Irrigation Scheduling

Eric Harmsen

Department of Agricultural and Biosystems
Engineering

eharmsen@uprm.edu

http://academic.uprm.edu/abe/PRAGWATER

Irrigation Scheduling

- Irrigation scheduling is the decision of when and how much water to apply to a field.
- Its purpose is to maximize irrigation efficiencies by applying the exact amount of water needed to replenish the soil moisture to the desired level.
- Irrigation scheduling saves water and energy.
- All irrigation scheduling procedures consist of monitoring indicators that determine the need for irrigation.

(http://www.ext.colostate.edu/PUBS/crops/04708.html)

Need for Irrigation Scheduling Example

- Kurnool, India
- Crop: Alfalfa
- Soil texture: Medium

Rainfall 675 mm/year

No irrigation during the year

1 inch of irrigation per week

Irrigate when soil moisture reaches critical level

Why is Knowing the Correct Consumptive Use Important?

The Cost of Over-Applying Irrigation Water

- Assume the following:
 - Small 10-acre farm grows pumpkin
 - Estimated CU for season = 500 mm
 - Actual potential CU for season = 400 mm
 - Overall cost of water = \$30/acre-ft (considering only: cost of water and electricity)
 - Assume the normalized yield vs. CU curve in the next slide is applicable.
 - Net income from a typical Calibaza crop = \$1,800/acre.

Normalized Crop Yield as a Function of Normalized CU

Example continued

• Results:

- Excess water applied = 100 mm = 1.07million gallons = 3 acre-ft (lost to groundwater)
- Normalized CU = 1.25, therefore normalized yield = 0.9 (or 0.1 loss)
- Potential \$ LOST = cost of water + lost yield = $\frac{3 \text{ ac-ft x } \$30/\text{ac-ft} + [0.1*\$1,800/\text{ac}] \times 10 \text{ ac}}{\$1,800/\text{ac}} \times 10 \text{ ac}}$
- Agr. Chemicals are leached to groundwater (cost was not included in calcluation). Groundwater was potentially contaminated

Cost of Under-Applying Irrigation Water

- Assume the following:
 - Same pumpkin farm (10-acres)
 - Estimated CU for season = 300 mm
 - Actual potential CU for season = 400 mm
 - Assume the normalized yield vs. CU curve is applicable.
 - Net income of a typical Calibaza crop = \$1,800/acre.

Example continued

Results:

- Water <u>deficit</u> = 100 mm
- With a normalized CU of 0.82, the normalized yield = 0.85 (or 0.15 loss)
- Potential \$ LOST = lost yield = [0.15*\$1,800/ac] x 10 ac = \$2,700

Conclusions from Examples

- The potential value of the crop may be significantly reduced by over or under-application irrigation water.
- When water is over-applied, in addition to the reducing the potential value of the crop, certain costs are also wasted (water, fuel, chemicals, etc.)
- Over application of water can lead to degradation of ground and surface waters.

Water Balance (checkbook) Method

$$\theta_2 = R + Irr - RO - ET_{c adj} - PERC + \theta_1$$

 θ_2 = volumetric moisture content at time 2

 θ_1 = volumetric moisture content at time 1

R = effective rainfall

RO = runoff

PERC = water that percolates past the root zone

Crop Water Use (ET_{cadi})

The rate of water use by the crops can be estimated as follows

$$ET_c = K_c ET_o$$

$$ET_{cadj} = K_s ET_c$$

Where

ET_o = Reference Evapotranspiration

K_c = Evapotranspiration Crop Coefficient

K_s = Crop Stress Factor

Readily Available Water

- Plants can only remove a portion of the available water before growth and yield are affected. This portion is the "readily available water" (RAW).
- For most crops RAW is between 40% to 65%
- RAW is estimated from the following formula:

$$RAW = (MAD) (TAW)$$

Management Allowed Deficit (MAD) and Rooting Depths of Various Crops

		Rootis	ng Depth
Стор	MAD	ft	m
Alfalfa	0.55	3-10	1.0-3.0
Banana	0.35	2-3	0.5 - 0.9
Barley	0.55	3-5	1.0-1.5
Beans	0.45	1-2	0.5 + 0.7
Beets	0.5	2 - 3	0.6 - 1.0
Cabbage	0.45	1-2	0.4-0.5
	V		
Sunflower	0.45	3-5	0.8-1.5
Sweet potatoes	0.65	3-5	1.0-1.5
Tomatoes	0.4	2-5	0.7 - 1.5
Vegetables	0.2	1-2	0.3 - 0.6
Wheat	0.55	3-5	1.0 - 1.5

Source: Doorenbos, J. and W. O. Pruitt (1977). Reprinted with permission from Yood and Agriculture Organization of the United Nations.

Threshold Moisture Content, θ_t

• If the soil moisture content falls below θ_t , the crop will go into stress and you will loss crop yield!

$$\theta_{t} = \theta_{FC} - RAW$$

where

 θ_t = threshold moisture content

 θ_{FC} = field capacity moisture content

RAW = readily available water

Volumetric Moisture Content

- Gravimetric Method (undisturbed core)
- Gravimetric Method (disturbed samples)
- Tensiometers
- Time Domain Reflectivity (TDR)
- Conductance
- Water balance method

Gravimetric Soil Sampling

Tensiometers

TDR

FIGURE 1. Water Content Reflectometer

Capacitance Method

Irrigation Scheduling Example

- Crop: Peppers
- Site: Isabela Experiment Station
- Soil: Coto Clay
- Irrigation: Drip with plastic mulch
- Scheduling method: Pan Evaporation
- Purpose of study: estimate deep percolation and N leaching

Estimating Nitrogen Leaching

$$L_{NO3} = 0.01 \rho_b NO_3 PERC / \theta_{vol}$$

$$L_{NH4} = 0.01 \rho_b NH_4 PERC / \theta_{vol}$$

Water Balance

Perc =
$$(R-RO)+Irr-ET_c + \Delta S$$

```
Perc = Deep percolation
```

(R – RO)= Rainfall – Runoff

Irr = Irrigation based on ET_{pan}

ET_c = Evapotranspiration based on

Penman-Monteith method.

 $\Delta S = Change in stored water$

$$IRR = ET_{pan} = K_c K_p E_{pan}$$

IRR = ET_{pan} = Evapotranspiration based on pan

$$K_c$$
 = Crop coefficient
 K_p = Pan coefficient
 E_{pan} = Pan evaporation

$$ET_c = K_c ET_o$$

ET_c = Evapotranspiration
 based on Penman Monteith method.
 K_c = Calibrated crop coefficient
 ET_o = Reference
 evapotranspiration

Evapotranspiration – 2003 Season

http://academic.uprm.edu/abe/PRAGWATER

Agricultural Water Management in Puerto Rico

Experiment Station (Grant SP-347)

NEW

- <u>Download Soil Water Management</u> Spreadsheet
- PPT Presentation: Management of Soils under Microirrigation
- Evaluate your drip irrigation system with the <u>Distribution Uniformity</u>
 <u>Graph</u>
- Download PR-ET Verion 1.03!!
- PowerPoint presentation on Climate Change Impacts on Agriculture in Puerto Rico, presented at the Simposio de Ciencias 2007, UPR-Carolina
- Spanish language translation of FAO Irrigation and Drainage Paper no. 56 (Crop Evapotranspiration)!
- "Riego por Goteo" text book by Dr. Megh Goyal, download electronic version
- Links to climate change impacts on agriculture

Soil Water Management Spreadsheet

http://academic.uprm.edu/abe/PRAGWATER/

			Total		Management	Readily Available	Threshold		Crop		Average	Soil		Applied Irrigation	Did
Date	Field Capacity	Wilting Point	Available Water	Root Depth	Allowed Deficit	Moisture Content	Moisture Content	Moisture Content	Stress Factor	Average Crop Evapotranspiration	Evapotranspiration Adjusted for Stress	Water Deficit	Irrigation needed	or Rainfall	Stress Occur?
Date	FC	WP	TAW	RD	MAD	RAW	θ_{t}	θ	K _s	ET _c	ET _{c adi}	Dentit	needed	Kamian	Occur:
	%	%	%	m	fraction	%	%	%	I S	mm	mm	%	mm	mm	\vdash
3/14/2008	36	18	18	0.70	0.4	7.2	28.8	30.00	1.00	3.80	3.80	6.0	42	0	NO
3/15/2008	36	18	18	0.71	0.4	7.2	28.8	29.46	1.00	3.90	3.90	6.5	46	0	NO
3/16/2008	36	18	18	0.72	0.4	7.2	28.8	28.92	1.00	3.80	3.80	7.1	51	0	NO
3/17/2008	36	18	18	0.73	0.4	7.2	28.8	28.40	0.96	4.00	3.85	7.6	55	0	YES
3/18/2008	36	18	18	0.74	0.4	7.2	28.8	27.88	0.91	4.20	3.84	8.1	60	0	YES
3/19/2008	36	18	18	0.75	0.4	7.2	28.8	27.37	0.87	3.90	3.38	8.6	65	0	YES
3/20/2008	36	18	18	0.76	0.4	7.2	28.8	36.00	1.00	3.90	3.90	0.0	0	69	NO
3/21/2008	36	18	18	0.77	0.4	7.2	28.8	35.50	1.00	4.20	4.20	0.5	4	0	NO
3/22/2008	36	18	18	0.78	0.4	7.2	28.8	34.96	1.00	4.20	4.20	1.0	8	0	NO
3/23/2008	36	18	18	0.79	0.4	7.2	28.8	34.43	1.00	4.10	4.10	1.6	12	0	NO
3/24/2008	36	18	18	0.80	0.4	7.2	28.8	33.91	1.00	4.30	4.30	2.1	17	0	NO
3/25/2008	36	18	18	0.81	0.4	7.2	28.8	33.38	1.00	4.20	4.20	2.6	21	0	NO
3/26/2008	36	18	18	0.82	0.4	7.2	28.8	32.87	1.00	4.30	4.30	3.1	26	0	NO
3/27/2008	36	18	18	0.83	0.4	7.2	28.8	32.35	1.00	4.40	4.40	3.6	30	0	NO
3/28/2008	36	18	18	0.84	0.4	7.2	28.8	31.83	1.00	4.50	4.50	4.2	35	0	NO

User must enter the yellow spreadsheet cells

Date	Field Capacity	Wilting Point	Total Available Water	Root Depth	Management Allowed Deficit	Readily Available Moisture Content
	FC	WP	TAW	RD	MAD	RAW
	%	%	%	m	fraction	%
3/14/2008	36	18	18	0.70	0.4	7.2
3/15/2008	36	18	18	0.71	0.4	7.2
3/16/2008	36	18	18	0.72	0.4	7.2
3/17/2008	36	18	18	0.73	0.4	7.2
3/18/2008	36	18	18	0.74	0.4	7.2
3/19/2008	36	18	18	0.75	0.4	7.2
3/20/2008	36	18	18	0.76	0.4	7.2
3/21/2008	36	18	18	0.77	0.4	7.2
3/22/2008	36	18	18	0.78	0.4	7.2
3/23/2008	36	18	18	0.79	0.4	7.2
3/24/2008	36	18	18	0.80	0.4	7.2
3/25/2008	36	18	18	0.81	0.4	7.2
3/26/2008	36	18	18	0.82	0.4	7.2
3/27/2008	36	18	18	0.83	0.4	7.2

Threshold Moisture Content	Moisture Content	Crop Stress Factor	Average Crop Evapotranspiration	Average Evapotranspiration Adjusted for Stress
θ_{t}	θ	K_s	ET _c	ET _{c adj}
%	%		mm	mm
28.8	30.00	1.00	3.80	3.80
28.8	29.46	1.00	3.90	3.90
28.8	28.92	1.00	3.80	3.80
28.8	28.40	0.96	4.00	3.85
28.8	27.88	0.91	4.20	3.84
28.8	27.37	0.87	3.90	3.38
28.8	36.00	1.00	3.90	3.90
28.8	35.50	1.00	4.20	4.20
28.8	34.96	1.00	4.20	4.20
28.8	34.43	1.00	4.10	4.10
28.8	33.91	1.00	4.30	4.30
28.8	33.38	1.00	4.20	4.20
28.8	32.87	1.00	4.30	4.30
28.8	32.35	1.00	4.40	4.40

Soil Water Deficit	Irrigation needed	Applied Irrigation or Rainfall	Did Stress Occur?
%	mm	mm	
6.0	42	0	NO
6.5	46	0	NO
7.1	51	0	NO
7.6	55	0	YES
8.1	60	0	YES
8.6	65	0	YES
0.0	0	69	NO
0.5	4	0	NO
1.0	8	0	NO
1.6	12	0	NO
2.1	17	0	NO
2.6	21	0	NO
3.1	26	0	NO
3.6	30	0	NO

Irrigation Application Rate and Timing

			I	ı		
Irrigation Needed	Field Area	Percent Wetted Area	Irrigation Efficiency	Volume of Water to Apply	Pump Manifold Flow Rate	Time to Apply Irrigation
					Gallons	
					per	
mm	Acres	%	%	gallons	Minute	Hours
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
69	5	50	90	204890	500	6.8
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0
0	5	50	90	0	500	0.0

