is introduced into a hydrologic/inundation model Vflo and Inundation Animator configured for the Vflo Bay Drainage Basin (MBDB).  

Specific components of the research are: the inclusion of calibration and validation of rainfall estimates produced by the TropiNet radar network, the development and validation of the stochastic rainfall prediction methodology, the calibration and validation of the inundation algorithm at selected locations within the MBDB, and the proto-type of an operational, real-time flood alarm system for the MBDB.  The proto-type, automated Flood Alarm System (FAS) will send near-real time updated inundation images to a website on the Internet.

 This research consists of a review of the scientific literature in Chapter 2, justification for the research in Chapter 3, objectives in Chapter 4, and the methodologies for the research are given in Chapter 5.  The results are provided in Chapter 6.  
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In this section we will provide a brief review of the literature related to each of the components of the proposed project.  These components include:  stochastic modeling and short-term rainfall forecasting, radar rainfall estimation and validation, hydrologic/inundation modeling and real-time flood forecast systems.

[bookmark: _Toc401056974]Stochastic Modeling and Short-Term Rainfall Forecasting  

There are many approaches that can be used to predict the future direction and magnitude of a physical process, such as rainfall.  Forecasting is a large and varied field having two predominant branches: Qualitative Forecasting and Quantitative Forecasting [Hyndman, 2010].  Quantitative Forecasting should satisfy two conditions, the accessible numerical information about the past and assumptions that some aspects of the past patterns will continue into the future. Quantitative Forecast can be divided into two classes: time series and explanatory models. Explanatory models assume that the variables to be forecast exhibits an explanatory relationship with one or more other variables, in contrast, time series forecasting uses only information on the variable to be forecast, and makes no attempt to discover the factors affecting its behavior [Hyndman, 2010]. The time series models attempt to capture past trends and extrapolate them into the future. There are many different time series models but the basic procedure is the same for all as illustrated in Figure 2‑1. 
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[bookmark: _Ref399426130][bookmark: _Toc397772542][bookmark: _Toc397772894][bookmark: _Toc397773088][bookmark: _Toc401056876]Figure 2‑1. Flowchart Stochastic Model based [Box and Jenkins, 1976]

Some of the most common time series methods include: Autoregressive, Moving Average, Exponential Smoothing, Autoregressive Moving Average, Extrapolation, Linear Prediction and others [Box and Jenkins, 1976]. This research include a new type of time series nonlinear with a stochastic and deterministic components, this will be explained later.
The autoregressive (AR) method is a type of random process, which is used to predict some types of natural phenomena, falling within the group of linear prediction formulas. The moving average (MA) method is a way to convert actual observations to forecast by simply averaging [Box and Jenkins, 1976]. Exponential smoothing is a popular scheme to produce a smoothed time series; exponential smoothing assigns exponentially decreasing weights to the observations as they get older. That is to say recent observations are given relatively more weight in forecasting than the older observations. With the Autoregressive Moving Average (ARMA) method, models are used to describe stationary time series, which represent the combination of an autoregressive (AR) model and moving average (MA) model.  The order of the ARMA model in discrete time () is described by two integers (p, q), that are the orders of the AR and MA parts, respectively.  A process is considered to be stationary when parameters, such as the mean and variance, do not change over time or maintain the same range. Autoregressive (AR) or Autoregressive moving average (ARMA) are models widely used in the prediction.  Other time series methods include extrapolation and linear prediction, nonlinear prediction with exponential component, depending of data behavior.	Comment by lilia: In Time Series Moving Averages (MA) model is NOT an average.  This is incorrect statement.  MA model is the representation of a stochastic process by a linear combination of independent random noise.  The moving average model does not have any connection with an average. 
A time series is part of a stochastic process; the word stochastic coming from the Greek stokhastikos, an adjective that refers to systems whose behavior is intrinsically non-deterministic, or sporadic, and categorically not intermittent [Merriam-Webster, 2012]. The stochastic methods are techniques used in prediction of events; these events could be winds, hurricane tracks, temperature, humidity, rainfall, floods, etc.  The stochastic concept has been used in the field of hydrology since the beginning of 20th century [Salas et al., 1980] applied in the river flow sequence analysis, but only in the 1970’s were autoregressive models applied to seasonal and annual hydrologic time series.  Research in hydrologic time series has been aimed towards studying the main statistical characteristics, providing physical justification for some stochastic models, developing new models, improving existing modeling parameters, developing new modeling procedures, improving tests of goodness of fit and other parameters applied to hydrology [Salas et al., 1980].   
Forecasting is a relatively new science within hydrology and the atmospheric sciences [Salas and Obeysekera, 1992]. Its application has led to the reduction in deaths caused by natural disasters. “The Time Series Analysis” of Box and Jenkins [1976] constitutes an important contribution to the field of stochastic analysis for the purpose of forecasting hydrologic phenomena. The book focuses on the application of the autoregressive and moving average models for forecasting. 
A number of researchers have developed hurricane prediction tracking models in Puerto Rico. For example, Ramirez-Beltran [1996] used historical data to develop a stochastic model to predict the behavior of hurricane tracks.  The parameter estimation scheme, based on recursive and iterative algorithms, used historical records for hurricanes to fit vector autoregressive models. The identified models have been classified according to the order of the model. The first observations of a given hurricane are compared with historical hurricane tracks.  Ramirez-Beltran [1996] concluded that the vector ARMA model has excellent potential and may help reduce official forecasting error compared with a Statistical-Dynamical Hurricane Track Prediction Model (NHC90) from the National Meteorological Center [Meisner, 1995].  

The ideal forecast rainfall is based on the meteorological analysis but this is not always available, when this information is not accessible, the forecast rainfall can be based on current and past rainfall. The forecasting of rainfall has been investigated by Burlando et al., [1993]. Their research here relates to forecasting rainfall at a point, with simple formulation. Various models can be used for representing forecasting at point, several models have been developed which describe storm arrivals following a Poisson process, however the formulation for real time rainfall forecasting based on these models is too complex [Ramirez and Bras, 1985].
Burlando et al., [1993] discussed forecasting of short term rainfall using ARMA models defined at 1 hours and 2 hours time scale. Burlando et al., [1993] suggest that parameter estimation models based on short-term precipitation records defined at hourly time-scale is more complex than when data is defined at longer time periods such as months. They forecasted rainfall by assuming that hourly rainfall follows an ARMA process. This assumption is based on the fact that the autocovariance structure of some point processes, such as hourly rainfall. It is equivalent to the autocovariance structure of certain low-order ARMA processes. 
Two estimation and fitting procedures were investigated. The first takes all rainfall occurrences throughout the period of record as the basis for parameter estimation, thus a given set of parameters results for a given month or season, and the second is an event-based estimation approach, each storm or independent rainfall of the month or season is considered separately for parameter estimation. Thus a different parameter set was determined for each storm or rainfall event considered. These procedures are compared for rainfall data at a point and rainfall data average over the basin.  The analysis presented, used hourly rainfall from two gauging stations in Colorado, USA and from some stations in Central Italy. This research relates to forecasting rainfall at a point using rain gauges, Thyessen polygons were used to weigh contribution from each rain gauge. First, forecast at each station was obtained, and these were then averaged over the basin using the Thyessen weights. The results show that the event-based estimation approaches yields better forecasts than the continuous approach and is capable of producing the rainfall intensity fluctuations, see Figure 2‑2.	Comment by Nazario Ramirez: These special weights should have a reference.
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[bookmark: _Ref399426131][bookmark: _Toc401056877]Figure 2‑2. Forecast 1h and 2h ahead of hourly rainfall intensity and accumulative rainfall using event-based approaches for the event of 18 February 1953, Denver station, Colorado, USA [Burlando et al., 1993].

Burlando et al., [1993] assumed that the rainfall processes are typically non-stationary and skewed.  To circumvent non-stationary, the rainfall data are grouped by month of season; thus the model is applied separately for data of a given month or a given season.  Accordingly, model parameters such as autoregressive and moving average coefficients were determined from precipitation data pertaining to a given month or season only. 
Parameter estimation of ARMA models based on short-term precipitation records defined at hourly time-scales is more complex than when data is defined at longer time periods such as months.  The main reason is the intermittent characteristic of hourly precipitation. Therefore, two alternative approaches were followed by Burlando et al., [1993] for parameter estimation and forecasting. The first was referred to as the continuous approach and the second as the event based approach.
In the continuous approach, all the precipitation events which occurred in a given month or season were considered for parameter estimation. Thus, a given set of parameters results for a given month or season. In the continuous approach, the precipitation data used for parameter estimation were arranged in two different ways. In the first, no differentiation was made between storm events, and the whole data set, including zero recorded precipitation, was used for estimation, whereas in the second, only non-zero precipitation (storm) events were extracted from each month (or season) and they were arranged sequentially for estimation. 	Comment by Nazario Ramirez: I think that this is an incorrect approach because you are putting together several events that they have no connection.  The ARMA models are based on the autocorrelation function.  Thus, the ARMA model depends on the previous observations.  If the previous observations, belongs to other process then the model will be incorrect.
Please request whether the content of this reference is correct.  
In the event-based estimation approach, each storm event regardless of the month or season is considered separately for parameter estimation. Thus, a different parameter set was determined for each storm event considered.  On the other hand, in the event-based approach, as only data of the current storm is used for estimation, the number of observations is small, and especially at the beginning of the storm event when only a few rainfall measurements are available. The influence of the storm movement was not considered here, and the scale of temporal and spatial aggregation at which data should be monitored, are two factors which may improve the reliability of rainfall forecasts, [Burlando et al., 1993].	Comment by Nazario Ramirez: This is the correct method and contradicts the previous statement.  Each storm should be modeled separately.
Delleur and Kavvas [1978] used the autoregressive moving average ARMA (1,1) model to study the average rainfall time series over 14 basins. Results showed that the model is adequate for a short-range forecast at one or two time steps ahead. They claimed that due to the rotation of the earth around the sun the monthly rainfall time series exhibit a yearly periodicity. The time series models are usually fitted to the stationary random component of the spectrum or equivalently to the decaying part of the autocorrelation function.  They said that this is necessary to remove the circularly stationary component of the time series corresponding to the discrete spectral component or to the sinusoidal periodic component of the autocorrelation function.	Comment by lilia: This statement is incorrect.  I think that they referred to remove the non-stationary component of the process.  In general a non-stationary process become a stationary process after you remove the non-stationary part.  It makes no sense to remove the stationary component.  Because the stationary component of the process is required to derive the stochastic model.  Thus, if you remove that part there will be no stochastic model.  Please request to verify the content of this reference.
Delleur et al., [1989] used a model that included a Markov chain to simulate the sequences of dry and wet days. They found that the models simulated the sequences of dry and wet days well however, the amount of daily rainfall was not described adequately.
McLeod [1993] demonstrated that the principle of parsimony is helpful in selecting the best model for forecasting river flow. His work demonstrated the importance of model adequacy for seasonal river flow and incorporated seasonal periodic correlation.   Briefly, their experience with river flow time series suggests that the best forecasting results are obtained by following the general model building philosophy implicit in Box and Jenkins [1976] with suitable modifications and improvements. Box and Jenkins [1976] give a method to estimate the orders of the AR and MA terms of a model based on autocorrelations and partial autocorrelations.

A popular decision rule for comparing models in the time series literature is the Akaike Information Criterion (AIC) [Akaike, 1974]. This criterion is known as the test for the Parsimony of parameters.  Several investigations have used AIC criterion for choosing the model type, order and in constructing an appropriate model for a given streamflow series. The following procedure is usually followed: 
1. The appropriate type of model, among AR, MA, ARMA, ARIMA (autoregressive integrated moving average) and seasonal ARIMA models is selected. 
2. The choice of order for the selected model is determined and
3. The parameters in the model using the given stream flow series are estimated; and validation of the model by residual testing and by simulation is performed. This procedure is applied to identify models for forecasting and synthetic generation. 
Mujumdar and Nagesh [1990] used two criteria for the model selection, Maximum Likelihood rule (ML) and Mean Square Error (MSE) both of which are used for the selection of the best model for each of the rivers considered.  The selection of a model by the ML rule involves evaluating a likelihood value for each of the candidate models and choosing the model which gives the highest value. In general, as the number of parameters increase in the function, the likelihood value decreases. Thus it is to be expected that the ML rule selects models with a small number of parameters, this is the principle of parsimony and is described propounded by Box and Jenkins [1976].

The maximum likelihood estimation criterion is suited for the selection of a model for simulation purpose. For short-term forecasting, such as one step ahead forecasting, the mean square error (MSE) criterion may be more useful [Kashyap and Rao, 1976].
Selection of a model based on an MSE criterion is quite simple and can be summarized as follows: 
1. Estimate the parameters of different models using a portion, usually half of the available data. 
2. Forecast the second half of the series one step ahead by using the candidate models. 
3. Estimate the MSE corresponding to each model and 
4. Select the model that results in the least value of the MSE. 
For all cases presented by Mujumdar and Nagesh [1990] the simple model AR (1) resulted in the minimum value of the MSE, underlining the fact that for one step ahead forecasting, quite often the simplest model is sufficient. The case study additionally revealed that as the number of parameters increased, the MSE increased, which is an interesting result contrary to the common belief that models with larger number of parameters, give better forecasts. For all series of the streamflows considered, the AR (1) model is strongly recommended for use in forecasting the series one step ahead.
Salas and Obeysekera [1992] who worked with time series models in streamflow, have stated that data generation and forecasting of seasonal streamflow are often needed in the planning and management of water resources systems.  Both data generation and forecasting are based either on stochastic models alone or in combination with corresponding conceptual models of the system under consideration. In most cases, stochastic model are usually developed, based on the available data at hand. 
In modeling time series of annual flows, the assumption of stationarity of the series is usually made, so stationary stochastic models are applied.  When dealing with time series of seasonal flows, the modeling is more complex. The main reason is the inherent periodicity in several statistical characteristics that invariably lead to stochastic models with periodic parameters. Most techniques available for diagnostic checks have been limited to stationary models, although some approximations have been suggested for models with periodic parameters. A number of conceptual simulation models for representing the hydrologic cycle of watersheds have been suggested in the literature since the early 1960s. Examples of such models are the new version of the Stanford watershed model [Johanson et al., 1984] and the Sacramento model of the National Weather Service [Burnash et al., 1973]. Extensive literature already exists on these two modeling approaches however less attention has been given to linking both conceptual and stochastic modeling schemes.
Kohnova et al., [2007] conducted in a study involving the modeling and forecasting of discharge and rainfall time series in the area of the Klastorske Luky wetland [Slovakia].  They first analyzed the systematic components (trends, seasonality, periodicity and residual components). Subsequently, prediction models for the mean monthly discharges and the mean monthly precipitation totals were derived. The models tested were the linear ARMA models. The results obtained could help ecologists in making decisions on wetland management, improving the ecological conditions in the analyzed wetland, and planning future eco-technical measures. 

Many problems related to water resources and environmental systems deal with temporal data which need to be analyzed by means of a time series analysis, which has become a major tool in hydrology. It is used for building mathematical models to describe hydrological data, forecast hydrologic events, detect trends, provide missing data, etc. Kohnova et al., [2007] after analyzing some types of autoregressive models, concluded that the ARMA (1,1) model can be used to generate synthetic traces of monthly rainfalls, particularly useful in the analysis of water resources projects on basins. 
Katz & Skaggs [1981] worked with statistical problems that may be encountered in fitting autoregressive moving average (ARMA) processes to meteorological time series. Using techniques that lead to an increased likelihood of choosing the most appropriate ARMA process to model the available data are emphasized. ARMA models are well suited to the analysis and forecasting of time series that are by nature or by manipulation persistent and thus, are especially useful in climatological analysis.  Box and Jenkins [1976] are primarily responsible for making readily accessible the necessary statistical methodology for applying ARMA models to real data and for taking advantage of the use of these models in forecasting. While ARMA processes have many advantages over other somewhat similar processes their application to modeling meteorological data may require an increased degree of mathematical sophistication on the part of the researcher.

Other examples of rainfall forecasting models were developed. PRAISE (Prediction of Rainfall Amount Inside Storm Events) is a stochastic model to forecast rainfall height at site. PRAISE is based on the assumption that the rainfall height accumulated on a delta time is correlated with a variable that representing antecedent precipitation. The mathematical background is given by a joined probability density function and by a bivariate probability distribution, referred to the random variable, represents rainfall in a generic site and antecedent precipitation in the same site. The peculiarity of PRAISE is the availability of the probabilistic distribution of rainfall heights for the forecasting hours, conditioned by the values of observed precipitation. PRAISE was applied to all the telemetering rain gauges of the Calabria region, in Southern Italy; the calibration model shows that the hourly rainfall series present a constant value of memory equal to 8 hours, for every rain gauge of the Calabria network. As a study area the Calabria region in southern Italy was selected to test performances of the PRAISE model [Sirangelo et al., 2007].

[bookmark: _Toc401056975]Nowcasting 


The interest from rainfall forecast with high spatial and temporal resolution has been increased in contemporary days. Only some equipment like radars is capable of producing high spatial and temporal resolution. Early algorithms were based on pattern recognition of rainfall echoes from which cross-correlation coefficients can be calculated and used to predict the motion of the storm feature [Denoeux et al., 1990].
Dixon and Wiener [1993] developed a nowcasting system titled TITAN (Thunderstorm Identification Tracking Analysis Nowcasting) to predict convective rainfall.  TITAN uses real-time automated identification tracking and short-term forecasting of storm which besides is able to nowcast storm development and movement.  

Nowcasting could be described as the production of short-term (0-3) hours lead-time precipitation forecasts based mainly on the extrapolation of future data from current radar data images  [Smith and Austin, 2000].  Nowcasting benefits many different fields in addition to flood forecasting, including more general public weather warnings, water management, storm sewer operation, and irrigation, wet deposition of pollutants, construction site management, and transportation systems [Browning and Collier, 1989].

[bookmark: _Toc346179088][bookmark: _Toc401056976]Radar Rainfall Estimation and Validation


The National Weather Service is in charge of providing weather, hydrology, and climate forecasts and warnings for the United States including Puerto Rico and U.S Virgin islands, working with a network of 159 high resolutions Doppler weather radars, commonly referred to as NEXRAD (Next-Generation Radar). The technical name for NEXRAD is WSR-88D, which stands for Weather Surveillance Radar, 1988, Doppler (National Climatic Data Center, 2012). NEXRAD detects precipitation and atmospheric movement or wind. The NEXRAD radars can provide information that can help mitigate disasters caused by flash floods. Errors can occur with the methodology for observations far from the radar, where the earth’s curvature limits the observation of the lower atmosphere, see Figure 2‑3. NEXRAD coverage has limitations in observing below 10,000 feet or 3 kilometers (called the Gap) above sea level for the Mayagüez area and nearby towns [Cruz-Pol et al., 2011]. At these locations, NEXRAD cannot “see” if raindrops are forming within the Gap, resulting in a different rain rate than other radars which can measure the lower portion of the cloud (OTG and TropiNet). In the OTG and TropiNet radars, the rain rate equations can be selected, whereas NEXRAD rain rate uses the tropical equation with a threshold reflectivity (Z) of 53dBZ, Z values above 53 dBZ are assumed to be hail and are not considered. Other difference between NEXRAD and TropiNet radar is that NEXRAD has Doppler capabilities given information on cloud motion, and TropiNet has Polarimetric capabilities which give information on precipitation type and rate. Polarimetric radars refer to dual-polarization radars which transmit waves that have horizontal and vertical orientations. The horizontal wave provides a measure of horizontal dimension of the cloud and rainfall and the vertical wave provides a measure of particle size, shape and density.

[image: C:\Users\Eric Harmsen\Documents\TESIS\propuesta\figuras\figura-radar.png]
[bookmark: _Ref399426529][bookmark: _Toc346179119][bookmark: _Toc397772544][bookmark: _Toc397772896][bookmark: _Toc397773090][bookmark: _Toc401056878]Figure 2‑3. Long range problem with NEXRAD (based on Cruz-Pol et al., 2011). The figure does not include topography of the land surface.

The use of the new radars OTG and TropiNet with higher spatial resolution and their observations of the lower atmosphere in the Western Puerto Rico area provide better atmospheric information in the lower zone because curvature effect is minimal, at minimum elevation.
The OTGs radars have been developed based on the modification of off-the-shelf marine radars, which are characterized by low power consumption (~180Watts), short range (15km) and low cost (~$30k) [Cruz-Pol et al., 2011].  The OTG radars are capable of operating independently of the existing power grid and communication infrastructure.
In January 2010 the OTG Radar No. 1 was successfully installed at the PR-1 radar tower on the rooftop of the Stefani Engineering Building at the University of Puerto Rico, Mayagüez campus. The radar has an estimated sensitivity of 12 dBZ at 15 km, a range and a mean cross-beam resolution of 120 m and 500 m, respectively, and is a 4 kw X-band marine radar [Cruz-Pol et al., 2011]. This technology was developed by the Student Test Bed of the NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) in Mayagüez, Puerto Rico. A preliminary calibration of estimated rain rates was conducted on the OTG Radar No. 1 by Arocho et al., [2010].
Recently, new radars (TropiNet-1) were installed in Cornelia (Guanajibo) and (TropiNet-2) Lajas and another will be installed in Isabela (before Puerto Rico Student Test Bed, now part of the Puerto Rico Weather Radar Network http://weather.uprm.edu).  The RXM-25 radar, referred to as TropiNet because of the name of the project, is designed to cover a range between 30 and 50 km at very high sampling resolution spatial 60x60 meters and temporal one (1) minute and offer state-of-the-art radar data products. The RXM-25 is prepared to operate as a single radar unit or as a radar network, allowing both manual and automated control and the radar allows a motion over the whole hemisphere. It additionally uses a low operating cost magnetron transmitter capable of delivering up to 12 watts of average power per polarization channel.  The RXM-25 is designed for easy access and maintenance, all of its signal processing and radar control software runs on a single server.  Due to the above mentioned characteristics, it is possible that the RXM-25 will provide the best overall data in western Puerto Rico area to forecast important rainfall events.          
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Numerical hydrologic models are commonly used to predict surface runoff from watersheds, estimate peak stream flow and stage elevation. These models fall within three main categories: lumped, semi-lumped and distributed models.  The lumped model bulks all of the rainfall/runoff processes into a few watershed scale parameters. An example of this type of model is the Sacramento Soil Water Accounting System [Burnash et al., 1973]. The advantage of the lumped type model is that they are relatively easy to configure and to use. The semi-lumped model allows for the distribution of parameters in a watershed within homogeneous hydrologic response units (HRUs). An example of a semi-lumped hydrologic model is the Precipitation Runoff Modeling System (PRMS) developed by the U.S. Geological Survey (USGS) [Leavesly and Stannard, 1995].   
The third type of hydrologic model is the numerically distributed model. The most common numerical methods used for this type of model are the finite difference or finite element methods. An example of a numerically distributed model and the one that is used in this research is Vflo, developed by Vieux [2001]. Some hydrologic studies in Puerto Rico have utilized the Vflo model, including Vieux and Vieux [2006] and Rojas [2012].  
Vflo uses radar rainfall data as hydrological input to simulate distributed runoff and is based on Geographic Information Systems (GIS) data. It provides high-resolution, physics-based distributed hydrologic modeling for managing water from catchment to river basin scale, the prediction of flow rate and stage can be made in every grid cell in a catchment, river or region, and the output is integrated with the Vflo -Inundation-Analyst module. The Vflo -Inundation-Analyst module along with Digital Elevation Model (DEM) data is used to show the extent of flooding superimposed onto a land map.
Rojas [2012] used Vflo to evaluate the influence of the interrelation between different up-scaling parameters and inputs on hydrologic predictability for use in flood prediction in the MBDB. Based on her analysis, the recommended upscaled rainfall resolution, which will provide equivalent accuracy with the 100 m rainfall resolution, is 1000 m, and the recommended upscaled hydrologic model grid resolution is 200 meters.
 
Much of the data used by Rojas [2012] for the MBDB was originally developed by Prieto [2007] as part of a preliminary hydrologic regional conceptual model for the MBDB and implemented in an integrated, fully distributed, physically based, numerical model Mike She [DHI, 2005]. The fully integrated model simulated surface and groundwater flow within the MBDB.  
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The USGS has developed the Real Time Flood Alert System (RTFAS) for Puerto Rico [USGS, 2010]. RTFAS is a web-based computer program, developed as a data integration tool, and designed to assist emergency managers to predict flooding of streams in Puerto Rico. RTFAS is available online at the following URL: (Real Time Flood Alert System - http://rtfas.er.usgs.gov/). It should be noted that the system is limited to providing stage elevation data at the locations of the USGS stream gauges.  
The National Weather Service (NWS) establishes Flash Flood Guidance estimates in real time based on the Sacramento soil moisture accounting model [Georgakakos, 2006; Burnash et al., 1973]. The analysis allows for the development of curves that relate threshold runoff to flash flooding. Unfortunately, the model has not been successfully implemented in all of the island’s watersheds. For example, the model is incapable of producing accurate results in some of the watersheds of southeastern Puerto Rico (personal communication, Ernesto Rodriguez, NWS, San Juan), perhaps owning to the fact that some streams in this area loose significant amount of their flow to the underlying superficial aquifers [Diaz Gonzalez, 2012].   
Sepúlveda et al., [1996] developed a hydrologic model to forecast real-time rainfall runoff within the Carraízo reservoir basin. The model estimated water volumes at the reservoir from the rainfall and discharge data obtained from the network stations within the basin. 

[bookmark: _Toc401056979][bookmark: _Toc346179091]CHAPTER – JUSTIFICATION

The prediction or forecast of natural disasters is critically important for emergency management workers.  An aim of forecasting is to gain adequate time to evacuate people from disaster zones, to minimize loss of life, and reduce damage to structures and infrastructure, and minimize economic loss.  Every country around the world is exposed to various types of natural disasters depending on its geographical location (e.g., tornados, hurricanes, volcanoes, earthquakes, flash floods and others).
Flash flooding is defined as the rapid rise in water level causing flooding of an area. It may be caused by heavy rainfall associated with storms, hurricanes or tropical storms. The World Meteorological Association (WMO) has defined the flash flood as “a flood that follows the causative precipitation event within 6 hours time”. The National Weather Service has estimated that more than 70% of flash flood warnings may be issued with less than a one hour lead-time and that more than 50% of flash flood occurrences allow no lead-time whatsoever. Small watersheds have short time of concentration and reaching its peak, the response time of smaller basins could be on the order of a few hours.  Recently in Puerto Rico, flash flooding has occurred from some significant rainfall, events that can occur over very short time scales (e.g., one to several hours). The susceptibility of the island of Puerto Rico to flooding is high due to a variety of factors including its mountainous runoff that drains into flat floodplain terrain poor drainage, intense rainfall and urban development, and the variability of rainfall in the island is a huge argument to use radars in the precipitation forecast. Lately some researcher have been using new technology like radars and they have declared that a key factor for accurate flood estimates and forecast is accurate rainfall for input to the hydrological model. Rainfall date are traditionally obtained from an often sparse network of rain gauges that may not record the rainfall event con adequate spatial and temporal scales, especially for heavy convective storm when significant rainfall occurs over a limited areal extent, contrarily the weather radar has enormous potential in this field, with high spatial resolution and temporal continuity [Sun et al., 2000].
The rainfall forecast is the most important component of the flood alert system that is designed to collect, handle, analyze and distribute information for the purpose of providing advanced warning of a flood condition. This is possible when there is a good stochastic rainfall prediction, and an accurate hydrological model. The most important hydrologic model outputs are the predicted peak flow, runoff volume and time to peak. These factors are dependent on the quality of the hydrologic model and the rainfall estimated from the rain gauge or radar network [Rojas, 2012].      
In this study, the high resolution rainfall from the TropiNet radar network will provide an excellent source of rainfall data, previously not available for short-term rainfall and flood prediction studies in Puerto Rico. Furthermore, the study introduced the application of a novel nowcasting model, improvements in the accuracy of short-term rainfall forecast due the high spatial and temporal resolution in radar rainfall data, technology for real-time inundation mapping, which has not been utilized in previous flood prediction studies in Puerto Rico, and which will place a powerful new tool in the hands of emergency flood management personnel. The methodology proposed in this research can be applied to other watersheds in Puerto Rico or in others regions within the tropics.

[bookmark: _Toc401056980]Objectives


Rainfall forecast and their integration into the disaster plan can have social and economic benefits, with a lead-time adequate to allow evacuation from flood prone areas within the MBDB.  
The interest of this thesis is to develop a forecasting model for the prediction of short term rainfall in the Puerto Rico western area, once obtained the forecast result was introduced within a hydrologic model Vflo and an Inundation model “Vflo Inundation Animation”.
Specific study objectives include:
Objective 1. Analyze the rainfall structure and behavior to develop an accurate stochastic model to forecast short-term rainfall for selected areas within the MBDB. This is the most difficult task in this research, because this is the first trial to do prediction in the Puerto Rico western area, with radars of high resolution spatial and temporal, in an area where the rainfall is changing constantly.
Objective 2.  Apply the forecast rainfall data to the hydrologic model Vflo and Inundation Analyst module to obtain accurate levels of flooding at selected locations within the MBDB in real time and to compare the results of the rainfall and hydrologic forecasts with observed data.
Objective 3.  Develop a proto-type real-time flood forecast alarm system for the MBDB.   
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The University of Puerto Rico at Mayagüez has a research weather radar network and a rain gauge network developed for this thesis. The radar network provides information with higher spatial and temporal precision. TropiNet has a 60x60 meter spatial resolution at every pixel and temporal resolution of 1 minute.  A flood warning model must be operated based only on the data available at the time of forecast. Only the radar can display data in real time. This is not possible using rain gauges. Rain gauges based systems must have a dependable and redundant telemetry system that will accurately and efficiently transmit data a central location for processing. 
The Data from TropiNet radar was used for rainfall prediction in MBDB, using stochastic methods. Once the rainfall forecast is obtained, the use of hydrologic models is necessary for analysis of flooding in this area.
This chapter present a general overview of the methodology utilized in this investigation, this is the first attempt to implement news technology to the performance of flood alert/warning systems. This research is focused on the Puerto Rico western area and could be applied in general to other areas or regions with the same rainfall type. 
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The study area, which encompasses the MBDB, is 819.1 km2 in area [Rojas, 2012; Prieto, 2007] and is located in western Puerto Rico.  The watershed additionally has three (3) important water bodies: Rio Grande de Añasco, Río Guanajibo and Río Yagüez. The area includes twelve (12) municipalities: Mayagüez, Añasco, Las Marías, San Sebastián, Lares, Maricao, Yauco, Adjuntas, Sabana Grande, San Germán, Hormigueros and part of Cabo Rojo. These three important rivers discharge into Mayagüez, Añasco and Cabo Rojo branches, respectively. According the U.S. Census Bureau Mayagüez has 89,080 habitants and a total area of approximately 143.53 km2 of which about 25.20 km2 are in flooding areas, Añasco has 29,261 habitants with a total area of about 102.82 km2 and 23.11 km2 are in flooding areas, and Cabo Rojo has 50,917 habitants with a total area of about 187.81 km2 and 44.42 km2 are in flooding area [United State Census Bureau, 2010], see Figure 4‑1. 
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[bookmark: _Ref399428653][bookmark: _Toc397772545][bookmark: _Toc397772897][bookmark: _Toc397773091][bookmark: _Toc401056879]Figure 4‑1. Population lives in floodable areas, U.S. Census Bureau, 2010.

The Río Grande de Añasco originates near the Cordillera Central, flows west and discharges into the Bahia de Añasco. The alluvial valley covers an area of approximately 46.62 km2. It is bounded by hills to the north, east and south and by the Bahia de Añasco to the west. The tributaries of the river Añasco that flow into the lower valley are the Rio Dagüey and the Rio Cañas.  The basin is located in west-central Puerto Rico, in the municipalities of Añasco, Lares, Las Marias, Maricao, Mayagüez and San Sebastián. The basin of the Río Grande de Añasco has an area of 467.7 km2 of which approximately 10 percent of the area is flat land and the other remaining 90 percent is mountainous. The floodplain covers approximately three-fourths of the flat land, and the residential developments in the Añasco municipality are partially within this area, and therefore are affected by flooding.  Río Grande de Añasco flows westerly 74 km to the coast where its discharges into the Bay of Añasco.  Changes in elevation are shown and vary from zero meters at mean sea level in the coastal areas to 960 meters in the mountainous areas, see Figure 4‑2.  According to U.S Environmental Protection Agency (EPA), the upper reaches of the basin contain four connected reservoirs; the lago Toro, Lago Prieto, Lago Guayo and Lago Yahuecas, to the Añasco watershed downstream of the lakes which is not significant for regional water budget estimation [Prieto, 2007]. The total lake drainage area is about 116.55 km2 and was used as a boundary condition in the model. 
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[bookmark: _Ref399428712][bookmark: _Toc401056880]Figure 4‑2. Digital Elevation Model.

According to Flood Insurance Study by Federal Emergency Management Agency [FEMA, 2012] the land use on the Río Grande de Añasco watershed are distributed as follows: 278 km2 are cropland; 114 km2 are pasture; 85km2 are forest and woodland; 33 km2 are idle, and 13 km2 are urban development and other uses. The vegetation in the floodplain is primary sugar cane. Soils in the floodplain are clay loams (Unpublished Soil Borings in Añasco Basin).  The entire Rio Grande de Añasco watershed is in the humid, mountainous physiographic area of Puerto Rico. The Atalaya Mountains extend from the coastline eastward along the north side of the floodplain, merging with dissected plateau remnants at slightly lower elevations, north of the City of Añasco [FEMA, 2012]. The Río Guanajibo basin originates in the cordillera central of western Puerto Rico. It rises approximately 10 kilometers northeast of Sabana Grande at an elevation of 800 meters approximately. The topography of the area includes mountains, foothills and valleys. 

Flood problems in this study area are serious and widespread. Periodic flood damage to sugar cane, pastureland, roads, and a number of residential areas is significant. Flood waters have inundated the main Río Grande de Añasco floodplain 17 times in a period of 31 years, an average of approximately once every 2 years. The floodplain of the lower Rio Grande de Añasco has been inundated extensively at least six times during the period 1899-1975. One of the greatest known floods occurred in September 1975. Another great flood was that of September 1928. Other major floods occurred in September 1932, September 1952, October 1970, August 1899, and September 1899 [FEMA, 2012]. 

The Río Guanajibo valley is approximately 27 km long and is fan-shaped, with a width varying from approximately 0.6 kilometers in the area located between the town of Sabana Grande and San German, to approximately 5.2 kilometers in the Cabo Rojo and Hormigueros region, and approximately 2.8 kilometers in the valley outlet, near the mouth [FEMA, 2012]. The Río Guanajibo basin is subdivided into sub-basins for each principal tributary; these tributaries are Río Rosario, Río Duey, Río Cain, Río Cupeyes, Río Cruces, and Río Loco. The top of the Guanajibo valley lies in the east of Sabana Grande. In this area serpentinite and volcanic rocks are predominant, in the south serpentinite predominates in a strip along the border.  Rocks along the southern border of the valley near Punta Guanajibo consist of weathered serpentinite, with some volcanic-related rocks.

The urban areas are around Sabana Grande, San German, Cabo Rojo, Hormigueros, and a little portion of the City of Mayagüez. Land use in the Guanajibo River Basin can be divided into three main groups: agriculture with 59 percent, forested with 33 percent and residential housing with 8 percent [FEMA, 2012]. Information on the historic floods of the basin may be found in the USGS hydrologic Investigations Atlas HA-456 by Haire [1972]. One of the greatest floods ever recorded in the basin was caused by Tropical storm Eloise, which occurred on September 15-17, 1975 and had a recurrence interval of approximately 100 years. Unfortunately, no efforts have been directed toward obtaining sufficient data to do flow-frequency analyses. Of the known flood, the events of August 9, 1899, was the largest, followed by the flood of September 13, 1928, both floods were associated with the passing of a hurricane over the island. Water-surface elevations recovered from these floods were not sufficient to adequately define the floodplain boundaries. Other significant floods occurred on December 3-4, 1960; May 17-18, 1963; July 30, 1963; November 27, 1968; and September 15-17, 1975. The inundation area in this zone has been delineated on the topographic map using the flood of July 30, 1963, it is fairly representative of floods in 1945, 1952, 1954 and 1960 [Haire, 1972].

The Río Yagüez Basin is located in the west-central portion of Puerto Rico. It flows westerly into the Bay of Mayagüez. The drainage basin is narrow with a length-width ratio of approximately 10 to 1 and a total drainage area of 35.5 km2. The City of Mayagüez, through which Río Yagüez flows, is among the largest cities in Puerto Rico [FEMA, 2012].  The largest known flood on Yagüez River occurred on March 3, 1933 24-hours precipitation total of 44.2 centimeters was recorded at Mayaguez by the national Oceanic and Atmospheric Administration (NOAA) on that date. This resulted in a flood with a peak discharge of 708 cm and a recurrence interval of 75 years. 
In 1968 a flood protection project for the City of Mayagüez was started, the total project consisted of a channel and a reservoir to protect the city from floods. Currently the channel with the existing structures has a capacity of 326 cm but there are plans to rebuild some of these structures, thereby increasing the capacity of the channel [FEMA, 2012].



[bookmark: _Toc401056983]Soil Classification


The soil map was provided by United States Department of Agriculture – Natural Resources Conservation service (USDA-NRCS), Soil Survey Geographic Database (SSURGO) for the Mayagüez  [USDA, 2006a], Lajas Valley [USDA, 2006b], Arecibo [USDA, 2006c] and Ponce area [USDA, 2006d]. These were used in the conceptualization of the soils surface texture for the study area. Hydraulic parameter initial values for clay, loam, clay-loam, gravel, rock and sand soil surface texture were assumed based on literature reported values for representative physical properties of soil texture [Schwab et al., 1996].
The soil textures present in this study in percent of area are clay with 62.49%, clay–loam 24.96%, rock 8.69%, loam 3.00%, sand 0.81% and gravel 0.04%.  A soil map describing the class distribution is necessary to assign the values the Green-Ampt infiltration parameters, Figure 4‑3.
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[bookmark: _Ref399436285][bookmark: _Toc401056881]Figure 4‑3. Soil Present in the study area (Source: Soil Survey Geographic (SSURGO)).

The Geostationary Operational Environmental Satellite (GOES) information was used to develop an algorithm of Water and Energy Balance for Puerto Rico (PRWEB) by Harmsen et al., [2010]. It was used to obtain the initial soil moisture distribution, which is required to initiate the hydrologic simulation. GOES-PRWEB is an energy balance approach similar to Yunhao et al., [2001]. It is used to estimate actual evapotranspiration, which is then incorporated into a water balance calculation. Solar radiation is derived from a physical model for estimating incident solar radiation at the surface from GOES satellite data, first proposed by Gautier et al., [1980].
The ground level, 1-km resolution solar radiation product, became available in Puerto Rico in March of 2009. Twenty four-hour rainfall is obtained from National Oceanic and Atmospheric Administration (NOAA) Advanced Hydrologic Prediction Service (AHPS), in Puerto Rico the source of the AHPS rainfall is NEXRAD radar and rain gauge data. Runoff is estimated using the curve number method of the USDA Natural Resource Conservation Service [Fangmeier et al., 2005].  
Values of wind speed for Puerto Rico, obtained from the NWS’s National Digital Forecast Database [NDFD, 2010] are averaged to obtain the daily average 10-m wind speed, and they are then adjusted to the virtual instrument height, depending on the height of the vegetation. Although the wind speed is a model forecast, it is the best source of spatially distributed wind speed over the island. Minimum, average, maximum and dew point air temperatures are obtained from a lapse rate approach calibrated for Puerto Rico by Goyal et al., [1988] with regression equations relating average air temperatures with surface elevation. These temperatures are adjusted daily with a nudging technique, using forecast temperature data from the NDFD. A detailed description of the methodology used in GOES-PRWEB is presented by Harmsen et al., [2009] and Harmsen et al., [2010].

[bookmark: _Toc401056984]Land Use Classification


A digital map of the land cover developed by the Xplorah project [2010] was used to conceptualize the different land cover categories present over the study area. This data was developed by La Escuela de Planificación de la Universidad de Puerto Rico [2010], Figure 4‑4.
Twenty (20) different classes of land cover and forest type are present over the study area corresponding to different kind of forest, woodland and agriculture. The classification of land cover in this model is used to assign values for physical based parameters which are important in the simulation with Vflo, other important parameters with the land use are manning’s roughness coefficient, rainfall interception, evapotranspiration, crop coefficient and other. Prieto [2007] classified the land use for this watershed in six (6) major categories, shrub land, woodland and shade coffee with an area of 529.16 km2, pastures with 172.84 km2 of area, urban and barren area with 60.02 km2, agriculture with 55.06 km2, other emergent wetlands with 1.26 km2 and Quarries, sand and rock with 0.75 km2.
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[bookmark: _Ref399439018][bookmark: _Toc401056882]Figure 4‑4. Land Use by Xplorah  [Escuela de Planificación de la Universidad de Puerto Rico, Recinto de Río Piedras, 2010]. 
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The climate of the study area is considered humid subtropical.  The average temperature at the Mayagüez City, Puerto Rico station (666073) is 70.7oF between the years 1971-2000, Figure 4‑5 and the average max temperature in the Mayagüez city station between the years 1971-2000 is 88.7oF.  

The amount of rainfall varies considerably throughout the study area. Most of the rainfall occurs during the month of September with 10.62 inches on average.  The months of January through April are considered the dry season with 1.60 inches in January, 2.59 inches in February, 3.35 inches in March and 4.17inches in April rainfall on average, Figure 4‑6.  In the west, the sea breeze effect carries wet air from the Mona Channel eastward, converging with the Trade Wind and resulting in intense convective rainstorms almost every afternoon within the MBDB during the wet season. Rainfall and temperature data obtained from the National Climatic data Center (NCDC). 
Table 4‑1 shows the temperature average between 1948-2012 at Mayagüez City, Puerto Rico [NCDC, 2013] and Table 4‑2 presents the precipitation average between 1948-2012 at Mayagüez area. 
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[bookmark: _Ref399443424][bookmark: _Toc401056883]Figure 4‑5. The average of temperature and precipitation recorded for the day of the year between 1971-2000- station Mayagüez City, Puerto Rico [NCDC, 2013].
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[bookmark: _Ref399443701][bookmark: _Toc401056884]Figure 4‑6. The average of precipitation recorded for the month of the years between 1948-2012- station Mayagüez City, Puerto Rico [NCDC, 2013].












[bookmark: _Ref399444661][bookmark: _Toc401057022]Table 4‑1. Period record of temperature average monthly between 1948-2012 at station Mayagüez City, Puerto Rico [NCDC, 2013].
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[bookmark: _Ref401057119][bookmark: _Toc401057023]Table 4‑2. Period record of precipitation monthly average between 1948-2012 at station Mayagüez City, Puerto Rico [NCDC, 2013].
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Other records in the Mayagüez area is the station in the Mayagüez  airport, Figure 4‑7 is the average of precipitation monthly between the years 1981 and 2010, this agrees with the Mayagüez city station where assure that historically the month with more precipitation is September.
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[bookmark: _Ref399445055][bookmark: _Toc401056885]Figure 4‑7.The average of precipitation recorded for the month of the year between 1981-2010- Station Mayaguez Airport, Puerto Rico (NCDC).

[bookmark: _Toc346179095][bookmark: _Toc401056986]High Resolution Rainfall Radar Product


Commonly, the flood alert systems have fulfilled the role of providing flood notification to many people and have saved lives and properties. However, many alert systems fail due to low precision of the models and the sudden change of the atmosphere. One of the greatest sources of uncertainties in the prediction of flooding is the rainfall input [Rojas, 2012].  It is therefore essential to have an accurate source of rainfall data, and this is only possible with properly working radars. 
NWS has a network of ~160 Doppler-radar stations S-band (10-cm wavelength) radar distributed across the continental United States, Alaska, Hawaii, Guam and Puerto Rico. The location of radars provides full nationwide coverage over the contiguous United States at a specified height above each individual radar, this may present a problem in the Puerto Rico western area. The program began implementation in 1992. The radars provide spatial rainfall estimates at approximately 4-km2 resolution. This network was originally designed to support Departments of Defense, Transportation and Commerce objectives for detection and mitigation of severe weather events [Warner et al., 2000]. NEXRAD has been used by the NWS to estimate rainfall in Puerto Rico. The NEXRAD facility is located near the City of Cayey at 860 m above mean sea level and at approximately 120 km from Mayagüez city. Digital distributed-precipitation radar products can be downloaded directly from NWS.
 
The WSR-88D (weather Surveillance radar 1988, Doppler) radar, commonly referred to as NEXRAD, was developed to replace pre-Doppler technology radars for the purpose of providing an advanced early warning system for tornadoes. The first prototype system was installed in Norman, Oklahoma, in 1988. The first full scale WSR-88D radar was deployed in 1992 [Briendenbach et al., 1998]. The main objective of the NWS’s NEXRAD program from a hydrologist’s perspective is to provide, in real-time, accurate quantitative precipitation estimates (QPE) from its network of radars [Anagnostou and Krajewski, 1998].

An equation relating reflectivity (Z) and rainfall (R) as the power function, Z=aRb, is normally used to retrieve estimated values for rainfall rates. The parameters a and b are selected according to the specific region. In Puerto Rico, NWS commonly uses a=250 and b=1.2. The Z-R coefficients have been shown to vary as a function of many factors and previous studies have shown that it is not possible to derive a single equation that is accurate at every point in a given radar domain, and for every storm-type and storm intensity [Ulbrich and Lee, 1999].  As part of this research it is important develop a program to convert binary coded files into ASCII-formatted files that contain an intensity estimate in mm/hr for every latitude and longitude in the specific area. 

The NEXRAD (Next-Generation-Radar) located in Cayey measures reflectivity to 1 km by 1 degree resolution to a diameter (distance) of 460-km (NOAA). Figure 4‑8 shows the coverage of NEXRAD radar in Puerto Rico.
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[bookmark: _Ref399447227][bookmark: _Toc401056886]Figure 4‑8. NEXRAD radar coverage in Puerto Rico.

Currently, the Puerto Rico Weather Radar Network (PRWRN) has five (5) radars; of which three (3) are OTG and two (2) are polarimetric TropiNet (RXM-25) radars.  Figure 4‑9 presents the TropiNet radar at Cabo Rojo. 
Figure 4‑10 shows the TropiNet radar at Lajas. A new TropiNet radar is being installed at the UPR Agricultural Experiment Station in Isabela, which has the same characteristics as the other two. When the three TropiNet radars are operating simultaneously the cover area will be approximately half of the island.
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[bookmark: _Ref399447342][bookmark: _Toc346179122][bookmark: _Toc401056887]Figure 4‑9. TropiNet-1 at Cabo Rojo.
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[bookmark: _Ref399447354][bookmark: _Toc401056888]Figure 4‑10. TropiNet-2 at Lajas.
Figure 4‑11 shows the coverage of the three TropiNet radars in the Puerto Rico western area. The OTG radars were developed with a heterogeneous network using off the shelf hardware. The network was designed to provide detailed precipitation estimates (QPE) to the public, including the NWS staff in Puerto Rico. Coincidentally, on the opening day of the Central American Games “Mayagüez 2010”, NEXRAD was offline and missed a large rainfall event which occurred in the Mayagüez area, but the PRWRN radars were operating and were able to record the event.
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[bookmark: _Ref399447446][bookmark: _Toc401056889]Figure 4‑11. TropiNet’s Radars coverage.
[bookmark: _Toc401056987]TropiNet Radars


Radars are active sensors that emit electromagnetic pulses into the surroundings. A typical radar system consists of a least the following four components: a transmitter that generates high frequency signals, an antenna that sends the signal out and receives the echoes returned a receiver that processes the returned signals and a data display systems [Rinehart, 1997]. Lower frequency and higher wavelength suggest that the radar has robust signal power and less attenuation, the weather radar system discussed in this thesis is based in X-band. The common weather radar system can be classified as listed in 
Table 4‑3.

[bookmark: _Ref399447591][bookmark: _Toc401057024]Table 4‑3. Radar bands with frequencies and wavelength [Rinehart, 1997].
	Radar Band
	Frequency
	Wavelength

	L
	1-2 GHz
	30-15 cm

	S
	2-4 GHz
	15-8 cm

	C
	4-8 GHz
	8-4 cm

	X
	8-2 GHz
	4-2.5 cm

	KU
	12-18 GHz
	2.5-1.7 cm

	K
	18-27 GHz
	1.7-1.2 cm

	Ka
	27-40 GHz
	1.2-0.75 cm

	W
	40-300 GHz
	0.75-0.01 cm



The TropiNet (RXM-25) radars are Doppler polarimetric radars which allow the radar beam to measure reflectivity close to the ground, overcoming the shadow effect of the Earth’s curvature, while maintaining high range and azimuth.  The first TropiNet radar is in operation since February 2012. TropiNet 1 is located in “Cerro Cornelia” Cabo Rojo, Puerto Rico 18.16°N, 67.17°W, and 200 ft elevation (msl) approximately. The radars, working with the X-band frequency, are about three times stronger than that of the traditional radar frequencies at S-band making the measurements of rainfall more attractive. They have high space and time resolution for weather monitoring and detection, and are capable of generating very high resolution data with a range of 40 km or maximum radial distance (horizontal range) of 80 km. 
The spatial resolution is very high if this is compared with NEXRAD radar. The study area coverage is 940x740 radar pixels and its temporal resolution is 1-minute.  Rossa et al., [2005] found a series of radars used for hydrological modeling; these are present in Table 4‑4. Additionally they assure that in convective precipitation, when very steep horizontal gradients are observed, the information from a single rain gauge can be misleading. It must be stressed that radar and rain gauges are not competitive [Rossa et al., 2005]. If the comparison of a storm total is necessary, Vieux and Bedient [1998] explain that storm totals may be more accurately estimated by radar than any particular hourly accumulation when compared to rain gauges. 





[bookmark: _Ref399447999][bookmark: _Toc401057025]Table 4‑4. Operational use of radar and hydrological models (Rossa et al., 2005)
	Country
	Spatial resolution
	Temporal
resolution
	Radar
type
	Hydrological
model type
	Hydrological
model name

	Czech
Republic
	2km x 2km
(1km x 1km planned)
	10 min
	C-band
	Several
	Several incl
PACK, API
Sacramento

	Finland
	1km x 1km
	15
	X, C, S-band
	Conceptual, distributed
	FEI

	France
	1km x 1km
	5 min
	C
	Conceptual R-R
	SOPHIE

	Germany
	various projects, resolutions and models

	Poland
	1km x 1km
	10 min
	C-band
	Conceptual R-R
	IHMS-based

	Slovenia
	1km x 1km
	10 min
	C-band
	Lumped R-R
conceptual
	HEC-1

	Spain
	1km x 1km
	6-10 min
	C-band
	Distributed, grid-based, conceptual
	TOPDIST

	United
Kingdom
	Smallest
1km x 1km
	5 min
	C-band
	various
	various



TropiNet radar being Doppler and Polarimetric can show velocity data of the cloud and reflectivity every azimuth angle from 0o to 12o. TropiNet displays reflectivity logarithmically (10 log(Z)), or dBZ. The working frequency is 9.41 GHz ± 30 MHz, which corresponds to the X-band (in free space has a 3.19 cm wavelength). The TropiNet radar was designed and developed by Colorado State University (CSU) and (UPRM) to serve as the principal Internet-controllable node of the TropiNet radar network [Galvez et al., 2013]. The next table has the specifications of TropiNet radar Table 4‑5.





[bookmark: _Ref399448112][bookmark: _Toc401057026]Table 4‑5. TropiNet radar specifications.
	Transmitter
	

	Type
	Magnetron

	Center Frequency
	941030MHz

	Peak power output
	8.0 kW (per channel)

	Average power output
	12 W (per channel)

	Pulse Width
	400-660 ns

	Polarization
	Dual linear, H and V

	Max. Duty cycle
	0.16%

	Antenna and Positioner
	

	Type (diameter)
	Dual-polarized parabolic reflector (1.8m)

	3-dB Beam width
	1.4 deg

	Gain
	42 dB

	Max. scan rate
	60 deg/s

	Receiver
	

	Type
	Parallel, dual channel, linear I/Q output

	Dynamic range
	95dB (BW=1MHz)

	Noise Figure
	5dB

	Data Acquisition System
	

	Sampling rate
	200Msps

	Dynamic range
	105 dB (BW=1 MHz)



To analyze the data it was necessary to develop a model to convert raw data to NetCDF data and after convert the reflectivity data in dBZ to rain-rate in (mm/hr) using empirically derived Z-R relationships to transform reflectivity to rain rate. Marshal and Palmer [1948] equation is the default Z/R relationship employed by the WSR-88D and TropiNet.

NOAA-NWS [1995] report recommended that Z-R relationship in use at the time of the event be changed from  to a relationship more representative of raindrop distributions in a warm tropical storm. The Z-R relationship for warm tropical events recommended by OSF since 1995 for all WSR-88D sites experiencing heavy rainfalls, and now adopted by TropiNet is . The Z-R relationship used in Puerto Rico is the convective, furthermore was necessary to define a maximum precipitation rate threshold for decibels above 53 dBZ [Vieux and Bedient, 1998]. The convective rainfall is a type of precipitation with some characteristics like very high horizontal gradient and very large vertical depths. These characteristics means that the weather radar is the best tool for detecting convective precipitation, but the presence of different types of hydrometeors, especially hail and storm dynamics yielding fast varying Vertical Profile Reflectivity (VPR) usually results in considerable random error in quantitative precipitation estimates. Large differences can be found especially when comparing rain gauges and radar estimates because of the high temporal and spatial variability of the convective storm and related vertical profile of reflectivity [Rossa et al., 2005].

PRWRN has been developing an interactive web site where it is possible to observe weather conditions in real time using the OTG and TropiNet radars.  It is possible to observe the overlap between these radars and NEXRAD. Figure 4‑12 presents the web site under development.  The web site is user friendly and accessible to the interested public who wish to observe weather conditions in real time with higher resolution than NEXRAD. This web site includes 5 (five) radars: TropiNet – Cabo Rojo, TropiNet-Lajas, OTG-Mayagüez- OTG-Ponce, and OTG-Aguadilla. Only one TropiNet-Cabo Rojo data was used in this research.
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[bookmark: _Ref399447408][bookmark: _Toc346179123][bookmark: _Toc401056890]Figure 4‑12. Coverage Website OTG's and TropiNet radars in real time. (http://stb.ece.uprm.edu/fullscreen/mobile.html)

On the other hand, CASA project developed a Rain Gauge network for comparison of data radar from TropiNet-Cabo Rojo. These rain gauges series are distributed in University of Puerto Rico Mayagüez Campus (UPRM) and nearby locations.

[bookmark: _Toc401056988]Radar Data Processing TropiNet 

A radar application in MatLab was developed to access the store of binary volume files that contain the respective information as determined by the operator like reflectivity, azimuth, velocity, beam width, range, elevation and other radar products. The operator can apply one of several possible scan configurations. For instance, in the Range Height Indicator (RHI), the radar holds its azimuth angle constant but varies its elevation angles. This is essential to provide vertical resolution where the radar continuously scans through elevation angles at a given azimuth angle, (Figure 4‑13). 
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[bookmark: _Ref399448592][bookmark: _Toc401056891]Figure 4‑13. Range Height Indicator (RHI).

Another common scan configuration is the Plan Position Indicator (PPI), the radar holds its elevation angle constant but varies its azimuth angle, rotating through 360 degrees (Figure 4‑14).
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[bookmark: _Ref399448609][bookmark: _Toc401056892]Figure 4‑14. Plan Position Indicator (PPI).

For this research it was necessary to holds the radar scan in PPI with a constant elevation angle of 3 degrees. Every radar scan has two angles of 3 degrees and 5 degrees with a duration time of 30 seconds. The data information is saved in the server at weather.uprm.edu. The raw data files are stored by date every hour, minute and second of scan in binary format. Each volume scan from radar has been interpolated to a fixed Polar grid and after it is necessary to convert to the fixed Cartesian grid. As part of the effort to further post-process the radar data, a model in MatLab was developed. This model performs the conversion from raw data polar coordinate system to ASCII data in Geographic coordinate system necessary for the hydrological software, Vflo.
In addition, a comparison between NEXRAD and TropiNet in random pixels was made with the objective of validating the rainfall location using a time series for every storm in each pixel. This analysis will be presented in the next chapters.

[bookmark: _Toc401056989]Radar Data Processing NEXRAD

The data from NEXRAD is obtained from (NOAA) web page (http://www.ncdc.noaa.gov/nexradinv/map.jsp). NEXRAD inventory has the option to choose day and product. For this investigation, Level III [N0R] short range base reflectivity (16 level/230Km) with 0.5 degrees was used.  There are a total of 41 level III products routinely available from the National Climatic Data Center (NCDC), general products include the baseline reflectivity and velocity and algorithmic graph products spectrum width. The base reflectivity [N0R] product, it is used to detect precipitation, evaluate storm structure, locate boundaries and determine hail potential, a display of echo intensity measured in dBZ. Four (4) lowest elevation angles are available. The archive of WSR-88D NEXRAD radar data is stored on the NCDC robotic mass storage system, commonly known as the Hierarchical data Storage System (HDSS). The data is easily accessible with the NEXRAD Inventory Search tool. This tool allows users to view the data completeness and download individual products.  The ordered data is ready for use with the NCDC Weather and Climate Toolkit. Each order may contain up to 24 hours of data at a time for a single site. Once the data is downloaded, it is necessary to change data format from NetCDF to ASCII, This is only possible with the developed of a routine for this research in MatLab.

[bookmark: _Toc346179096][bookmark: _Toc401056990]Rain Gauge Network


As leverage to the NSF CASA center, with support from NOAA’s Cooperative Remote Sensing Science and Technology Center (CREST), a rain gauge network was deployed for validation of data from NEXRAD, OTG and TropiNet radars.  The rain gauges are distributed over the University of Puerto Rico Mayagüez Campus (UPRM) and other locations close to the campus.
These rain gauges are tipping bucket-type rain gauges that measure rainfall in 0.254 mm (1/100th inch) increments. The self-emptying, tipping bucket design is accurate (±2%) and reliable. Figure 4‑15 shows the typical rain gauge and data logger used in this study.  The logger is capable of saving 48 days of rainfall data with a 10 minute reading interval. Double rain gauges were installed at each location to minimize errors in data collection.


[image: ]
[bookmark: _Ref399450618][bookmark: _Toc346179124][bookmark: _Toc401056893]Figure 4‑15. Tipping bucket rain gauge with data logger.

Some data from TropiNet radars was compared with rain gauge data for selected storms. Figure 4‑16 shows the distribution of the rain gauge network in the vicinity of UPRM campus.
[image: rain-gauges]
[bookmark: _Ref399450634][bookmark: _Toc346179125][bookmark: _Toc401056894]Figure 4‑16. Detailed Rain Gauges Network.

A major source of error in hydrologic models is the poor quantification of the areal distribution of rainfall, typically due to the low density of rain gauges. For a good spatial distribution of data it is necessary put hundreds of rain gauges in a small area, otherwise it is not possible to obtain a good precipitation distribution.
Rainfall dates are traditionally obtained from an often sparse network of rain gauges that may not record the rainfall event with adequate spatial and temporal scales, especially for heavy convective storms when significant rainfall occurs over a limited areal extent [Sun  et al., 2000].
Weather radar has enormous potential in this field, as it can measure rainfall in real-time with high spatial resolution and temporal continuity [Sun et al., 2000].

A favorable rainfall distribution is only acquired with radars, due to this it is necessary the use of weather radars, a rain gauge located at a single point may not represent an extensive area, with only one value. The spatial distribution of precipitation can have a major influence on the hydrological models Errors may occur in the resulting hydrograph when the spatial pattern of the rainfall is not preserved. These errors will be magnified for intense, short duration and localized events especially in areas of high topographic variability subject to convective storms [Wilson and Brandes, 1979].  Similarly, errors in rain gauges are known from turbulence and increased winds around the gauge, affecting precipitation quantification in events where the wind is an important factor (e.g., hurricanes). Investigators have used mean areal precipitation as calculated by, for example, Thiessen polygons, [Wilson and Brandes et al., 1979; Viessman and Lewis, 1996], and interpolation methods, such as Spline, Inverse Distance Weights, and Krigging and polynomial surface.  But all of these methods are limited by the number of rain gauges.

[bookmark: _Toc346179097][bookmark: _Toc401056991]Physically-Based Hydrologic Model


The hydrologic model used in this research is Vflo [Vieux and Vieux, 2002]. Vflo is a fully distributed physically based hydrologic (PBD) model capable of utilizing geographic information and multi-sensory input to simulate rainfall runoff from major river basins to small catchments, Figure 4‑17. 
[image: ]
[bookmark: _Ref399420930][bookmark: _Ref399420915][bookmark: _Toc401056895]Figure 4‑17. Detailed GIS grid runoff in the watershed. 

Vflo is a hydraulic approach to hydrologic analysis and prediction. Overland flow and channels are simulated using the Kinematic Wave Analogy (KWA). The model utilizes GIS grids to represent the spatial variability of factor controlling runoff. Runoff production is from infiltration excess and is routed downstream using kinematic wave analogy. Computational efficiency of the fully distributed physics-based model is achieved using finite elements in space and finite difference in time.  Vflo is suited for distributed hydrologic forecasting in post-analysis and in a continuous operation mode, derives its parameters from soil properties, Land use, and topography and in this case the precipitation is obtained from radar TropiNet. The goal of distributed modeling is to better represent the spatial-temporal characteristics of a watershed governing the transformation of rainfall into runoff.
The hallmark of Vflo is prediction of flow rates and stages for every grid cell in a catchment, watershed, river basin or region. Vflo provides high-resolution, physics-based distributed hydrologic modeling for managing water from catchment to river basin scale. Improved hydrologic modeling capitalizes on access to high-resolution quantitative precipitation estimates from model forecasts, radar, satellite, rain gauges, or combinations of multi sensor products. 
Model input consists of rain-rate maps at any time interval from radar or multisensor sources. Data input for this model (besides rainfall), is derived from various commonly available sources of digital data. Parameters include topography and drainage networks derived from a digital elevation model (DEM), infiltration derived from soils, and hydraulic roughness derived from land use/cover. These parameters may be input and edited manually or via ArcView grids.
The model formulation is a kinematic wave analogy (KWA) for overland flow is a simplification of the conservation of mass and momentum equations, wherein the principle gradient is the land surface slope. Distributed hydrologic modeling of watersheds where backwater is not encountered can take advantage of the kinematic wave analogy. The full momentum equation in conservative form is
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Equation (4‑1) relates the temporal and -direction gradients of flow depth  and velocity V. If all other terms are small or an order of magnitude less than the bed slope , or friction gradient , then the KWA is an appropriate representation of the wave movement downstream [Chow et al., 1988]. The one-dimensional continuity equation for overland flow resulting from rainfall excess is:
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where  is rainfall rate;  is infiltration rate;  is flow depth and  is overland flow velocity. In the KWA, the bed slope is associated with the friction gradient which amounts to the uniform flow assumption.  Using this fact together with an appropriate relationship between velocity  and flow depth  such as the Manning equation is obtained:
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 is the bed slope and  is the hydraulic roughness. Velocity and flow depth depend on the land surface slope and the friction induced by the hydraulic roughness.  Other parameters that are important are the saturated hydraulic conductivity  controlling infiltration, , and Manning’s roughness  are two of the most important parameters within the model.  Hydraulic conductivity controls the total amount of water that will be partitioned into the surface runoff and the subsurface, whereas the hydraulic roughness mainly affects the peak flow and the time to peak [Vieux and Moreda, 2003].
Models results obtained from Equations (4‑2) and (4‑3) are adjusted by scalars applied to spatially distributed parameters:

	
	
	(4‑4)



where the three scalars  ,  ,  and are multipliers controlling the infiltration rate   rainfall rate , and hydraulic roughness , respectively. The flow depth , and slope , is the principal land-surface slope at the center of each grid cell. The slope and hydraulic roughness are spatially variable, while rainfall, infiltration and flow depth are spatially and temporally variable. 
Infiltration excess (IE) is treated by the model as the source of runoff. The model represents overland flow as a uniform depth over a computational element. From hillslope to stream channel, there may be areas of IE and Saturation Excess (SE), however the model treat runoff generation as solely IE.
Simulation of IE requires soil properties and initial soil moisture conditions. The well-know Green-Ampt equation is used to account for the effects of initial degree of saturation on infiltration rate [Vieux and Moreda, 2003].

[bookmark: _Toc401056992]Calibration Performance

There is a sequence called the “Ordered Physics Based Parameters Adjustment” (OPPA) method developed by Vieux and Moreda [2003]. The calibration process (OPPA) approach include estimates of the spatially distributed parameters from physical properties, assigns channel hydraulic properties based on measured cross-sections where available, studies model sensitivity for the particular watershed, and identifies response sensitivity to each parameter. It furthermore runs the model for a range of storm from small, medium to large events. It observes the characteristics of the hydrograph over the range of storm size and any consistent volume bias; derive range of response for a given change in a parameter and categorizes and ranks parameter sensitivity according to response magnitude. The optimum parameter is that set which minimizes the respective objective function and matches volume by adjusting hydraulic conductivity. Match peak by adjusting overland flow roughness and re-adjust hydraulic conductivity and hydraulic roughness if necessary. The Vflo model does not simulate base flow only direct runoff; it can be simulated assigning a fixed value to every channel cell for ever event to simulate. For a long term analysis it is necessary to quantify the base flow using known methodologies [Gupta, 1989]. The OPPA procedure outlined above can be stated as: increasing the volume of the hydrograph is achieved by decreasing hydraulic conductivity, and similarly, increasing peak flow is achieved by decreasing hydraulic roughness.

[bookmark: _Toc346179099][bookmark: _Toc401056993]Inundation Model


The Inundation Analyst is a Vflo [Vieux and Vieux, 2002] extension that provides images, animations and simulated inundation, which is an indication of flood risk. The extension is especially useful for flood management applications; for example, a forecast inundation is useful for operational decisions, warning and notification, and coordinating emergency response.  The Inundation Analyst operates independently from the Vflo model, but can use data exported from Vflo  as input for generating inundation forecasts. The Inundation Analyst requires a digital elevation model (DEM), a flow direction map, a channel flow direction map, and stage data. All input data must be in ESRI ASCII grid format (*.asc). The DEM and flow direction maps must have the same number of columns and rows. The DEM must be in units of either feet or meters, in this research the unit are in meters. Stage data inputs are exported from a Vflo model. The resolution of the maps affects the quality of inundated area display, so high resolution data are recommended.  When a flow direction map of a different grid definition is used, filter files called BAG files (*.bag) may be used to convert Vflo stage data to the grid definition of the flow direction map. Background images can be included at any resolution, so long as their extent is the same as that of the DEM and flow direction map. Background images must be in JPEG or bitmap format [Vieux, 2013]. 

Some storms were used as validation of the flow/inundation model. The methodology of validation was:  comparing the stream flow and stage using gauge data from the U.S Geological Survey (Caribbean Water Science Center) with the data from observer data from TropiNet radar and rainfall nowcasting. 
All input data are ASCII and the flow direction is extracted from the DEM watershed. The DEM have units of meters, the stage data input are exported from Vflo model, a background watershed image is included in bitmap format. The inundation results are listed in order to create the animation. Once all stage files are listed in the appropriate order the images that are produced show the primary inundation Analyst window. 

[bookmark: _Toc346179100][bookmark: _Toc401056994]  Stochastic Modeling of Short-term Rainfall


For phenomena atmospherics it is difficult to predict deterministically what will occur in the future. A mathematical expression which describes the probability structure of the time series that was observed due to the phenomenon is referred to as a stochastic process. The precipitation is an example of stochastic phenomenon that evolves in time according to probabilistic laws. A time series model is adapted to a disposed series in order to calibrate the parameters of stochastic process. Stochastic models are able to provide reliable predictions over small temporal and spatial scales, which are interested in hydrological applications.  
Other types of prediction are the meteorological models, they produce qualitative and quantitative rainfall forecasting for 24–72 hours. At these forecasting horizons, an absolute precision is not required, but rather an order of magnitude. They are based on atmospheric phenomena developing on a synoptic scale, but in general they are not able to provide reliable predictions for small temporal and spatial scales, which are of interest in hydrological applications [De Luca, 2005].

[bookmark: _Toc346179101][bookmark: _Toc401056995]	Time Series Analysis

A time series is a set of observations that are arranged chronologically. In time series analysis, the order of occurrence of the observations is crucial. When a meteorologist wants to predict a storm or a rainfall using forecasting or nowcasting, the more important factor is the chronological order of the data or the data time series. If this chronologic data is ignored, the information contained will be difficult to use.
In the time series analysis, stochastic models are used for describing the system hydrology for purposes that include modeling, forecasting, generating and investigating the underlying characteristics of the rainfall data. A time series is a set of observations that are arranged chronologically. In this work, the observations are reflectivity and these were changed to rainfall; derived from TropiNet radar obtained between the months of March and December of 2012 and some months in 2014.  Some of the precipitation events from TropiNet radar observed were modeled to obtain the nowcasting of 10 mins, 20 mins and 30 mins, and then this data was compared with the observed data of 10 mins, 20 mins and 30 mins. In total ten (10) events in Range Height Indicator (RHI) mode were used between 2012 and 2014, given by when the radar was available. 

[bookmark: _Toc401056996]	Types of Forecasts

There are some properties needed to distinguish between different types of forecast. Forecast can extend to different scales in space and time; the spatial is doing reference in a fixed location in a specific area o city e.g. the precipitation on a grid from TropiNet radar over Mayagüez city. 
The temporal range of a forecast is furthermore called lead-time. Short range forecast cover very close events, like the next hours or next minutes as our case, the long range forecast is considered the mean value of a meteorological parameter over a few days or months.
In this research the data is correlated in space and time, where the strength in general decreases with spatial and temporal distance. Our models are designed to do forecast in time and space. This increases the difficulty as compared with prediction models that only use the forecast in time at a given place (e.g. forecast in rain gauges).

Other types of forecast are deterministic. In this case a single forecast value is issued at each occasion, pretending a confidence that hides the forecaster’s uncertainty about the outcome. They are easy to interpret even for user without stochastic background knowledge. The simplest case is a deterministic binary forecast. This area decision, like yes or no, and additionally a generalization in the forecast if necessary, distinguishes between types of variables to be forecasted. The variable of interest can be ordinal, which can be expressed by a number and can be defined by an appropriate number of threshold values (e.g. light rain, middle rain or heavy rain). Other variable of interest is the nominal, where there is no natural ordering, like qualitative observation of the kind of precipitation (e.g. snow, rain, ice and other). A deterministic evaluation is furthermore named Quantitative Precipitation Forecast (QPF), which induces the user to suppress information and judgment about uncertainty. In fact, it may create the illusion of certainty, while a probabilistic forecast is indicated as Probabilistic Quantitative Precipitation Forecast (PQPF). In order to reflect the uncertainty of the future outcome, probabilistic statements are more appropriate. 
For this research a methodology that embrace a space-time stochastic model is used, and is considered a “discrete time-series model” that include a special kind of nonlinear model with stochastic and deterministic components. Here the rainfall process is described at a discrete time steps, are not intermittent and therefore can be applied for describing the forecast within storm rainfall. 
The other case is the meteorological models. This is useful qualitative and quantitative rainfall forecasting tools on 24-72 hr interval and on a large spatial scale. In such cases, indeed absolute precision is not required for practical application. In meteorological models when the forecasting lag time and spatial scale decrease the effectiveness and the precision of kind of model additionally decrease [Koussis et al., 2003]. The next are some types of forecast used widely.


[bookmark: _Toc346179102][bookmark: _Toc401056997][bookmark: _Toc345698268][bookmark: _Toc345698330][bookmark: _Toc345714827][bookmark: _Toc345698269][bookmark: _Toc345698331][bookmark: _Toc345714828]	ARMA Models

Autoregressive-moving-average models (ARMA) are mathematical models of autocorrelation in a time series. ARMA models are widely used in hydrology and were popularized by Box and Jenkins [1976] who elaborated an iterative method for choosing and estimating variables. There are several possible reasons for fitting ARMA models to data. ARMA modeling can contribute to understanding the physical system by revealing something about the physical process that builds persistence into the series. ARMA models can additionally be used to predict behavior of a time series from past values alone. Such a prediction can be used as a baseline to evaluate possible importance of other variables to the system. 
The model consists of two parts: an autoregressive (AR) part and a moving average (MA) part. The AR model expresses a time series as a linear function of its past values. The order of the AR model indicates how many lagged past values are included. The moving average (MA) model is a form of ARMA model in which the time series is regarded as a moving average of a random shock. The model is usually then referred to as the ARMA(p,q) model where p is the order of the autoregressive part and q is the order of the moving average part. ARMA models in general, after choosing p and q, are fitted by least squares regression to find the values of the parameters which minimize the error term.  The ARMA modeling process is commonly an iterative, trial and error process. Thus, it is necessary to use the least possible number of parameters that will adequately produce forecasted values with similar statics of the historical data [Dizon, 2010].
ARMA is a methodology widely used to do predictions of all types, for economy as well as for the weather predictions. In any case, it is necessary to have a long historical data. In the literature ARMA is used to forecast rainfall with a full scale of time and space. This is an important reason to avoid the use of ARMA methods in this research.
The ARMA modeling process is generally an iterative, trial and error process. Thus, it is necessary to use the least possible number of parameters that will adequately produce forecasted values with similar statistics of the historical data [Dizon, 2010].
This principle was applied to this thesis or this model, at the same time the principle of parsimony to obtain results in the model with small possible error.

[bookmark: _Toc401056998]	Point Process Model

Point Process is a type of random process for which any action consists of a set of isolated points in time or in space. The example more global in point process model is the Poisson Process that counts the number of events (storm) and the time that these events occurs in a given time interval,. Usually the time between each events development has a exponential distribution and the numbers of occurrences are independent of each event (storm).
The Point process model has been used commonly to forecast rainfall in which storm origins occur in a Poisson process. The Point process model is applied at a single site or fixed point where the storms arrive in a Poisson process. Each storm incorporates a group of random number of rain cell, where each cell has a random duration or lifetime and depth. The total rate of precipitation at time () is the sum of contributions from all cells active at () [Rodriguez-Iturbe et al., 1987]. This type of model uses complex equations and the analysis of precipitation is in time at a fixed point in space and the properties of the natural process can be deduced via the mathematical model.
Stern & Coe [1984] have a model for daily rainfall in which wet and dry days occur in a Markov chain with seasonally dependent transition probabilities. In it the amounts of rain per wet day have a gamma distribution with seasonally dependent parameters. 

[bookmark: _Toc401056999]  Special kind of “Nonlinear Model”


An algorithm for predicting 10, 20 and 30 mins in advance the spatial distribution of rainfall rate is introduced in this work.  The algorithm is based on the assumption that TropiNet radar rainfall rate data provides estimations of the rainfall with high spatial and temporal resolution.  Many people have compared radar rainfall data with rain gauge measurements [Seo and Breidenbach, 2002; Yilmaz, et al., 2005; Rossa et al., 2010].  These comparisons may not be useful since a rain gauge measures precipitation at a single point located at the surface level, whereas the weather radar measures the average of reflectivity at certain elevation and over a much larger area. A stochastic function is used to estimate the rainfall rate based on reflectivity.  When a rain gauge is compared with radar, it is expected that the average will behave as an individual point; it is known that the average will behave differently than that of an individual observation; therefore, these quantities should not be expected to be equal.  When several rain gauges are averaged and compared with the radar measurements, the average of the rain gauges are inconsistent because it was developed with few points whereas the average of the radar was developed with a much larger number of points. The rainfall modeled over a watershed shows that the peak flow measurements and overall runoff from radar performed better that the estimated peak flow using rain gauges [Schell et al., 1992]. Additional studies have concluded that the peak discharge of stream-flow computed with data radar were more accurate than those computed with rain gauges alone [Robinson et al., 1995].  Thus, there is no instrument that precisely measures the amount of rainfall over a large area.  The weather radar provides an estimation of the rainfall rate over larger areas.

The suggested algorithm uses TropiNet (RXM-25) data to predict the variability of the rainfall field in time and space. It is assumed that for a short time period, (10, 20 and 30 min) a rain cloud behaves as a rigid object, with all part pixels moving in the same direction at a constant speed.  Thus, the most likely future rainfall areas are estimated by tracking rain cell centroid advection in consecutive radar.  The suggested algorithm is a special kind of nonlineal model with stochastic and deterministic components. The rainfall process exhibits significant changes in time and space, and it can be characterized as a non-stationary stochastic process.  To face the nonstationary characteristic of the process, parameters are estimated at every time and spatial domain.

The model consists in taking the rainfall shape data as a rectangular grid with 940 columns and 740 rows of pixels with a total of 695,600 pixels, every pixel size is 0.06 kilometers wide and long. From the grid data select a zone of 81 pixels that was divided in squares of  pixels, where ( is referenced to columns of 9 pixels and   rows of 9 pixels with total zones of 8528 (82x104) in every window, Figure 4‑18. Several zones sizes were explored for  and it was found that the larger the zone size, the larger the number of degree of freedom. However, resolution was degraded with increased zone size.
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[bookmark: _Ref399420996][bookmark: _Toc401056896]Figure 4‑18. Rectangular grid of rainfall data. 

In the model, the use of the same zone in the before windows  and  is necessary, Figure 4‑19. Every zone (9x9) should have a minimum of twenty four (24) pixels with twenty (20) degrees of freedom identifying with rain. Zones with less pixel of rain could not be selected to forecast analysis.   In zones where the prediction movement suggest there is a rainfall cell but the zone has not the necessary pixels required (24) an interpolation was applied., The interpolation was “Kriging simple” using the twenty five (25) pixels nearest to pixel that has no prognostic.


[image: ]
[bookmark: _Ref399452469][bookmark: _Toc401056897]Figure 4‑19. Zone 9x9 at time t, t-1, and t-2.


The model is defined by the equation
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where  represents the geographic position or coordinates latitude and longitude of every pixel in the grid,  is the zone. This begins from 1 until 8528. In every zone unknown parameters should be determined:  is the minimum value found between past values of  and  in their respective zones ( ,  is the reflectivity maximum value found between past values of  and   in specific zone (, referent to . This is reflectivity average value in the time . The average value was determined in every pixel into each zone for this was averaging the eight pixels closest to the pixel under study. Similarly,    is the average reflectivity value in the time  , see Figure 4‑20 and Figure 4‑21. The variable  is the ration between the pixels with maximum reflectivity.  in every cloud or cell and the nearby pixels   forming the cloud or cell and the random variable  is a sequence of an unobserved random variable with mean zero and constant variance associated to the pixel 
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The variable Phi (Φ) is changing in the equation every zone (9x9) in each window. This variable was determined first by linearization of the nonlinear equation (Phi-initial) and after using optimization nonlinear techniques with constrains “Sequence Quadratic Programming” (SQP), where the Phi parameter is a bias correction factor and its maximum value must not exceed 1.1.
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[bookmark: _Ref399452778][bookmark: _Toc401056898]Figure 4‑20. Average pixels at a specific zone using the eight nearest pixels.
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[bookmark: _Ref399452790][bookmark: _Toc401056899]Figure 4‑21. Average Pixel at  at (2,2).

The initial coefficients deltas  were obtained through the estimation method “least squares” by linearization of nonlinear equation (logarithmic). Once the variables initial deltas were found, the next step is to find the variable phi initial. These values were used to forecast rainfall at one (1) lead-time and successively with the following forecasts. An additional important step in this research was defining the cloud motion vector in each cell, with capacity to predict the rainy pixel areas, plus the joint with the forecast rainfall estimation using the main equation. For the motion, addition of the lags and  were necessary to determine the direction motion vector and velocity. This velocity is compared with velocity obtained for TropiNet to assure the right movement of the clouds. 
The proposed rainfall prediction algorithm requires the implementation of three major tasks:  1) Develop the cloud motion vector, 2) Predict the future location of the rainy pixels and 3) Estimate the rainfall rate in the future rainy pixels.

[bookmark: _Toc401057000]	Cloud Motion Vector

Derivation of the cloud motion vector requires tracking rainfall cells (clouds). The proposed algorithm identifies first the cloud convective core based in a sequence of radar images between  ,  and  using an empirical distribution method for cloud classification, determining the distance between cloud center at time  and the cloud center at time  of the same cloud see Figure 4‑22. 

[image: ]
[bookmark: _Ref399452957][bookmark: _Toc401056900]Figure 4‑22. The motion cloud between time t-1 and time t. 

The motion algorithm was based on a spatial and temporal comparison, classifying clouds with high reflectivity and removing pixel with very low reflectivity, in this work the minimum reflectivity was 3 dBZ. The next step is the normalization of reflectivity values between a range of zero and one using minimum and maximum values of reflectivity in each image or windows, as shown the next equation, where  is the normalized reflectivity,  reflectivity in each pixel,  minimum reflectivity 3 dBZ and  is the maximum reflectivity in the window.
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The classification of the normalized values is divided into two groups. This result was stored in a binary matrix . The value  that exceed the percent of pixel with a minimum reflectivity  is assigned value of one (1) and the value  that be smaller that the percent of pixel with a minimum reflectivity  is assigned the value of zero (0). In this case,  is 0.1 percent of pixels with values of minimum reflectivity.
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 Next, the binary matrix is imported into another subroutine that classified the cell with separations by rows and columns, grouping the continuous pixels.
The method for cloud classification looks for a minimum group of 250 pixels successive with binary data. When there are more than three (3) rows or three (3) columns of pixels without data into the grid it is possible to have a division of clouds. This is the form to separate every one cell or cloud, Figure 4‑23.
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[bookmark: _Ref399453001][bookmark: _Toc401056901]Figure 4‑23. Clouds Separation. 


The contiguous pixels in the radar image are used to form the convective cell. It is necessary to know the centroid of every cell and the latitude and longitude of each pixel into the cell at the times . The distance (, direction ( and velocity ( between the centroids of the cells that are moving in every lag time. This is calculated using the next equations.
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To determine the centroid of the cells it is necessary to calculate latitude  and longitude   of every pixel group.
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Dixon and Wiener [1993] found that a convective cell have a mean velocity of 64km/hr. This value agrees with the velocity cell measure from other research. For this model a velocity means of 72 km/hr approximately or 12km/10minutes was used. To apply this maximum distance between clouds at every lag time of 200 pixels was necessary if the analysis is every 10 mins. If this analysis time increases, then the distance could increase, see Figure 4‑24.
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[bookmark: _Ref399453117][bookmark: _Toc401056902]Figure 4‑24. Cloud movement at time t-2 and t-1. 
 
The 200 pixels represent the distance maximum of translation cell in two (2) different times. Figure 4‑24 shows the cloud 1 moving from a . This is furthermore referred to as coverage diameter in two successive times or a delta time.

[bookmark: _Toc401057001]	Precipitation Estimation

The precipitation estimation is based in the main Equation (4‑5) applied to each zone in every window. The rain estimated  at time ( is the result of the prediction interval  between the instants   and  correlated with the variables that are changed in the 8,528 zones. These variables were determined in each zone (9x9) using optimization techniques for nonlinear regression. The main equation includes three (3) fundamental products:   These are the average observed rain at time  and time , The average is calculated between the eight (8) nearest pixel to the prediction pixel. The other  is the value of the rain at , and the    is the ratio of reflectivity at ().

The main equation has some restrictions in the variables that are changing in time and space. The clouds are in movement and the values of the variables are changing continuously. After the optimization, the deltas values are restricted to be positive or equal to zero.

	
	
	(4‑16)



The variables of  are the minimum and maximum reflectivity value respectively between the last two (2) windows at  and at the zone (9x9), these variables are changing in time and space (every zone 9x9). Moreover the variable  changes in every zone and windows but having a restriction limit of 1.1 in the optimization routine.
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Once the variables were found the next step was to estimate the rain rate forecast in every pixel using the main Equation (4‑5). Pixels for which it was not possible to do the estimation prediction or there is not enough data at time  and/or at time , the “Kriging” interpolation method was used to estimate the rain pixel to derive the corresponding predictors [Wackernagel, 2003]. Figure 4‑25 shows the cloud movement sequence with the centroid and their distance between them.

[image: ]
[bookmark: _Ref399453238][bookmark: _Toc401056903]Figure 4‑25. Cloud movement sequence.



[bookmark: _Toc401057002]	Variables Initials and Optimization

The variables into the nonlinear equation model are fundamental in the precipitation forecast trend. A well-planned approach is needed to properly solve the nonlinear constrained problem. The explored approach includes two steps: (i) identifying the initial point and (ii) using a constrained nonlinear optimization technique to estimate the final parameter set for each zone and every window.
To estimate the initial values of deltas, it was not necessary to apply a constrain, so that the initial deltas values can be positives or negatives. The main equation was linearized taking known values of  and  and the unknown values of  , left the parameter phi  temporarily ignored.
This method consists in solving the equivalent linear model and using these values as the initial point.  The convergence of nonlinear routine heavily depends on the selections of the initial points. Thus, if the initial point is far away from the optimal solutions the algorithm may converge to a suboptimal point or may not converge. 
Linearizing Equation (4‑5) and ignoring the phi variable:
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where
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  is an unknown random variable at time  and at location  of the  zone, the initial values of delta are obtained by solving the linear regression Equation (4‑20) by the least square method.
The phi parameter is a bias correction factor and can be estimated using a second linear regression. Once the delta values are estimated these are replaced in the main Equation (4‑5). The next step is to find the phi value , which can be estimated using the following equation.

	
	
+ 
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where the condition in the (4‑21) is present 
 is an unknown random variable at time  and at location  in the zone 9x9.
Simplifying (4‑22) with the initial delta estimates the following equation is obtained. 

	
	
	(4‑23)


where
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 is an unknown random variable at time t and at location  of the  zone, ’s are the previous estimated or initial values of deltas.
The next step is the most important in this section: finding the optimum values of variables  and from initial values determined in the previous steps. The parameters of the nonlinear regression model can be easily estimated by solving a constrained nonlinear optimization problem. Since the main model or main Equation (4‑5) includes four parameters with a bounded constraint.
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Therefore, it can be solved by using the “sequential quadratic programming” algorithm [Reklaitis et al., 1983; MathWorks, 2011]. The derived initial point was ingested into the constrained nonlinear subroutine to facilitate convergence. The parameters of the exponential term were restricted to be positive, and the phi parameter was restricted to be in the range of 0 to 1.1 values. This threshold was derived by inspection. The optimization objective was minimizing the errors between the estimate values for the regression and the observed values by radar.

In these regions in the prediction where there are clouds (or cells) present in the movement estimation, but not the required minimum number of pixels. The pixels estimation predictions were obtained by Kriging interpolation.




[bookmark: _Toc401057003]Least Square Method

The least squares estimate of the multiples regression parameters were used to calculate the initial values of deltas variables. The multiple linear regression model is typically stated in the following form:

	
	
	(4‑28)



Where the dependent variable is ,   are the regression coefficients and  is the random error assuming  and  for . 
The multiple linear model can be expressed in matrix format 

	
	
	(4‑29)


where 
	
	
	(4‑30)



And finally U values are estimated solving the next multiple linear regressions equation:

	
	
	(4‑31)



Assuming  is a non-singular matrix [Xin Yan and Xiao Gang, 2009].

[bookmark: _Toc401057004]Sequence Quadratic Programming

The function used for optimization was fmincon. This found a constrained minimum of a scalar function of several variables starting at an initial estimate. This is generally referred to as constrained nonlinear optimization or nonlinear programming [MathWorks, 2011].
The function fmincon uses one of four algorithms: active-set, interior-point, sqp or trust-region-reflective. The Sequential Quadratic Programming (SQP) is one of the most successful methods for the numerical solutions of constrained nonlinear optimization problems (NLP) [Boggs and Tolle, 1996].
A nonlinear programming problem is the minimization of a nonlinear objective function  of  variables, subject to equation and inequality constrains involving a vector of nonlinear functions.  The formulation can be:

	
	


	(4‑32)




 where   is the objective functional, the functions  and  describe the equality and inequality constraints. The nonlinear optimization problems (NLP) contains as special cases linear and quadratic programming problems, when   is linear or quadratic and the constraint functions  and   are affine. SQP is an iterative procedure which models the NLP for a given iterative  by a Quadratic Programming (QP) sub problem, solves that QP sub problem, and then uses the solution to construct a new iterative . This construction is done in such a way that the sequence ( converges to a local minimum  of the NLP.
The NLP resembles the Newton and quasi-Newton methods for the numerical solution of nonlinear algebraic systems of equations. However, the presence of constraints renders both the analysis and the implementation of SQP methods much more complicates [Hoppe, 2006].

[bookmark: _Toc401057005]Kriging Interpolation

Kriging is based on the assumption that the parameter being interpolated can be treated as a regionalized variable. A regionalized variable is intermediate between a truly random variable and a completely deterministic variable in that it varies in a continuous manner from one location to the next and therefore points that they are near each other and have a certain degree of spatial correlation., Yet, points that are widely separated are statistically independent [Davis, 1986].  
The Kriging techniques are based on the estimation of weighting coefficients with an assumption of unbiased-ness. Each data has its own coefficient , which represent the influence of a particular data on the value of the final estimation at the select grid node. The relationship between the existing data and the estimation point has been expressed by variogram values or by covariance in case of second order stationarity. Such values describe the spatial dependence and the influence of the particular location in terms of its distance and direction from the estimated location [Malvic and Balic, 2009].
The basic equation used in ordinary Kriging is as follows:

	
	
	(4‑33)



where   is the number of scatter points in the set,   are the values of the scatter points, and   are the weights assigned to each scatter point. The weights are found through the solution of the simultaneous equations: 

	
	
	[bookmark: _Ref399920535](4‑34)




where  is the model variogram evaluated at a distance equal to the distance between points and  . It is necessary that the weights sum to unity.

	
	
	(4‑35)



The Kriging techniques add some constraints to the matrices, to minimize the error, and these techniques are unbiased-ness estimations. These factors would describe some external limit on the input data, which cannot simply be observed in the measured values [Malvic and Balic, 2009]. 
The constraint factor in Ordinary Kriging equations is called the Lagrange multiplicator . It is used to minimize possible estimation error and then the (4‑34) can be written as:

	
	
	(4‑36)



where
	
	
	(4‑37)



The equations are then solved for the weights  .The  value of the interpolation point is then calculated as:

	
	
	(4‑38)




An important feature of Kriging is that the variogram can be used to calculate the expected error of estimation at each interpolation point since the estimation error is a function of the distance to surrounding scatter points. The calculation of error variance for the output pixel estimate includes adding the adding the Lagrange coefficient: 

	
	
	(4‑39)



[bookmark: _Toc401057006]     Events Selection

To select the events it was necessary to analyze every one storm during 2012 and 2014. The analysis has three (3) important steps. The first was taking every minute data from TropiNet radar and plot it. For this, it was necessary to create an efficient routine in MatLab to determine that the radar data has not interruptions or damage, If instead the radar had corrupt data, the storm is discarded. In some cases, it was found that the radar takes data in “Plan Position Indicator” (PPI) and after the radar is changed to “Range High Indicator” (RHI), such data was also discarded. 
The next step was to select the radar data with the same elevation angle (3˚). The TropiNet radar has the capacity of store data with two o more different elevations angles. Within the model it was necessary to include a sub-routine with efficiency to select a determine elevation angel. The final step was to choose those precipitations that have data with complete storm duration.
Table 4‑6 includes the dates and specifications of every storm to study, the information incorporate in the column “Storm Impact” was provided by NWS at Carolina, Puerto Rico (personal communication Carlos Ansemi). 



[bookmark: _Ref399598873][bookmark: _Toc401057027]Table 4‑6. Characteristics of studied storm.
	Date
	Duration
(UTC)
	Storm Type
	Storm Impacts

	March 28, 2012
	7 hr.
16:27-23:58

	Stationary trough
	Impacts rivers,
 water on the road, and significant rainfall accumulation

	March 29, 2012
	6 hr.
00:36-06:53
	Stationary trough
	Impacts rivers, water on the road, significant rainfall accumulation

	April 30, 2012
	5 hr.
17:55-22:21
	Convective storm
	Numerous showers over western Puerto Rico at the afternoon

	October 10, 2012
	5 hr.
16:10-21:43
	Convective storm
	Some urban flooding

	February 12, 2014
	7 hr.
16:00-23:29

	Heavy
 convective storm
	Reduced visibilities and ponding of water on roadways and low lying areas

	May 06, 2014
	7 hr.
16:45-23:59

	Convective storm
	Street flooding 
and reduced 
visibility on the highways.

	May 21, 2014
	7 hr.
16:46-23:00

	Heavy 
convective storm
	The water covers the roadway. Ponding of water on roadways

	June 29, 2014
	5 hr.
17:00-22:00

	Convective storm
	The shower activity
 produced periods of moderate to locally downpours

	June 30, 2014
	4 hr.
16:00-20:15

	Thunderstorms associated to the leading edge of a tropical wave
	Moderate to heavy rain,
 urban and small 
stream flood advisory

	July 05, 2014
	4 hr.
16:44-20:00

	Convective storm
	Heavy rain, urban flood.



[bookmark: _Toc401057007]  Hydrologic Model Composition


As mentioned above, the hydrological Model used in this research was Vflo. This model uses finite elements that can simulate streamflow based on geospatial data to simulate interior locations in the drainage network and determine channel flow and overland flow. It was fundamental to study the physical configuration of the watershed, such as a Digital Elevation Model (DEM), the topography digitalized, soils map, land use map and information about the basin. Some hydrologic and hydraulic studies have been conducted by Sepulveda et al., [1996]; Villalta [2004]; Prieto [2007]; Rojas [2012]. In addition, other studies by US Geological Survey (USGS) and FEMA are used in this research like additional information.

Some stations from USGS were used to compare and validate the runoff with the result from hydrological model using radar data, see Table 4‑7, Figure 4‑26 and Figure 4‑27.

[bookmark: _Ref399599400][bookmark: _Toc401057028]Table 4‑7. USGS flow stations.
	Source
	ID Station
	Station Name
	Lat.
	Long.
	Elev.
	Data

	
	
	
	
	
	(m)
	

	USGS
	50131990
	Rio Guanajibo at Hwy 119 at San German
	18.09
	-67.03
	45.0
	Rain, Stage

	USGS
	50136400
	Rio Rosario near Hormigueros
	18.17
	-67.07
	50.0
	Rain, Stage, Flow

	USGS
	50138000
	Rio Guanajibo near Hormigeros
	18.14
	-67.15
	2.2
	Rain, Stage, Flow

	USGS
	50141500
	Lago Guayo at Damsite near Castaner
	18.21
	-66.83
	426.8
	Rain, Stage

	USGS
	50142500
	Lago Prieto near Adjuntas
	18.19
	-66.86
	600.2
	Rain, Stage

	USGS
	50146073
	Lago Daguey above Añasco
	18.301
	-67.13
	40.0
	Rain, Stage

	USGS
	50141100
	Lago Yahuecas near Adjuntas
	18.22
	-66.82
	426.8
	Rain, Stage

	USGS
	50143930
	Rio Grande de Añasco at Bo. Guacio
	18.28
	-67.02
	64.9
	Rain, Stage

	USGS
	50144000
	Rio Grande de Añasco Near San Sebastian
	18.285
	-67.05
	31.6
	Rain, Stage, Flow

	USGS
	50145395
	Rio Casey above Hacienda Casey
	18.25
	-67.08
	75.0
	Rain, Stage, Flow



[image: ]
[bookmark: _Ref399599423][bookmark: _Toc401056904]Figure 4‑26. Flow station within radar coverage.

[image: ]
[bookmark: _Ref399599443][bookmark: _Toc401056905]Figure 4‑27. Flow station within basin.

FEMA implemented a Flood Insurance Study (FIS) for the Commonwealth of Puerto Rico [2012]. Standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this countywide FIS.  The flood events have magnitude of exceeding once on the average during any 10 years, 50 years, 100 years and 500 years, recurrence period; these events have a percent chance respectively of 10 percent, 2 percent, 1 percent and 0.2 percent. The equation employed were mean annual rainfall (MAR) obtained from Mean Annual Precipitation map developed by NOAA in 2006 [precipitation record 1971-2000]), depth to rock (DR) and contributing drainage area (CDA) as variables that govern the peak streamflow. A summary of drainage area-peak discharge relationship for all of the streams studied is shown in Table 4‑8 [FEMA, 2012].

[bookmark: _Ref399601477][bookmark: _Toc401057029]Table 4‑8. Drainage area peak discharge relationship [FEMA, 2012].
	Drainage Area (sq km) 
	Station Name
	Peak Discharge (cms)

	
	
	10%
	2 %
	1 %
	0.2 %

	467.73
	Rio Grande Añasco
 at Mouth
	1,809
	3,797
	5,130
	10,542

	347.33
	Rio Grande Añasco Near San Sebastian
	1,390
	3,031
	4,078
	8,329

	385.26
	Rio Grande Añasco upstream confluence Rio Casey
	1,527
	3,289
	4,432
	9,070

	414.88
	Rio Grande Añasco downstream confluence Rio Casey
	1,631
	3,481
	4,695
	9,624

	35.4
	Rio Yaguez 
at Mouth
	292
	595
	770
	1,289

	329.65
	Rio Guanajibo
at Mouth 
	1,352
	3,896
	5,745
	14,294

	310.53
	Rio Guanajibo
Near Hormigueros
	1,215
	3,637
	5,343
	13,196

	91.39
	Rio Guanajibo at Hwy 119 at San German
	604
	1,325
	1,713
	2,991

	303.04
	Rio Guanajibo downstream confluence Rio Rosario
	1,206
	3,507
	5,137
	12,620



The following sections present the analysis of each variable in the hydrological model and determining the best parameters for a good operation. The analysis was based on existing literature within the study area.

[bookmark: _Toc401057008]Evapotranspiration

The Potential Evapotranspiration estimation has two methodologies available to know the evapotranspiration value in the study area. The first methodology is using data from Natural Resources Conservation Service (NRCS), specifically products of the National Water and Climate Center as SCAN Data and the second methodology is using the Satellite GOES data daily provide by Prof. Eric Harmsen.
There are seven (7) sites in Puerto Rico taking SCAN Data (Soil Climate Analysis Network) See Figure 4‑28 which collect soil moisture, soil temperature data, precipitation, wind and solar radiation data.

[image: ]
[bookmark: _Ref399601776][bookmark: _Toc401056906]Figure 4‑28. Puerto Rico Soil Climate Analysis Network (provided by NRCS)
In our study area there are only two (2) stations: “Mayagüez TARS” and “Maricao Forest” see Figure 4‑29. 

[image: ]
[bookmark: _Ref273365097][bookmark: _Toc401056907]Figure 4‑29.  Location NRCS stations into the basin.


The SCAN data (Soils Climate Analysis Network) is using some methods to transmit remote station data. Any stations use meteor burst telemetry, line-of-sight or GOES technology to obtain remote site information in real-time. The data access can be through the National Water and Climate Center (NWCC) website www.wcc.nrcs.usda.gov/scan/. The website contains the current and historical data for each site. The SCAN data has diverse uses; to monitor drought development and trigger plans and policies for mitigation, investigate climate change scenarios, monitor change in crop, range and woodland productivity in relation to soil moisture-temperature changes, to verify and ground-truth satellite and soil moisture model information, for energy conservation, for soil classification and other.

Two sites SCAN were used to calculate the Potential evapotranspiration: Mayagüez Tars and Maricao Forest. Mayagüez Tars is located at Latitude 18o 13’N and Longitude 67o 8’W with an elevation of 45 feet, and Maricao forest is located at Latitude 18o 9’N, Longitude 67o 0’W with an elevation of 2,450 feet.
One of the most used methods to calculate Evapotranspiration is the FAO Penman-Monteith. A large number of empirical methods have been developed over the last 50 years, and the Penman method was considered to offer the best result with minimum possible error. It can be derived from:

	
	
	(4‑40)



where  reference evapotranspiration (mm day-1),  net radiation at the crop surface (MJm-2day-1),  soil heat flux density (MJm-2day-1), T mean daily air temperature at 2 m height (˚C),   wind speed at 2 m height (ms-1), saturation vapour pressure (kPa),   actural vapor pressure (kPa),  saturation vapor pressure deficit (kPa) Δ slope vapor pressure curve (kPa˚C-1), psychrometric constant (kPa˚C-1). The equation uses standard climatological records of solar radiation (sunshine), air temperature, humidity and wind speed. The weather measurement should be made at 2 m (or converted to that height) above and extensive surface of green grass and assumed crop height of 0.12 m, a fixed surface resistance of 70 sec m-1 and an albedo of 0.23.
Harmsen et al., [2010] mentioned another technique for Reference Evapotranspiration () or Potential Evapotranspiration in the Caribbean region using satellite and remote sensing. The  is estimated with the original radiation-based Hargreaves formula [Hargreaves, 1975 and Hargreaves and Samani, 1982].

	
	
	(4‑41)



Goyal et al., [1988] developed a linear regression for temperature (˚C) monthly versus elevation (m) where these were determined for January through December for Puerto Rico. The variables were used to estimate potential evapotranspiration (PET) as function of incident solar radiation (Rs) and elevation.

	
	 
	(4‑42)



where Potential evapotranspiration is in (mm day-1),   is extraterrestrial radiation (mm day-1) and it is determinate monthly for Puerto Rico,  is mean daily average temperature in (˚C),  and are mean daily maximum and minimum temperatures in (˚C). The linear relationships between temperature and elevation is given by 

	
	  
	(4‑43)



where Y is temperature, X elevation, A and B are monthly regression coefficients. Other source to determine   is remote sensing by Harmsen et al., [2009 and 2010]. The data is available from March 2009 through present with a range of data for 1 kilometer in (MJ m2day-1).  
Additionally, it was possible to determine directly Potential Evapotranspiration with resolution of 1 kilometer over the whole island. This was the second methodology used. For every day was obtained the Potential Evapotranspiration data from satellite GOES were provided by Prof. Eric Harmsen (Personal Communication). The studies days were:  March 28, 2012; March 29, 2012; April 30, 2012; October 02, 2012; February 02, 2014; May 06, 2014; May 21, 2014; June 29, 2014; June 30, 2014 and July 05, 2014. Figure 4‑30 show the Potential or Reference Evapotranspiration by March 28, 2012.

[image: ]
[bookmark: _Ref273366084][bookmark: _Toc401056908]Figure 4‑30. Left panel Potential evapotranspiration (mm/day) and right panel Potential evapotranspiration (mm/hr) on March 28, 2012.

The analysis consisted in selecting the study area. For this, it was necessary to develop an efficient routine in MatLab with exactly coordinates in each pixel with evapotranspiration data and select the study area, see Figure 4‑31. Once the area is selected, the next step is to interpolate the existing pixel data with 1 km resolution and then increase the resolution to 200 meter, a subroutine of interpolating gridded data was used in MatLab. 
Interpolation is a method for estimating the value at a query location that lies within the domain of a set of sample data points. Once the interpolation data is obtained, the next step was develop the grid data with 200 m resolution in every pixel, the information provided are latitude, longitude and Potential Evapotranspiration in millimeters per day and the format used is ASCII.  This transformation was successful for the ten (10) storm days analyzed and the data provided for GOES was more accurate than taking only two stations as is presented in the first methodology.

[image: ]
[bookmark: _Ref273366124][bookmark: _Toc401056909]Figure 4‑31.  Left panel Potential evapotranspiration (mm/day) and right panel Potential evapotranspiration (mm/hr) in the basin area on March 28, 2012.
[bookmark: _Toc401057009]	Slope Definition into the Basin

The slope map was developed using Digital elevation Map (DEM) at 200 meters and 10 meters resolution from USGS. The digital elevation model (DEM) data consist of a sampled array of regularly spaced elevation values referenced horizontally either to a Universal Transverse Mercator (UTM) projection or to a geographic coordinate system. The grid cells are spaced at regular intervals along south to north profiles that are ordered from west to east. Figure 4‑32 presents the slope map for the basin derived from the DEM at 200 meters resolution.

[image: ]
[bookmark: _Ref399605339][bookmark: _Toc401056910]Figure 4‑32. Basin slope map 200 m resolution.

An aspect map was elaborated in Figure 4‑33. The aspect map is a measured counterclockwise in degree from 0 (due north) to 360 (again due north, coming full circle). The value of each cell in an aspect grid indicates the direction in which the cell’s slope faces. Flat slope have no direction and are given a value of -1.
There are many different reasons to use the aspect function for example to identify areas of flat land, slope in a mountainous region, locations where is possible identify the runoff direction.

[image: ]
[bookmark: _Ref399605650][bookmark: _Toc401056911]Figure 4‑33. Basin aspect map 200 m resolution.



[bookmark: _Toc401057010]	 Specifications Channels

The study area includes three (3) main rivers and their branch, Rio Grande de Añasco, Rio Guanajibo and Rio Yagüez, see Figure 4‑34. 
The roughness coefficients developed by FEMA [2012] found a general roughness for the Rio Añasco of 0.040 in the channel and 0.100 in the overbank, In the Rio Yagüez a range was found between 0.030 to 0.050 in the channel and in the overbank between 0.150 to 0.200 and the Rio Guanajibo the roughness channel is between 0.040 to 0.045 and the overbank is 0.100.

[image: ]
[bookmark: _Ref399605882][bookmark: _Toc401056912]Figure 4‑34. Rivers Map

Available cross section data from rivers were obtained from Villalta [2004]. There are  thirty nine (39) total section distributed thereby:  twenty five (25) cross sections usable in the Rio Añasco, ten (10) sections to the Rio Guanajibo and  just four (4) to the Rio Yagüez, see Figure 4‑35. Unfortunately, these data do not include cross sections information for most of the length of the main channel of these rivers. The shape of the most upstream cross section for each river was assumed to be the same for the top end location of each river respectively. The stream where no cross sections information was available the channel slide slopes were assumed to be 1:1 and the commonly these rivers have a width between 3–5 meters for upland rivers and the rivers mouth between 25–32 meters according with Google Earth [2013] and Rojas [2012].  The cross section altitude was selected based in the elevation contour of the USGS topographic quadrangles at those locations [Prieto, 2007; Rojas, 2012]. 

[image: ]
[bookmark: _Ref399606014][bookmark: _Toc401056913]Figure 4‑35. Cross Sections
Using ArcGIS, three (3) necessary products was determined to include in the hydrologic model Vflo. These are flow direction, overland slope and stream location, the products were developed with an extension of ArcGIS “Arc Hydro” using a digital elevation model (DEM) of 30 meters from the USGS, other cross section were obtained using DEM of 10 meters where no data was available to defined the flood plain in these areas, and channel slope. In most rivers section channel width is about 5 to 10 meters, coinciding with Rojas [2012].  Villalta’s [2004] survey sections data was provide by Alejandra Rojas (personal communication July, 2012), we can observe in Table 4‑9 surveyed sections of Rio Grande de Añasco, Table 4‑10 surveyed sections of Rio Guanajibo and Table 4‑11 surveyed sections of Rio Yagüez, the sections conserve the original name present in Villalta [2004], Prieto [2007] and Rojas [2012]. Figure 4‑36 presents the first surveyed section in Rio Grande de Añasco, Figure 4‑37 shows the first surveyed section in Rio Guanajibo and Figure 4‑38 presents the first surveyed section in Rio Yagüez.  The others transversal sections were included into the hydrologic model.







[bookmark: _Ref399606948][bookmark: _Toc401057030]Table 4‑9. Surveyed Sections coordinates at Rio Grande de Añasco.
	Sections
	Location
Coordinates  UTM, NAD 1927
	Average reach from the mouth (km)

	
	Latitude
	Longitude
	

	P1
	2,019,561.15
	721,233.41
	53.80

	AN12
	2,019,437.49
	721,056.76
	52.48

	ANCO
	2,021,257.06
	717,276.30
	46.24

	ANC2
	2,021,592.71
	717,240.97
	45.99

	ANC1
	2,021,575.04
	716,905.32
	45.43

	AMA
	2,020,603.43
	714,785.44
	41.592

	AN21
	2,021,098.07
	714,538.12
	40.82

	AN22
	2,021,469.05
	714,379.13
	40.41

	AN32
	2,021,981.35
	713,319.19
	39.08

	AREA
	2,022,246.34
	710,792.99
	36.32

	AREABA
	2,022,317.00
	710, 510.34
	35.99

	GRAVERO ANTES
	2,023,465.27
	707,895.92
	30.26

	GRAVERO DESPUES
	2,023,500.60
	707,295.19
	29.56

	AN40
	2,023,694.93
	706,765.22
	28.51

	ANCG
	2,022,617.32
	704,044.70
	21.79

	ANCG2
	2,021,769.37
	701,730.50
	16.60

	ESPINO ANTES
	2,022,264.00
	699.504.62
	14.19

	ESPINO DESPUÉS 1
	2,022,122.68
	699,363.29
	13.99

	ESPINO DESPUÉS 2
	2,021,274.73
	699,151.31
	12.74

	OVEJAS-LILLY 1
	2,021,398.39
	697,932.37
	11.17

	OVEJAS-LILLY 3
	2,020,635.42
	696,879.87
	8.53

	SECCIÓN K
	2,021,342.50
	695,800.43
	5.86

	SECCIÓN L
	2,021,512.95
	694,840.73
	3.49

	SECCIÓN N
	2,020,963.71
	693,294.01
	1.78

	SECCIÓN O
	2,020,824.82
	692,574.31
	1.07





[bookmark: _Ref399607164][bookmark: _Toc401056914]Figure 4‑36. First transversal section farthest to mouth at Rio Grande de Añasco.

[bookmark: _Ref399606988][bookmark: _Toc401057031]Table 4‑10. Surveyed sections coordinates at Rio Guanajibo.
	Sections
	Location
Coordinates  UTM, NAD 1927
	Average reach from the mouth (km) 

	
	Latitude
	Longitude
	

	ANTES 114
	2,006,663.29
	695,231.54
	6.69

	S. DESPUÉS 114
	2,006,763.13
	696,049.47
	6.45

	S. DESPUÉS 102
	2,006,933.46
	695,802.80
	6.05

	SECCIÓN S-3
	2,007,315.21
	695,321.20
	4.71

	SECCIÓN S-2
	2,008,184.45
	694,528.31
	3.22

	SECCIÓN S1
	2,008,237.31
	694,287.51
	2.81

	SECCIÓN S2
	2,008,848.12
	693,541.61
	1.57

	SECCIÓN S3
	2,009,053.68
	693,300.81
	1.19

	SECCIÓN S4
	2,009,359.09
	693,054.14
	0.81

	SECCIÓN S5
	2,009,756.40
	692,713.49
	0.46





[bookmark: _Ref399607209][bookmark: _Toc401056915]Figure 4‑37.  First transversal section farthest to mouth at Rio Guanajibo.


[bookmark: _Ref399607044][bookmark: _Toc401057032]Table 4‑11. Surveyed Sections coordinates at Rio Yagüez.
	Sections
	Location
Coordinates  UTM, NAD 1927
	Average reach from the mouth (km)

	
	Latitude
	Longitude
	

	SECCIÓN 1
	2,014,456.14
	699,585.62
	6.77

	SECCIÓN 2
	2,014,340.71
	699,545.94
	6.42

	SECCIÓN 3
	2,014,346.72
	699,175.58
	5.90

	SECCIÓN 4
	2,014,213.24
	698,919.45
	5.23




[bookmark: _Ref399607590][bookmark: _Toc401056916]Figure 4‑38.  First transversal section farthest to mouth at Rio Yagüez.


[bookmark: _Toc401057011]	Infiltration and Roughness Parameters

The infiltration is an important parameter to define the runoff. The runoff is caused only when the rainfall rates exceed infiltration rates. The hydrologic model use the Green-Ampt infiltration routine to model infiltration, Other parameters characteristic in the infiltration are necessary: Hydraulic conductivity, wetting front, effective porosity, soil depth, initial saturation, abstraction and impervious area, these variables are affected by land use and soils properties. The infiltration parameter was developed using the SSURGO maps and data base from USDA [2006a, 2006b, 2006c, 2006d] which contains the soil classes and specifications for Puerto Rico, the basin area has six basic textures. Figure 4‑39 presents the six (6) basic texture into the basin area, a large amount area of clay is observed, the soils name present into this the area are: Alluvial land, Aguilita, Aibonito, Bajura, Consumo, Daguey, Delicias, Humatas, Lares, Jacana, Los Guineos, Malay, Mabi, Mariana, Mariaco, Montegrande, Mucara, Nipe and other. For the Clay Loam texture the name soils presents are: Anones, Caguabo, Descalabrado and Morado, for the Loam texture the soils are: Coloso, Corcega, Dique, Guainabo, Mani, Maresua, Palmarejo, reilly, Talante, Toa and other, soils that correspond to the rock texture are include: Limestone, Serpentine and Volcanic rock land, for the sand texture was found the soils: Cataño, Leveled and River wash and the last texture is Gravel which only has one soil with the same texture name.

[image: ]
[bookmark: _Ref399607882][bookmark: _Toc401056917]Figure 4‑39. Basic Soils Textures in the basin area.

Figure 4‑40 presents the percents of textures into the watershed, in the same way the Clay encompasses most the study area with 63% of total area, on the other hand the minimum texture present in the basin is the Gravel with a value approximate to 0%.

[bookmark: _Ref399608326][bookmark: _Toc401056918]Figure 4‑40. Soil Percent in the Basin Area.

The hydrologic group is a parameter that affects the infiltration and runoff, the Figure 4‑41 presents the basin area with the hydrologic group A, B, C and D. The most representative groups are C and D, C with a 32% total area and D with a 40% total area, see Figure 4‑42. The results match with the textures present in the Figure 4‑39 and Figure 4‑40 where clay and clay loam texture have more influence in the area and these are forming  part of hydrologic groups C and D, which have the minimum infiltration rate.

[image: ]
[bookmark: _Ref399608456][bookmark: _Toc401056919]Figure 4‑41. Hydrologic Group Basin Map.




[bookmark: _Ref399608548][bookmark: _Toc401056920]Figure 4‑42. Hydrologic Group Basin Area.

Other parameters such as hydraulic conductivity, wetting front and effective porosity were assigned from literature [Gupta, 2008 and Vieux, 2013]. Table 4‑12 presents classification soils texture with Green-Ampt infiltration parameters. The hydraulic conductivity (K) may especially control the infiltration process when rainfall occurs over already saturated soil; the hydraulic conductivity was specified for a single layer soil profile for this study area. 

The wetting front is the average capillary potential of the Green-Ampt infiltration routine, this parameter is important because it can calculate infiltration under unsaturated conditions and its value is independent of soil moisture at any particular time. The Effective porosity is the difference between total porosity and residual soil moisture content, this property furthermore is independent of soil moisture at any time, its range is between 1 and 0, with complete porosity being a value of one (1), and the value zero (0) is for the zero porosity. The soil depth is the depth to which the infiltration can occur in the soil, if the wetting front is obstructed by a perched water table then the depth to the water table is the limiting depth. If the soil profile is limited by an impermeable layer, then the depth to that layer is the limiting depth. Soil depth can be modified through the calibration of simulations to observed stream flow [Vieux, 2013].  The soil depth data was obtained using USDA [2006a, 2006b, 2006c and 2006d]. In cases where the soil depth data is not available was assigned a maximum value of 152 cm (60 inches).

[bookmark: _Ref399608867][bookmark: _Toc401057033]Table 4‑12. Grenn-Ampt infiltration parameter.
	Soil Texture Class
	Effective Porosity
	Wetting Front (cm)
	Depth
(cm)
	Hydraulic Conductivity(cm/h)

	Clay
	0.385
	31.63
	300
	0.03

	Clay Loam
	0.309
	20.88
	300
	0.10

	Gravel
	0.24
	1.5
	300
	2.27

	Loam
	0.43
	8.89
	300
	0.66

	Rock
	0.17
	1
	300
	0.036

	Sand
	0.42
	4.95
	300
	11.78



The overland roughness is the most important parameter that affects the peak flow in a distributed model.  Some sources were analyzed for this parameter [Prieto, 2007; Rojas, 2012 and Xplorah 2010].  Making a comparative analysis seven (7) basic land use classes were determined where each one received a specific manning roughness value as demonstrated in Table 4‑13 and Figure 4‑43. 

[bookmark: _Ref399609387][bookmark: _Toc401057034] Table 4‑13. Manning roughness and impervious.
	Land Use
	Manning Roughness (n)
	Impervious
%
	Area (Km2)

	Quarries, sand and rock
	0.020
	95
	0.56

	Other emergent wetlands
	0.050
	1
	1.24

	Urban and barren
	0.080
	81
	58.68

	Agriculture
	0.166
	5
	55.92

	Agriculture /hay
	0.190
	4
	0.12

	Forest, shrub, woodland and shade coffee
	0.191
	2
	529.12

	Pasture
	0.225
	5
	173.2



The impervious column Table 4‑13 represents the percentage of a cell area that is impervious to infiltration.  This property is important in modeling urban basins. The impervious fraction in a cell overrides the infiltration routine as follows: if rainfall rate is less than infiltration rate, then the runoff is the product of rainfall rate and the impervious fractions. If rainfall rate is greater than infiltration rate, then runoff is the difference between the rainfall and infiltration rate, not affected by the impervious fractions [Vieux, 2013].

[image: ]
[bookmark: _Ref399609415][bookmark: _Toc401056921]Figure 4‑43. Roughness map.



[bookmark: _Toc395981774][bookmark: _Toc401057012]CHAPTER - RESULTS 

This chapter present the results of this research since obtaining, handling and processing data radar as well as the development of nowcasting model, validation of results, comparison between TropiNet radar and NEXRAD radar, configuration of  hydrological model, implementations of nowcasting results and observed data into the hydrological model, configuration of inundation model, implementation of observed data and estimated data from hydrological model to inundation Analysis extension and finally comparison between USGS station and stations in the hydrological model.  

[bookmark: _Toc401057013]Data Acquisition


Numerous storms were analyzed during 2012 and 2014 to select the suitable storms to be forecast, some requirements to choose the storm were necessaries: the data should be constant without interruptions, the radar should have the same elevation angle for all storms, the data may not be altered, and the radar should not stop during the storm or change its positions. 
All storage data were plotted to observe the behavior and movement of the clouds, this was the first step in the selection data, graphing the data was only possible to select the data according to the features mentioned above. In the plot the clouds should have a time series constant with an angle of 3˚ for TropiNet and 0.5˚ for NEXRAD.

This goal took a lot of time, because the data was used to do other research and the radar was manipulated changing the elevation angle. Finally several storms were analyzed but only ten (10) storms were selected for this research, five (5) which are from 2012, and the other five (5) are from 2014. Figure 5‑1 shows a time series of cloud movement for the storm of May 06, 2014.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\20140506.png]
[bookmark: _Ref399609980][bookmark: _Toc401056922]Figure 5‑1. TropiNet-Storm sequence (from left to right and top to bottom). 
The TropiNet data was accessed from weather.uprm.edu server, the data is raw data in binary format. Two types of transformations from binary to NetCDF were needed to handle data and from NetCDF to mat, these transformations required the development of subroutines in MatLab. Other transformations necessary included changing the polar coordinates to Cartesian coordinates; this was done to handle the data in the hydrological model Vflo.

[bookmark: _Toc401057014]Rain gauges-TropiNet – NEXRAD comparison


A routine was implemented to compare between Rain Gauges, TropiNet and NEXRAD data. The NEXRAD pixels have 1 square kilometer area and the TropiNet pixels have 60 meter for each side, this means that 256 TropiNet pixels equivalent in size to one (1) NEXRAD pixel or within one NEXRAD pixel fit 256 TropiNet pixels. Two comparison types were done, the first was pixel to pixel, and the second was average TropiNet pixels (256) with one NEXRAD pixel. 

Figure 5‑2 presents a comparison image on a specific minute between TropiNet and NEXRAD, Figure 5‑3 shows the same storm but superimposed with the TropiNet image with the NEXRAD. This assignment was made for all storms analyzed to verify the storms location and confirm that the comparison data rain-rate is successful.
[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\Compare_Reflectivity_2014_05_06_17_42.png]
[bookmark: _Ref399610384][bookmark: _Toc401056923]Figure 5‑2. Comparison TropiNet and NEXRAD on May 06, 2014- 17:42.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\Compare_Reflectivity_M_2014_05_06_17_42.png]
[bookmark: _Ref399610419][bookmark: _Toc401056924]Figure 5‑3. Superimposed TropiNet and NEXRAD on May 06, 2014- 17:42.

When the graphical comparison was done, the next step was to compare the rain-rate data pixels and rain gauges. Figure 5‑4 presents the comparison between Rain Gauge, NEXRAD and TropiNet with the original resolution at station C1 with latitude 18.2094˚ and longitude 67.1401˚, date: May 21, 2014.
As shown in Figure 5‑4 through Figure 5‑9 the RMS increases for heavy rain conditions. Yet in all cases (light, moderate and heavy rain) TropiNet consistently yields the smallest error as compared to NEXRAD.

[image: ]
[bookmark: _Ref399610513][bookmark: _Toc401056925]Figure 5‑4. Comparison Rain Gauge-NEXRAD and TropiNet
at station C1 on, May 21, 2014 (Heavy Rain).


Figure 5‑5 shows the comparison between NEXRAD and TropiNet at station C1, event May 21, 2014, the difference here is the average pixels (256) in TropiNet to change the resolution similar to NEXRAD. 

[image: ]
[bookmark: _Ref399610665][bookmark: _Toc401056926]Figure 5‑5. Comparison Rain Gauge-NEXRAD and TropiNet Average 
at station C1, on May 21, 2014 (Heavy Rain).

Table 5‑1 includes the statistic results where MSE is the mean squared errors between Rain gauge-TropiNet and Rain gauges-NEXRAD and RMSE is the root means squared errors. The error is greater when the comparison between rain gauge and NEXRAD data is present, likewise the best result was observed between rain gauge and TropiNet data radar when it has the original resolution (60 meters).  
[bookmark: _Ref399610797][bookmark: _Toc401057035]Table 5‑1. Statistic Results at station C1, on May 21, 2014.
	Radar-Rain Gauge
	MSE (mm/hr)2
	RMSE (mm/hr)

	TropiNet
	344.284875749279
	18.5549151372158

	Average TropiNet (256 pixels)
	393.816530425844
	19.8448111713325

	NEXRAD
	577.168821568998
	24.0243381088636



The calculations were done using the next equations:

	
	
	(5‑1)

	
	
	(5‑2)



Where   and  are the errors between Rain gauge-TropiNet and Rain gauge-NEXRAD respectively,   is the Rain gauge data,   is the TropiNet data and  is NEXRAD data.

	
	
	(5‑3)

	
	
	(5‑4)



SSE is the sum-squared errors, the subscript  refers to TropiNet and subscript  refers to NEXRAD.

	
	
	(5‑5)

	
	
	(5‑6)


MSE is the mean square errors in TropiNet () and NEXRAD (), and the next equation is the roots mean squared errors RMSE with the same subscript as the last equations.

	
	
	(5‑7)

	
	
	(5‑8)



Figure 5‑6 and Figure 5‑7 show other comparison at the stations C1 but different date, in this case the comparison was on May 06, 2014. 

[image: ]
[bookmark: _Ref399612188][bookmark: _Toc401056927]Figure 5‑6. Comparison Rain Gauge-NEXRAD and TropiNet at station C1, on May 06, 2014 (Moderate Rain).

The data tendency is very similar between TropiNet and rain gauge and NEXRAD, but NEXRAD presents sub-estimation. The statistic analysis indicates the errors maxima that were obtained using NEXRAD data, see Table 5‑2. 

[image: ]
[bookmark: _Ref399612199][bookmark: _Toc401056928]Figure 5‑7. Comparison Rain Gauge-NEXRAD and TropiNet Average at station C1, on May 06, 2014 (Moderate Rain).

[bookmark: _Ref399612402][bookmark: _Toc401057036]Table 5‑2. Statistic Results at station C1, on May 06, 2014.
	Radar-Rain Gauge
	MSE (mm/hr)2
	RMSE (mm/hr)

	TropiNet
	4.17787067003855
	2.04398401902719

	Average TropiNet (256 pixels)
	6.06803042476360
	2.46333725355738

	NEXRAD
	10.8604364523625
	3.29551763041293




Other comparisons were done on February 12, 2014 at the same pixel C1. Figure 5‑8 and Figure 5‑9 present precipitation distribution for rain gauge-NEXRAD-TropiNet and rain gauge-NEXRAD-TropiNet average respectively.

[image: ]
[bookmark: _Ref399612496][bookmark: _Toc401056929]Figure 5‑8. Comparison Rain Gauge-NEXRAD and TropiNet at station C1, 
on February 12, 2014 (Light Rain).

For this event the tendency between TropiNet and rain gauges is the same but different to NEXRAD. The trend of TropiNet continues to be more similar to rain gauges data, specifically when this radar uses its original resolutions, see Table 5‑3.

Other comparisons were done with different dates between 2012 and 2014. Unfortunately, 20 (twenty) rain gauges were used and only few captured good data. In most rain gauges alterations were found to the equipment due to the natural or human factors. 
[image: ]
[bookmark: _Ref399612514][bookmark: _Toc401056930]Figure 5‑9. Comparison: rain gauge, NEXRAD and TropiNet Average at station C1, on February 12, 2014 (Light Rain).

[bookmark: _Ref399612625][bookmark: _Toc401057037]Table 5‑3. Statistic Results at station C1, on February 12, 2014.
	Radar-Rain Gauge
	MSE (mm/hr)2
	RMSE (mm/hr)

	TropiNet
	0.0373099855442711
	0.193157929022526

	Average TropiNet (256 pixels)
	0.0428684957887716
	0.207047085921951

	NEXRAD
	7.02668171345314
	2.65078888511574





[bookmark: _Toc401057015]Nowcasting Model Movement and Reflectivity Analysis 


There are many methods to forecasting with long lead-time as: 8, 24, and 36 hours or weekly, using autoregressive methods, moving averages and others. This is a special kind of method to nowcasting (short time as minutes). In the Puerto Rico western area occur sudden precipitations with short durations due to atmospheric conditions and locations, the precipitations take place immediately and its durations is around 1, 2 or 3 hours. 
Knowing the precipitation characteristics, the nowcasting model developed in this research only needs two lag times for prediction. This means that the model has the capacity to forecast the rainfall even if the duration is very short. The model presented the best prediction when the lead-time is 10 mins. The postulated rainfall nowcasting algorithm involves two major tasks: a) predicting the future location of the rain pixels, and b) predicting rainfall at each pixel.
Figure 5‑10 shows the cloud motion comparison between observed (right) movement and estimated (left) movement at storm date March 28, 2012, 17:10 hours. Where the point black is the centroid at initial time and the red point is the centroid at the final time. In some cases there is more than one centroid and it can present more than one black and red point.  This happens when the division cloud method occurs.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\Clouds_Change_Forecast_Lag_Z_10_2012_03_28_17_10_f_Krig_Std_Phi.png]
[bookmark: _Ref399612912][bookmark: _Toc401056931]Figure 5‑10. Cloud motion observed and forecast, on March 28, 2012-17:10.

Figure 5‑11 presents the separation cloud with three (3) centroids at cloud forecast, storm date March 28, 2012 18:00 hours.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\Clouds_Change_Forecast_Lag_Z_10_2012_03_28_18_00_f_Krig_Std_Phi.png]
[bookmark: _Ref399613200][bookmark: _Toc401056932]Figure 5‑11. Cloud motion observed and forecast, on March 28, 2012-18:00.

Figure 5‑12 presents the first 40 mins of sequence event each ten 10 mins of cloud motion with total duration of seven (7) on March 28, 2012. 
[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\secuencia-10 minutos mov.png]
[bookmark: _Ref399613234][bookmark: _Toc401056933]Figure 5‑12. Cloud motion sequence with a lead-time of 10 mins on March 28, 2012.
Figure 5‑13 has the same sequence with a lead-time of 20 mins. In this case the images are the first 80 mins of the event.
[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\cloud motiion-lag20.png]
[bookmark: _Ref399613271][bookmark: _Toc401056934]Figure 5‑13. Cloud motion sequence with a lead-time of 20 mins on March 28, 2012.
Figure 5‑14 shows the first 120 mins of the event, the sequence for a lead-time of 30 mins, other storms were processed in the same way but their figures are not included.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\cloud motion lag 30.png]
[bookmark: _Ref399613371][bookmark: _Toc401056935]Figure 5‑14. Cloud motion sequence with a lead-time of 30 mins on March 28, 2012.
The comparison of estimated or predicting reflectivity using the main Equation (4‑5) and observer reflectivity at each pixel were furthermore performed. Figure 5‑15 shows the comparison with a lead-time of 10 mins, the image presents the first 40 mins of the storm. 

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\reflectiviy-10.png]
[bookmark: _Ref399571899][bookmark: _Toc401056936]Figure 5‑15. Reflectivity sequence with a lead-time of 10 mins on March 28, 2012.
Figure 5‑16 presents a comparison between estimated and observed data but with a lead-time of 20 mins.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\rainrate-20.png]
[bookmark: _Ref399613594][bookmark: _Toc401056937]Figure 5‑16. Reflectivity sequence with a lead-time of 20 mins on March 28, 2012.
Finally, Figure 5‑17 is the same sequence as the previous two but with a 30 mins lead-time.
[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\rainfall-30.png]
[bookmark: _Ref399613635][bookmark: _Toc401056938]Figure 5‑17. Reflectivity sequence with a lead-time of 30 mins on March 28, 2012.
It is important to mention that the algorithm to forecast precipitation uses a sequence of observed rainfall data to estimate the movement direction and size of the cloud or cell, and then using the main equation (5) rainfall is estimated in each pixel within every zone.
Thereby the suggested regression model was developed under the following assumptions: 
It is expected that in a short time (10 mins) period a rain cloud behaves approximately as a rigid object and the cloud rain pixels moves in a constant speed and direction.  Thus, the most likely future rainfall areas can be estimated by using the advection of centroids of rain cells in consecutive images.
The current radar reflectivity is a function of the previous reflectivity images observed in surrounding areas centered on the location of a predicted pixel, and additionally is a function of the ratio of reflectivity of a pixel to reflectivity of the cell convective core. 
The second postulated rainfall nowcasting algorithm task is predicting rainfall rate at each pixel.

[bookmark: _Toc401057016]Parameters Estimation


This methodology was applied to four (4) parameter unknowns  to find the optimum values with a bounded constraint, first linearized the main equation, second identify the initial point trough a nonlinear regression model where the phi  is temporarily ignored and the deltas values initial are obtained by solving the linear regression, third find the optimum values using a constrained nonlinear optimization technique to estimate the final parameter set for each zone (9x9) and every window where the phi  parameter is a bias correction factor introduced in the optimization.
The optimum parameters for the nonlinear regression model were estimated by solving a constrained nonlinear optimization problem (fmincon).  
The derived initial point was ingested into the constrained nonlinear subroutine to facilitate convergence, the deltas parameter were restricted to be positives and phi parameter was restricted to be in the range of 0 to 1.1 value.  For purposes of demonstration Table 5‑4 presents the initial point and final point of the parameters estimated   for a random zone (9x9) that occurred on March 28, 2012.

[bookmark: _Ref399613824][bookmark: _Toc401057038]Table 5‑4. Parameter estimation for a random zone (9x9), on March 28, 2012 for a lead-time of 10 mins.
	
Parameter
	Initial Point
(Linear Regression)
	Nonlinear Regression

	
	Estimation
	T-statistics
	Final Estimation

	
	0.03546
	0.65098
	0.00507

	
	0.06596
	2.89453
	0.47448

	
	-2.47237
	-1.01741
	0.00012

	
	2.18039
	
	0.81903

	
	29.51233
	
	2.01960



Figure 5‑18 shows the distribution of initial and optimal values of phi   with a lead-time of 10 mins. In the comparison between the parameters, initial deltas and optimal deltas were used as a statistic test: T-statistics to determine whether or not the optimization causes a change in a mean values.  If the optimum mean values are significantly different from the original mean values, it is possible to conclude that the treatment has a significant effect.
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[bookmark: _Ref273357892][bookmark: _Toc401056939]Figure 5‑18 . Distribution of initial value of phi (left) and the optimal values 
of phi (right) for the storm date: March 28, 2012, for a lead-time of 10 mins.

Figure 5‑19 presents the median phi coefficient for the initial value and optimal value.

[image: ]
[bookmark: _Ref273357932][bookmark: _Toc401056940]Figure 5‑19. Phi median with a lead-time of 10 mins, on March 28, 2012.
Figure 5‑20 presents the distribution of initial variable phi  and the optimal value for a lead-time of 20 mins.

[image: ]
[bookmark: _Ref273357999][bookmark: _Toc401056941]Figure 5‑20. Distribution of initial value of phi (left) and the optimal values of phi (right) for the storm date: March 28, 2012, for a lead-time of 20 mins.


Figure 5‑21 is the median of the value phi for lead-time 20 mins.

[image: ]
[bookmark: _Ref273358035][bookmark: _Toc401056942]Figure 5‑21. Phi median with a lead-time of 20 mins, on March 28, 2012.
 Figure 5‑22 presents the distribution of initial variable phi  and the optimal value for a lead-time of 30 mins. 
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[bookmark: _Ref273358071][bookmark: _Toc401056943]Figure 5‑22. Distribution of initial value of phi (left) and the optimal 
values of phi (right) for the storm date: March 28, 2012,for a lead-time of 30 mins.

Figure 5‑23 is the median of the value phi.  The analysis was made for all storms (10) and similar results were obtained.
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[bookmark: _Ref273358135][bookmark: _Toc401056944]Figure 5‑23. Phi median with a lead-time of 30 mins, on March 28, 2012.
[bookmark: _Toc401057017]Nowcasting Model Validation


An analysis for the nowcasting requires a combination of meteorological and hydrological statistics, this permit a better understanding of behavior of the spatial and temporal accuracy of storm prediction.  A good nowcasting include an accuracy spatial, temporal and accuracy of the predicted rainfall intensity. 
Model performance criteria for the prediction required quantitative comparison measures, these measures include ten (10) storms mentioned above. The accuracy of rainfall prediction of each pixel can be measured by decomposing the rainfall process into sequences of discrete and continuous random variables, i.e., the presence or absence of rainfall events and rainfall intensity. Examples of quantitative measures used in the research include: Contingency table, Mean square Error (MSE), Root Mean Square Error (RMSE), Bias Ratio (BR) and Mean Absolute Error (MAE), these measures will be discussed in detail below.

The joint distribution of the forecast and observations is of fundamental interest with respect to the verification of forecasts. In most practical setting, both the forecast and observations are discrete variables. That is, even if the forecast and observations are not already discrete quantities. Denote the forecast by , which can take on any of the  values  ; and the corresponding observation as , which can take on any of the  values . Then the joint distribution of the forecast and observation is denoted as:
	
	
	(5‑9)



This is a discrete bivariate probability distribution function, associating a probability with each of the  possible combinations of forecast and observation. [Wilks,1995].
The contingency table (Figure 5‑24)    shows the arrangement of four (4) possible combinations of forecast/event pairs for a simple   case.
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[bookmark: _Ref399614877][bookmark: _Toc401056945]Figure 5‑24. Contingency table based by [Wilks, 1995].


Some attributes are related with the contingency table, hit rate (HR) is the ratio of correct forecasts to the number of times this event occurred. 

	
	
	(5‑10)



Other attribute the probability of detection (POD) as the fraction of those occasions when the forecast event occurred on which it was furthermore forecasted, in this case it is the probability that rain occur.

	
	
	(5‑11)



The False Alarm Ratio (FAR) is the relation of the forecast events that fail to materialize; the best possible FAR is cero and the worst possible FAR is one. 

	
	
	(5‑12)



The Bias (Bias) is the ratio of the number of yes forecasts to the number of yes observed. Unbiased forecast exhibit Bias=1, indicating that the event forecasted the same number of times that it was observed [Wilks, 1995].

	
	
	(5‑13)



Table 5‑5 shows the contingency table for the storm of March 28, 2012 with a lead-time of 10 mins, 20 mins and 30 mins.
[bookmark: _Ref399615534][bookmark: _Toc401057039]Table 5‑5. Contingency table for the storm that occurred on March 28, 2012.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	5382890
	1404061
	
	Yes
	2285726
	896220
	
	Yes
	1197386
	599598

	
	No
	2173265
	20221270
	
	No
	1473238
	9241282
	
	No
	1125112
	5415278



Table 5‑6 shows the contingency table for the storm of March 29, 2012 with a lead-time of 10 mins, 20 mins and 30 mins.

[bookmark: _Ref399615649][bookmark: _Toc401057040]Table 5‑6. Contingency table for the storm that occurred on March 29, 2012.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	807073
	406387
	
	Yes
	220028
	210810
	
	Yes
	104527
	136244

	
	No
	479654
	22646027
	
	No
	249631
	10445985
	
	No
	153440
	6559901



Table 5‑7 shows the contingency table for the storm of April 30, 2012 with a lead-time of 10 mins, 20 mins and 30 mins.

[bookmark: _Ref399615683][bookmark: _Toc401057041]Table 5‑7. Contingency table for the storm that occurred on April 30, 2012.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	1455552
	607776
	
	Yes
	465605
	357759
	
	Yes
	170531
	218996

	
	No
	821678
	13769757
	
	No
	432562
	6382857
	
	No
	250354
	3526858



Table 5‑8 shows the contingency table for the storm of October 10, 2012 with a lead-time of 10 mins, 20 mins and 30 mins.
[bookmark: _Ref399615724][bookmark: _Toc401057042]Table 5‑8. Contingency table for the storm that occurred on October 10, 2012.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	4285411
	1714603
	
	Yes
	1733340
	996010
	
	Yes
	891566
	752128

	
	No
	2440495
	13066736
	
	No
	1499016
	5481068
	
	No
	1166828
	3430471



Table 5‑9 shows the contingency table for the storm of February 12, 2014 with a lead-time of 10 mins, 20 mins and 30 mins.

[bookmark: _Ref399615737][bookmark: _Toc401057043]Table 5‑9. Contingency table for the storm that occurred on February 12, 2014.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	2219965
	1143951
	
	Yes
	797385
	721777
	
	Yes
	375944
	486929

	
	No
	1976191
	25961893
	
	No
	1252900
	11835538
	
	No
	856713
	6627614



Table 5‑10 shows the contingency table for the storm of May 06, 2014 with a lead-time of 10 mins, 20 mins and 30 mins.

[bookmark: _Ref399615758][bookmark: _Toc401057044]Table 5‑10. Contingency table for the storm that occurred on May 06, 2014.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	899183
	582657
	
	Yes
	243862
	374693
	
	Yes
	125040
	238542

	
	No
	1126297
	25214088
	
	No
	734163
	11862788
	
	No
	500325
	7482572



Table 5‑11 shows the contingency table for the storm of May 21, 2014 with a lead-time of 10 mins, 20 mins and 30 mins.
[bookmark: _Ref399615775][bookmark: _Toc401057045]Table 5‑11. Contingency table for the storm that occurred on May 21, 2014.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	1589477
	733786
	
	Yes
	608566
	436933
	
	Yes
	335552
	324178

	
	No
	1295752
	20029060
	
	No
	780853
	9301986
	
	No
	558082
	5041851



Table 5‑12 shows the contingency table for the storm of June 29, 2014 with a lead-time of 10 mins, 20 mins and 30 mins.

[bookmark: _Ref399615791][bookmark: _Toc401057046]Table 5‑12. Contingency table for the storm that occurred on June 29, 2014.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	567993
	257798
	
	Yes
	199172
	173581
	
	Yes
	70192
	138215

	
	No
	348501
	10650825
	
	No
	237983
	4258457
	
	No
	150575
	2423418



Table 5‑13 shows the contingency table for the storm of June 30, 2014 with a lead-time of 10 mins, 20 mins and 30 mins.

[bookmark: _Ref399615811][bookmark: _Toc401057047]Table 5‑13. Contingency table for the storm that occurred on June 30, 2014.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	2427073
	656663
	
	Yes
	979092
	477523
	
	Yes
	471969
	311968

	
	No
	1426931
	11482242
	
	No
	826194
	4669956
	
	No
	577619
	2810500




Table 5‑14 shows the contingency table for the storm of July 05, 2014 with a lead-time of 10 mins, 20 mins and 30 mins.

[bookmark: _Ref399615827][bookmark: _Toc401057048]Table 5‑14. Contingency table for the storm that occurred on July 05, 2014.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	1694067
	622202
	
	Yes
	632278
	437548
	
	Yes
	339874
	320228

	
	No
	1096379
	7714503
	
	No
	626156
	3171949
	
	No
	371393
	1750199



Finally, Table 5‑15 shows the average the contingency table associated with the ten (10) studied storms.

[bookmark: _Ref399616010][bookmark: _Toc401057049]Table 5‑15. Contingency table for ten (10) storms.
	
	
	Contingency Table

	
	
	10 minutes
	
	
	20 minutes
	
	
	30 minutes

	
	
	Observed
	
	
	Observed
	
	
	Observed

	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No
	Forecast
	 
	Yes
	No

	
	Yes
	21328684
	8129884
	
	Yes
	8165054
	5082854
	
	Yes
	4198082
	3601592

	
	No
	13185143
	170756401
	
	No
	8112696
	76651866
	
	No
	5806632
	48954746



The performance index is introduced in this research to measure the overall dichotomous (rain/no rain) forecast accuracy of the model, and is computed as a function of HR, FAR and POD. The performance index varies from zero to one, and a value of one correspond to the best algorithm performance; whereas, zero corresponds to the worst case. The performance index (PI) is defined as follows:
	
	
	(5‑14)



Table 5‑16, Table 5‑17 and Table 5‑18 present model performance score HR, POD, FAR, Detection Bias (DB) and PI for the ten (10) storms with 10 mins, 20 mins and 30 mins of lead-time. And finally Table 5‑19 shows the average of detection results for all storms to the model or the performance score of all storms.
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[bookmark: _Ref399616855][bookmark: _Toc401057050]Table 5‑16. Detection results for ten storms with a lead-time of 10 mins.
	Detection Results

	Skill Score
	                                                                                  Forecast

	Dates
	20120328
	20120329
	20120430
	20121010
	20140212
	20140506
	20140521
	20140629
	20140630
	20140705

	HR
	0.8774111
	0.963596
	0.9141715
	0.8068047
	0.9003213
	0.9385759
	0.9141775
	0.9487279
	0.8697176
	0.8455507

	POD
	0.7123848
	0.6272294
	0.6391765
	0.63715
	0.5290473
	0.4439358
	0.5509015
	0.6197455
	0.6297536
	0.6070954

	FAR
	0.2068765
	0.3348994
	0.294561
	0.2857665
	0.3400653
	0.3931983
	0.3158428
	0.3121831
	0.212944
	0.2686225

	Detection Bias
	0.8982017
	0.9430594
	0.9060692
	0.8920752
	0.8016661
	0.7315994
	0.8052266
	0.9010326
	0.8001382
	0.8300713

	PI
	0.7943065
	0.7519754
	0.752929
	0.7193961
	0.6964345
	0.6631045
	0.716412
	0.7520967
	0.7621758
	0.7280079






[bookmark: _Ref399616864][bookmark: _Toc401057051]Table 5‑17. Detection results for ten storms with a lead-time of 20 mins.
	Detection Results

	Skill Score
	                                                                                  Forecast

	Dates
	20120328
	20120329
	20120430
	20121010
	20140212
	20140506
	20140521
	20140629
	20140630
	20140705

	HR
	0.829492
	0.9586175
	0.8965384
	0.7430307
	0.8648185
	0.9160943
	0.8905689
	0.9154759
	0.8124894
	0.7814875

	POD
	0.6080734
	0.4684846
	0.5183947
	0.5362466
	0.3889142
	0.2493413
	0.4380003
	0.4556096
	0.5423473
	0.5024324

	FAR
	0.2816578
	0.4893022
	0.4345089
	0.3649257
	0.4751152
	0.6057553
	0.4179181
	0.465673
	0.3278306
	0.4089899

	Detection Bias
	0.8464955
	0.9173422
	0.9167159
	0.8443841
	0.7409516
	0.6324532
	0.7524721
	0.8526793
	0.8068611
	0.8501248

	PI
	0.7186359
	0.6459333
	0.6601414
	0.6381172
	0.5928725
	0.5198934
	0.6368837
	0.6351375
	0.6756687
	0.6249767





[bookmark: _Ref399616876][bookmark: _Toc401057052]Table 5‑18. Detection results for ten storms with a lead-time of 30 mins.
	Detection Results

	Skill Score
	                                                                         Forecast

	Dates
	20120328
	20120329
	20120430
	20121010
	20140212
	20140506
	20140521
	20140629
	20140630
	20140705

	HR
	0.7931351
	0.9583435
	0.887358
	0.6925239
	0.8390308
	0.9114756
	0.8590563
	0.8962083
	0.7867749
	0.751367

	POD
	0.5155595
	0.4051952
	0.4051724
	0.4331367
	0.3049867
	0.1999472
	0.3754915
	0.3179461
	0.4496707
	0.4778965

	FAR
	0.3336691
	0.5658655
	0.5622101
	0.457584
	0.5643113
	0.6560886
	0.4913798
	0.6631975
	0.3979503
	0.4851012

	Detection Bias
	0.773729
	0.9333403
	0.9254951
	0.7985323
	0.7000106
	0.5813917
	0.7382553
	0.9440134
	0.7468997
	0.9281367

	PI
	0.6583419
	0.5992244
	0.5767734
	0.5560256
	0.5265687
	0.4851114
	0.581056
	0.5169856
	0.6128318
	0.5813904





[bookmark: _Ref399616941][bookmark: _Toc401057053]Table 5‑19. Detections results- Model accuracy score.
	Detection results 

	Forecast

	Skill Score
	10 minutes
	20 minutes
	30 minutes

	HR
	0.90011708
	0.86536866
	0.84961532

	POD
	0.61797505
	0.50160827
	0.4196104

	FAR
	0.27597689
	0.3836722
	0.46176186

	Bias
	0.85352946
	0.81386604
	0.7795999

	PI
	0.74737175
	0.66110158
	0.60248795




For lead-times of 10, 20 and 30 mins the storms provide an average hit rate of 0.90, 0.86 and 0.84, respectively. The hit rate score is the fraction of observed events that is forecast correctly. It ranges from zero (0) at the poor end to one (1) at the good end. The probability of detection (POD) of storms varies from 0.61, 0.50 and 0.41.  And the False Alarm Rates (FAR) is 0.27, 0.38 and 0.46 for lead-time of 10, 20 and 30 mins respectively. 

Figure 5‑25 shows POD approaches and FAR approaches. In the ideal situation POD approaches to one (1), while the FAR results approaches to zero (0).


[bookmark: _Ref399617103][bookmark: _Toc401056946]Figure 5‑25 . Probability of detection and false alarm for the all storms.


The performance index of 0.74, 0.66 and 0.60 for 10 mins, 20 mins and 30 mins respectively for the model, it is shows in Figure 5‑26.


[bookmark: _Ref399617300][bookmark: _Toc401056947]Figure 5‑26. Performance Index for the all storms.

The Hit Rate (HR) of the model for the all storms was 0.90, 0.86 and 0.84 for the 10, 20 and 30 mins respectively as show Figure 5‑27.


[bookmark: _Ref399617363][bookmark: _Toc401056948]Figure 5‑27. Hit rate for the all storms.
Other strategy for validations was made; in this case the validation is for the quantity rainfall estimation, comparing each pixel of the predicted rainfall intensity made at a given time and for a specific lead-time with the corresponding observed rainfall intensity. Where the products analyzed were Root Mean Square Error (RMSE) and Bias Ration (BR), for the estimation quantity. The calculation of these scores is given as follows: 

	
	
	(5‑15)



	
	
	(5‑16)



	
	
	(5‑17)



	
	
	(5‑18)



Where  is the predicted rainfall intensity made at time  with lead-time  units for a pixel located at  , and  is the corresponding observed rainfall intensity,  is the total number of units of time that rainfall was observed,  is the total number of rows and  is total number of columns of rainfall area. The RMSE and BR for each event with a lead-time of 10 mins are given in Table 5‑20, Root mean square error and Bias for all events with a lead-time of 20 mins is presented in Table 5‑21 and Root mean square error and Bias for all events with a lead-time of 30 min is presented in Table 5‑22.














[bookmark: _Ref399617888][bookmark: _Toc401057054]Table 5‑20. Estimation Results with a lead-time of 10 mins.
	Estimation Results- Lead-time 10 minutes

	 
	Forecast

	Event
	20120328
	20120329
	20120430
	20121010
	20140212
	20140506
	20140521
	20140629
	20140630
	20140705

	RMSE (mm)
	0.041414392
	0.010146696
	0.007996247
	0.0570586
	0.0257526
	0.0128729
	0.0189926
	0.0316186
	0.0322
	0.0292552

	Estimation Bias
	0.945465174
	0.972758325
	1.027180258
	0.9502339
	0.9665803
	0.8916587
	0.9212332
	1.1011721
	0.904733
	1.0482872




[bookmark: _Ref399617896][bookmark: _Toc401057055]Table 5‑21. Estimation Results with a lead-time of 20 mins.
	Estimation Results-Lead-time 20 minutes

	 
	Forecast

	Event
	20120328
	20120329
	20120430
	20121010
	20140212
	20140506
	20140521
	20140629
	20140630
	20140705

	RMSE (mm)
	0.138346
	0.0314572
	0.0329906
	0.1459599
	0.0600936
	0.0285682
	0.0595803
	0.1014065
	0.0724497
	0.1068149

	Estimation Bias
	0.911119
	0.9785983
	1.1174965
	0.9243466
	0.9170313
	0.8257669
	0.9006548
	1.0434787
	0.9995089
	1.2156436




[bookmark: _Ref399617906][bookmark: _Toc401057056]Table 5‑22. Estimation Results with a lead-time of 30 mins.
	Estimation Results- Lead-time 30 minutes

	 
	Forecast

	Event
	20120328
	20120329
	20120430
	20121010
	20140212
	20140506
	20140521
	20140629
	20140630
	20140705

	RMSE (mm)
	0.2065399
	0.0347821
	0.0430993
	0.3644309
	0.1525031
	0.0480551
	0.1152373
	0.1548845
	0.1644461
	0.1634779

	Estimation Bias
	0.8290189
	0.9734382
	1.1915281
	0.8567232
	0.8417924
	0.7823416
	0.8374209
	1.3713551
	0.9853777
	1.8000784





The Root mean square error (RMSE) and Bias ratio (BR) for the ten (10) studied events are given in the next Table 5‑23, which furthermore shows the corresponding average values for each lead-time 10, 20 and 30 mins respectively. The estimation Bias for a lead-time of 30 mins presents an average over estimation prediction. The RMSE average are 0.026, 0.077 and 0.144 mm and the Bias average are 0.97, 0.98 and 1.04 for lead-times of 10, 20 and 30 mins respectively, where Bias at 30 mins is an overestimation. The RMSE is increasing due to the fact that large errors are occurring as soon as the lead-time is increasing.

[bookmark: _Ref399618181][bookmark: _Toc401057057]Table 5‑23. Average root mean square error and Bias rate for ten (10) events.
	Estimation Results

	Forecast Errors Average

	Lead-time
	10 minutes
	20 minutes
	30 minutes

	RMSE (mm)
	0.0267308
	0.07776669
	0.144745623

	Estimation Bias Ratio
	0.9729302
	0.983364465
	1.046907453



Figure 5‑28 shows the accumulation of rainfall for the first five (5) events with a lead-time of 10 mins, and Figure 5‑29 presents the last five events. This accumulation is for every pixel and total duration. The duration changes depending of storm. The left panel show the accumulated predicted rainfall in millimeters for 10 mins of lead-time and the right panel show TropiNet observed accumulated rainfall with a lead- time of 10 mins.
[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\acumulacion 5.png]
[bookmark: _Ref399618412][bookmark: _Toc401056949]Figure 5‑28. Rainfall accumulated during the each event, the first five events. The left column is the cumulated rainfall forecast and the right column is the cumulated rainfall observed.
[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\acumulacion 5-2.png]
[bookmark: _Ref399618438][bookmark: _Toc401056950]Figure 5‑29. Rainfall accumulated during the each event, the last five events. The left column is the cumulated rainfall forecast and the right column is the cumulated rainfall observed.
Figure 5‑30 and Figure 5‑31show the average rainfall for all rain pixels during each time interval (10 mins) and for the first five (5) events and last five events respectively during the entire rainfall event and the last five events. 
The forecast results present the same tendency that observed data where peak with more precipitation in TropiNet events is coinciding with the forecast data. There are a good agreement considering that the prediction is in short time and space.





[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\time-5.png]
[bookmark: _Ref399618666][bookmark: _Toc401056951]Figure 5‑30. The average rainfall for all rain pixels during each interval for the first 5 events. The line blue represents the observed (TropiNet) accumulated precipitation for all rain pixel during the total storm and the green line represents the forecast with a lead-time of 10 mins. 


[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\time-5-2.png]
[bookmark: _Ref399618693][bookmark: _Toc401056952]Figure 5‑31. The average rainfall during each interval, for the last 5 events. The line blue represents the observed (TropiNet) accumulated precipitation for all rain pixel during the total storm and the green line represents the forecast with a lead-time of 10 mins.

Figure 5‑32 present for the first five events, left panel is the accumulated rainfall average for all rain pixels during the total event. It was calculated taking the rainfall total during the storm and the precipitation total area. The right panel is the scatter plot at the same rainfall event.
Figure 5‑33 shows the last five events, both accumulated rainfall average for all rain pixels during the total events and the corresponding scatter plot. The figures show that model exhibits a small underestimation in all events.  But it is possible to perceive in general that the forecast is highly similar to the observed data. They have the same tendency in the time series during all events.

The rainfall nowcasting algorithm uses consecutives images of weather radar to forecast rainfall rate. The algorithm searches for contiguous rain pixels and identifies rain cells in the last two radar images to estimate the cloud motion vector. The cloud motion vector is then used to estimate the most likely future locations of the rain pixels, and finally, nonlinear regression models are developed to forecast the intensity of rainfall rate at each rain pixel. The proposed rainfall nowcasting algorithm was validated with ten (10) storms and results show that the nowcasting algorithm is a potential tool to couple with a hydrological numerical model to predict the most likely inundation areas.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\cumulate-5.png]
[bookmark: _Ref399618716][bookmark: _Toc401056953]Figure 5‑32. Left panel shows the accumulated precipitation average for all rain pixels during the total events. The blue line represents the observed precipitation and the green line the forecast. The right panel shows the corresponding scatter plot of the same rainfall events (first five events).
[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\cumulate-5-2.png]
[bookmark: _Ref399618730][bookmark: _Toc401056954]Figure 5‑33. Left panel shows the accumulated precipitation average for all rain pixels during the total events. The blue line represents the observed precipitation and the green line the forecast. The right panel shows the corresponding scatter plot of the same rainfall events (last five events).
[bookmark: _Toc401057018]Hydrologic Model Validation


The Hydrological model Vflo required the ensemble of various layers that perform the physical and topographic characteristics of the basin area. These layers are formed by parameters that were presented previously as: Effective porosity, Hydraulic conductivity, wetting front, roughness, soil depth, and initial saturation can be most sensitive into the watershed. Spatially distributed parameter and input from radar rainfall requires new methods for adjustment in order to minimize differences between simulated and observed hydrographs. Parameters as hydraulic roughness (), hydraulic conductivity () and Initial saturation ( are most sensitive in the hydrological models. These values are estimated from physical properties of the watershed adjusted to reproduce system behavior [Vieux and Moreda, 2003]. The hydraulic conductivity controls the total amount of water that will be split into the surface runoff. The hydraulic roughness affects the peak flow and the time to peak and initial saturation is related with the existing humidity into the soil.  
Scalars are multiplied by these parameter maps to adjust the value in each grid cell while preserving the spatial heterogeneity. The sequence of adjustment was recommended by Vieux and Moreda [2003] to minimize the objective function for volume, and then peak, obtaining an overall optimal parameter set for the storms.  The OPPA procedure for adjustment can be stated as: increasing the volume of the hydrograph is achieved by decreasing hydraulic conductivity, and similar, increasing peak flow is achieved by decreasing hydraulic roughness. 
Several adjustments were made when it was necessary to produce consistent results at the USGS stations compared with every storm.

The hydrographs were compared taking point observations or observed data of USGS stations numbers: #50144000 Rio Grande de Añasco (San Sebastian), #50136400 Rio Rosario (Hormigueros) and #50138000 Rio Guanajibo (Hormigueros) and compared with the data from the hydrological model. 
The cell size resolution optimum in the model was 200 meters. This was based in the previous analyzes by Prieto [2007] and Rojas [2012].

The parameters are adjusted upstream of the observed point (USGS flow stations) by the adjustment method described by Vieux and Moreda [2003]. They employ a scalar to adjust parameter maps so that the magnitudes change while the spatial variation is preserved. The scalar used to multiply the,  and  parameter maps area defined as follows [Gourley and Vieux, 2005].

	
	
	(5‑19)



 is the adjustment factor, where  the  ,  and  values can be perturbing from 25% to 175%

Study model sensitivity was done for the watershed to identify response sensitivity for peak flow to each storm changing the multiplicative factor in the parameters. The events evaluated were March 28, 2012, March 29, 2002, April 30, 2012, October 10, 2012, February 12, 2014, May 06, 2014, May 21, 2014, June 29, 2014, June 30, 2014 and July 05, 2014. A list of parameter ensembles are created for each storm in every station as shown in Figure 5‑34. A total of 450 simulations were done for this analysis.


[bookmark: _Ref399926997][bookmark: _Toc401056955]Figure 5‑34. Flow chart of the calibration factor panel for peak flow.

 
Figure 5‑35 presents spider plots for peak flow as a range of change in the roughness parameter by five different adjustment factors. Three (3) USGS stations were taken to this analysis. It is possible to observe when the roughness factor decreases, the rate of change increase and show a higher change.  
When the adjustment factor is above one (1) the range of change falls and tends to remain constant or with a minimum change in the peak flow.
Similarly, results are presents in the Figure 5‑36 where the maximum rate of change takes to place in the minimum values of hydraulic conductivity. These results are consistent with statements presented in Gourley and Vieux [2005].

Figure 5‑37 shows the results of the sensitivity analysis for the initial saturation, in this case when the adjustment factor is below one (1) the peak flow presents few changes or continues constant.  When the factor adjustment in the initial saturation is 1.37 the peak flows grow excessively.
The analysis suggests that the initial saturation is the parameter with the highest sensitivity in the peak flow for different storms with short duration. 
Initial saturation is a parameter that depends of how many storms have occurred previously to the studied storm (antecedent soil moisture).  Different results are possible to obtain with a sample of continuous storms. 
Similar results were founded in peak flow with variations of roughness and hydraulic conductivity for all events. Low variations were founded in peak when the adjustment factor takes values greater than one.
[image: ]
[bookmark: _Ref399959367][bookmark: _Toc401056956]Figure 5‑35. Spider plot for peak flow changing the adjustment factor in the roughness parameter.

[image: ]
[bookmark: _Ref399962154][bookmark: _Toc401056957]Figure 5‑36. Spider plot for peak flow changing the adjustment factor in the hydraulic conductivity parameter.

[image: ]
[bookmark: _Ref399963772][bookmark: _Toc401056958]Figure 5‑37. Spider plot of peak flow changing the adjustment factor in the initial saturation parameter.

A compilation of individual simulations are determined based on comparison with the observed stream flow data from USGS. The hydrologic evaluation consist of making multiples runs, setting the sensitive parameters in each event, yielding the best simulation between observed data from USGS and estimated data of the nowcasting model. 
The matching of both peaks in every storm was successfully accomplished with flow values. Results indicate that the nowcasting model is capable of estimating hydrographs at distributed positions within a watershed based on knowledge of hydrographs at USGS stations. The hydrograph shape is estimated accurately, whit rising and falling limbs, and hydrograph peaks timed well. Little adjustment between 0.8 and 1.20 were present in the calibration factor.
Figure 5‑38 present in the left panel the hydrograph of observed data from San Sebastian USGS stations compared with the simulated data using the nowcasting results into the hydrological model Vflo.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\20120328.png]
[bookmark: _Ref400095665][bookmark: _Toc401056959]Figure 5‑38. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at San Sebastian station on March 28, 2012. The right panel is scatter plot USGS vs. Nowcasting.
Figure 5‑39 through Figure 5‑45 show in the left panel the USGS hydrograph at San Sebastian station compared with the nowcasting hydrograph. The right panel shows a scatter plot of the relation USGS vs. nowcasting results, for different events.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\20120329.png]
[bookmark: _Ref400099679][bookmark: _Toc401056960]Figure 5‑39. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at San Sebastian station on March 29, 2012. The right panel is scatter plot USGS vs. Nowcasting.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\20121010.png]
[bookmark: _Toc401056961]Figure 5‑40. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at San Sebastian station on October 10, 2012. The right panel is scatter plot USGS vs. Nowcasting.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\20140506.png]
[bookmark: _Toc401056962]Figure 5‑41. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at San Sebastian station on May 06, 2014. The right panel is scatter plot USGS vs. Nowcasting.

[image: C:\Users\Eric Harmsen\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Word\20140521.png]
[bookmark: _Toc401056963]Figure 5‑42. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at San Sebastian station on May 21, 2014. The right panel is scatter plot USGS vs. Nowcasting.
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[bookmark: _Ref400099690][bookmark: _Toc401056964]Figure 5‑43. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at San Sebastian station on June 29, 2014. The right panel is scatter plot USGS vs. Nowcasting.
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[bookmark: _Toc401056965]Figure 5‑44. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at San Sebastian station on June 30, 2014. The right panel is scatter plot USGS vs. Nowcasting.
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[bookmark: _Ref400112674][bookmark: _Toc401056966]Figure 5‑45. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at San Sebastian station on July 05, 2014. The right panel is scatter plot USGS vs. Nowcasting.

The Mean Square Error (MSE) and Root Mean Square Error (RMSE) analyses were performed in order to directly determine the effectiveness of the joint between hydrological model and nowcasting model at various events and durations. Results for the MSE reveled varying degrees of both overestimation and underestimation for the various storm events in the three (3) different basins: San Sebastian, Guanajibo and Rosario.

Table 5‑24 presents the statistic results at San Sebastian stations. The analysis compares the runoff between the hydrological model using the rainfall forecast and the observed data provided by USGS.  Eight events were considered for this analysis. USGS observed data were not available for the event on April 30, 2012 and February 12, 2014.


[bookmark: _Ref400135031][bookmark: _Toc401057058]Table 5‑24. Hydrological statistic results at San Sebastian station.
	USGS-Nowcasting
	MSE (m3/s)2
	RMSE (m3/s)

	March 28, 2012
	330.706472976150
	18.1853367572930

	March 29, 2012
	85.9784310057229
	9.27245550033662

	October 10, 2012
	97.1203054619863
	9.85496349369120

	May 06, 2014
	2.35391216875520
	1.53424644981020

	May 21, 2014
	54.3021670336839
	7.36900040939637

	June 29, 2014
	0.753519195652174
	0.868054834473130

	June 30, 2014
	7.81398892154075
	2.79535130556800

	July 05, 2014
	1.37810747719483
	1.17392822489061



Figure 5‑46 and Figure 5‑47 show the runoff observed data from USGS and the runoff estimated data using the nowcasting results. Only two events were used. Other events did not present rainfall and runoff in the Guanajibo and Rosario station areas.
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[bookmark: _Ref400465406][bookmark: _Toc401056967]Figure 5‑46. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at Guanajibo station on October 10, 2012. The right panel is scatter plot USGS vs. Nowcasting.
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[bookmark: _Ref400465421][bookmark: _Toc401056968]Figure 5‑47. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at Guanajibo station on July 05, 2014. The right panel is scatter plot USGS vs. Nowcasting.

Table 5‑25 present the hydrological statistic results between comparisons: observed data and estimated data for the two events analyzed in the Guanajibo station.

[bookmark: _Ref400465879][bookmark: _Toc401057059]Table 5‑25. Hydrological statistic results at Guanajibo station.
	USGS-Nowcasting
	MSE (m3/s)2
	RMSE (m3/s)

	October 10, 2012
	1.81376275473045
	1.34676009546261

	July 05, 2014
	2.14346806965208
	1.46405876577823



Figure 5‑48 and Figure 5‑49 present the comparison between data on March 28, 2012 and July 05, 2014 respectively.
Table 5‑26 shows the statistic results using the hydrological model.
It is important to note that the most rainfall ocurred into the area nearest to Rio Añasco, comprising the San Sebastian station.
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[bookmark: _Ref400466094][bookmark: _Toc401056969]Figure 5‑48. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at Rosario station on March 28, 2012. The right panel is scatter plot USGS vs. Nowcasting.
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[bookmark: _Ref400466103][bookmark: _Toc401056970]Figure 5‑49. The left panel is runoff observed data (USGS) blue line and simulated data (Nowcasting) red line at Rosario station on July 05, 2014. The right panel is scatter plot USGS vs. Nowcasting.

[bookmark: _Ref400466163][bookmark: _Toc401057060]Table 5‑26. Hydrological statistic results at Rosario station.
	USGS-Nowcasting
	MSE (m3/s)2
	RMSE (m3/s)

	March 28, 2012
	2.96550845362294
	1.72206517113115

	July 05, 2014
	0.943225842096761
	0.971198147700437



The event on July 05, 2014 had much better results than the previous events with respect to the tendency, peak flow and runoff at Rosario station.
Results indicate that global nowcasting model can be used to estimate the shape, timing and separated from magnitude of hydrographs.

[bookmark: _Toc401057019]Inundation Analysis

The probabilistic flood forecast developed in this research together with the inundation model are capable of providing a forecast of when and where river banks are likely to be overtopped. This could be more detailed with several cross sections into the river.
Decisions for evacuation can be categorized determining the risk that overtopping present to residents in areas adjacent to rivers or stream flows. The knowledge available on which the evacuation decision can be made include probabilistic flood forecast published by each zone or location with large historical floods furthermore the relevant topographical and demographical information for the basin and river, and the cost associated with the flooding and evacuation.
The approach of FAS is minimizing loss of life and disruptions to communities through identification of the evacuation decision and strategy that has the maximum expected value under current conditions.
The potential cost related with the decision model for evacuation can be separate as losses resulting from preventable flood damage and losses from evacuation. The first is associated with deaths and injuries. Potential damage to building and property should not be considered when making an evacuation decision as this damage is the same regardless of whether an evacuation is ordered or not. Losses from evacuation refers to evacuation and emergency services, cost associated with the inconvenience and last time associated with the vacating of houses and buildings. 
Using FAS model and an adequate flooding history, it is possible to determine a potential evacuation or amount of money saved as a result of no evacuation.

Inundation Analysis of a Vflo extension that provides images and animation showing the extent of forecast inundation, which is an indication of flood risk [Vieux, 2013].
For better visualization of the flood area, the program shows the full potential with big storms. Figure 5‑50 presents the animation flow for the Añasco River on May 28, 2012. Other events were modeled using inundation animation. The flow depths results from Vflo model are introduced into the inundation to create the animation flow. 
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[bookmark: _Ref400567206][bookmark: _Toc401056971]Figure 5‑50. Inundation sequence with a lead-time of 1 hour, on March 28, 2012.









[bookmark: _Toc401057020]CHAPTER – CONCLUSIONS

Results in the nowcasting model at spatial and temporal scales show the capability of the model to reproduce, for each nowcasting lead-time with good precision. The best statistic results were found in the nowcasting model with a lead-time of 10 mins (mention quantitative number). It is known that nowcasting models of sudden rainfall are the most difficult task to reach in the rain prediction.
The major contribution of this research is the postulated model that represents the spatial and temporal variation of rainfall rates. Several parameter estimations were developed at each spatial and temporal domain, and the stochastic behavior of rainfall intensity was represented by an exponential time and spatial lag model, which is an approximation of a stochastic transfer function.
The algorithm searches for contiguous rain pixels and identifies rain cells in the last two radar images to estimate the cloud motion vector.
The proposed rainfall nowcasting algorithm was validated with ten storms and results comparing the algorithm with observed data as well as the hydrological results show that the nowcasting model is a potential tool to predict the most likely inundation area.
Comparisons between rain gauges, TropiNet data and NEXRAD evidence that rainfall data with more accurately in the Puerto Rico western area is provided by TropiNet radar.
As shown in Figure 5‑4 through Figure 5‑9 the RMS increases for heavy rain conditions. Yet in all cases (light, moderate and heavy rain) TropiNet consistently yields the smallest error as compared to NEXRAD.
A hydrologic model was evaluated within the Mayagüez bay drainage basin, three reference points were used to model calibration and validation. 
Initial saturation is the parameter with the highest sensitivity in the hydrological model.
Using GOES data a model of distribution spatial and temporal was developed for Potential evapotranspiration input (PET) in mm/hr. This has the ability to change of size resolution through interpolation in every storm day.
Differences (0.75 and 330 of MSE percent found in Chapter 6) between the observed data from USGS and the results of hydrological model may be due to initial conditions prior to storms, such as soil moisture, daily evapotranspiration distribution.
The forecast model could be used to predict landslide, determine the cloud movement, rainfall location and the rainfall intensity, furthermore the GIS soil map and land use.
A study of flood levels may be employed throughout the watershed to estimate flood depth resulting from embankment overtopping, implementing the flood hazard maps in detail to estimate the rural and urban flood levels.
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Hit Rate
HR	10 minutes	20 minutes	30 minutes	0.90011707678953801	0.86536866176314098	0.84961531657108347	


Transversal Section P1 (m)
Section P1	0	13	50.01	51.01	53.42	55.86	58.3	60.740000000000009	61.31	62.210000000000008	63.210000000000008	79.740000000000023	85.02	157.04	150.04	149.54	148.81	148.45000000000024	148.33000000000001	148.28	148.23999999999998	148.04	148.81	149.54	151.04	156.13999999999999	Transversal Section  Antes 114
Section P1	0	0	0.55800000000000005	1.302	2.0459999999999998	2.79	3.5339999999999998	3.8379999999999987	3.8379999999999987	0.83800000000000263	0.22800000000000001	0	4.5000000000000012E-2	4.5000000000000012E-2	4.5000000000000012E-2	3.0000000000000002E-2	0.22800000000000001	0.83800000000000263	Transversal Section 1
Section P1	0	2.0119999999999987	3.2319999999999998	4.4510000000000014	6.89	9.3290000000000006	11.768000000000001	13.598000000000001	16.584999999999987	7.8960000000000008	0.18300000000000027	0	0.12200000000000009	0.12200000000000009	9.1000000000001108E-2	0.12200000000000009	0.18300000000000027	3.1700000000000021	Soil percent in the Basin Area
Area (km2)	Clay	Clay Loam	Gravel	Loam	Rock	Sand	60.39452	18.329049999999786	3.1230000000000376E-2	8.3098400000000048	8.218359999999997	0.64122000000000723	Hydrologic Group in the Basin Area
A	B	C	D	1.56637	25.256120000000021	31.097820000000031	38.003910000000012	POD and FAR
POD	10 minutes	20 minutes	30 minutes	0.61797505098463879	0.50160826895609034	0.41961039565948621	FAR	10 minutes	20 minutes	30 minutes	0.27597689066216674	0.38367219941442837	0.46176186338044395	



Performance Index (PI)
PI	10 minutes	20 minutes	30 minutes	0.74737174570400344	0.661101577101601	0.60248794961670848	
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