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PREFACE 1 BY ERIC W. HARMSEN

According to The United Nations Office of Disaster Risk Reduction, about
7000 people lose their lives and nearly 100 million people are adversely
affected by floods each year worldwide. Flooding occurs in almost every
part of the world and is the result of extreme rainfall. As an example,
30,000 people were killed from flooding in Venezuela in 1999. More than
12,000 people were killed in China during floods that occurred in 1980,
1996 and 1998; deaths from flooding exceeded 2600 people in Haiti dur-
ing 2004; 2379 died in Bangladesh in 1988; 2311 died in Somalia in 1997,
and 2001 died in India in 1994. Severe flooding caused economic losses
totaling $122.5 billion in China, Korea, United States, Germany and Italy
between 1991 and 2003.The most expensive flood on record occurred in
China in 1998 costing $30 billion.

Flooding occurs when the runoff produced from heavy rainfall result in
stream flows that exceed the flow capacity of the stream. Water overflows
the stream banks covering areas of land that are normally dry. In 1940,
Robert Horton described the process of rainfall infiltration and runoff from
land surfaces. His conceptual model consisted of infiltration, which drops
exponentially during a rainfall event until it reaches the long-term infiltra-
tion capacity of the soil. Given a constant rainfall rate, a point in time is
reached, after the start of rainfall, when the infiltration capacity of the soil
drops below the rain rate, and this is when surface runoff begins. Various
factors affect the infiltration capacity of the soil including soil characteris-
tics (texture, aggregation, bulk density, permeability, macropores, surface
sealing, etc.), vegetation, antecedent moisture content, and other factors
(e.g., land slope, air entrapment, surface roughness and temperature).
Vegetation has a large influence on maintaining soil infiltration capacity.
This is due in part to vegetation’s ability to absorb rainfall energy that
would otherwise pulverize surface aggregates, rapidly leading to surface
sealing. The percent of impermeable area on the watershed also plays an
important role in the amount of runoff and the peak flow rate that occurs
near the watershed outlet.
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A flash flood is defined as a flood that is associated with a weather event
lasting 6 h or less. Flash floods are common in the Tropics, where rain-
falls are associated with afternoon convective cloud development, often
producing high intensity rainstorms that only last an hour or two. Other
types of storms common to the Tropics are hurricanes, tropical waves and
cold fronts originating in the upper latitudes. Rain cloud development can
become amplified with the combination of sea breeze, convective, oro-
graphic and trade wind effects. In the coastal areas of tropical islands, it is
not unusual to observe high intensity rainstorms. For example, at Camuy
— Puerto Rico on November 24, 2015, a rainfall occurred that produced a
storm total of 11.8 inches. For that location, the rainstorm corresponded
with the 100-year return period (24-hour duration). Predicting extreme
events like this one in time to issue a warning poses a particular challenge.
The return period stated above was obtained from National Oceanic and
Atmospheric Administration (NOAA) Atlas 14 — Precipitation — Frequency
Atlas of the United States. Unfortunately during this century, documents
such as this one will become less reliable as the frequency of extreme
weather events increases due to global warming.

Flash flood warnings may call for an evacuation of an area, or pro-
vide guidance that a certain part of a city should be avoided, or that cer-
tain roads may be impassable. Flooding has been correlated with historic
rainfall amounts. When a certain rainfall amount occurs, a warning can
be issued, however, it may be too late to prevent loss of life and prop-
erty. Flood forecasting attempts to predict flood levels at some time in
the future (e.g., 1 to 2 h).The U.S. National Weather Service (NWS) in
San Juan, Puerto Rico, uses the Sacramento Soil Moisture Accounting
model along with a quantitative precipitation forecast (QPF) to evaluate
flood potential and to guide decisions related to issuing flood warnings.
The duration and intensity of the rain have an important influence on the
peak stream or river flow. Unfortunately, the QPF does not provide reli-
able information related to duration and intensity of rainfall. Therefore,
the NWS may evaluate several scenarios, for example, all the rain is
assumed to fall in one hour, rainfall is equally distributed in a 3 h period,
or rainfall randomly spread within a 3 h period. Using this approach it
is possible to determine the rainfall distribution that produces the worst
flooding.
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To obtain high-resolution, site specific, event-specific flood infor-
mation, a physically based numerical hydrologic model can be used.
However, this type of model introduces other challenges and uncertain-
ties. This book volume focuses on two detailed studies, which employed
physically based hydrologic models. Despite the theoretical potential to
obtain great accuracy with these models, much uncertainty may remain.

The Part I by Dr. Alejandra Rojas Gonzalez discusses flood prediction
limitations in small watersheds with mountainous terrain and high rainfall
variability. The hypothesis of the study is that it is possible to perform a
small-scale, affordable model calibration, and then scale-up the param-
eters to a larger basin-scale model. Her study specifically addresses the
following scientific questions: How is flow prediction affected by the spa-
tial variability of point rainfall at scales below that of the typical resolution
of radar-based products? How does parameter and hydrological model
resolution affect the model’s predictive capabilities and the errors of the
hydrologic model? Would the assumptions developed for the small scale
enhance the hydrologic predictability at larger scales?

Physically based hydrologic models can be given high-frequency input
data and be run in near real-time. Unfortunately, there are occasions when
real-time information does not provide enough time for the community to
respond to a potentially dangerous situation. In this case a rainfall forecast
must be made and continuously updated so that a flood prediction of one
or two hours can be obtained. The study by Luz E. Torres Molina in Part
IT in this book volume describes the development of a stochastic model to
forecast short-term rainfall for a tropical basin. The high-resolution rain-
fall data (= 100-m) was derived using the TropiNet radar system at the
University of Puerto Rico, Mayaguez Campus, representing possibly the
only study of its kind in a tropical environment. The predicted short-term
rainfall data was input into a hydrologic model land flood inundation lev-
els were estimated at selected locations within the basin. Results of the
rainfall and hydrologic forecasts are compared with observed data. The
study also provides a prototype for a flood forecast alarm system.

It should be noted that the hydrologic model used in both studies
described in the volume (Vflo) is limited to atmospheric, near-surface soil
moisture, overland and stream flow processes, ignoring subsurface pro-
cesses. Subsurface processes include aquifer recharge, groundwater flow
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and storage, and groundwater discharge to streams, lakes and the ocean.
Groundwater discharge to streams is known as stream base flow. Since
most hydrologic models do not include the subsurface component, stream
base flow must be estimated and may contribute to stream flow uncertainty.
A fully integrated surface/subsurface hydrologic model explicitly calcu-
lates the stream base flow from the ground water discharge component.
Although, not included in this volume, a preliminary study using a fully
integrated surface/subsurface hydrologic model has been conducted for
the same basin considered in the two chapters in this book. Interested read-
ers are encouraged to review the MS thesis of my former student Marcel
Giovanni Prieto, Development of a Regional Integrated Hydrologic Model
for a Tropical Watershed (M. G. Prieto, M.S. Thesis, 2007, Department of
Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez
Campus).
The purpose of this compendium is to contribute to a growing body
of information about flood modeling in the Tropics. Some additional
resources on the topic include:
*  Hydrologic Modeling of Land Processes in Puerto Rico Using
Remotely Sensed Data by J. F. Cruise and R. L. Miller

»  The Hydrology of the Humid Tropicsby E. Wohl et al.; Physically
Based Distributed Hydrologic Modeling of Tropical Catchments:
Hypothesis Testing on Model Formation and Runoff Generation by
N. E. Abebe and F. L. Ogden

*  Rainfall-Runoff Modeling in a Flashy Tropical Watershed Using

the Distributed HL-RDHM model by A. Fares et al.
*  Development of a Regional Integrated Hydrologic Model for a
Tropical Watershed by Marcel Giovanni Prieto-Castellanos

»  Application of a Hydrological Model in a Data-Poor Tropical West
African Catchment: A Case Study of the Densu Basin of Ghana by
E. O. Bekoe

*  Flooding Impacts and Modeling Challenges of Tropical Storms in
Eastern Yemen by K. Root and T. H. Papakos

*  Flood Prediction by Coupling KINEROS?2 and HEC-RAS Models

for Tropical Regions of Northern Vietnam by H. Q. Nguyen, et al.
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Other important books on the topic, not limited to tropical con-
ditions include: Hydrology and Flood Plain Analysis by P. B.
Bedient, W. C. Huber and B. E. Vieux

»  Distributed Hydrologic Modeling Using GIS by B. E. Vieux

and Weather Radar Information and Distributed Hydrological
Modeling by Y. Tachikawa and B. E. Viuex.

I wish to extend my appreciation to the chapter authors who were
advised by me during their PhD projects. Dr. Alejandra Rojas Gonzalez
is currently an Assistant Professor in the Agricultural Engineering
Department at the University of Costa Rica, and Dr. Luz Torres Molina
is an Assistant Professor in the Department of Civil Engineering at the
University of Turabo in Puerto Rico. I would also like to acknowledge the
NOAA-CREST project (grant # NA11SEC4810004), which provided par-
tial financial support for some of the research reported in the chapters and
my participation on this book project. I especially would like to thank my
colleague, Dr. Megh Raj Goyal, who assisted with the creation and editing
of this book. Thanks also to the publishing staff at Apple Academic Press.

This book is dedicated to my dear, late brother Rick Harmsen, whose
wise example guides me every day. The Baha’i sacred Writings state: “The
progress of man's spirit in the divine world, after the severance of its con-
nection with the body of dust, is through the bounty and grace of the Lord
alone, or through the intercession and the sincere prayers of other human
souls, or through the charities and important good works which are per-
formed in its name.” 1t is with this hope that I dedicate this work to my
brother Rick.

The chapter authors and I are hopeful that this book volume will assist
future researcher and practitioners in the field of flood modeling during the
coming years, as they undoubtedly will face the challenge of increasing
extreme weather events caused by a warming climate.

—Eric W. Harmsen, PhD
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PREFACE 2 BY MEGH R. GOYAL

According to https: //en.wikipedia.org/wiki/Flood, a flood is “an overflow
of water that submerges land which is usually dry. The European Union
(EU) Floods Directive defines a flood as a covering by water of land not
normally covered by water. In the sense of ‘flowing water’, the word may
also be applied to the inflow of the tide. Flooding may occur as an over-
flow of water from water bodies, such as a river or lake, in which the water
overtops or breaks levees, resulting in some of that water escaping its
usual boundaries, or it may occur due to an accumulation of rainwater on
saturated ground in an areal flood. While the size of a lake or other body
of water will vary with seasonal changes in precipitation and snow melt,
these changes in size are unlikely to be considered significant unless they
flood property or drown domestic animals. Floods can also occur in riv-
ers when the flow rate exceeds the capacity of the river channel, particu-
larly at bends or meanders in the waterway. Floods often cause damage
to homes and businesses if they are in the natural flood plains of rivers.
While riverine flood damage can be eliminated by moving away from riv-
ers and other bodies of water, people have traditionally lived and worked
by rivers because the land is usually flat and fertile and because rivers
provide easy travel and access to commerce and industry. Some floods
develop slowly, while others such as flash floods, can develop in just a
few minutes and without visible signs of rain. Additionally, floods can be
local, impacting a neighborhood or community, or very large, affecting
entire river basins.”

In general, we do not like floods because of their negative impacts
on our daily life. “Ferdinand Quinones and Karl G. Johnson, 1987. The
Floods of May 17-18, 1985 and October 67, 1985 in Puerto Rico. US
Geological Survey Open-file Report 87—-123.U.S. Geological Survey
Books and Open-File Reports Federal Center” indicates that “During
1985, severe floods occurred twice throughout Puerto Rico resulting in
significant losses in life and property. The first event occurred during
May 15—19, when a low-pressure system resulted in precipitation totals
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exceeding 14 inches throughout most of south-central and eastern Puerto
Rico. A second event was produced by a tropical depression that affected
south-central Puerto Rico during October 6—7. Landslides and collapses
of several key bridges during the October floods resulted in the death of
as many as 170 people. Property losses from both floods were estimated at
about 162 million dollars. A nearly stationary tropical depression affected
Puerto Rico during October 6—7, 1985, resulting in 24-hour precipitation
totals of as much as 23 inches and severe floods along the south-central
coastal areas. The floods of October 67, 19835, affected mostly rural areas
in southern Puerto Rico, but caused significant loss of life and widespread
property damages. Landslides near Ponce, the collapse of a bridge at Rio
Coamo, and the destruction of homes near Ponce resulted in about 170
fatalities and more than 125 million dollars in damages. Flooding was
also severe at Barceloneta on the north coast. Recurrence intervals equal
to or greater than 100 years were estimated for peak discharges at several
index stations”.

I am an eyewitness of the second flood on October 67 of 1985 in
Ponce. The flood level was almost 2.5 feet inside our home, and we were
rescued to a higher elevated area. We lost almost all our property worth
$20,000, and my family was shocked. I like to share with the readers the
thoughts from “Gleanings from the Writings of Baha’u’llah, Baha’i Pub,
2005”: “For every one of you his paramount duty is to choose for himself
that on which no other may infringe and none usurp from him. Such a thing
— and to this the Almighty is my witness — is the love of God, could ye but
perceive it. Build ye for yourselves such houses as the rain and floods can
never destroy, which shall protect you from the changes and chances of
this life. This is the instruction of Him Whom the world hath wronged and
forsaken.” Was my home not properly built?

The mission of this book volume is to serve as a reference manual for
graduate and undergraduate students of agricultural, biological and civil
engineering; as well as those in horticulture, soil science, crop science
and agronomy. I hope that it will be a valuable reference for professionals
who work with flood management; and for professional training institutes,
technical agricultural centers, irrigation centers, Agricultural Extension
Service, and other agencies.
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At the 49th annual meeting of the Indian Society of Agricultural staff
Engineers at Punjab Agricultural University during February 22-25 of
2015, a group of ABEs convinced me that there is a dire need to pub-
lish book volumes on focus areas of agricultural and biological engineer-
ing (ABE).This is how the idea was born for a new book series titled
“Innovations in Agricultural & Biological Engineering.”

My longtime colleague, Dr. Eric W. Harmsen, joins me as a Lead Editor
of this volume. Dr. Harmsen holds exceptional professional qualities with
his expertise in agricultural hydrology during the last 35 years, in addition
his role as research scientist at the University of Puerto Rico — Mayaguez
Campus. His generous offer and contributions by his students, Alejandra
Rojas-Gonzalez and Luz E. Torres-Molina, to the contents and quality of
this book have been invaluable.

Abdu’l-Baha in the book The Chosen Highway, Lady Blomfield,
George Ronald Pub Ltd (2007)” righty describes our cooperation in His
holy words as “those who work singly are as drops, but, when united,
they will become a vast river carrying the cleansing water of life into the
barren desert places of the world. Before the power of its rushing flood,
neither misery, nor sorrow, nor any grief will be able to stand. Be united!”

We would like to thank editorial staff, Sandy Jones Sickels, Vice
President, and Ashish Kumar, Publisher and President at Apple Academic
Press, Inc., for making every effort to publish the book when the diminish-
ing water resources are a major issue worldwide. Special thanks are due to
the AAP Production Staff for typesetting.

We request that readers offer us your constructive suggestions that may
help to improve the next edition. The reader can order a copy of this book
for the library, the institute or for a gift from “http://appleacademicpress.
com.”

Our Almighty God, owner of natural resources, must be very happy
on publication of this book. As an educator, there is a piece of advice to
one and all in the world: “Permit that our almighty God, our Creator and
excellent Teacher, help us to solve and manage problems in flood manage-
ment with His Grace.”

—Megh R. Goyal, PhD, PE
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WARNING/DISCLAIMER

PLEASE READ CAREFULLY

The goal of this book volume on Flood Assessment: Modeling and
Parameterization is to present challenges, issues and new technologies.
The editors, the contributing authors, the publisher and the printer have
made every effort to make this book as accurate as possible. However,
there still may be grammatical errors or mistakes in the content or typogra-
phy. Therefore, the contents in this book should be considered as a general
guide and not a complete solution to address any specific situation.

The editors, the contributing authors, the publisher and the printer shall
have neither liability nor responsibility to any person, any organization
or entity with respect to any loss or damage caused, or alleged to have
caused, directly or indirectly, by information or advice contained in this
book. Therefore, the purchaser/reader must assume full responsibility for
the use of the book or the information therein.

The mention of commercial brands and trade names are only for techni-
cal purposes. It does not mean that a particular product is endorsed over to
another product or equipment not mentioned. Author, cooperating authors,
educational institutions, and the publisher Apple Academic Press Inc. do
not have any preference for a particular product.

All weblinks that are mentioned in this book were active on December
31, 2016. The editors, the contributing authors, the publisher and the print-
ing company shall have neither liability nor responsibility, if any of the
weblink is inactive at the time of reading of this book.
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EDITORIAL

Apple Academic Press, Inc., (AAP) is publishing book volumes in the
specialty areas as part of Innovations in Agricultural and Biological
Engineering book series, over a span of 8 to 10 years. These specialty areas
have been defined by American Society of Agricultural and Biological
Engineers (http://asabe.org).

The mission of this series is to provide knowledge and techniques for
Agricultural and Biological Engineers (ABEs). The series aims to offer
high-quality reference and academic content in Agricultural and Biological
Engineering (ABE) that is accessible to academicians, researchers, sci-
entists, university faculty, and university-level students and profession-
als around the world. The following material has been edited/modified
and reproduced below “Goyal, Megh R., 2006. Agricultural and biomedi-
cal engineering: Scope and opportunities. Paper Edu 47 at the Fourth
LACCEI International Latin American and Caribbean Conference for
Engineering and Technology (LACCEI’ 2006): Breaking Frontiers and
Barriers in Engineering: Education and Research by LACCEI University
of Puerto Rico— Mayaguez Campus, Mayaguez, Puerto Rico, June 21-23.”

WHAT IS AGRICULTURAL AND BIOLOGICAL ENGINEERING
(ABE)?

“Agricultural Engineering (AE) involves application of engineering to
production, processing, preservation and handling of food, fiber, and shel-
ter. It also includes transfer of technology for the development and welfare
of rural communities,” according to http://isae.in.” ABE is the discipline
of engineering that applies engineering principles and the fundamental
concepts of biology to agricultural and biological systems and tools, for
the safe, efficient and environmentally sensitive production, processing,
and management of agricultural, biological, food, and natural resources
systems,” according to http://asabe.org. “AE is the branch of engineering
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involved with the design of farm machinery, with soil management, land
development, and mechanization and automation of livestock farming,
and with the efficient planting, harvesting, storage, and processing of
farm commodities,” definition by: http://dictionary.reference.com/browse/
agricultural+engineering.

“AE incorporates many science disciplines and technology practices
to the efficient production and processing of food, feed, fiber and fuels. It
involves disciplines like mechanical engineering (agricultural machinery
and automated machine systems), soil science (crop nutrient and fertiliza-
tion, etc.), environmental sciences (drainage and irrigation), plant biology
(seeding and plant growth management), animal science (farm animals
and housing) etc.,” by: http://www.ABE.ncsu.edu/academic/agricultural-
engineering.php.

“According to https: //en.wikipedia.org/wiki/Biological engineering:
“BE (Biological engineering) is a science-based discipline that applies
concepts and methods of biology to solve real-world problems related to
the life sciences or the application thereof. In this context, while tradi-
tional engineering applies physical and mathematical sciences to analyze,
design and manufacture inanimate tools, structures and processes, bio-
logical engineering uses biology to study and advance applications of liv-
ing systems.”

SPECIALTY AREAS OF ABE

Agricultural and Biological Engineers (ABEs) ensure that the world has
the necessities of life including safe and plentiful food, clean air and water,
renewable fuel and energy, safe working conditions, and a healthy envi-
ronment by employing knowledge and expertise of sciences, both pure
and applied, and engineering principles. Biological engineering applies
engineering practices to problems and opportunities presented by living
things and the natural environment in agriculture. BA engineers under-
stand the interrelationships between technology and living systems, have
available a wide variety of employment options. “ABE embraces a vari-
ety of following specialty areas,” http://asabe.org. As new technology and
information emerge, specialty areas are created, and many overlap with
one or more other areas.
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1. Aquacultural Engineering: ABEs help design farm systems for
raising fish and shellfish, as well as ornamental and bait fish. They
specialize in water quality, biotechnology, machinery, natural
resources, feeding and ventilation systems, and sanitation. They
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seek ways to reduce pollution from aquacultural discharges, to
reduce excess water use, and to improve farm systems. They also
work with aquatic animal harvesting, sorting, and processing.
Biological Engineering applies engineering practices to prob-
lems and opportunities presented by living things and the natural
environment.

Energy: ABEs identify and develop viable energy sources — bio-
mass, methane, and vegetable oil, to name a few — and to make
these and other systems cleaner and more efficient. These special-
ists also develop energy conservation strategies to reduce costs and
protect the environment, and they design traditional and alternative
energy systems to meet the needs of agricultural operations.

Farm Machinery and Power Engineering: ABEs in this specialty
focus on designing advanced equipment, making it more efficient
and less demanding of our natural resources. They develop equip-
ment for food processing, highly precise crop spraying, agricultural
commodity and waste transport, and turf and landscape mainte-
nance, as well as equipment for such specialized tasks as removing
seaweed from beaches. This is in addition to the tractors, tillage
equipment, irrigation equipment, and harvest equipment that have
done so much to reduce the drudgery of farming.

Food and Process Engineering: Food and process engineers
combine design expertise with manufacturing methods to develop
economical and responsible processing solutions for industry. Also
food and process engineers look for ways to reduce waste by devis-
ing alternatives for treatment, disposal and utilization.

Forest Engineering: ABEs apply engineering to solve natural
resource and environment problems in forest production systems
and related manufacturing industries. Engineering skills and exper-
tise are needed to address problems related to equipment design
and manufacturing, forest access systems design and construction;
machine-soil interaction and erosion control; forest operations
analysis and improvement; decision modeling; and wood product
design and manufacturing.

Information and Electrical Technologies Engineering is one of
the most versatile areas of the ABE specialty areas, because it is
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applied to virtually all the others, from machinery design to soil
testing to food quality and safety control. Geographic information
systems, global positioning systems, machine instrumentation and
controls, electromagnetics, bioinformatics, biorobotics, machine
vision, sensors, spectroscopy: These are some of the exciting
information and electrical technologies being used today and being
developed for the future.

8. Natural Resources: ABEs with environmental expertise work to
better understand the complex mechanics of these resources, so
that they can be used efficiently and without degradation. ABEs
determine crop water requirements and design irrigation systems.
They are experts in agricultural hydrology principles, such as con-
trolling drainage, and they implement ways to control soil erosion
and study the environmental effects of sediment on stream quality.
Natural resources engineers design, build, operate and maintain
water control structures for reservoirs, floodways and channels.
They also work on water treatment systems, wetlands protection,
and other water issues.

9. Nursery and Greenhouse Engineering: In many ways, nursery
and greenhouse operations are microcosms of large-scale produc-
tion agriculture, with many similar needs — irrigation, mechaniza-
tion, disease and pest control, and nutrient application. However,
other engineering needs also present themselves in nursery and
greenhouse operations: equipment for transplantation; control sys-
tems for temperature, humidity, and ventilation; and plant biology
issues, such as hydroponics, tissue culture, and seedling propaga-
tion methods. And sometimes the challenges are extraterrestrial:
ABEs at NASA are designing greenhouse systems to support a
manned expedition to Mars!

10. Safety and Health: ABEs analyze health and injury data, the use
and possible misuse of machines, and equipment compliance with
standards and regulation. They constantly look for ways in which
the safety of equipment, materials and agricultural practices can
be improved and for ways in which safety and health issues can be
communicated to the public.
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11. Structures and Environment: ABEs with expertise in structures
and environment design animal housing, storage structures, and
greenhouses, with ventilation systems, temperature and humidity
controls, and structural strength appropriate for their climate and
purpose. They also devise better practices and systems for storing,
recovering, reusing, and transporting waste products.

CAREER IN AGRICULTURAL AND BIOLOGICAL ENGINEERING

One will find that university ABE programs have many names, such as
biological systems engineering, bioresource engineering, environmen-
tal engineering, forest engineering, or food and process engineering.
Whatever the title, the typical curriculum begins with courses in writing,
social sciences, and economics, along with mathematics (calculus and
statistics), chemistry, physics, and biology. Student gains a fundamental
knowledge of the life sciences and how biological systems interact with
their environment. One also takes engineering courses, such as thermo-
dynamics, mechanics, instrumentation and controls, electronics and elec-
trical circuits, and engineering design. Then student adds courses related
to particular interests, perhaps including mechanization, soil and water
resource management, food and process engineering, industrial microbiol-
ogy, biological engineering or pest management. As seniors, engineering
students team up to design, build, and test new processes or products.
For more information on this series, readers may contact:

Ashish Kumar, Publisher and President | Megh R. Goyal, PhD, PE
Sandy Sickels, Vice President Book Series Senior

Apple Academic Press, Inc. Editor-in-Chief

Fax: 866-222-9549 Innovations in Agricultural
E-mail: ashish@appleacademicpress.com | and Biological Engineering
http://www.appleacademicpress.com/ E-mail: goyalmegh@gmail.
publishwithus.php com
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CHAPTER 1

FLOOD PREDICTION LIMITATIONS
IN SMALL WATERSHEDS:
INTRODUCTION'

ALEJANDRA M. ROJAS-GONZALEZ
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1.1 INTRODUCTION

Due to the complex terrain and the tropical climate influence, Puerto Rico
is characterized by small watersheds, high rainfall intensity and spatial
variability. The rainfall anomalies are produced by tropical waves, low
pressure depressions, tropical storms, and hurricanes capable of producing
flash flood in susceptible areas. As part of the model configuration, rainfall

! This chapter is an edited version from Alejandra Maria Rojas Gonzdlez, 2012. Flood prediction
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico — Mayagiiez
Campus.

2 Numbers in brackets refer to the references at the end of this book.
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must be distributed over the model domain. Different theoretical methods
are available to spatially distribute rainfall over a watershed. However,
there is not typically enough rain gauge density to calculate the associated
bias, and to obtain spatial variability of point rainfall at scales below the
typical resolution of the radar-based products (2 x 2 km?), archived with
the Next Generation Radar (NEXRAD) level 3.

New emerging radar technologies are being developed by the Student
Test Bed of the Center for Collaborative Adaptive Sensing of the
Atmosphere [22] in Puerto Rico and will be available for flash flood pre-
dictions. This new radar technology promises to revolutionize the way
rainfall is detected, monitored and predicted, creating a dense sensor
network of low-powered radars that overcome curvature blockage and
significantly enhance resolution. This network will monitor the lower
atmosphere where the principal atmospheric phenomena occur. The first
step in the technology development has been the PR-1 radar located at the
roof top of the Stefani building at University of Puerto Rico, Mayagiiez
Campus. The PR-1 radar is marine radar adapted to sense reflectivity with
an average pixel size of 150 m and the maximum coverage range of 25 km.

An important step for the hydrologic community and Puerto Rico in
general will be the use of these advanced technologies as input to real-
time flash flood prediction systems. Real-time flash flood estimates can
allow decision makers to implement emergency plans only when it is nec-
essary, since unnecessary preparations and evacuations are very costly.
The technique also allows decision makers to better focus the emergency
measures due to variable rainfall patterns. Since in the tropical region the
locations, where flood waters concentrate, tend to vary in time and space.
Rain gauge density is generally not sufficient to capture spatial variability
at the NEXRAD radar subpixel scale and the new radar technology will
help to fill gaps between rain gauges. Some methods for removing the sys-
tematic bias between radar and rain gauges are applied today. However, it
is not known how much the intrinsic error due to spatial variability at the
radar subpixel scale limits the reliability of the data for use in hydrologic
models. Some scientific questions arise where complex terrain and clima-
tological conditions increase the spatially dependent bias.

How does rainfall spatial distribution affect the hydrologic response
in small sub watersheds? How can adjustments be made to radar rainfall
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estimates when there are not sufficient numbers of rain gauges within the
network? Under these conditions, how can we produce reliable hydrologic
estimates in small areas where high spatial variability exists? These ques-
tions are essential when using fully physics-based distributed hydrologic
models, because the goal of their use is to produce accurate flood predic-
tions at any location upstream of the watershed outlet.

Few studies have been conducted in Puerto Rico to forecast real-time
rainfall and runoff. In 1996, the US Geological Survey (USGS) developed
a real time rainfall runoff simulation for Carraizo reservoir basin allow-
ing the estimation of water volumes at the reservoir from the rainfall and
discharge data that is being obtained from the network stations inside the
basin [94].

The National Weather Service (NWS) establishes Flash Flood
Guidance estimates in real time based on the Sacramento soil moisture
accounting model. Flash Flood Guidance is performed by region or River
Forecast Center, and Puerto Rico belongs to the South-east River Forecast
Center. The analysis allows for the development of the curves that relate
threshold runoft to flash flooding of a given duration as a function of soil
moisture deficit [36, 81, 97, 101]. Vieux and Vieux [135] tested a physics-
based distributed model in the Loiza basin of Puerto Rico. A long-term and
event-based simulation was conducted to calibrate the streamflow volume.
The soil moisture values calculated in the long-term model were fed back
into the event-based simulation to enhance the calibration for several indi-
vidual storm events. A sensitivity analysis to initial soil moisture showed
some persistence in antecedent soil conditions, with about one year of
warm up the model to obtain stable results.

To establish a flood alarm system in Puerto Rico, first it is impera-
tive to know how the watershed behaves under different environmental
conditions, parameter spatial variability, input aggregation and associ-
ated biases and how these differences are propagated to the solution. This
knowledge enhances the forecast skills using distributed models such as:
Wechsler [137]; Vieux et al. [127], Viglione et al. [134], Miiller et al. [70],
and Bloschl et al. [17].

Hydrologic parameters play an important role in the hydrologic predic-
tion where high slope exist, and where soil as well as land use characteris-
tics change over short distances. Hydrologic models average the hydrologic
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parameters and topographic characteristics in lumped, semidistributed and
distributed models to simplify or reduce computational time. In addition,
calibrations are usually limited to the watershed outlet, hence, not produc-
ing accurate flood prediction within the subwatershed’s internal outlets.

Loss of accuracy occurs in flood prediction with topographic and
parameters aggregation, however, how much loss of accuracy can we
expect? Limited number of studies have evaluated the effects of grid size
on basin response and the prediction of discharge in tropical environments
and complex topography [18, 95, 118, 137, 139]. Therefore, the research
in this chapter will investigate these aspects as they are related to model
calibration and flood prediction.

The hydrologic model used in this research is Vflo™ (for convenience
in this dissertation Vo™ will be referred to as Vflo), a fully distributed
hydrologic model [118, 124-126]. Vflo uses the finite element numerical
method to resolve overland and channel flow. The Green Ampt equation
is used to represent rainfall infiltration though the soil [80]. The digital
revolution in geospatial data has helped to promote the development of
physically based models capable of producing excellent results in flood
prediction at internal basin points.

To understand the system predictability, authors conducted various
experiments within a small subwatershed laboratory (test-bed) covering
a 4 x 4 km? Geostationary Operational Environmental Satellite (GOES)
pixel. This “real world” laboratory has a rain gauge network with a resolu-
tion well below that of the NWS radar products; a stage elevation station
at the outlet; high topography resolution information (Digital Elevation
Model raster map, DEM 10 x 10 m?), remotely sensed data (e.g., LandSat
Thematic M) and several field measurements to represent the channel
geometry. The test-bed subwatershed is located in Western Puerto Rico and
belongs to the Rio Grande de Anasco watershed. To establish a flood alarm
system in the region of the study area, it is necessary to know the perfor-
mance and the prediction limits associated with the small subwatersheds.

1.2 JUSTIFICATION

A study which considers different input (rainfall) resolutions, parameter
aggregation effects and hydrologic model resolutions, at scales lower
than the current radar products, has not been conducted in Puerto Rico
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or anywhere. With the new emergent radar technologies, it is necessary to
recommend to the hydrology community which grid size is necessary to
capture the spatial variability of rainfall and hydrologic model that gener-
ate reliable flood prediction. The prediction limits related to this input grid
size and, at the same time have a cell size that minimizes the computa-
tional time for real-time applications.

The grid size and the watershed response are interrelated. Therefore, it
is imperative to know the combination of grid sizes needed to produce reli-
able results within the study area and to know the probabilistic distribution
function (PDF) of flow peaks, time to peak and runoff volume associated
with each resolution. The optimal grid size is defined as the largest grid
size which will produce reliable results, beyond which flood prediction
accuracy degrades.

The time required to run the model in real-time operation mode is criti-
cal. Therefore, the grid size should decrease the computational time, while
maintaining sufficiently accurate results. An up-scaling evaluation of rain-
fall and hydrologic parameters consist in the creation of a high-resolution
hydrologic model, and then increasing the grid size to produce incremen-
tally coarser resolution maps of each parameter and input, resulting in
different output responses. These hydrologic responses will be compared
in terms of their probability distribution functions (PDFs) to observed
values. A decision can be made in terms of which aggregation technique
should be used to aggregate the data and which parameters will be used in
the evaluation at small scales.

1.3 RESEARCH QUESTIONS

Real time hydrologic predictions require estimation of stream stage, peak
flow, time to peak, and storm volume with high reliability. To obtain reli-
able estimates it is necessary to know and understand the predictability
and prediction limitations of the system.

The general objective of this research was to evaluate the hydrologic
predictability of flood predictions in complex terrain located at Mayagiiez
Bay drainage basins due to rainfall inputs and hydrologic model reso-
lutions. To identified representative parameters at each scale that will
enhance the flood prediction when the modeler uses different grid size
resolution inputs within the distributed hydrologic models.
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Three basic research questions (RQ) addressed in this research are
summarized below and were based on a workshop on “Predictability and
Limits to Prediction in Hydrologic Systems by the National Research
Council [28]” and suggestions made by several investigators in this field
[36, 37, 128-133].

RQI1. How flow prediction is affected by the spatial variability of point
rainfall at scales below that of the typical resolution of radar-
based products?

The error propagation due a rainfall spatial resolution in the distributed
models has been a goal in the hydrologic community in recent years.
Different studies that have been conducted have been done at scales
courser or same than resolution of the radar rainfall products using distrib-
uted models [26, 38, 39, 120] or using lumped model [12].

The accuracy of current precipitation estimates over a basin must be
known; and moreover, the accuracy of these estimates must be improved
before the uncertainty in hydrologic forecasts can be quantified and ulti-
mately reduced. According to Droegemeier and Smith [27], hydrologic
forecast uncertainty cannot be reasonably assessed until the uncertainty in
the rainfall observations has been determined a priori. Entekahbi et al. [28]
identified the uncertainty in model inputs as one of the major limitations to
improved hydrologic predictability.

One important contribution will be to find the current rainfall product
uncertainty over small watersheds. Also, evaluate how uncertainties due to
quantitative precipitation estimates at different resolutions (below 2 km)
from point rainfall are propagated though the hydrologic solution. By this
means we can determine which rainfall resolution is required to encom-
pass the rainfall variability and produce the least uncertainty and highest
accuracy for flood predictions at scales below radar products and small
subwatersheds.

The Collaborative Adaptive Sensing of the Atmosphere (CASA) proj-
ect has instrumented a 4 x 4 km? area with a network of 28 rain gauges,
producing high spatial rainfall resolution with the objective to test and val-
idate CASA radars. Inside the pixel a small subwatershed was delineated
and instrumented with a pressure transducer to measure stage at a deter-
mined cross section. The small area was named Test Bed Subwatershed
(TBSW) and serves as a field laboratory to test how the uncertainty due
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to rainfall resolution input propagates though the distributed hydrological
model to the streamflow prediction.

RQ2. How does parameter and hydrological model resolution affect
the model’s predictive capabilities and the errors of the hydro-
logic system?

To develop a real time hydrologic model, a coarse grid size resolution is
desirable in order to minimize computational time. However, this choice
could have an important impact on the hydrologic simulation, because the
calibration is grid-cell size dependent. The effects observed in the grid
size aggregation are flattening of the slope and shortening of the drainage
length, changes in flow direction, channel and overland cells and smooth-
ness of the soil parameters and roughness. Both effects can be compen-
sated for or reduced depending on the topographic characteristics of the
basin and the methods used to calculate them [20, 77, 102, 118].

Mountainous areas with large slopes are more sensitive to digital ele-
vation model resolution. The resolution of the terrain model needed to
capture the basin properties is the same for slope as it is for other param-
eters such as hydraulic roughness derived from land use obtained from
satellite remote sensing and soil properties. Understanding the influence
of resolution and parameter aggregation on the hydrologic model would
enhance the model prediction. This will be accomplished using the highest
resolution data available and then producing coarser resolution maps of
each parameter though up-scaling (various methods could be tested here),
and evaluate how the coarser resolution degrades the solution obtained at
the finest resolution. Authors hypothesize that the finer hydrologic model
resolution ensemble will have the best flow prediction behavior. However,
this model is not operational for future flash flood forecasting. The goal
is to find a practical grid size resolution for real time applications and
address reliable results at small watersheds.

RQ3. Would the assumptions developed for the small scale enhance
the hydrologic predictability at larger scales?

The hypothesis formulated is that if we can enhance the flood forecast-
ing in small subwatersheds than we can enhance the flood forecasting at
larger scales, where all major mountainous basins are composite of simi-
lar subwatersheds that have similar slope conditions, land use coverage
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and soil properties. Lessons learned in this study about the small water-
shed’s behavior could be applied to watersheds of major sizes where the
cost of using high-resolution data could result in better flood forecast-
ing. However, if it is necessary to apply coarse resolution data to large
scale, real time applications, the predictability limits could be known a
priori. Recommendations related to which terrain and rainfall grid sizes
and parameter estimations to use in the distributed hydrologic model will
be available, and will be tested in watersheds of major size. Only a few
rain gauges and NEXRAD rainfall estimates are provided to major areas.

1.4 OBJECTIVES

The specific objectives of this study in Part I of this book, required for the
achievement of the major research goal and the research questions are:

a. Configure a hydrologic distributed model for the Mayagiiez
Bay Drainage Basin (MBDB) and extract a small subwatershed
(TBSW) having similar slope characteristics to the MBDB subwa-
tersheds, for the purpose of performing detailed studies.

b. Analyze the MBDB hydrologic model sensitivity in the flow
response due to propagation of parameter and rainfall perturbations
using spider plots and relative sensitivity analyzes.

c. Quantification of MBDB hydrologic model flow response due to
two rainfall interpolation methods and radar sources.

d. Evaluate the rainfall detection accuracy of the current radar prod-
uct (multisensor precipitation estimator, MPE) at scales below
2 km using a high-density rainfall network.

e. Evaluate ensemble behavior for rainfall resolutions exposed to
uncertainties in parameter quantifications and hydrologic model
resolutions.

f. Evaluate ensemble behavior of hydrologic model resolutions due
to propagation of parameter uncertainties and rainfall resolutions.

1.5 SUMMARY

The research study on “Flood Prediction Limitations in Small Watersheds”
is presented in detail in Chapters 1-9 of this book. The general objective of
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this study was to evaluate the hydrologic predictability of flood predictions
in complex terrain located at Mayagiiez Bay drainage basins in Puerto
Rico due to rainfall inputs and hydrologic model resolutions. To identify
representative parameters at each scale that will enhance the flood predic-
tion when the modeler uses different grid size resolution inputs within the
distributed hydrologic models.

Three basic research questions (RQ) addressed in this research were
based on a workshop on “Predictability and Limits to Prediction in
Hydrologic Systems by the National Research Council [28]” and sugges-
tions made by several investigators in this field [36, 37, 128—133]. These
questions were: RQ1. How flow prediction is affected by the spatial vari-
ability of point rainfall at scales below that of the typical resolution of
radar-based products? RQ2. How does parameter and hydrological model
resolution affect the model s predictive capabilities and the errors of the
hydrologic system? RQ3. Would the assumptions developed for the small
scale enhance the hydrologic predictability at larger scales?
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CHAPTER 2

FLOOD PREDICTION LIMITATIONS
IN SMALL WATERSHEDS: A REVIEW' 2
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2.1 QUANTITATIVE PRECIPITATION ESTIMATES

A major source of error in hydrologic models is the poor quantification of
the areal distribution of rainfall, typically due to the low density of rain
gauges. A rain gauge located at a single point may not represent an exten-
sive area, with only one value. The spatial distribution of rainfall can have
a major influence on the corresponding runoff hydrograph, errors may
occur in the resulting hydrograph when the spatial pattern of the rainfall
is not preserved. These errors will be magnified for intense, short duration

! This chapter is an edited version from Alejandra Maria Rojas Gonzdlez, 2012. Flood prediction
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico — Mayagiiez
Campus.

2 Numbers in brackets refer to the references at the end of this book.
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and localized events especially in areas of high topographic variability
subject to convective storms [143].

Rain gauges themselves may produce errors, a major source of error
being from turbulence and increased winds around the gauge, affecting
precipitation quantification in events where the wind is an important factor
(e.g., hurricanes). Nevertheless, the rainfall measured in a gauge station
is generally assumed to be the most reliable measurement of rainfall, but
when measurements are extrapolated to the entire basin for hydrologic
models, the rainfall has a great uncertainty and can affect the water-
shed response. Bevan and Hornberger [13] have stated, “... an accurate
portrayal of spatial variation in rainfall is a prerequisite for accurate
simulation of stream flows”.

Investigators have used mean areal precipitation as calculated by
Thiessen polygons [115, 143], and interpolation methods (Spline, Inverse
Distance Weights, and Krigging and polynomial surface). But all of these
methods are limited by the number of rain gauges.

Ball and Luk [7] studied the accuracy and reliability of hydroinfor-
matic tools (e.g., GIS) for modeling the spatial and temporal distribution
of rainfall over a catchment. They found that using spline surfaces with
a geographic information system produced robust and accurate estimates
of rainfall and enable real-time estimation of spatially distributed patterns.

Currently, sophisticated methods attempt to fill gaps between rain
gauges, by sensing the atmosphere with remote sensors like the space-
borne Tropical Rainfall Measuring Mission (TRMM), the U.S. National
Weather Service’s (NWS) Next Generation Radar (NEXRAD), the
National Oceanic and Atmospheric Administration’s (NOAA) Hydro-
Estimator (HE) algorithm [91], the satellite precipitation estimation/radar
rainfall merging algorithm of the NOAA-CREST Group at City University
of New York [62] and the MPE [57, 60, 92]. The HE uses data from the
GOES geostationary satellite to estimate rainfall, and has, for example, an
approximate pixel size of 4 x 4 km?.

These quantitative precipitation estimation (QPE) techniques are evalu-
ated and adjusted or calibrated using existing rain gauges, however, these
adjustments depend on the rain gauge density and their spatial distribu-
tion [47]. Studies that have compared radar and rain gauge—derived rainfall
documented large discrepancies among various investigators [6, 64, 144].
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In order to address the need to obtain more rainfall estimates for
basin analysis, in 1997 National Weather Service (NWS) put into opera-
tion the WSR-88D Next Generation Radar (NEXRAD) in the United
States of America (USA). NEXRAD radar enhances coverage with
a 1 degree x 1 km base resolution. Since 1999, NEXRAD has been used
by the NWS to estimate rainfall in Puerto Rico. The NEXRAD facility
is located near the City of Cayey at 860 m above mean sea level and at
approximately 120 km from Mayagiiez. The radar measures reflectivity
in decibel (dBZ) and uses empirically derived Z-R relationships to trans-
form reflectivity to rain rate. The Marshall and Palmer [63] equation is the
default Z-R relationship employed by the WSR-88D and is described by
the following empirical power law:

Z=aR’ (1)

where Z is the reflectivity in decibels (dBZ) and R is the rain rate in mm/h;
a and b are nonlinear regression coefficients and their respective values
depend on the type of precipitation.

The coefficients depend on location, season, rain type, drop size dis-
tribution, and are event dependent. Battan [8] presents more than 50 Z-R
relationships. Currently there are at least five different relationships
depending on climatological zones approved by the NWS. For example
for a convective rainfall, ¢ and b values are 300 and 1.4, respectively.
Similarly, under tropical conditions, values of 250 and 1.2, respectively,
have been used and for a warm stratiform rainfall values of 200 and 1.6
are used.

The default Z-R relationship used in Puerto Rico is the convective type
and is not representative of tropical rain events due to the drop size dis-
tribution (smaller rain drops than convective with fewer and larger rain
drops). It is necessary to define a maximum precipitation rate threshold
for decibels above 51, because Eq. (1) with the tropical coefficients can
produce nonsensical rain rates. High dBZ are due to possible hail forma-
tions or very heavy precipitation or extreme winds, which also may be pro-
duced by thunder and lightning, and wet ground returns. The radar default
setting is 4.09 inches/h and if rainfall rates are greater, a deep warm layer
exists. Therefore, warm rain processes govern, which is typical of tropical
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events [61]. Operationally the Z-R relationship should be changed to the
tropical equation and the maximum precipitation rate threshold changed
to 6.00 inches/h.

Vieux and Bedient [121, 122, 129] found an improved Z-R relationship
comparing slopes of the best-fit regression lines of each Z-R relationship
to daily rain gauge accumulation. With the current Z-R relationship used
in Puerto Rico, NOAA has reported low estimates of accumulated rainfall
by the radar as compared to gauge accumulations.

The MPE algorithm is a product of NEXRAD, and recently has been
used to improve quantitative precipitation estimates [58, 62]. MPE is based
on the Digital Precipitation Array (DPA) product (hourly and 4 x 4 km?
resolution) and performs a mean field bias correction over the entire radar
coverage area, based on (near) real-time hourly rain gauge data [92, 93].
The MPE is mapped onto a polar stereographic projection called the
Hydrologic Rainfall Analysis Project (HAP) grid. This data is often used
in hydrologic modeling, availing the bias correction made by the MPE
algorithm. Nevertheless, in long-term hydrologic simulations and water-
sheds with small numbers of rain gauges, a bias verification would be
evaluated, because the bias quantification has a high variability over the
radar coverage area and time [47, 78, 79] affecting the hydrologic calibra-
tion and validation.

Gourley and Vieux [38] developed a method for evaluating the accu-
racy of Quantitative Precipitation Estimates (QPE) for isolated events.
A hydrologic approach to QPE evaluation may also become complicated
because model parameters can be judiciously adjusted or calibrated to
account for errors in model inputs. Systematic biases, which are originally
present in the model inputs, can be mitigated or corrected in order to yield
accurate streamflow forecasts.

Probabilistic calibration methods exist, such as the generalized like-
lihood uncertainty estimation (GLUE) used by Beven and Binley [14],
to compute the probability that a given parameter set adequately simu-
lates the observed system behavior. Furthermore, it was suggested by
Freer et al. [33] that the GLUE technique should be expanded to include
the uncertainties associated with different rainfall inputs. Extension of the
GLUE provides a consistent methodology to independently evaluate the
hydrologic response to each input.
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Georgakakos [37] expressed the need of future research in the context
of short-term hydrologic forecasting with QPF driven distributed hydro-
logic models which include:

a. Development of high-resolution reliable QPF, especially in moun-
tainous areas.

b. Sensitivity analysis of distributed models with operational data to
assess the relative importance of parameter uncertainty and QPF
hydrologic models that include characterization of the errors in
distributed QPFs.

2.2 PHYSICALLY-BASED DISTRIBUTED HYDROLOGIC MODELS

The term physics-based model means that conservation of mass in combi-
nation with momentum and/or energy is employed to compute hydrologic
fluxes. Vieux and Moreda [125] indicated that the goal of distributed mod-
eling of streamflow is to better represent the spatial-temporal characteris-
tics of a watershed governing the transformation of rainfall into runoff that
relies on conservation equations for the routing of runoff though a distrib-
uted representation of a watershed.

The term “physics-based or physically based distributed (PBD) models”
includes such models as Vflo [122]; Vieux et al. [119, 122]; CASC2D [55,
56, 74]; Systeme Hydrologique European (SHE) [1, 2] and the Distributed
Hydrology Soil Vegetation Model (DHSVM) [141]. PBD models are well
suited to simulating specific events at locations where streamflow records
may not exist.

Conceptual rainfall-runoff (CRR) models simulate runoff generation by
a variety of conceptual parameters and route the runoff using unit hydro-
graphs to an outlet. CRR models are inherently nonphysics based and lump
parameters at the basin or subbasin level. CRR models include Precipitation-
Runoff Modeling System (PRMS) by Leavesley et al. [59], the Sacramento
Soil Moisture Accounting Model (SAC-SMA) [21], and the HEC-HMS
model (Hydrologic Engineering Center) [53, 54]. CRR models differ from
event-based models, simulating continuous cycles of rainfall and runoff.
The CRR models breakdown the hydrologic cycle into a series of reservoirs
that represent physical phenomena such as infiltration, runoff, etc. [125].
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Physics-based models use conservation of mass, momentum, and
energy equations to represent hydrologic processes, whereas conceptual
models use empirical relationships together with buckets to represent
component processes. Moore and Grayson [68] described an array of
physics-based models that capitalize on digital models of elevation, GIS
and remotely sensed (GIS/RS) geospatial data.

The model used in this research is a fully distributed, physics-based
hydrologic model named Vflo [124, 127] that derives its parameters from
soil properties, land use/cover, topography, and can obtain input from
radar or multisensor precipitation estimates. Vflo incorporates routing of
unsteady flow though channel and overland elements comprising a drain-
age network.

The following Vflo description and mathematical formulation was
obtained (in some cases verbatim) from Vieux and Vieux [125], who
stated that the model uses the kinematic wave analogy (KWA). The KWA
has better applicability where the principal gradient is the land surface
slope. Thus in almost all watersheds except for very flat areas, the KWA
may be used. The simplified momentum equation and the continuity equa-
tion comprise the KWA. One-dimensional continuity for overland flow
resulting from rainfall excess is expressed by:

oh sk _p o
ot Ox

where, R is rainfall rate; / is infiltration rate; 4 is flow depth; u is overland

flow velocity; ¢ is the time and x is the distance.

In the KWA, the bed slope is equated with the friction gradient. In open
channel hydraulics, this amounts to the uniform flow assumption. Using
this fact together with an appropriate relation between velocity, u (m/s),
and flow depth, /# (m), such as the Manning equation, we obtain the veloc-
ity for very wide-open channel and metric system:
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where, § (m/m) is the bed slope or principal land surface slope, and 7 is
the hydraulic roughness called Manning’s coefficient.

Velocity and flow depth depend on the land surface slope and the fric-
tion induced by the hydraulic roughness. For channel flow, Eq. (2) is writ-
ten with the cross-sectional area A instead of the flow depth 4:

S 9o (4)
s &

where, O (m?/s) is the discharge or flow rate in the channel, and ¢ is the
rate of lateral inflow per unit length in the channel. Combining Egs. (3)
and (4), we get:
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where, the three scalars a, y and £ are the multipliers for the values con-
tained in the spatially variable parameter maps according to the Ordered
Physics-based Parameter Adjustment (OPPA) calibration method.
Differential application of the roughness scalars (fn) to channel and over-
land are used (fc for channel and fo for overland).

Overland flow is modeled with Egs. (2) and (3), and channel flow with
Eq. (4), and appropriate form of the Manning uniform flow relation in
Eq. (4) using the finite element method.

Digital maps of soils, land use, topography and rainfall rates are used to
compute and route rainfall excess though a network formulation based on
the Finite Element Method (FEM) computational scheme described
by Vieux [116] and Vieux et al. [117]. Special treatment is required to
achieve a FEM solution to the KWA over a surface with spatially varying
roughness, slope, or other parameters. Vieux et al. [117] presented such
a solution using nodal values of parameters in a finite element solution.
This method effectively treats changes in parameter values by interpolat-
ing nodal values across finite elements.

Vieux [122] and Vieux et al. [119] described the development of a
rainfall-runoff model based on a drainage network comprised of finite
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elements. The advantage of this approach is that the kinematic wave
analogy can be applied to a spatially variable surface without numerical
difficulty introduced by the shocks caused by noncontinuous parameter
variation that would otherwise propagate though the system. The finite
element methodology results in execution times that are fast enough to
allow real-time computation before the next radar update.

Accounting for unsteady flow in mild slopes, Vflo allows a looped rat-
ing curve for channel elements. Essentially, the acceleration (deceleration)
induced by the rising (falling) limb of the hydrograph is accounted for
though the Jones Formula [52]. In mild slope hydraulic conditions, looped
rating curves may cause important effects when maximum flow rate is
observed. Vflo incorporates both distributed runoff generation, and routing
of unsteady flow though channel and overland elements [125].

Vieux and Bedient [121, 124] used spatial resolution of radar rainfall
as input to a distributed model which affected prediction error. Also, Vieux
and Imgarten [132] studied the scale-dependent propagation of hydro-
logic uncertainty using high-resolution X-band radar rainfall estimates
for watershed areas less than about 20 km?. Results of experiments using
historical radar events and including the tropical storm Allison indicated
that accurate rainfall-runoff predictions in real time are possible and use-
ful for site-specific forecast in Houston, TX. They found that the achiev-
able model accuracy with radar bias correction was approximately a mean
absolute percentage error of 11.8% in peak discharge, 11.1% in runoff
depth and average difference in arrival times of 12 min at the Main Street
gauge with a drainage area of 260 km?.

The complex interaction of input with drainage network presents chal-
lenges to the design of storm-water drainage infrastructure, the manage-
ment of flooding, flood mitigation, and real-time forecasting of multiscale
urban drainage systems with multiscale inputs [131].

2.3 CALIBRATION PROCESS
2.3.1 SENSITIVITY ANALYSIS

The classification of the sensitivity analysis methods refers to the way that
the parameters are treated. Local techniques concentrate on estimating the
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local impact of a parameter on the model output. This approach means that
the analysis focuses on the impact of changes in a certain parameter value
(mean, default or optimum value). Opposed to this, global techniques ana-
lyze the whole parameter space at once. Global sampling methods scan
in a random or systematic way the entire range of possible parameter val-
ues and possible parameter sets. The sampled parameter sets can give the
user a good idea of the importance of each parameter. These in turn can
be used to quantify the global parameter sensitivity or the uncertainty of
parameters and outputs.

2.3.2 CALIBRATION OF DISTRIBUTED MODELS

Vieux and Moreda [126] developed an OPPA procedure for a distributed
model. The OPPA calibration process involves estimating the spatially
distributed parameters from physical properties, assign channel hydraulic
properties based on measured cross-sections, study the sensitivity of each
parameter, and find the optimum parameter set that minimizes the respec-
tive objective function. Runoff depth should be adjusted first, followed
by timing and peak flow and readjust hydraulic conductivity if necessary
to account for changes in infiltration opportunity time. The Vflo model
does not simulate base flow directly, only direct runoff. It can be taken
in account by assigning a fixed value to channel cells for one simulated
event. For long-term analysis, it is necessary to quantify the base flow
using known methodologies [43, 94] and subtract it from the observed
hydrograph to compare with direct runoff simulated by the Vflo model.

The agreement between the observed and simulated runoff depth, time
to peak and peak flow may be expressed in terms of a bias or spread. The
bias indicates systematic over or under prediction. The departure, whether
expressed as an average difference, percentage error, coefficient of deter-
mination, or as a root-mean-square error, serves as a measure of the pre-
diction accuracy.

McMichael et al. [66] calibrated a distributed physically based hydro-
logic model (MIKE-SHE) in California and estimated uncertainty. They
used the GLUE methodology for model calibration, testing and predic-
tive uncertainty for estimating monthly streamflow. The catchment in
Central California was 34 km? in area and the model grid size was fixed at
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270 x 270 m?. The Monte Carlo simulation was used to randomly generate
one thousand parameters sets for a 20-year calibration period encompass-
ing variable climatic and wildfire conditions. Many studies have demon-
strated the difficulties that arise in identifying, calibrating and validating
physically based hydrologic models. Such difficulties stem from uncer-
tainties in model structure, boundary conditions, and catchment param-
eterization, as well as errors in inputs and observed variables.

The GLUE methodology [14, 15] explicitly recognizes the coexis-
tence of alternative parameter set and models and it provides a suitable
framework for model calibration and uncertainty estimation under nonu-
niqueness. The nonuniqueness recognizes the existence of several set of
parameters and structures that would produce good agreement with the
observed data, and satisfy the calibration. With the limited measurements
available and the application of a distributed hydrological model it may not
be possible to identify an optimal model. Implementing GLUE requires
making Monte Carlo simulations using a large number of parameter sets,
assessing the relative performance of each set by comparing model esti-
mates with observed data, and retaining only those parameter sets that pro-
vide behavioral (acceptable) predictions. The relative performance of each
parameter set is evaluated on the basis of a likelihood measure calculated
by comparing model predictions with observed data. A parameter set is
classified as behavioral if the corresponding likelihood value is equal to or
greater than a specified threshold value. Parameters sets that do not meet
this criterion are rejected as nonbehavioral.

The final step in the GLUE procedure is to establish predictive uncer-
tainty bounds for comparison with observed values. First, the set of behav-
ioral likelihood values is rescaled to archive a cumulative sum of unity by
dividing each value by the sum of the likelihood values. Next, behavioral
model predictions for each time step are ranked in ascending order and
each prediction is assigned to a user-specified bin. The rescaled likelihood
values associated with the ranked predictions in each bin are summed to
calculate the height of the corresponding bar in the density plot. A cumu-
lative density plot is constructed by graphing the cumulative sum of the
likelihood values versus the ranked model predictions. Typically, the Sth
and 95th percentiles calculated at each time step are used to calculate the
predictive uncertainty bounds over the period of observations. The GLUE
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based prediction limits the capture of uncertainly in model output associ-
ated with uncertainly in model parameterization.

GLUE provides a useful modeling approach for advancing beyond
globally optimized, unique, parameter sets. Working within a framework of
Monte Carlo-generated parameters sets allows modelers to explicitly rec-
ognize and quantify the effects of uncertainties on model prediction [66].

Sahho et al. [84] performed a calibration and validation of MIKE SHE
in a flashy mountainous Hawaii stream. The model was calibrated with
a single hydraulic conductivity value and produced consistent results
with correlation coefficients greater than 0.7. In the sensitive analysis the
Manning’s roughness coefficient and the hydraulic conductivities (vertical
and horizontal) of the saturated zone had the most pronounced effects in
determining the shape of the flood’s peaks.

Griensven et al. [41] made a global sensitivity analysis tool for the
parameters of multivariable catchment models. An analysis of Monte Carlo
simulations was conducted with statistical methods such as Kolmogorov—
Smirnov (K-S) test [100] or with the computation of regression and correla-
tion based sensitivity measures to define whether a parameter is sensitive
[98]. An advantage of the method is the logical combination of calibration,
identifiable analysis, and sensitivity and uncertainty analysis within a single
modeling framework [113]. The method can be applied to problems with
absolutely no probabilistic content as well as to those with inherent probabi-
listic structure. It has been widely used in catchment modeling, for assessing
parameter uncertainty and input uncertainty, e.g., for rainfall variability.

The Monte Carlo method provides approximate solutions to a variety of
mathematical problems by performing statistical sampling experiments on
a computer [31]. This method performs sampling from a possible range of
the input parameter values followed by model evaluations for the sampled
values. An essential component of every Monte Carlo experiment is the
generation of random samples. Techniques, such as the Latin — hypercube
methodology, are also available for minimizing the number of required
runs to reproduce the selected probability distributions of the input datas-
ets [46]. These generating methods produce samples drawn from a speci-
fied distribution (typically a uniform distribution). The random numbers
from this distribution are then used to transform model parameters accord-
ing to some predetermined transformation equation.
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2.4 FLOOD PREDICTION

In an attempt to determine flood occurrence, Birikundavyi et al. [16] used
two approaches commonly used for the probabilistic analysis of extreme
flood magnitudes that are based on the annual maximum series (AMS)
and the partial duration series (PDS). In the AMS approach the highest
flood peak in the year is used, while in the PDS approach all those events
that exceed a specified value are used. In the study, the Poisson distri-
bution and generalized Pareto distribution (GPD) were used to describe
the occurrence of flood and the flood magnitudes. Two neighboring flood
peaks were independent if (1) they are separated by at least seven days and
(2) the flow between them drops below 50% of the smaller peak.

In the Brays Bayou watershed (334 km?) in south-west Houston Texas,
Bedient et al. [10] developed a flood warning system using radar-based rain-
fall (NEXRAD) and delivery systems on the internet. During 1950—-1960
the Army Corps of Engineers constructed a concrete and rip-rap lined chan-
nel to contain a greater than 100-years storm event with bankfull capacity,
currently the same channel only can contain the 10 year design level due to
increased urbanization. In this system HEC-1 is used to predict the flow at
different interest points with known rainfall distribution and the results are
modeled in HEC-2 to determine the maximum height of water in the chan-
nel. These two models are often used together for flood prediction and are
the basis for calculating the Flood Alert System monograph used to trans-
late rainfall rates into peak flow and levels. After, generating the system
monograph, calibration was conducted with hypothetical storms.

The HCOEM ALERT (Harris County Office of Emergency Management
Automated Local Evaluation in Real-Time) exists within the Brays Bayou
watershed with a high density of rainfall and flow gauges available real
time via the internet [10, 11, 50]. Data received from these gauges can be
used to predict possible flooding conditions and were used to calibrate the
watershed HEC-1 model.

NEXRAD used with GIS can calculate the rainfall rates within the
subwatersheds and to estimate rainfall rates from approaching storms and
visualize the development of the storm. These are powerful tools for storm
prediction and flood alert. Bedient et al. [10, 129] reported an excellent
accuracy using HEC-1 and NEXRAD in several storms. However, the
NEXRAD data was only used to track the storm.
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Currently, the next generation flood alert system (FAS2) started its
operation in 2004 with more than 30 storm events [30]. FAS2 uses avail-
able radar (NEXRAD) data coupled with real-time hydrologic model-
ing, and provides visual and quantitative identification of severe storms
producing heavy rainfall, as well as a linkage between the rainfall and
likelihood of flooding. The accuracy of the current FAS2 is adequate for
regional events over a large basin (129 mi?), but is lacking for events where
the regional/local scale interactions, local scale precipitation, infiltration
losses, or local hydraulics are important.

In the CASA Annual Report year 3, Volume 11 [22], three projects were
cited that are in development which are employing state-of-the-art tech-
niques. In the S22 project, it uses rainfall data derived from radar images
to run real-time, physically based distributed models for flood prediction
and generation of flooding maps. This project explores the drainage den-
sity in an urban area, because it has been demonstrated in FAS that a small
urban watershed could not predict flow with sufficient accuracy with the
current Vflo model, when the area was classified as overland flow.

Project S23 is concerned with testing different QPE resolutions derived
from radar and the impact in flow at different basin scales with the same
grid size resolution. Project S24 is developing a Vflo model that incor-
porates a secondary drainage system and evaluating the methodology in
Harris Gully (FAS’s urbanized watershed). A distributed pipe network
linked to topography is a unique combination of new urban hydrologic
models. All these projects are guided to enhance the accuracy in flood
prediction especially at small watershed scales.

Making predictions in real-time with a hydraulic model is difficult
because of inaccuracies in model parameters, rainfall input inaccuracy, or
unknown upstream flow rates. Real-time systems for mapping expected
areas of inundation require input of flow rates from other sources to gener-
ate inundated areas using sophisticated 2-D hydrodynamic models [140].
Even the inflow between river gauging stations requires some model esti-
mation of watershed response in the intervening areas. Upstream gaug-
ing points and rainfall-runoff models are viable sources of real-time flow
information. Both lumped and physics-based distributed rainfall-runoff
models may be used for this purpose [11].

Georgakakos [36] studied the theoretical basis of developing operational
flash flood guidance systems using analytical methods. The Sacramento
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soil moisture accounting model is used operationally in the United States to
produce flash flood guidance estimates of a given duration from threshold
runoff estimates. The study attempted to: (a) shed light on the properties of
this model’s short-term surface runoff predictions under substantial rainfall
forcing; (b) facilitate flash flood computations in real time.

Various characteristics of the flash flood guidance to threshold runoff
relationship are discussed and considerations for real-time application are
offered. Uncertainty analysis of the threshold runoff to flash flood guid-
ance transformation is also performed.

Vieux et al. [127] in collaboration with Taiwan government agen-
cies and the United States Government began a program initiative for the
research and development of a flood alert and water resources management
system to unify monitoring and prediction of floods within a single system
in Taiwan. Enhancing the accuracy and efficiency of information dissemi-
nated from the central government to the public, and to regional and local
water management and emergency response agencies is the major goal of
this project. A limited sensitivity analysis was conducted. Knowing which
parameters generate a greater response in stage or discharge; helps to iden-
tify where efforts should be expended to improve parameter specification.

Vieux et al. [123, 124] developed a proposal for Arizona State to use
a sophisticated hydrologic modeling approach coupled with QPe-SUMS.
This model can help to: (1) manage reservoir operations, (2) minimize
losses though spills, and (3) predict flood levels in selected basins. The
authors emphasize the need to perform a flood hazard analysis a priori to
the modeling.

The U.S. Army Corps of Engineers [104, 105] define the maximum
potential warning time, as the response time after initiation of the flood-
producing rainfall and is related to the arrival time of the peak stage or dis-
charge, and is the interval during which mitigating responses can reduce
property damage, loss of life, or business interruption.
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3.1 INTRODUCTION

In this research study, the configuration for the MBDB model was devel-
oped using available data for soils, land use, digital elevation models and
field measurements. This model will be used for uncertainty analysis,
rainfall tests and posterior flood alarm predictions (not addressed in this
research). Therefore, the TBSW model set up was conducted by extracting
data from the MBDB model. A slope analysis was developed according to
an aggregation method to be used in the up-scaling experiment, without
loss of slope information for mountainous subwatersheds. Additionally, an
evaluation between different evapotranspiration methods was developed
to quantify the uncertainty associated with this term.

The hydrologic model used in this study is Vflo [127], which is capable
of ingesting distributed radar rainfall data. Vflo is a finite element model
and the equations are used to solve overland and channel flow.

The configuration of the proposed physically based distributed model
used in this study was based on products described for the Mayagiiez Bay
Watershed and TBSW as well, such as soils, land use and digital eleva-
tion model maps. Generally, to create both high-resolution models, it is
necessary to derive the topographic characteristics from a digital elevation
model with high-resolution. For this purposes we used the digital eleva-
tion model quadrangles derived from the base map data of the “Center
for Municipal Tax Revenues of Puerto Rico” by its acronym in Spanish
[25: xyz mass points, ridgelines, road cuts, and hydrographic features].
The CRIM data were collected by AEROMETRIC, Inc. Ground control
eastings, northings and elevations were surveyed by RLDA Surveying and
Mapping of San Juan, Puerto Rico. The elevation maps were developed
by photo-triangulation with a root mean square error of ground-control
residuals of 0.6 m for vertical control elevation coordinates and root mean
square error of airborne-GPS exposure-station residuals of 0.184 m for
vertical control elevation coordinates.

Most of the input data for the Vflo model was prepared using ArcGIS
9.3 and Arc Hydro Tools. The basin and river characteristics were extracted
from the 7.5-minutes series topographic maps from USGS, 30 m x 30 m?
digital elevation model (DEM) quadrangles and from the digital elevation
model at 10 m spatial resolution from CRIM.
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The Green Ampt infiltration model is used by the distributed hydro-
logical model to calculate the initial abstractions due to infiltration and
runoff produced by rainfall. The parameters are derived from soil char-
acteristics assigned to the SSURGO soil classification maps, digitally
available (Figure 3.3). Values of soil suction at wetting front (), satu-
rated hydraulic conductivity (K), effective porosity, soil depth and initial
degree of soil saturation (¢) were obtained from the literature [94, 132,
133], field measurements [USDA, 106—109] and computations using the
percent of sand and clay, soil bulk density and percent of organic matter
in combination with the Soil Water Characteristics Hydraulic Properties
Calculator [85].

Vflo also requires soil depth (cm), initial abstraction (cm) and percent-
age of impervious area. Required channel data include base flow, rough-
ness (Manning’s n), channel and side slopes, and the infiltration parameters
mentioned above. Overland flow properties include flow direction, over-
land slope and infiltration parameters.

3.2 STUDY AREA
3.2.1 MAYAGUEZ BAY DRAINAGE BASIN STUDY AREA

The study area is located in the region of western Puerto Rico and has
819.1 km?. The area includes three principal courses: Rio Grande de
Anasco, Rio Guanajibo and Rio Yagiiez. Numerous hydrologic and
hydraulic studies by the US Geological Survey (USGS) and the University
of Puerto Rico have been conducted in this area [75, 82, 94, 135].

The area encompasses the municipalities of Mayagiiez, Anasco,
Las Marias, San Sebastidn, Lares, Maricao, Yauco, Adjuntas, Sabana
Grande, Cabo Rojo, San German and Hormigueros. Of these municipali-
ties, Mayagliez has the highest population (89,080 habitants), followed
by Cabo Rojo (50,917 habitants). The lowest population density is for
Maricao with 6,276 habitants, according to the U.S. Census Bureau [103].
Changes in elevation vary from zero meters mean sea level in the coastal
areas to 960 m in the mountainous areas, producing abrupt slope changes
in short distances (Figure 3.1).
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FIGURE 3.1 Digital Elevation Model (DEM); Rio Guanajibo, Yagiiez, and Grande de

Afasco watersheds, rain gauges and flow gauging stations.

3.2.2 THE RIO GRANDE DE ANASCO BASIN

The Rio Grande de Afiasco basin (Figure 3.1) has an area of 370.36 km?,
including the reservoir lakes, tributary areas and river, which has a length
of 64 km. Lakes Yahuecas, Prieto, Guayo and Toro were constructed
by the Puerto Rico Water Resources Authority (PRWRA), presently the
Puerto Rico Electric Power Authority, during the decade of the 50°s. These
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were constructed to supply water to the Luchetti Lake for energy produc-
tion and irrigation. According to Figueroa et al. [35], the area above Lago
Guayo, Lago Yahuecas, and Lago Prieto dams contributes flow to the Rio
Grande de Afiasco only during high floods. For the purpose of the present
study it was assumed that the contribution of water from the Lago Guayo,
Lago Yahuecas, and Lago Prieto sub watersheds to the Afiasco watershed
downstream of the lakes is not significant for regional water budget esti-
mation [75]. Therefore, those sub watersheds were not included as part of
the Anasco watershed in this study. The total lake drainage area is about
116.55 km? and was used as a boundary condition in the model.

The coastal plain associated with Rio Grande de Afiasco basin is char-
acterized by an alluvial fan having an area of 41.5 km? and 0.08% aver-
age slope. The alluvial fan has a length of 15.6 km reaching a width of
8.8 kilometers at the coast shore [82].

According to FEMA [32], the estimated 100 years return period flood
flows was 5,130 m*/s (cms) and 3,797 cms for 50 years return period at
the river’s mouth. At USGS gauge No. 50144000 Rio Grande de Afasco
near San Sebastian, these were reported to be 4,078 cms for 100 years and
3,278 cms for 50 years return period. The major flood measured in that sta-
tion was for Hurricane Georges in September 22, 1998, reporting a stage
of 10.52 m (34.5 ft.) and peak flow of 4,587 cms, followed by Hurricane
Eloise in September 16, 1975 with a stage of 10.33 m (33.9 ft.) and peak
flow of 3,964 cms.

The station has different flood categories; the flood stage is 3.35 m
(11 feet): a stage greater than 4.27 m (14 ft.) is a moderate flood and stages
greater than 5.59 m (19 ft.) are categorized as major floods. The station
shows that the river had been flooded in 30 one times since 1963 according
to the records [73].

The Federal Emergency Management Agency (FEMA) performed
a Flood Insurance Study (FIS) for the Commonwealth of Puerto Rico [32]
in which regulatory peak flow values for the study basins were established.
The Rio Grande de Anasco FIS presents the magnitude and frequency of
floods in accordance with the application of the U.S. Geological Service
(USGS) regression equations for estimating peak flow on stream in Puerto
Rico [111]. This report presented regression equations developed from
gages sites having 10 to 43 years of records that can be used to estimate
peak flows at ungagged sites or gaged sites with short periods of records.
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The equations used the mean annual rainfall (MAR), the contributing
drainage area (CDA) and the depth to rock (DR), as variables that govern
the peak streamflow. The MAR was obtained from the Puerto Rico 1971—
2000 Mean Annual Precipitation map developed by NOAA [72], with the
variations of rainfall across Puerto Rico calculated.

3.2.3 THE RIO GUANAJIBO BASIN

The Rio Guanajibo basin (see Figure 3.1) has an area of 328.9 km? and 38 km
river length. The topography of the area is diverse, including mountains, foot-
hills, and valleys. The predominant rocks in this area are serpentine and vol-
canic-related. The main tributaries are Rio Rosario, Rio Dagiiey, Rio Cain,
Rio Cupeyes, Rio Cruces, Rio Loco, and Rio Viejo, and to the south exists
relatively small tributaries. Major floods have been monitored in this basin
since 1974, with the largest flood registered occurring in September 16, 1975
(Hurricane Eloise) with a reported peak flow 0f 3,625 cms and 8.7 m (28.54 ft.)
stage elevation at the USGS 50138000 Rio Guanajibo near Hormigueros sta-
tion. In this location FEMA calculated a flow of 5,343 cms and 5,745 cms at
the river’s mouth for the 100 year return period. The 50 years return period
flows were 3,637 at USGS station (50138000) and 3,896 cms at mouth [32].

The station has different flood categories; flood stage greater than 7.93 m
(26 ft.) is categorized as a major flood, 6.7 m (22 ft.) is a moderate flood
stage, 6.1 m (20 ft.) is the flood stage and at 4.88 m (16 ft.) is the stage at
which action is required. The area had been flooded 20-four times since 1974
according to the records [73]. The percent annual chance recurrence intervals
were developed using rainfall-frequency relationships presented in Technical
Paper 42 (U.S. Department of Commerce, 1961) and an unit hydrograph was
carried out using the HEC-1 computer program [USACE, 104].

The Rio Rosario is a tributary of the Rio Guanajibo and the subwa-
tershed in this study is defined by the outlet point defined at the USGS
50136400 Rio Rosario near Hormigueros station.

3.2.4 THE RIO YAGUEZ BASIN

The Rio Yagiiez basin (see Figure 3.1) has an area of 35.48 km?, a river
length of 20 km with average slope from 0.004% to 0.025% for the
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channelized river section at city of Mayagiiez. Rio Yagiiez originates in
the western slopes of the Cordillera Central and flows westerly into the
Mayagiiez Bay. The drainage basin is narrow, having a length-width ratio
of approximately 10 to 1. In 1968, a flood protection project for the City of
Mayagiiez was initiated and the lower reach of the river was channelized to
protect the city from floods. The channel has a capacity of 326 cms, but the
maximum capacity of the channel at the PR Highway 2 Bridge is approxi-
mately 425 cms. To determine the discharges for the different percent
annual chance floods in the basin reported in the FIS [32], a regional flood-
frequency analysis [112] was used based on log-Pearson Type III analyzes
of individual station records and regionalization using multiple regression
techniques. The 100, 50 and 10-year return period flows at the mouth were
estimated to be 770 cms, 595 cms and 292 cms, respectively [32].
Currently there are only four flow gauge stations with precipitation
data and 2 river stage measurements (see Table 3.1 for the source and
data type details). Nine flow gauge stations operated by the United States
Geological Survey (USGS) exist within the study area (Figure 3.1):

* Three NOAA rain gauge stations;

* Two Soil Climate Analysis Network (SCAN) sites from the United
States Department of Agriculture (USDA) Natural Resources
Conservation Service (NRCS); and

* Four owner stations published at the underground web page
(http://www.wunderground.com/US/PR/) [138].

The climate in the area is tropical, with moderate temperatures year round,
and the mean high annual temperatures are 26.4 C in the mountains (Maricao
2SSW station) and 31.4 C in Mayagiiez City station (Table 3.2). Table 3.2
presents a summary of the mean monthly average air temperatures and rain-
fall for five locations within the study area. Puerto Rico has a bimodal rainfall
distribution in the wet season from April to November, with drier conditions
in June and July; and a dry season from December to March.

The mean annual precipitation varies greatly across the study area
due to the abrupt changes in elevation by the mountains causing wide
variation in local wind speed and direction, which results in a sea breeze
effect in the western area. Table 3.2 presents annual rainfall accumula-
tions from 2463.8 mm for Maricao Fish and 1743.96 mm for Mayagiiez
City stations.
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3.2.5 SOILS CLASSIFICATION

A soil map describing the textural or soil class distribution is necessary to
assign the values of the Green-Ampt infiltration parameters. The soil map
was obtained from the Soil Survey Geographic (SSURGO) database for
the Arecibo, Mayagiiez, Lajas Valley and Ponce areas [USDA, 106-110]
provided by the NRCS. Figures 3.2 and 3.3 depict the soil and textural
classes occurring within the study area. The soil textures in the study area
are: clay with 558.68 km? area, loam with 176.84 km? clay loam with
53.88 km?, sand with 14.28 km?, rock with 10.32 km? and gravel with
4.72 km?. The SSURGO database provides additional information for
each soil type, for example, bulk density, percent of sand and clay and
soil depth. The soils series with a major presence in the area are Consumo
(184.4 km?), Humatas (132.9 km?) and Mucara (78.9 km?). The three soil
types are classified clays for texture class, but have different infiltration
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FIGURE 3.2 Soil map distribution for the study area. Source: SSURGO database,
[USDA, 106-109].
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FIGURE 3.3 Soil texture for the study area, SSURGO map [USDA, 106-109].

capacities. Therefore, they are classified in the Hydrologic Soil Group as
B for Consumo, C for Humatas and D for Mucara.

3.2.6 LAND USE CLASSIFICATION

To conceptualize the hydrologic model, it is necessary to obtain land use
or land cover classes to assign roughness values and crop coefficients
according to the classes. A digital map of the forest type and land cover
was developed for Puerto Rico using LandSat enhanced Thematic images
at 30 m resolution [51], applying a supervised classification approach.
In total, 20-five classes were obtained from supervised classification
(Figure 3.4). Prieto [75] reclassified the detailed classification into six
major categories, grouping similar categories such as different forest
types, shrub land, woodland or shade coffee.

The final land use classification is shown in Figure 3.5 and exhibits the
predominant land use classification of forest, shub, wood land and shade



Flood Prediction Limitations in Small Watersheds 39

Forest and shrubland - Dry aod Dry/Moist
B Lowland dry semideciduous forest
[ Lowland dry semidecidnous woodland/shrubland

Forest - Wet, Rain, Lower montane Wet/Raln
B submontane and lower moatane wet evergreen scirophyllous forest

[ Submontane and lower montane wet evergreen sclerophylious forest/shrub

[ Lowiand dry/molst wixed evergy. drought-decid. with
- Lowland dry and moist, mixed seasonal evergreen sclerophyllous forest
Forest and shrubland - Moist and Moist/Wet

[ 1owland moist evergreen hemi-sclerophyllous shrubland

B 1. lund moist seasonal evergreen forest

- T.awlund moist sewsonal evergreen forestshrub

[ 1-owiand maist coconut palen forest

B 1 »'und moist semi-deciduous forest

[ 1owland moist semi-deciduvus forest/shrub

] Active sunfshade coffee, sub-flower montane wet forest/shrab, other agric.
[ sub-fower motaoe wet evergr. forest/sbrub, active/abandoned shade colfee
[ 1over montane wet evergreen forest - tall cloud forest

] ower montane wet evergreen forest - mixed palm and elfin cloud forest
[ 1ower montane wet evergreen forest - elfin cloud forest

Emergent Wetlaods

[ midaity floaded dv and forb

[ Other emergent wetlands (including seasonally flooded pasture)

Salt and mud fluts

B [o1and moist and wet seasonal evergreen and semi-deciduous forest

Lowland moist and wet seasonal wad semai-decid Agriculture and non-vegetated

porsms [ Pwsture [0 Quarrics and xalt mining
[ Ticanty and flooded phylious forest [ Asriculture/ay/pasture ] water

I Scasonally flooded evergreen forest - Urban and barren [ sand and rock

FIGURE 3.4 Map of Puerto Rico natural vegetation and land cover. (Reprinted from
Helmer, E. H., Ramos, O., Lopez, T. M., Quifidonez, M., & Diaz, W. (2002). Mapping
the forest type and land cover of Puerto Rico, a component of the Caribbean biodiversity
hotspot. Caribbean Journal of Science, 38(3/4), 165-183. With permission from the
University of Puerto Rico at Mayagiiez.)

coffee with an area of 529.16 km?, followed by pastures with an area
of 172.84 km? and Urban and barren land with 60.02 km?. Preliminary,
hydrologic model for the Mayagiiez Bay basin area was configured using
the Land use classification in Figure 3.5 provided by Prieto [75] and some
analysis were developed using this data.

The second source of land use classification was provided by Puerto
Rico Water Resources and Environmental Research Institute [PRWRERI,
76], who developed the project titled Land Use Classification of the
Mayagiiez Bay Watershed, (Rio Grande de Afiasco, Rio Yagiiez, and Rio
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FIGURE 3.5 Land use classification at 30 m resolution from LandSat ETM, 2000.
Source: Prieto, M. G., (2006). Development of a Regional Integrated Hydrologic Model
for a Tropical Watershed.Master of Science Thesis, University of Puerto Rico at Mayagiiez,
PR.

Guanajibo Watersheds), supported by the Puerto Rico Environmental
Quality Board (Figure 3.6). The sensor used for this classification was
LANDSAT-7-TM satellite image from 2004 with 30 m resolution for a
general land use classification with field visits verification as needed.
Thirty-five classes were found in this product, where the most important
area is covered by Forest low density (274.68 km?), fallow by Shrub and
brush rangeland (253.05 km?), Forest high density (183.20 km?) and Urban
or built-up land (103.71 km?).

3.2.7 TEST BED SUB WATERSHED

The test-bed subwatershed (TBSW) study area is located within the Rio
Grande de Afiasco Basin, more specifically in the Rio Cafas subwatershed
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FIGURE 3.6 Land use classification of the Mayagiiez Bay watershed, Source:
PRWRERI, (2004). Land Use Classification of the Mayagiiez Bay Watershed, Rio Grande
de Afiasco, Rio Yagiiez, and Rio Guanajibo Watersheds. Puerto Rico Water Resources
and Environmental Research Institute (PRWRERI). Developed for the Puerto Rico
Environmental Quality Board.

(Figure 3.6). In this study, the TBSW with an area of 3.55 km? is char-
acterized and used for analysis purposes as a “field laboratory” to test
the scale influence in the hydrologic prediction. The terrain elevation
within the TBSW varies from 25.4 m (above mean sea level, amsl) to
305.7 m amsl, [25] (Figure 3.7). The area is characterized with large
terrain elevation changes over small distances, with slopes varying from
0.265% to 91.96% (39.03% average slope). Therefore, the study area is
classified as a mountainous sub watershed which is very typical of the
Puerto Rican upland sub watersheds. Prior to this investigation, no rain
or flow gauges were present within the area. Figure 3.7 shows the TBSW
location within the Mayagiiez Bay model, the color contoured terrain
map and the rain gauge network installed and used in the study area for
this research.
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FIGURE 3.7 TBSW location within the 4 x 4 km? NEXRAD pixel and rain gauge
network.

3.3 FLOW DIRECTION AND STREAM DEFINITION

For MBDB, the model comprises the Rio Grande de Afiasco, Rio Guanajibo
and Rio Yaguez watersheds. Overland slope, flow direction, and stream
locations were determined from the USGS 30 x 30 m? digital elevation
model (DEM) quadrangles and resized to 200 m spatial resolution. During
this step, the streams were “burned” into the model grid using a multistep
process in ArcGIS, in which the flow direction is forced to follow the riv-
ers. This step is necessary because the flow direction calculation tends not
to be accurate in low slope areas (e.g., floodplains of the rivers). The final
resized digital elevation model has correct flow direction based on the
hydrological maps of the topographic quadrangles.

The flow direction and subsequent products were calculated with Arc
Hydro Tools and ArcGIS 9.3. A flow direction map is necessary to calcu-
late the flow accumulation map and create the stream network map. The
flow accumulation is an accounting of cells contributing flow to a selected
observation point, increasing the contributory area for observation points
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located further downstream. A cell located at the watershed outlet has the
total cell number that drain to this point. The stream definition required
90 cells of flow accumulation to begin a channel. The river grid generated
was used to define the channel cells in Vflo (Figure 3.8).

The TBSW model was developed using the same procedure described
above but using the 10 m DEM [25]. The flow direction and stream defini-
tion were used to define the overland and channel cells respectively; based
on the sub watershed delineation and river definition shown in Figure 3.7.

3.4 CHANNEL GEOMETRY

Channel geometry in the hydrologic model is necessary for the channel
cells or cross section cells in the model and includes the sides slopes, cross
sectional data or base width for trapezoidal assumption and channel slope.
The geometry would affect the flow response, increasing the stages for
narrow rivers and decreasing stages for wide rivers, principally due to the

1 1199.31

:-13.8397

FIGURE 3.8 Flow accumulation and stream definition for Rio Grande de Afiasco, Rio
Guanajibo and Yagiiez basin model.
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storage. MBDB is not characterized by large width variations over short
distances; typically widths are within the range of 3—5 m for upland riv-
ers and creeks and up to 32 m for low lands according to measurement
samples in aerial photos taken December, 2006 (Google Earth) over the
study area.

The channel slide slopes were assumed to be 1:1 for the streams where no
cross section information was available. The stream geometry was defined
with data collected in 2002 by the PRWRERI [76, 135]. At Rio Grande de
Afasco, 25 cross sections were measured along the river; 10 cross sections
were surveyed in Rio Guanajibo, located downstream of PR-114 and in Rio
Yagiiez only four cross sections were measured upstream of the channel-
ized section. To define the flood plain within the cross sections, an extend-
ing process was made using the digital terrain model (10 m resolution) and
creating interpolation lines to extract the entire cross section and new cross
sections. Additional cross sections were extracted from DEM (10 m resolu-
tion) to characterize the flood plain where no field cross sections were sur-
veyed and a simple trapezoidal river section was used measuring the river
width from 2006 aerial photos of Google Earth, 2006 and the side slope set
to 1:1. Figure 3.9 shows the locations of cross sections extracted from the
DEM for the Rio Guanajibo and Rio Grande de Anasco. The channel slope
was determined using the stream definition raster layer (Figure 3.8) and
the slope map calculated with the DEM at 10 m resolution for the stream
reaches where no survey data was available.

The stream map generated with the DEM at 10 m resolution was used
to define the channel cells in Vflo for the TBSW model; channel side slopes
were assumed to be 1:1; and bed channel width was set to 5 m. In most
of the river sections (measured from Google Earth), the channel width is
about 5 to 10 m, supposing bed width is about 4 to 8 m. Streamflow and
flow volume are not sensitive to bed width; however, the stream stage is
sensitive to bed width according to some tests realized.

3.5 STAGE AND RATING CURVE FOR THE TBSW CREEK

A pressure transducer was installed at the TBSW outlet to collect flow
stage measurements every 5 min from October 20, 2007 to May 2009. The
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FIGURE 3.9 Cross sections surveyed and interpolated for Mayagiiez Bay model.

instrument was located at 18.232667° latitude; —67.119533° longitude and
elevation of 25 m amsl (see Figure 3.11). Daily minimum barometric pres-
sures were used to correct the factory calibrated stage measurements using
the Miradero KPRMAYAG]1 weather station (18.2° north latitude, 67.13°
west longitude and elevation of 22.86 meter above mean sea level), avail-
able at www.weatherunderground.com. The average adjusted stage value
was calculated in 0.847 m with 0.0225 m standard deviation. This value
was using the minimum pressure measured at Miradero KPRMAYAGI.
Stream cross-sections and bed slopes were measured in the field
(Figure 3.10) and the rating curve was generated using HEC-RAS 4.0
hydraulic model [Hydrologic Engineering Center, 53] with 3 cross sec-
tions and slopes observed. The downstream boundary condition was
assigned as critical depth and flows were assigned with subcritical flow
condition. The full bank stream-rating curve was fitted to the following
third order polynomial equation (Eq. 1) with a regression coefficient of 1,
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FIGURE 3.10 Cross section measured at the instrumentation place and rating curve to
full bank condition.

FIGURE 3.11 Principal channel bed at TBSW (right) and location of the pressure
transducer (left).

where flow is in cubic meters per second and stage in meters. The Eq. (1)
was used to convert stage elevations to flow discharge for the events.

Flow =-0.631 stage® + 5.633 stage* + 0.003 stage — 0.0631 (1)

To setup the distributed model at TBSW, information was assigned
to selected model cells corresponding to the principal stream channel.
The bed channel slopes for the TBSW model were assigned by segments
using the average longitudinal slope between cross sections digitized from
the DEM (10 m) and corroborated with field measurements. Figure 3.11
shows pictures of the outlet section and the pressure transducer location.
The TBSW creek was divided in three creeks (Figure 3.12). The Lower
Creek has a longitudinal average slope of 1.25% and Upper Creek has
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FIGURE 3.12 TBSW hydrologic model configuration (Vflo) and identification of the
river reaches.

2.22%. Upper Creek 2 is shown in Figure 3.12 and was divided into two
segments, the upstream segment shows a slope of 11.27% and the down-
stream segment is 3.27%. Figure 3.12 shows the Vflo model with the chan-
nel and overland cells at 10 m resolution and the locations of the creeks
named above.

3.6 SLOPE ANALYSIS

Land surface slope is another important source of uncertainty in hydro-
logic modeling. High (low) slopes affect the time to peak producing early
(retarded) peaks, less (more) infiltration, increasing (decreasing) discharge
volume and increasing (decreasing) peaks. The average and standard devi-
ation of the slope for Rio Grande de Afiasco basin were 34.6% and 21.7%
respectively; for Rio Guanajibo basin 28.2% and 22.4%, respectively; for
Rio Yagiiez 29.8% and 18.0%, respectively; and for TBSW were 31.0%
and 14.9%, respectively, calculated with the DEM at 10 m resolution.
Figure 3.13 and Table 3.3 show the subwatershed map and the average
land surface slope values and standard deviation for each watershed and
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subwatersheds for MBDB area. In total, 24 subwatersheds were identified
for the most important tributary rivers and coastal areas, the majority of
those exhibiting high slopes and similar conditions to the TBSW, indicat-
ing that the TBSW could be a representative sample of the MBDB, in
terms of the slope parameter.

Maintaining the land surface slope values when resampling tech-
niques are used would improve the flow prediction at larger terrain scales.
A method to calculate slope at different grid size resolutions was inves-
tigated without decreasing of slope. Different methods can be applied to
calculate the resampled slope while the up scaling is being done. The slope
up-scaling was performed using two methods and three resample tech-
niques for the TBSW model using ArcGIS 9.3. The TBSW presents an
average slope of 31.03% with a standard deviation of 14.93%.

To verify the results and obtain a box plot of the change and degra-
dation in slope using Method 1, a slope analysis was developed for the
MBDB model (Figure 3.13). The results show the same degradation of
the mean slope (dashed lines: Figure 3.16) using Method 1 and the nearest

SUB WATERSHEDS

[ Cano La Puente I Rio Grande

[ ] Coastal Watersheds North and South of Rio Guanajibo mouth 7] Rio Grande de Anasco at mouth
I Coastal Watersheds of Rio Grande de Anasco mouth [ | Rio Guaba

[ ] Quebrada del Oro I Rio Guanajibo at mouth

I Rio Arenas [ Rio Hondo

I Rio Blanco I Rio Humata

[ Rio Cain I Rio Mayaguecillo

I Rio Canas I Rio Prieto below Dam

[ Rio Casey [] Rio Rosario

[ Rio Cruces [ Rio Viejo

[]Rio Cupeyes I Rio Yaguez

[ ] Rio Duey I Unnamed Coastal Watersheds West of Cano La Puente mouth

FIGURE 3.13 Sub Watersheds map belonging to MBDB.
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TABLE 3.3 Mean Land Surface Slope and Standard Deviation for the Subwatersheds

Watershed Sub Watershed Name Area Mean Standard
Name (km?) Slope Deviation
(%) (%)
Rio Grande Unnamed Coastal Watersheds West ~ 28.78 28.70 21.70
de Aflasco  of Cano La Puente mouth
Rio Humata 12.65 35.75 17.79
Cano La Puente 28.37 20.11 25.65
Rio Grande de Afiasco at mouth 101.91 32.30 20.85
Rio Arenas 15.41 28.72 14.57
Rio Casey 29.64 37.11 18.87
Rio Blanco 31.45 44.09 20.17
Coastal Watersheds of Rio Grande  18.13 7.39 10.69
de Afiasco mouth
Rio Mayaguecillo 18.11 37.81 17.75
Rio Cafias 38.00 26.72 16.10
Test Bed Sub-Watershed 3.56 31.03 14.93
Rio Guaba 83.20 46.06 19.38
Rio Prieto below Dam 43.31 41.51 18.43
Total area and average slope 448.95 34.60 21.67
Rio Yagiiez Quebrada del Oro 6.74 19.76 16.56
Rio Yagiiez 35.24 31.67 17.69
Total area and average slope 41.98 29.76 18.05
Rio Rio Rosario 62.15 38.02 20.59
Guanajibo 6141 Watersheds North and 2103 1192 1583
South of Rio Guanajibo mouth
Rio Hondo 12.52 25.49 17.06
Rio Guanajibo at mouth 81.35 17.81 17.07
Rio Duey 35.70 37.25 19.06
Rio Cain 21.13 39.02 17.99
Rio Grande 25.41 47.21 23.64
Rio Cruces 19.55 38.39 22.83
Rio Cupeyes 11.03 39.55 19.14
Rio Viejo 60.65 15.71 18.37
Total area and average slope 350.52 28.17 22.38
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FIGURE 3.14 Land Surface slope map for the TBSW, slope values in percent.
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FIGURE 3.15 Slope calculated for TBSW using different resample techniques.
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FIGURE 3.16 Slope box plots (quartiles 25 and 75) for the MBDB study area calculated
with Method 1 and nearest neighbor resample technique, mean slope (dashed lines),
quartiles 5 and 95 (solid lines) and outliers (dots).

neighbor resampling technique at DEM resolutions of 30, 50, 100, 150,
200, 300, 500 and 1000 m.

Figure 3.16 presents slope degradation in terms of the interquartile
25-95 (solid boxes), interquartile 5-95 (solid lines) and outliers (dots).
Figures 3.17 and 3.18 present spatial graphical representation of the slope
degradation using the two methods described above. The same interval
classes were chosen to represent the slope. Method 2 in Figure 3.18 pres-
ents much more area in red color than Method 1 in Figure 3.17, because
it presents more areas without degradation and slope values greater than
16%. Therefore, Method 2 is the recommended for up-scaling both the
slope of TBSW and Mayagiiez Basin model.

3.7 GREEN-AMPT INFILTRATION MODEL: PARAMETERS
ASSIGNMENT

The abstractions in the distributed hydrologic model are calculated with
the Green-Ampt infiltration model. The principal parameters are: saturated
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FIGURE 3.17 Visual comparisons between resample methods at 200 m resolution for the
MBDB model by Method 1.

hydraulic conductivity; effective porosity, soil depth, and wetting front.
Parameter values were assigned using the SSURGO maps and database
from the USDA [106-109], which contains the soil classes for Puerto
Rico. Initially, the soil map was classified into six basic textures and the
hydraulic conductivity, wetting front and effective porosity values were
assigned from literature as shown in Table 3.4 [9, 34, 65, 128]. Using
the Book Reference values of infiltration parameters from Table 3.4, aver-
age parameter values were calculated for the tributary area at the stream-
flow gauge stations, located in the watersheds. Average parameter values
in several flow meter stations are indicated in Table 4.

At Rio Grande de Anasco near San Sebastian for example, the aver-
age hydraulic conductivity is 0.05 cm/h, the wetting front is 28.29 cm,
the effective porosity is 0.364, and the soil depth assigned uniformly to the
basin area was 20 cm. A preliminary study was developed with the infiltra-
tion values shown in in Table 3.4.
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FIGURE 3.18 Visual comparisons between resample methods at 200 m resolution for the
MBDB model by Method 2.

The volume calculated was over predicted in almost all cases. Therefore
an exhaustive analysis was conducted to enhance the infiltration param-
eter values since the literature shows low hydraulic conductivity values
using the texture class approach. In Puerto Rico, the soils present high
organic matter content and some clays are well drained, and are con-
sidered as hydrologic group B, for example Alonso, Consumo, Delicias
and Maricao soils [SSURGO]. New values for hydraulic conductivity,
total porosity and effective porosity were obtained using the percentage
of sand, silt and clay and average bulk density from the SSURGO data-
base and Rosseta Lite program [86-90] from HYDRUS-1D [96]. Rosetta
implements pedotransfer functions to predict van Genuchten [114] water
retention parameters and saturated hydraulic conductivity (K ) by using
textural class, textural distribution, bulk density and one or two water
retention points as input. Rosetta follows a hierarchical approach to esti-
mate water retention and K values using limited or more extended sets
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TABLE 3.4 Summary of the Infiltration Values for the Green Ampt Model

Basin Soil texture  Effective  Wetting Hydraulic
porosity front (cm) conductivity
(cm/h)
Book reference Sand 0.42 4.95 11.78
Loam 0.43 8.89 0.34
Clay Loam 0.31 20.88 0.10
Clay 0.39 31.63 0.03
Gravel 0.24 1.5 2.27
Rock 0.17 1 0.036

Average Values over the Watersheds

Afasco near San Sebastian — 0.364 28.29 0.05
Guanajibo near Hormigueros — 0.33 22.5 0.1
Rio Rosario — 0.328 25.2 0.03
TBSW — 0382 31.21 0.03
Rio Casey — 0.376 30.41 0.03
New Average Infiltration Values

Afasco near San Sebastian — 0.412 28.61 0.75
Guanajibo near Hormigueros — 0.363 22.85 6.35
Rio Rosario —

TBSW — 0.43 31.57 0.69
Rio Casey — 0.418 30.41 0.64

of input data [8§7—89]. The calibration data for Rosetta has a set of 2134
samples for water retention and 1,306 samples for K_[88] distributed in
USA and some from Europe. The authors suggested that the usage of
Rosetta for other climate zones, and hence other pedogenic processes,
could lead to inaccurate predictions.

3.7.1 ASSUMPTIONS FOR UNCLASSIFIED SOIL CLASSES

Some soils did not have bulk density and percentage of sand, silt and clay.
In these cases assumptions were made for alluvial land, leveled clayed
classification, limestone, gravel, pits and quarries, serpentine rock, volca-
nic rock and limestone rock as described in this section.
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3.7.1.1 Alluvial Land

Alluvial land has a variable profile, is a fine-grained fertile soil deposited
by water flowing over flood plains or in river beds. Clay or silt or gravel
are carried by rushing streams and deposited where the stream slows
down. The Soil Conservation Service classified this soil in the hydrologic
group D and reports that the alluvial land has 0—1 inches of ponding depth
range, very long ponding duration and floods frequently during the year
[USDA, 106—109]. Therefore, it is assigned a classification of Clay with
an effective porosity of 0.475, 31.63 cm suction head and 0.06 cm/h satu-
rated hydraulic conductivity.

3.7.1.2 Leveled Clayed

Leveled Clayed presents a hydrologic group C. The hydraulic conductiv-
ity value assigned to this classification was the average value between
clay texture and hydrologic group C and it was 1.225 cm/h with a range
between 0.801 and 2.789 cm/h. The same procedure as was used for
alluvial land was used for leveled clay where the effective porosity was
assigned the average value of 0.427 and a value of 31.63 cm for suction
head, as recommended for clay.

3.7.1.3 Limestone

Limestone is a sedimentary rock composed largely of the mineral calcite
(calcium carbonate: CaCO,). The hydraulic conductivity was 570 cm/h,
taken from Freeze and Cherry (1979), the range for this value varies from
0.11 to 1,142 cm/h. The effective porosity is 0.14. The wetting front suction
head was set to 1 centimeter, the minimum for sand reported by Vieux [126].

3.7.1.4 Gravel, Pits and Quarries

Gavel, pits and quarries have a hydrologic group A, assigned in SSURGO
database [USDA, 106—109] meaning that they possess very good infiltra-
tion. The values assumed for their classification was medium gravel with
a moderate degree of sorting and without silt content. For this material,
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the saturated hydraulic conductivity was assigned a value of 297 cm/h
and an effective porosity of 0.24. The wetting front suction head was the
minimum for sand reported by Vieux [127] of 1 cm.

3.7.1.5 Serpentine Rock

According to Freeze and Cherry [34], the saturated hydraulic conductivity
(Ks) for fractured metamorphic and igneous rocks is between 0.00114 and
11.4 cm/h, the average is 5.71 cm/h. The effective porosity assigned was
0.26 for metamorphic rock.

3.7.1.6 Volcanic Rock

Volcanic rocks are usually fine-grained or aphanitic to glassy in texture
and are named according to both their chemical composition and texture.
Basalt is a very common volcanic rock with low silica content. For Basalt
rock we assumed a total 0.17 (reported range of 0.03 to 0.35); effective
porosity 0.1 and saturated hydraulic conductivity 570 cm/h for fractured
basalt (10 to 10° m/year).

The values assigned to Soil not Surveyed classification were average
hydraulic conductivity for clay texture in the whole study area: 1 cm/h;
and the effective porosity and wetting front suction values correspond to
clay as reported by Vieux [127]. For the TBSW model, all the parameters
were assigned to a grid model resolution of 10 m from the MBDB model.
Average infiltration parameters for the TBSW are tabulated in Table 3.5
with detailed soil names and parameter values used. Bouwer [19] sug-
gested multiplying the hydraulic conductivity by 0.5 for the saturated
hydraulic conductivity in Green-Ampt model. Therefore the average satu-
rated hydraulic conductivity for the TBSW is 0.69 cm/h.

3.8 SOIL DEPTH

The soil depth is a very important parameter to calculate the infiltration
losses. The USDA [106-109] reports the soil depth for each soil when
some restrictive layer or lithic rocks exist at a shallow depth. In other cases
a maximum soil depth is assigned a value of 152 cm (60 inches), corre-
sponding to the depth surveyed. Lithic is a continuous hard rock and less
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permeable, in some cases it is encountered at a depth of 10 cm from the soil
surface. For some soils a paralithic rock is present under the layered soil.
The paralithic rock is a weathered layer and broken rock in contact with
fissures less than 10 cm apart, which allow roots and water to penetrate the
underlying rock. Major hydraulic conductivity is allowed, and works like
fractured rock. Soils under this condition are allowed to increase the soil
depth to 600 cm indicating no depth restriction, and other soils without
any restrictive layer or lithic rock were set to 300 cm, almost double that
of the survey. In this way the soil depth assigned to the soil map will be

TABLE 3.5 Soil Classification (SSURGO), Hydrologic Group and Infiltration
Parameters at TBSW

Soil Name  Texture  Hydrologic Area Wetting K Depth Effective
Group (%)  front (cm/h)  (cm) porosity
(cm)

B 59.85 31.63 1.273 300 0.415

C 15.11 31.63 1.266 300 0.451
Humatas Clay C 25.03 31.63 1.736 300 0.454

D 0.01  3.00 5.7 300 0.26

Consumo Clay

Dagiiey Clay

Serpentinite Rock

Serpentine

Toa Silty Clay B 0.01  27.30 0.294 300 0.377
Loam

Average — — — 31.62 1.38 — 0.43

TABLE 3.6 Resized Grid Area for the Land Use Map [75]

Re-class name Manning Impervious Area with  Area with A Area
roughness (n) (%) 30 m (km?) 200 m (km?) (km?)
Agriculture 0.166 5 54.93 55.92 0.99
Agriculture/hay  0.190 4 0.13 0.12 -0.01
Forest, shrub, 0.191 2 529.16 529.12 -0.04

woodland and
shade coffee

Other emergent  0.050 1 1.26 1.24 —0.02
wetlands

Pasture 0.225 5 172.84 173.2 0.36
Quarries, sand 0.020 95 0.75 0.56 -0.19
and rock

Urban and barren 0.080 81 60.02 58.68 -1.33
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the maximum possible and reductions would be considered for calibration
proposes. Values assigned for the TBSW area are shown in Table 3.5.

3.9 ASSIGNING OVERLAND ROUGHNESS, IMPERVIOUS AND
CROP COEFFICIENT

Overland roughness is an input parameter in hydrologic models and this
parameter affects principally the peak flow in a hydrograph. Two sources
were analyzed to determine the land use in the area. One source was obtained
from land use/land cover map for Puerto Rico [51], which was reclassified
by Prieto [75] into six land use classes. Appropriate Manning’s and imper-
vious values were assigned to each class at 30 m resolution (Table 3.6).
Aresize from 30 m to 200 m will change the area distribution of some land
use and would affect the flow response (e.g., flow volume). The land class
most affected by resizing is the urban area showing a decrease in area of
1.33 km?, followed by an increase in Agriculture by a 0.99 km?, areas of
special interest in terms of flooding (Table 3.6).

The sum of the land use map areas between 30 m and 200 m are
different due to pixel sizes; 200 m is rougher and covers more area, while
the 30 m pixel can adjust much better to the basin form.

The second land use source was from remote sensing classification and
field verification from PRWRERI [76] shown in Figure 3.6 with 35 classes.
The land use classification was reclassified into 13 classes and is shown in
Figure 3.21. The roughness values were specified for each class according
to literature and expertise and shown in Table 3.6. A value of 0.118 is the
average roughness value for the MBDB model and 0.12 for the TBSW.

Another parameter that is contingent upon the land use classification
is the crop coefficient. Its coverage was determined using the land use
classes derived in Figure 3.19 at 30 m resolution. Values of K (mid-season
crop stage) were assigned from Allen et al. [4] and are shown in Table 3.7.
Allen et al. [4] did not present K _values for forest land use. Therefore, an
apple tree with active ground cover class value was assumed (for possible
representation of forest), with a maximum of 1.2 K . The TBSW exhibits a
predominant forest land use (see Figure 3.20, 30 m resolution) of low den-
sity with 39.36% of the area; brush rangeland with 38.17% of the area and
14.51% urban land use, respectively (Table 3.8). The Figure 3.21 shows
some images taken for the forest representation and urban area.
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TABLE 3.7 Land Use Classification with the Manning Roughness Values and Crop
Coefficient (K ) for MBDB
Classes Re-classification Manning K, Area (m?)
roughness (n)
Coffee Agricultural Land 0.080 1.100 15.76
Coffee, orange 0.080 1.000 0.01
Coffee, orange, plantain/ 0.080 1.000 0.01
banana
Coffee, plantain/banana 0.080 1.100 12.73
Coffee, plantain/banana, 0.080 1.025 0.33
oranges
Dairy Farm or dairy cow 0.050 0.400 0.03
feeding
General agriculture 0.080 1.000 1.17
Nurseries and 0.080 1.000 0.39
ornamental horticulture
Orange 0.080 0.850 0.66
Orange, coffee 0.080 0.950 0.64
Orange, plantain/banana 0.080 0.900 0.29
Orange, plantain/banana, 0.080 1.000 0.02
coffee
Plantain/banana 0.080 1.200 7.21
Plantain/banana, coffee 0.080 1.150 0.06
Plantain/banana, coffee, 0.080 1.200 0.49
oranges
Plantain/banana, orange 0.080 1.025 0.11
Shade coffee plantation 0.080 1.100  0.06
SUB-TOTAL 0.078 0.992 39.99
Barren land Barren Land 0.015 0.300 10.18
Forest high density Forest high density 0.150 1.200 156.19
Forest low density Forest low density 0.150 1.100 234.31
Forested Wetland Forested Wetland 0.070 1.200 2.83
Native pastures Native pastures 0.045 0.850 6.73
Non-Forested Wetland Non-Forested Wetland 0.050 1.100 2.16
Pasture Pasture 0.035 0.950 1.50
Shrub and brush Range Land 0.130 1.000 248.92

rangeland
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TABLE 3.7 Continued
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Classes Re-classification Manning K, Area (m?)
roughness (n)
Bare exposed rock Rocks 0.015 0.100 0.04
Gravel pit 0.015 0.100 2.07
Transition area Transition area 0.050 0.300 0.79
Transportation, Urban or Built-Up 0.015 0.300 11.78
communication
Urban or built-up land 0.015 0.300 97.40
Waste disposal areas 0.015 0.300 0.44
Pond Water 0.030 1.050 0.24
Streams and canals 0.030 1.050 2.97
TOTAL 0.188 0.966 818.53

Source: PRWRERI [76] for classes and Allen et al. [4] for K.

Land Use Classification

Agricultural Land [0 Forested Wetland
Barren Land [ Native pastures | |
Forest high density [l Non-Forested Wetland Il Transition area

Forest low density

Pasture - Urban or Built-Up

Range Land
Rocks

I Water,

FIGURE 3.19 Land Use general reclassification from Land Sat!" 2004, Source:
PRWRERI, (2004). Land Use Classification of the Mayagiiez Bay Watershed (Rio Grande
de Afasco, Rio Yagiiez, and Rio Guanajibo Watersheds. Puerto Rico Water Resources
and Environmental Research Institute (PRWRERI). Developed for the Puerto Rico
Environmental Quality Board.



Flood Prediction Limitations in Small Watersheds 61

Land Use Classification

Legend

I River
Land Use
B Baren land
[ Forest high density
I Forest low density
I Gravel pit

[ Native pastures

X
[ Shrub and brush rangeland <,§\(’E
I Streams and canals s
I Transition area
: ; | I Km
[ Transportation, communicat 0 035 05 1

B Urban or built-up land

FIGURE 3.20 Land use classification for the TBSW extracted from Figure 3.19.

FIGURE 3.21 The land use of the TBSW.
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TABLE 3.8 Land Use Classification, Manning Roughness (n) Values and K, for
Evapotranspiration Quantification in the TBSW

Land use classification Manning K, Area (km?)  Area %
roughness (n)

Barren land 0.0150 0.300 0.0378 1.06
Forest high density 0.1500 1.200 0.2083 5.86
Forest low density 0.1500 1.100 1.3994 39.36
Gravel pit 0.0150 0.100 0.0018 0.05
Native pastures 0.0450 0.850 0.0009 0.03
Shrub and brush rangeland 0.1300 1.000 1.3570 38.17
Streams and canals 0.0300 1.050 0.0045 0.13
Transition area 0.0500 0.300 0.0216 0.61
Transportation, communication ~ 0.0150 0.300 0.0083 0.23
Urban or built-up land 0.0150 0.300 0.5157 14.51

3.10 EVAPOTRANSPIRATION

The hydrologic model requires potential or reference evapotranspiration as
input to dry the soil in a long-term simulation. This section identifies the
uncertainties associated with the evapotranspiration quantification, because
this parameter is time and scale dependent and is related to the meteoro-
logical stations located within the area of interest. Reference evapotranspi-
ration can be calculated by the Penman-Monteith method (Eq. 7) and the
Hargreaves Samani method (Eq. 8) using data from the NRCS Soil Climate
Analysis Network (SCAN) weather stations located in western and south-
ern Puerto Rico. Two stations are located within the MBDB and relatively
close to the TBSW (i.e., the USDA Tropical Agricultural Research Station
(TARS) at Mayagiiez and Maricao Forest, PR). Penman-Monteith [4] and
Hargreaves-Samani [45] methods were compared at the stations mentioned
with a daily time step from October, 2007 to October 2009. The FAO56
Penman Monteith evaporation equation is presented below [4]:

0.408-A-(Rn — G) + v -(%j w-(es — ep)

Flo = A+y-(1+034w)

2
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where, ET is reference evapotranspiration (mm/day), A is slope of the
vapor pressure curve (kPa/°C), R is net radiation (MJ/m’day), G is soil
heat flux density (MJ/m3day), y is psychometric constant (kPa/°C), T is
mean daily air temperature at 2 m height (°C), u, is wind speed at 2 m
height (m/s), e_is the saturated vapor pressure and e_ is the actual vapor
pressure (kPa).

Equation (7) applies specifically to a hypothetical reference crop with
an assumed crop height of 0.12 m, a fixed surface resistance of 70 sec/m
and an albedo of 0.23. The Hargreaves-Samani equation for reference or
potential evapotranspiration [45] is given below:

PET =0.0135 x R x (T, +17.8) 3)

where, R is solar radiation in units of mm/day and 7 is average air tem-
perature (°C). R_is readily converted from units of MJ/m’day to equivalent
depth of water in mm/day by dividing by the latent heat of vaporization
(2.45 MJ/m?day).

The Pearson correlation coefficient (R?) between Egs. (7) and (8)
was 0.9375 and the bias was 0.956 for this period, indicating that the
Hargreaves Samani constant (0.0135) presented in Eq. (8) could be cor-
rected by a factor of 0.956 for the current study area using a more sim-
plistic formula than FAO-Penman-Monteith equation (Eq. 7). Goyal et al.
[40] developed monthly linear regression equations for air temperature
(mean temperature (7, ), maximum temperature (7 ) and minimum
temperature (7 ) for Puerto Rico, which depend on the surface eleva-
tion (m). PET can be calculated using these linear regressions [44] and
Hargreaves-Samani equation [45] extended for places where no solar
radiation data is measured.

PET =0.0023 xR x(T +178XT —T )°* 4)
where, PET is potential or reference evapotranspiration (mm/day) and R,
is the extraterrestrial radiation (mm/day).

Solar radiation is highly spatially variable in Puerto Rico [48, 49].
Therefore, the effectiveness of Egs. (3) and (4) to estimate PET using the
temperature versus elevation relationships developed by Goyal at short
time scales (daily) was evaluated in the current study. Constants in Goyal’s
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monthly linear regressions were interpolated to daily constants [40]. All
input parameters needed in the Hargreaves-Samani methods (Egs. 3 and 4)
are measured by the SCAN stations.

The elevation at the TARS is 13.72 m amsl with an average temperature
(T,,) 0f23.9°C for the period of analysis (October, 2007 to October, 2009);
and in Maricao Forest the elevation is 747 m with 7 19.7°C. The results
show that the Goyal regressions at a daily time step predict the 7 with
a coefficient of determination R? of 0.46 for TARS and 0.62 for Maricao
[40]. However, if PET is calculated with the solar radiation measured at
the stations along with the 7 derived from the Goyal regressions [40], the
improved R? of 0.987 and 0.992 are obtained at TARS (Figure 3.22) and
Maricao Forest (Figure 3.23), respectively.

Values of R? 0f 0.2145 for TARS and 0.0013 for Maricao were obtained
using Goyal’s elevation model [40] and Eq. (4). The R? is increased to
0.2254 for the Maricao station if the PET is calculated using the 7 from
the equations by Goyal [40] and the solar radiation is assumed to be equal
to the TARS solar radiation (Figure 3.22).

These results show that solar radiation is a spatially sensitive param-
eter in the PET calculation and that solar radiation cannot be assumed
equal at locations distant from each other. Remotely sensed satellite mea-
surements are suggested for a better spatially distributed solar radiation
dataset, according to Harmsen et al. [48, 49]. For a long-term hydrologic
model, simulations for the TBSW, we used the PET calculated using
Eq. (3) and assuming that the solar radiation is the same as TARS, due to
its relatively close proximity to the TBSW, around 2.5 km, compared to
16.3 km between the TBSW and Maricao Forest stations. Although not
used in this study, another option would have been to use the daily opera-
tional solar radiation data described by Harmsen et al. [48] for Puerto Rico
[http:/ pragwater.com/solar-radiation-data-for-pr-dr-and-haiti/].
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Hargreaves and Samani Relationship at TARS
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FIGURE 3.22 Potential Evapotranspiration with Hargreaves-Samani relationship
for observed T , T . T . solar radiation, extraterrestrial radiation; and temperatures
predicted by Goyal relationships at TARS station. Source: Goyal, M. R., E.A. Gonzalez
and C. Chao de Béez, (1988). Temperature versus elevation relationships for Puerto Rico.J.

Agric.UPR72(3), 449-67.

Hargreaves and Samani at Maricao Forest
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FIGURE 3.23 Potential Evapotranspiration with Hargreaves-Samani relationship for
observed T , T . T . solar radiation, and extraterrestrial radiation; and temperatures
predicted by Goyal relationships at Maricao Forest station. Source: Goyal, M. R., E.A.
Gonzalez and C. Chao de Baez, (1988). Temperature versus elevation relationships for

Puerto Rico.J. Agric. UPR72(3), 449-67



AdOD Joyiny

SSald dlwapedy a|ddy

For Non-Commercial Use



CHAPTER 4

FLOOD PREDICTION LIMITATIONS
IN SMALL WATERSHEDS:
METHODOLOGY ' 2

ALEJANDRA M. ROJAS-GONZALEZ

CONTENTS
4.1 INtrodUCHION....cviiiieiieiirieeiietcc ettt
4.2 Additional Field Measurements ............cccevevereereneneenieneneeenes
4.3 Evaluation of Parameter Aggregation Techniques

Within the TBSW ..o

4.4 Determination of Hydrologic Model Sensitivity
Due to Parameters and Rainfall Perturbations

for the MBDB Model........cocoiiiiiiiiiiiiiiieeeeeeeee
4.5 Evaluation of Current Quantitative Precipitation Estimates..........
4.6 Evaluation of Predictability Due to Hydrologic Model

Parameters and Input Resolutions at TBSW........ccccooiviienininnnen.

! This chapter is an edited version from, “Alejandra Maria Rojas Gonzdlez, 2012. Flood prediction
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico — Mayagiiez

Campus”.

2 Numbers in brackets refer to the references at the end of this book.



68 Flood Assessment: Modeling and Parameterization

4.1 INTRODUCTION

This chapter presents the technical methodologies used in this research
to address the research questions presented in Chapter 1. A determination
of parameter sensitivity in the MBDB model is presented, where vari-
ous parameters were first perturbed by multiplication factors to generate
spider plots, and then the factors 0.5 and 1.5 (representing £50%) were
used to calculate the relative sensitivity (Sr) for different variables and
events. Using the TBSW model, some parameter aggregation techniques
are evaluated for later use in the up-scaling experiment. This section pres-
ents the evaluation of uncertainties in Quantitative Precipitation estimates
from MPE by comparison with a high density rain gauge network; and a
methodology to evaluate uncertainty due to hydrologic model (grid spac-
ing) and rainfall resolution were addressed.

To establish a flood alarm system in the MBDB, first, one must know
the likelihood and uncertainty associated with a prediction due to the
inputs and parameters variations. Some initial sensitivity tests were devel-
oped in the Mayagiiez Bay model to understand how some parameters and
inputs affect the flow prediction. The major sources of uncertainties are
associated with inputs such as rainfall estimation, terrain slope, param-
eter values and initial conditions; and all these sources of uncertainty are
resolution-dependent. How much rainfall variation is there at scales below
the radar pixel size and how much does rainfall variation and DEM resolu-
tion affect predictability? These questions will be addressed in the TBSW
analysis.

The TBSW is useful for research purposes and represents a “real
world” laboratory to study the predictability limits due to aggregation of
high-resolution inputs in a hydrologic model. In the TBSW (Figure 3.7
in Chapter 3 of Part I), a dense rain gauge network was installed as part
of this investigation and a pressure transducer for water level measure-
ments. Other high-resolution data exists for the TBSW including topog-
raphy [digital elevation model, 25]; soils and land use maps, etc. These
sets of information are ideal to define how much detail is necessary in the
physical modeling process and the value of increasing the rainfall resolu-
tion, as well as the hydrologic model grid resolution within small water-
sheds. Carpenter [23] mentioned that the uncertainty in the model output
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is inversely proportional to the watershed area. In other words, for a small
hydrologic model, a large degree of uncertain exists at the subwatershed
scale. Therefore, the magnitude and behavioral impact of the rainfall errors
in the hydrologic forecasts help to define the precision and accuracy nec-
essary in new rainfall algorithms and radar technologies. New radar tech-
nologies are being developed under the CASA project at UPRM [22] and
are available for western Puerto Rico, promising higher resolution than
NEXRAD, and will be a critical component in the flood alarm system.

Evaluating possible CASA radar resolution in this study with the rain
gauges information, authors of this study determined the predictability and
quantify the uncertainty due to terrain and rainfall grid size resolution at
scales below the typical radar resolution (2 x 2 km? cell size) in small
subwatersheds. After finding the predictability limits and assessing the
predictability in the TBSW, they formulated recommendations to initialize
the larger model (MBDB) and enhance the flood prediction in mountain-
ous basins. All statistical analyzes in this research were performed using
Minitab 16 [67].

The following sections describe the methodology and activities
required to achieve a successful investigation and to address the research
questions presented before in Chapter 1. For convenience, a summary of
the research questions are listed here:

* How flood prediction is affected by the spatial variability of point
rainfall at scales below that of the typical resolution of radar-based
products?

* How does the DEM and parameter aggregation affect the model’s
predictive capabilities and the errors of the hydrologic system?

* Would the assumptions developed for the small scale enhance the
hydrologic predictability at larger scales?

4.2 ADDITIONAL FIELD MEASUREMENTS

A dense network of rain gauges (28 tipping bucket rain gauges with data
loggers) were installed within a single GOES Satellite Hydro-Estimator
(HE) pixel (4 x 4 km?) and 64% of the rain gauges are within TBSW with
the objective to obtain high-resolution rainfall within the area. Complete
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records were collected since June, 2007 when the last 12 rain gauges were
installed within the TBSW [47] with a temporal resolution of 5 min. The
Euclidian distance was calculated between rain gauges within the TBSW,
exhibiting a maximum range distance of 563.2 m and the mean distance
was 218 m with a standard deviation of 99.5 m. The calculated mean
Euclidian distance within the Hydro-Estimator pixel was estimated to be
334 m with a standard deviation of 171 m. The Figure 3.7 in Chapter 3
showed the location of the rain gauges network within the Hydro-Estimator
pixel. Figure 4.1 shows the rain gauge network, the TBSW outline and the
distance between rain gauges.

Additionally, a pressure transducer was installed at the TBSW outlet,
which measured stage elevation data since October 2007 to May 2009 at
5 min temporal resolution.

4.3 EVALUATION OF PARAMETER AGGREGATION
TECHNIQUES WITHIN THE TBSW

To develop the up-scaling experiment or set up any hydrologic model, it is
necessary to evaluate which methodology is being addressed to create the

Legend
® Serie C and L stations network
Cmssw
Distance (m)
I 0- 100
I 110 - 200
[ 210 - 270

I 410- 470
I 480 - 540
I 550 - 600
I 610 - 680
1 690 - 800

Meters|
1,300

FIGURE 4.1 Rain gauge distribution and location within the HE pixel; TBSW location
and Euclidean Distance between the stations.
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hydrologic models at different resolutions. Several aggregation techniques
are used in GIS to develop the parameters up-scaling. The aggregation
consists of using data from the cells that will fall within the larger up-
scaled cells and then applying to them mathematical operations to calcu-
late a new aggregated cell value. All these aggregation techniques produce
different results, which can affect the hydrologic response. Also, the order
in which the slope is generated can alter the results. Two different orders
were developed using different techniques and they are listed below:

1. Aggregate the terrain to a new resolution and calculate the slope
for this resolution; or

2. Calculate the slope from high-resolution terrain model and then
aggregate it to a new resolution.

The aggregation techniques and the order to derive slope were tested
in the TBSW using Arc GIS tools. The tested resolutions were 10, 50,
100, 175, 250, 500 m, which generated graphs of how the slope has been
degraded. A decision was taken as to which aggregation technique is best
for the purposes of this research. Additionally the methodology was tested
to see the degradation slope degree in the MBDB Model.

4.4 DETERMINATION OF HYDROLOGIC MODEL SENSITIVITY
DUE TO PARAMETERS AND RAINFALL PERTURBATIONS FOR THE
MBDB MODEL

To develop a distributed hydrologic model it is necessary to create an
ensemble of different layers that represent the physical characteristics of
the basin. Uncertainties associated with the model parameter values and
their scales can be quantified by evaluating the hydrologic response given
a range of parameter and rainfall perturbations.

The objective of this evaluation was to determine which parameters
and rainfall are most sensitive in the mountainous areas, of the physical
conditions present in Western Puerto Rico. Then these parameters were
evaluated in the up scaling analysis. For this purpose, authors used the
MBDB model at 200 m by 200 m cell resolution with three outlet points,
summarizing different watershed characteristics in terms of area, shape
and slopes.
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The sensitivity analysis considered parameter and input perturbations
by changing the magnitude of the parameter value, but not its spatial dis-
tribution. The multiplicative factors used to perturb the model and input
(rainfall) were 0.5, 1.0, 1.5 and 2.0. The parameters used in the analysis
were: overland and channel Manning roughness coefficient, the overland
and channel saturated hydraulic conductivity, soil depth, and initial frac-
tion of soil saturation. By demonstration in other studies, hydrologic mod-
els have been found to be sensitive to these parameters [126]. In this study,
for completeness, we additionally evaluated the model response to varia-
tions in land slope.

Three important events that produced flash flooding in Puerto Rico
were evaluated. The most important event with a recurrence greater than
100-year return period for Rio Grande de Afiasco River was Hurricane
Georges in September 21-23, 1998. FEMA [32] estimated 4,078 cms at
Rio Grande de Afiasco near San Sebastian for 100-year return period and
the measured event had a peak of 4,587 cms. Other important events ana-
lyzed were November 11-16, 2003; and the Tropical Storm Jeanne on
September 14—17, 2004. Interpolations of the rainfall amounts each time
step (15 min) using the USGS rainfall stations available for each event in
the MBDB area were made to obtain a distributed rainfall over the basins.
The interpolation method used was the Exponential Weighted method.

The parameter and rainfall perturbations were evaluated at three basin
outlets, which are: USGS 50144000 Rio Grande de Anasco near San
Sebastian, USGS 50136400 Rio Rosario near Hormigueros and USGS
50138000 Rio Guanajibo near Hormigueros.

Spider plots were used to evaluate the model response to the entire
range of the parameters and to determine if there is a portion of the param-
eter range that yields unrealistic results. Spider plots for runoff depth and
peak flow show the percent change in model output variable versus param-
eter value change (perturbation) by a given factor.

The Relative Sensitivity Coefficient (Sr) is defined as the ratio of the
difference in the model output to the value of the output when the input
parameters are set to their base values, divided by the ratio of change in
the input parameter to the initial value of the input parameter as shown
in Eq. (1):
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(OP+AP B OP—AP)

_ (0]
Sr= AP (D

P

where, O is model output with input parameters set at base values, P is the
value of the input parameter, are model outputs with the input parameter
plus or minus a specified perturbation (in this case £50%).

The behavior of the relative sensitivity coefficient was evaluated using
two variables: discharge volume in millimeters and peak discharge in
cubic meters per second.

4.5 EVALUATION OF CURRENT QUANTITATIVE
PRECIPITATION ESTIMATES

The NEXRAD radar is located near the City of Cayey at 860 m mean
sea level and approximately at 120-130 km from Mayagiiez city. It
has been operational since 1999. Some errors exist associated with
radar measurements due to factors such as distance from radar to the
study area; the coverage gap between the terrain and radar beam (at
western flood plains with a radar beam of 0.5 degrees a coverage
gap between 1.8 and 2 km was found); and Z-R relationship applied.
Mountain blockage at lower beam angles (0.35 to 0.45 degrees) affects
the reflectivity received from some locations within the Afiasco and
Mayagiiez flood plains. Figure 4.2 shows the detail of mountain block-
age at beam angle of 0.35 degrees; for 0.5 degrees and higher blockage
does not occur.

The NEXRAD radar resolution gives a spatial rainfall variability
that fills the gaps between the rain gauges enhancing the spatial rainfall
quantification. However, it is necessary to remove some bias between
radar and rain gauges due to radar errors and rain rate quantification.
Nevertheless, one may not know the rainfall variations at scales below
the actual radar products (2 x 2 km? or 4 x 4 km?), because rain gauge
networks do not exist at these scales within the island.
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FIGURE 4.2 Coverage gap between terrain elevation and radar bean of 0.35 degrees with
the detail of blockage at mountainous area.

4.5.1 EVALUATING RAINFALL DETECTION ACCURACY AND
LONG-TERM BIAS QUANTIFICATION

Obtaining a long-term bias quantification between the radar and rain gauge
network is an essential part of the uncertainty quantification. It is pos-
sible to observe and quantify how much change in the bias has occurred
in time and magnitude. An evaluation of the MPE rainfall product and
bias performance at hourly and daily temporal scales is evaluated within
the Hydro-Estimator pixel for the year 2007 using the rain gauge net-
work located in western Puerto Rico near the University of Puerto Rico —
Mayagiiez Campus, where the TBSW is located. Some rain gauges were
not operating during some periods owing to gauge damage or low logger
batteries, these data were eliminated from the analysis. Five-minute rain
gauge data was accumulated to 1-hour and 1-day intervals, with the inten-
tion of comparing data with the original MPE temporal resolution and
daily accumulations.
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MPE pixels are based on a HAP (Hydrologic Rainfall Analysis Project)
grid projection. Therefore, a geographic coordinate transformation from
Stereographic North Pole to NAD 1983 State Plane Puerto Rico and Virgin
Islands was performed for each hour using the ArcGIS project raster tool.
The resampling technique algorithm used was the nearest neighbor assign-
ment at 4 x 4 km? resolution.

The N1P rainfall product is calculated from NEXRAD as a rainfall
rate every 5 or 6 min when the radar detects rainfall, and a 10 min N1P
product is archived when no rainfall is detected. The N1P NEXRAD
product originally has a polar geographic coordinate system (GCS) and
using the NOAA Weather and Climate Toolkit program (NOAA National
Climatic Data Center available at http://www.ncdc.noaa.gov) it is pos-
sible to transform the coordinates to GCS_ WGS_1984. Different formats
are available to export the data. The GIS shapefiles maintain the original
orientation; however, in a distributed hydrologic model it is necessary
to use raster or ASCII files to represent the spatial rainfall variation in
the model. Due to raster characteristics it is not possible to maintain the
original orientation.

The study was conducted with the projected and raster pixels, with the
aforementioned in mind, 4 MPE pixels were obtained around the HE pixel.
Area weights were calculated for intersecting areas between the MPE pix-
els and the HE pixel which are 0.281, 0.344, 0.169 and 0.206, respectively.
These area weights are used to calculate an average map precipitation for
each time step. Weights for the N1P radar product were also estimated for
9 partial N1P pixels within the HE pixel.

Long-term continuous validation between sensor rainfall estimates
and rain gauge observations should be evaluated. The accuracy of rain-
fall estimates can be measured by decomposing the rainfall process into
sequences of discrete and continuous random variables [78, 79, 142].

The discrete variables were evaluated with contingency tables, where
the rain gauges are the “ground truth” values and the MPE are the esti-
mated values. In this way, the accuracy of the rainfall detection in terms of
hit rate “H”, probability of detection “POD”, false-alarm rate “FAR” and
discrete bias “DB” can be evaluated.

Table 4.1 shows an example of a two-way contingency table. The vari-
able “a” is the number of times that the rain gauge identifies a rainfall
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TABLE 4.1 Two-Way Contingency Table

Observed Rainfall
(Rain gauges)
Yes No
Estimated MPE Rainfall Yes a b
No c c

event and the estimator also correctly identifies a rainfall event at the same
time and space. The variable “d” represents the number of times the rain
gauge does not observe a rainfall event and the estimator correctly deter-
mines that there is no rainfall event. The variable “b” indicates the number
of times the rain gauge does not observe a rainfall event but the estimator
incorrectly indicates that there is a rainfall event. The variable “c” shows
the number of times that the rain gauge detects a rainfall event but the
estimator fails to detect the rainfall event [78].

Hit rate (H) is the fraction of the estimating occasions when the cat-
egorical estimation correctly determines the occurrence of rainfall event or
nonevent. Probability of detection (POD) is the likelihood that the event
would be estimated, given that it occurred. The false-alarm rate (FAR) is
the proportion of estimated rainfall events that fail to materialize. Bias
is the ratio of the number of estimated rainfall events to the number of
observed events [142]. The typical scores that measure the accuracy of
categorical estimation are:

H:a+d ()
1,

pop=—" (3)
a+b

FAR = 4)
a+b

DB=a+b )
a+c

where,n =a+b+c+d.
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The mean field bias (Bias) is used to remove systematic error from radar
estimates and used to correct the radar quantifications in the hydrologic
simulation. The mean field bias is defined as the ratio of the “true” mean
areal rain gauge rainfall to the corresponding radar rainfall accumulations
[24, 128]. The average of the rain gauge network is evaluated each time
step with an arithmetic mean, because the area weights change in time
according to malfunctions errors in some gauges. The mean MPE rainfall
at each time step is calculated using the area weights as stated above.

The indicators to evaluate the accuracy of MPE rainfall estimations
over the HE pixel at different temporal scales are the Bias and root mean
square error (RMSE).

Bias = +— (6)

N,

1 2 )2
RMSE—(; 2 (Gi=R) j ()

P

where, N, is the number of hours, G, is the areal mean rain gauge-based
rain rate value at time 7, and R is the corresponding areal mean radar
rain rate value.
For MPE Pixel 1, the associated rain gauges are: C01, C02, C03, C06,
C07,C11,L01,L02,L05,L06 and L09, and for MPE Pixel 2 the associated
rain gauges are: C04, C05, C08, C09, C10, C12,L03, L04, L07, L08, L.10,
L11. A mean field bias was calculated at 1 h time resolution. Percentage
of rainfall detection by rain gauges and MPE were calculated, and divided
into three categories:
* Rainfall not detected by MPE in percent, referred to as “No Radar
Detection” or “c”.

» Rainfall not detected by rain gauges in percent, referred as “No Rain
gauge Detection” or “b”.

+ Rainfall detected by both sensors in percent, referred as “Coincident”

[TPS 1]

or a’.
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The gauges L06 and LO8 showed systematic errors in the records
and, therefore, were ignored in the calculations. In addition to the sta-
tistics computed in the MPE Pixel 1 and MPE Pixel 2, calculations were
made using the 4 MPE pixels and the 26 rain gauges for hourly, daily
and monthly data accumulations. The PDF was calculated to represent the
probability distribution of the daily bias which represents the average total
storm correction along one year.

4.5.2 EVALUATION OF FLOW RESPONSE TO RAINFALL
INTERPOLATION METHODS

Different interpolation methods can be used to predict areal rainfall
between rain gauges or areas where nonareal rainfall information exists.
It’s important to evaluate how different sources and interpolation methods
affect the hydrologic response.

Two interpolation methods are analyzed and compared to produce
aerial rainfall from existing rain gauges, which are exponential weighted
(EW) and inverse distance weighted (IDW) methods. Additionally,
NEXRAD rainfall product level 3 was compared with them. The events
analyzed were the Tropical Storm Jean, passing over northern Puerto Rico
on November 11-16, 2003.

The interpolations between USGS rain gauges were realized at 200 by
200 m cell resolution and 15 min temporal resolution for each event using
the ArcGIS tools. The Hydrologic model (Vflo) with the prepared rainfall
information and the MBDB model configuration described in Chapter 4
and aggregated to 200 x 200 m? cell resolution was run with each rainfall
product at the same resolution.

Analysis of bias quantification (Eq. 5) between rain gauges and radar
were generated for each event and graphical comparisons between sce-
narios were generated.

4.6 EVALUATION OF PREDICTABILITY DUE TO HYDROLOGIC
MODEL PARAMETERS AND INPUT RESOLUTIONS AT TBSW

The previous sections describe which parameters, inputs and initial condi-
tions, up-scaling and interpolation methods can be expected to affect run-
off prediction and a hydrologic distributed model in mountainous tropical
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subwatersheds. With the evolution of instruments to sense the atmosphere
(CASA radars, NEXRAD, HE and others), as well as distributed hydro-
logic models that can predict runoff at even smaller scales, it is necessary
to evaluate how the combined effect of model inputs and parameter uncer-
tainties at different scales are spread though the hydrologic model and its
impact on reliable operational flood prediction.

The hydrologic evaluation methodology must be objective and unbi-
ased towards a given rainfall input or hydrologic model resolution. Global
optimization methods in model calibration seek a unique parameter set that
best simulate the observed behavior and if the rainfall resolution or rainfall
source is changed, Gourley and Vieux [38] indicated that the model needs
to be recalibrated. They proposed a methodology to evaluate the accu-
racy of the inputs at the hydrologic scale using a hydrologic ensemble.
Computing probabilities by examination of the allowable parameter space
for each quantitative precipitation estimation algorithm, independently
and thus remain unbiased towards a given rainfall source. Model param-
eter ensembles are created for each rainfall input, the spread and accuracy
of the compilation of individual simulations are determined based on com-
parisons with observed streamflow.

An extension of this methodology will be addressed in this research to
include the uncertainties associated with the parameter scale-dependence,
in order to determine the accuracy of a given hydrologic model resolution.
The combined effect of model parameters, rainfall and model resolution
uncertainties are evaluated to produce the predictability limits, computing
probabilities by examination of the allowable parameter space for each
hydrologic scale and rainfall resolution in combination using ensemble
predictions. The TBSW is the ideal scenario to evaluate the predictability
limits where a network of rainfall sensors and a flow meter were installed
in order to produce rainfall estimates at different scales and then compare
the hydrologic prediction to observations for this research.

4.6.1 ESTIMATION OF UNCERTAINTY DUE TO HYDROLOGIC
MODEL AT TBSW

Distributed hydrologic model configurations evaluated in this study are
applied to represent the real world without any acknowledgment of how
they affect the hydrologic prediction and how these uncertainties are
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propagated in the model at small upland watersheds. It has been shown
before that at MBDA indicates input and parameters to be most sensitive
in the model, which were used to be tested at the TBSW.

The DEM-derived parameters are well defined for each configuration
and are scale-dependent, because they are mainly related to scale issues
and aggregation techniques. This type of parameter include: flow accumu-
lation; flow direction; slope; and stream definition indicating implicitly the
stream density (as channel cells and overland cells).

The infiltration parameters depend on field measurements of soils and
are treated as polygons representations on a map. The soil maps are avail-
able for Puerto Rico [USDA, 106—109] and infiltration point measure-
ments are attached to the polygons with the most probable realistic value
to represent the area. The polygons are converted to gridded information
and, therefore, become scale-depend. The same applies to the roughness
map which is, related to the uncertainties associated with the remote sens-
ing techniques, and a probable “realistic roughness value” is used to rep-
resent the land use. An up-scaling to the hydrologic model resolution will
be addressed to evaluate the effect of parameter uncertainties due to scale.

The effect of slope degradation in the flow quantification was not
evaluated. Instead, the aggregation methodology was used to preserve the
average slope in the model and decrease the uncertainty and errors due to
slope reduction.

The hydrologic evaluation of the resolution models was addressed
using parameters ensembles at different resolutions. Every hydrologic
parameter was calculated to 50 x 50 m?, 100 x 100 m?, 200 x 200 m? and
400 x 400 m? resolution from the high-resolution hydrologic model at 10 x
10 m. The hydrologic evaluation consists of making multiple runs using
sets of parameters tested within their distribution’s physical bounds and the
combinations of inputs for each hydrologic model. Some parameters, such
as saturated hydraulic conductivity (Ks), Manning roughness coefficient
(n) and initial degree of soil saturation (#) will be perturbed within their
known space, while preserving the spatial variability at a determined scale.

The hydrologically distributed model (Vflo), controls this sampling
space by multiplicative factors as illustrated by Moreda and Vieux [126]
in the OPPA method that is used to calibrate a distributed model. When no
information is known a priori about the parameter distributions, uniform
distribution is assumed. The scalar factors used to perturb the parameter
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maps (saturated hydraulic conductivity, Manning roughness coefficient
are determined by the following function, which permits computation of
probabilities by examination of the allowable parameter space:

1 .
N, = §(2+3Z)|i:0,2,3,4 (®)

where, N is the adjustment factor [126].

The initial saturation parameter was tested with factor values of 0.25%
(dry), 0.4, 0.6, 0.8 and 0.95% (almost fully saturated) covering a sample
of the possible parameter space. Vieux and Vieux [132, 133] tested a long-
term distributed model at Loiza, Puerto Rico and found initial saturation
factors around 0.75 in the uncalibrated model and 0.9 in the calibrated
model. Additionally the initial soil saturation did not fall below 0.25 in the
run time.

Each initial condition (rainfall event and one hydrologic setting resolu-
tion) and parameter perturbation was run in the hydrologic model (Vflo)
producing a deterministic prediction called “ensemble member”, which
are treated collectively and are samples of the PDF, representing the true
initial state distribution. The three-parameter perturbation in combination
with one determined hydrologic and rainfall resolution event will produce
a hydrologic ensemble. Each ensemble required 125 Vflo runs or ensemble
members obtaining a simulation sample space for each hydrologic resolu-
tion model and rainfalls are stored in a separate folder.

Results of each simulation were compared to the observed streamflow
at the TBSW outlet. Three variables are important to evaluate in a flash
flood forecasting, providing information of the flood magnitude (peak to
flood), spread (volume normalized by the area) and lead time (time to
peak) for the emergency management agencies. Box plots of each ensem-
ble permit visualization of the spread of the solution due to parameters
perturbations at each rainfall and model scale.

The estimation of uncertainty due to hydrologic model up-scaling was
performed regrouping the ensembles mentioned. The ensembles here are
formed by the perturbations of the parameters and rainfall resolutions.
Then, a hydrologic model resolution is evaluated according its size and is
not dependent on rainfall resolution, because, it is tested with all rainfall
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resolutions. An important tool for the modeler is to understand the impli-
cations of using one specific hydrologic model resolution to estimate the
flow discharge reliably.

Different objective functions exist, such as the least square error or
maximum likelihood, to evaluate the variables in a verification step. The
least square error is computed for each streamflow prediction giving a bet-
ter understanding of the shape of the hydrograph.

The forecast or prediction verification method of an ensemble is the
process of assessing the quality of the prediction with the corresponding
observation. The quantitative statistics provide a simple way to evaluate
the quality of an ensemble. To average the members of the ensemble to
obtain a single prediction, provide a prediction that is more accurate than
the single prediction initialized with the best estimate of the initial state
of the hydrologic parameters. The mean ensemble is an overall indicator
of the ensemble’s behavior and is considered to be the best estimate [99].

The spread skill relationship for a collection of ensemble forecasts
often is characterized by the correlation between the variance o the
square of the standard deviation of the ensembles members around their
ensemble mean. The accuracy is often characterized using the mean
squared error.

The mean Time, Peak and Volume of each ensemble is computed and
compared with observations. Additionally, the following statistics were
used: Bias, Mean Absolute Error (MAE) and Root Mean Square Error
(RMSE). These definitions are formulated below:

Bias=E|[y,]/ O )

MAE=13"_|y,~0] (10)
n

RMSE = \/12’,;] (y,—-0O) (11)
n

where, y represents the prediction from the 4-th simulation for Time, Peak
and Volume, and O is the observation.

The Bias measures the correspondence between the average fore-
cast and the average observed value of the predictands. The MAE is the
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arithmetic average of the absolute values of the differences between the
members of each pair. The MAE and RMSE values near to zero are desir-
able while Bias near to one are expected.

Another diagnostic variable for representing runoff generation is the
runoff coefficient that is equal to observed discharge volume divided by
the basin-average rainfall event. These spread skill correlations have been
found to be fairly modest, accounting for 25% or less of the accuracy
variations [5, 42, 44]. Alternative approaches to the spread skill problem
using probability distributions for forecast skill, conditional on ensemble
spread were analyzed by Moore and Kleeman [69]. The conditional PDF
are a statistical tool more robust than a simple ensemble mean to com-
pare to an observation. PDF’s were calculated for Time to Peak, Volume
and Peak flow using the 625 ensemble members for the combination of
hydrologic resolution model and rainfall event. The most widely used and
important continuous probability distribution is the Gaussian or normal
distribution described as:

(12)

where, p and o the mean and the variance of X, respectively.

Thus, the normal distribution is a two-parameter distribution which is
bell-shaped, continuous, and symmetrical about the mean.

With the PDF, measures of the central tendency, prediction spread, lim-
its and skill can be estimated. The central tendency is represented by the
50% simulation limit, or median, corresponding to 0.5 on the cumulative
distribution function (CDF). The spread of the forecast represents the fore-
cast uncertainty due to uncertain initial conditions, rainfall inputs, slopes
and scale dependent parameters, etc.; by determining the distance between
the 5% and 95% confident limit simulation bounds.

The ensemble skill is assessed using the ranked probability score, RPS
[29, 71] which is capable of penalizing forecasts increasingly as more
probability is assigned to event categories further removed from the actual
outcome and the ensemble are encouraged to report their “true beliefs”
[142]. Brier scores and reliability diagrams are used to evaluate each of the
derived binary forecasting situations, but the RPS is an option for verifica-
tion forecasts for multi category ordinal predictands.
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The ranked probability score is the sum of squared differences between
the components of the cumulative forecast and observation vectors as:

RPS =% (Y,-0,) (13)

RPS = Z;Zl |:(Z’]n:1 Vi ) _( ;f':l OJ_ )]2 , and (14)
Y +0, +=1always

where, ¥ and O, are the cumulative forecast and observation, respec-
tively, Y, is the cumulative probability assigned to the category or vector
component, o, is the cumulative probability of the observation in the ith
category or vector component and J is the number of categories and there-
fore also the number of probabilities included in each forecast. The sum of
Y and O, are always both equal to one by definition.

The PDFs statistics and RPS generated for each grid size will con-
tain the predictability limits for small watersheds and will be useful infor-
mation that can help the modeler to decide which grid size resolution is
appropriate for larger watersheds where it is important to quantify flash
flooding at upstream and ungauged sites.

The Figure 4.3 summarizes the evaluation of uncertainty propagation
though flow prediction. The flow chart used a combination of hydrologic
parameter perturbations within the physical bounds, rainfall input and
model resolution or structure set up.

Knowing the uncertainty at the small scale and associated with the
resolution selection, it will produce more realistic parameter estimations
and flood quantification for the larger scale model. In other words, if the
small scale, high-resolution model, is characterized by a degree of uncer-
tainty, then the goal of the modeler is to up-scale the resolutions, while
maintaining a similar degree of uncertainty. In this way, the modeler hopes
to maintain accuracy at the subwatershed scale.

4.6.2 ESTIMATION OF UNCERTAINTY DUE TO RAINFALL
UP-SCALING AND TEMPORAL VARIATIONS

The same methodology, described in section 4.6.1 in this chapter, was
used to calculate the uncertainty due to rainfall up-scaling and temporal
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FIGURE 4.3 Flow chart of the ensemble for predictability limits.

variations. The amounts of rainfall measured by the rain gauge network
within the TBSW are assumed to represent the “true” rainfall. The rain
gauges are the most reliable method to sense precipitation and are widely
used to correct other sensors methods (e.g., radar, satellite and laser sen-
sors) and remove sensor bias.

By interpolating to various resolutions, it is possible to measure the
importance of spatial rainfall variation in hydrologic prediction while the
average rainfall falling on the watershed is maintained, taking into account
that the average distance between the rain gauges is approximately 218 m
with a standard deviation of 100 m.

Precipitation total variations between rain gauges were calculated
and presented for each event, demonstrating the high rainfall variability
at small scales due to orographic effects in mountainous subwatersheds.
The rainfall events were interpolated to the following resolutions: 100 m,
200 m, 400 m, 1000 m, and 2000 m to compare them in a probabilistic
and deterministic sense. The interpolation method used was the inverse
distance method. Each ensemble had 625 runs or ensemble members.
These were the combination of: parameter perturbations (125 runs),
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model structures (5 different model resolutions), and one rainfall event
(Figure 4.3). Observed and simulated values were compared by using
objective functions. The compared variables were time to peak, peak flows
and volume.

In addition, PDFs were computed using the Gaussian kernel density
estimation technique and computation of nonparametric statistics provided
information for the 0.05, 0.5 and 0.95 quartiles, given the central tendency
and spread of the ensemble. The PDFs are treated as conditional probabili-
ties and not as the true probability distribution. RPS’s were calculated to
compare the skill of each rainfall input. Rainfall events were tested though
the year using different antecedent soil moisture conditions and temporal
patterns. The dates tested were: October 22, 2007; May 2, 2008; June 5,
2008; August 28, 2008 and September 3, 2008. Performing the statistics
previously described for each rainfall configuration ensemble, it was pos-
sible to evaluate the reliability of one rainfall resolution and compare them
event-by-event and assess if there exists variations between events.
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5.1 INTRODUCTION

This chapter includes results for the sensitivity analysis performed in the
MBDB (see, Section 5.2) for different hydrologic parameters and rainfall
input. Spider plots for percentage changes in peak flow; and runoff depth
versus scalar factors (0.5, 1, 2.5 and 2) were plotted. Additionally, relative
sensitivity coefficient analysis was addressed for + 50% of parameter and
input change (or 0.5 and 1.5 multiplicative factors). The most sensitivity

! This chapter is an edited version from, “Alejandra Maria Rojas Gonzalez, 2012. Flood predic-
tion limitations in small watersheds with mountainous terrain and high rainfall variability. Unpub-
lished PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico
— Mayagiiez Campus”.

2 Numbers in brackets refer to the references at the end of this book.
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parameters found were used in the up-scaling experiment to be perturbed
in the TBSW. Section 5.3 describes the methods to fill the gaps between
rain gauges and radar data in the MBDB.

5.2 PARAMETERS AND INPUT SENSITIVITY: SALIENT FINDINGS

To identify the parameters for which the MBDB model is most sensitive
for the mountainous condition considered, a sensitivity analysis was con-
ducted. Uncertainties associated with the model parameters and inputs
can be quantified by evaluating the hydrologic response given a range of
parameter and input perturbations at 0.5, 1, 1.5 and 2 multiplicative fac-
tors or scalars. Within the study area, 3 USGS flow stations were iden-
tified, Rio Grande de Anasco near San Sebastian, Rio Guanajibo near
Hormigueros and Rio Rosario near Hormigueros. The parameters within
the drainage area upstream of the USGS flow stations were perturbed
by the multiplicative factors conserving the spatial distribution. Sets of
parameter used in the hydrologic model were shown in Tables 5.4 and
5.6 as well as very shallow soil depth (20 cm); and initial saturation frac-
tion of 0.5 was selected as a preliminary hydrologic model configuration
at 200 m resolution.

The rainfall was created using additional USGS stations upon avail-
ability for each event. The point rainfall estimates at 15 min were inter-
polated at 200 m resolution using the exponential weighted interpolation.
For hurricane Georges (September 21 to 23, 1998) only three USGS
stations mentioned above were working. For November 11 to 16, 2003
event, eight USGS station were interpolated and for September 14 to 17,
2004 seven stations. Figure 5.1 shows the storm total maps for the inter-
polations performed for each rainfall event at 200 m resolution using
the stations available; the dots within each figure are the station loca-
tions with data each 15 min. The maximum rainfall accumulation dur-
ing each event was 566.5 mm for September (Figure 5.1A), 291.6 mm
for November, 2003 (Figure 5.1B), and 156.2 mm for September, 2004
(Figure 5.1C).

Spider plots were drawn for the parameters and rainfall perturbed
additionally, relative sensitivity coefficients (S, Eq. (1) in Chapter 3) were
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FIGURE5.1 Total storm maps, (A) September, 1998; (B) November 2003; (C) September
2004.

calculated with changes of £50% using the hydrologic distributed model
for three events mentioned and three outlet points; considering the behav-
ior of two output variables (runoff depth and peak discharge).

Spider plots are used to evaluate the model response to the entire
range of the parameter and determine if there is a portion of the
parameter range that yields unrealistic results. Figure 5.2 presents
the spider plots for peak flow as percent change in the model output
variable versus change in rainfall value by a multiplicative given factor.
Variations in the hydrologic response are linear; doubling the rainfall
input increase the peak flow from 131.7% to 203.2% for Rio Guanajibo
near Hormigueros depending on the rainfall event. In the case of Rio
Grande de Afiasco near San Sebastian the range is between 135.3% and
168.5% and for Rio Rosario near Hormigueros is between 127.7% and
145.3%.
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FIGURE 5.2 Spider plot for percentage change in peak flow due to rainfall multiplicative
factors at 3 USGS station outputs.

Figure 5.3 presents the spider plot for runoff depth where the linearity
between rainfall perturbations and hydrologic response was not conserved.
For example, doubling rainfall generates a runoff depth change between
111.5% and 145% for Guanajibo and 131.4% and 135.0% for Afiasco; and
between 112.4% and 120.6% for Rosario. These results indicate that the
infiltration is decreased with increasing the rainfall intensity providing the
volume to the runoff that could not be infiltrated. Decreasing the rainfall
intensity by 0.5 multiplicative factors, favors infiltration and decreases the
runoff depth with percent changes between 25.5% and 64.8%. Lower per-
centages are presented for September 2004 (25.5% — 31.8%), which has
a rainfall pattern different from the others (Figure 5.1C). This event is
characterized by high rainfall intensity (red color) in the upland and lower
in the flood plains. Minor percent variations occur with the peak flow for
Anasco and Rosario discharge points (61.9% to 69.1%) compared with
Guanajibo (50% to 74%).

Increasing channel roughness decreased the peak flow (Figure 5.4C),
while increasing initial soil saturation increased the peak flow (Figure 5.4A),
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FIGURE 5.3 Spider plots for percentage change in runoff depth due to rainfall multiplicative
factors at 3 USGS station outputs.

especially in Rio Guanajibo near Hormigueros outlet point, for September,
2004. Low variations were founded in peak flow with variations of soil
depth and hydraulic conductivity for all events (Figures 5.4B, 5.4E, 5.4F).

Additionally, spider plots graphs for runoff depth changes were drawn
and presented in Figure 5.5 for each parameter under evaluation. As for
peak flow, percent changes were graphed for different events and outlet
points. The parameter that produced the greatest percentage change in
runoff depth was the initial soil saturation (Figure 5.5A), for Afiasco
near San Sebastian outlet point for November 2003 and September 1998
and Guanajibo near Hormigueros for September, 2004. Generating a
change between 30% and 40% in runoff depth due to doubling in the
initial soil saturation, where the baseline was 0.5 and doubling produced
a value of 1 (i.e., saturated conditions). Low variations were found with
changes of the other parameters (Figures 5.5B—5.5F). The magnitude
of change varied with the event indicating that the rainfall spatial dis-
tribution and intensity are important aspects for quantification of initial
parameters.
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FIGURE 5.4 Spider plots for changes in peak flow due to parameters multiplicative
factors evaluated at USGS stations and 3 events. Parameters: A) Initial Saturation, B) Soil
Depth, C) Channel Roughness, D) Overland Roughness, E) Channel hydraulic conductivity,

F) Overland hydraulic conductivity.

Relative sensitivity coefficients were calculated for parameters and
rainfall input using each event and outlet point. Results are presented in
Table 5.1 for the peak flows and Table 5.2 for runoff depth as well as aver-

ages and standard deviations.

Results given below indicate that variations for both output variables
(peak flow and runoff depth) are most sensitive to the rainfall input with a
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FIGURE 5.5 Spider plots for changes in runoff depth due to parameter multiplicative
factors evaluated at USGS stations and 3 events. Parameters: A) Initial Saturation, B) Soil
Depth, C) Channel Roughness, D) Overland Roughness, E) Channel hydraulic conductivity,
F) Overland hydraulic conductivity.

Srof 69.1 and 56.5, respectively. Runoff depth was affected by initial satu-
ration, increases in this parameter increased the runoff and a Sr value of 8.2
was obtained. Followed by overland hydraulic conductivity with a Sr of
—5.5, increase in this parameter decreased the runoff depth; and increasing
soil depth produced a decrease in peak flows (Sr of —4.4). Low variations
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were observed when soil depth was doubled, indicating that soil depths
greater than 40 cm will produce little runoff depth changes (Figure 5.4B).

The peak discharge was affected by roughness with a Sr of —13.4 for
channel cells and Sr of —10.6 for overland cells; increases in roughness
parameter decreased the peak flows and retarded the time to peak. The
slope-distributed map produced a Sr of 12.6, increasing this parameter
increased peak flow. The initial soil saturation parameter produced a Sr
of 5.2 and is placed in the fifth place. Average relative sensitivities coef-
ficients (Tables 5.1 and 5.2) were plotted in Figures 5.6 and 5.7 with
observed variations in terms of basin outlet points or events.

5.3 SENSITIVITY DUE TO QUANTITATIVE PRECIPITATION
ESTIMATION WITHIN GAP AREAS

The Vflo model has the capability to support distributed rainfall and rain
gauge data in real time, ideal for a flood alarm system. However, rainfall
itself is the principal source of uncertainty in the model as observed in
the previous section. The number of rain gauges in a basin are frequently
sparse and therefore do not capture the spatial variability.

Two interpolation methods, exponential weighted (EW, Figure 5.8A),
and inverse distance weighted (IDW, Figure 5.8B), were compared with
radar rainfall from NEXRAD level 3 as seen in Figure 5.8C, for the
November 11-16, 2003 period. The average total storm rainfall calculated
at an outlet point is different between interpolation methods and radar
source. For example for the USGS station Rio Grande de Afiasco near San
Sebastian the precipitation average depth is 122.8 mm for IDW, 114.8 mm
and for EW and 77.8 mm for radar. In the USGS station at Rio Guanajibo
near Hormigueros, the total storm was 230.6 mm with IDW, 237.1 mm
and for EW and 199.8 mm for radar.

It should be noted that the radar is partially dependent on the rain gauge
data and number of stations. Furthermore, when we use radar, it is neces-
sary to remove systematic error by applying a calculated correction factor
or bias [129] for the event, which is the relationship between rain gauges
and the radar data. For November 2003 event, the bias calculated for the
whole area was 1.3 (Eq. (5) in Chapter 4). Figure 5.9 displays the scatter
plot of radar and rain gauges and the adjusted line.
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FIGURE 5.8 Total Storm Rainfall Maps at Mayagiiez Bay Drainage Basin for November
11-16, 2003 using Interpolation Methods: (A) Exponential Weighted; (B) Inverse Distance
Weighted; and Radar data (C).
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FIGURE 5.9 Radar Bias correction for storm total, November 11-16, 2003.
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Variations between methods to fill the gaps between rain gauges pro-
duce different responses in flow prediction. For example for the MBDB
model we performed hydrologic simulations using the EW and IDW inter-
polation methods at 200 m resolution and NEXRAD radar level 3 at 2 km
spatial resolution with a nominal resolution of 500 m. The results were
compared at Rio Grande de Afiasco near San Sebastian and Guanajibo
near Hormigueros stations generating differences in peak flow runoff
depth and average total rainfall (Table 5.3).

The EW method produced greater peaks (2.4%) and runoff depth
(2.5%) at Guanajibo outlet point, with a decrease in rainfall total storm
(2.9%) than IDW. The reverse effect was observed at Rio Grande de Anasco
where decreasing the rainfall total rainfall (—6.5%) generated proportional
decrease in peak flow (—=7.1%) and runoff depth (—6.8%). The radar rainfall
quantification is —12.9% and —36.7% lower than IDW for Guanajibo and
Afasco, respectively, however the reduction in peak flow was not in the
same proportion indicating that the rainfall intensity was maintained.

TABLE 5.3 Comparison of Hydrologic Results and Rainfall Interpolation Methods
and Radar

Rio Guanajibo near Hormigueros

Peak Flow Runoff depth Rainfall
(CMS) Percent change (mm) Percentchange (mm) Percentchange
IDW  394.1  Reference 145.9 Reference 230.6 Reference
EW 4034 24 149.6 2.5 237.1 29
Radar 376.6 4.4 128.5 -11.9 2009 -12.9
Rio Grande de Afiasco near San Sebastian
IDW  668.4  Reference 117.6 Reference 122.8 Reference
EW 6209 7.1 109.6 6.8 1148 -6.5

Radar 6428 3.8 724 385 77.8 -36.7
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CHAPTER 6

FLOOD PREDICTION LIMITATIONS
IN SMALL WATERSHEDS:

BIAS ESTIMATION IN RADAR
PRECIPITATION PRODUCT" 2

ALEJANDRA M. ROJAS-GONZALEZ
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6.1 INTRODUCTION

In this chapter, an analysis of the rainfall spatial variability in a small area
with a high-density rain gauge network is described. Radar rainfall esti-
mations were compared and evaluated with the rain gauge data. Statistical
measurements of discrete and continuous validation scores were calcu-
lated for the radar estimates at hourly and daily time step. PDFs were cal-
culated for the Bias with the purpose of knowing the rainfall uncertainty
over a small area.

! This chapter is an edited version from, “Alejandra Maria Rojas Gonzdlez, 2012. Flood prediction
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico — Mayagiiez
Campus”.

*Numbers in brackets refer to the references at the end of this book.
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6.2 BIAS ESTIMATION IN RADAR PRECIPITATION PRODUCT

To compare the Multisensor Precipitation Estimates (MPE) with the rain
gauge network rainfall accumulation time series, it is necessary to convert
the MPE HAP grid projection to a State Plane raster product, which will be
used in the hydrological model. Due to changes in coordinates and raster
conversions, the original pixels (HAP projection) oriented with a certain
angle, were reoriented horizontally (raster).

Figure 6.1 displays the change in the orientation, including the MPE
pixels (left) and Hourly Rainfall Product (N1P) from NEXRAD level 3
(right). The left image shows four square black boxes corresponding to the
MPE raster-projected pixels, the colored pixels are the original raster with
HAP coordinates at 4 x 4 km? spatial resolution, and the red box corresponds
to the Hydro-Estimator pixel at the same resolution as the MPE product.

The annual 2007 rainfall accumulations for the 4 MPE pixels were
1546.2,2212.1, 1949.8 and 2088.6 mm, with an annual standard deviation
0f 289.3 mm between them. Figure 6.2 shows the temporal variations in the
cumulative rainfall during the year for each MPE Pixel. Large differences
are found between Pixel 1 and Pixel 2.

6.2.1 MONTHLY CUMULATIVE RAINFALL

To show how variable the rainfall distribution within a specific pixel
can be, authors took the MPE Pixel numbers 1 and 2 and determined the

FIGURE 6.1 HE pixel (red box) and MPE pixels (black and colored boxes) (left) and Hourly
Rainfall Product (N1P) from NEXRAD level 3 (right) orientated in shapefile and raster formats.
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FIGURE 6.2 Rainfall accumulations over the time for the MPE pixels.

rain gauges associated with each pixel. A plot of the monthly cumula-
tive rainfall for MPE Pixel 1 and rain gauges are displayed in Figure 6.3.
The cumulative rainfall for the months of April and May are not repre-
sentative of those months because we had missing rain gauge data for
11 days for April and 9 days for May, therefore, the computations were
made with only the available data for these months. For the case of July,
Figure 6.3 shows that only the C06 station reported an amount of rainfall
(206.9 mm) that was similar to the MPE Pixel 1 rainfall (259.15 mm),
and for almost all months, note that the MPE Pixel 1 underestimated
the rainfall value with respect to rain gauges, except for the months of
January, June and July.

6.2.2 AVERAGE RAIN GAUGE NETWORK RAINFALL

Figure 6.4 displays the average rain gauge network rainfall in MPE Pixel 1
versus the standard deviation for 1-hour time step for 2007. The slope
between standard deviation and mean rainfall is equivalent to the coeffi-
cient of variation (CV), and is a measure of the dispersion of the probabil-
ity distribution. From the regression analysis, a R? of 0.6627 and a CV of
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Rainfall Totals per month in the MPE Pixel 1

330

300

Jand7 Feb07 Mar-07 Apr07 May-  Jund7 Juld? Aug07 Sep07 Oc-07 Mowd7 Dec-O7
o7
@C01 BC02 @C03 OC0E WMCO07 @C11 WmL01 OL02 WL05 BmL0E OL09 MPixel 1

[ oul
(4]
]

[}
=

(4]
]

Rainfall [IHI'I}

=y
[
]

ih
]

FIGURE 6.3 Monthly Total Rainfall calculation for the rain gauge stations belonging
to MPE Pixel 1, for 2007.
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FIGURE 6.4 Hourly average and standard deviation rainfall for the rain gauge network
corresponding to MPE pixel 1 for 2007.
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0.3766 were obtained, indicating high rainfall variability in the MPE
pixel 1, which cover an area of 4.5 km?.

The rain gauge network covering an area of 16 km? shows that the
relationship between mean rainfall and standard deviation has the trend of
an increase in rainfall depth will produce an increase in standard deviation.
The linear regression indicates a R? 0of 0.78 and a slope of 0.45 (Figure 6.5).
An increase in CV exists between Figures 6.5 and 6.6, related to an expan-
sion of the rain gauge area from 4.5 to 16 km? indicating an increase in dis-
persion of the data. Therefore, the coefficient of determination increases,
indicating that the standard deviation of a sample of mean rainfall can be
obtained with more accuracy than in small areas.

Mean rain gauge network data and mean weighted MPE rainfall were
graphed at the hourly time step and a linear regression equation was cal-
culated (Figure 6.6) obtaining a slope line of 0.848 and a R* of 0.43. The
slope represents the Bias between the rainfall from the gauge network
and the MPE radar product, and this value can be applied to the hourly
MPE measurements as a correction. The MPE in general is overestimating

Rain gauge Network
Hourly data

‘ y =0.4553x + 0.0544
R?=0.7777

Standard Deviation (mm)

0 10 20 30 40 50
Mean Rainfall (mm)

FIGURE 6.5 Hourly average and standard deviation rainfall for rain gauge network
for 2007.
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Hourly Measurements
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FIGURE 6.6 Average rain gauge rainfall vs. MPE radar rainfall within HE pixel at hourly
time step.

precipitation with a coefficient of determination of 0.4307. The MPE
exhibits problems of detection at low rainfall measurements principally
(Figure 6.6).

6.2.3 CONTINGENCY TABLES AND SCORES

The contingency tables and scores (Tables 6.1 and 6.2, respectively) were
calculated to evaluate the Pixel 1, Pixel 2 and total 4 MPE pixels for hourly
time step and daily rainfall accumulations for the four MPE pixels within
the HE pixel. The number of estimated rainfall events was overestimated
according to the discrete bias (DB) in the MPE pixel 1 (1.24) comparing
with the Pixel 2 and the 4 MPE pixels, which have a value close to 1. For
daily data the DB is underestimated by a factor of 0.956.

The hit rate (H) indicates the occasions when the categorical estima-
tion correctly determined the occurrence of rainfall event or nonevent and
was around 0.82 and 0.89; nonsignificant differences were found between
hourly and daily accumulations at the 4 pixels.
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TABLE 6.1 Contingency Tables for the MPE Pixels
Hourly Data Observed Rainfall
MPE Pixel 1 (Rain gauges)
Yes No
Estimated MPE Rainfall Yes 638 653
No 400 6581
Hourly Data Observed Rainfall
MPE Pixel 2 (Rain gauges)
Yes No
Estimated MPE Rainfall Yes 630 464
No 449 6729
Hourly Data Observed Rainfall
4 MPE Pixels (Rain gauges)
Yes No
Estimated MPE Rainfall Yes 915 756
No 693 5910
Daily Data Observed Rainfall
4 MPE Pixel (Rain gauges)
Yes No
Estimated MPE Rainfall Yes 225 33
No 45 341
TABLE 6.2 Discrete Validation Scores for the MPE Pixels and Time Scales
Hourly Data Daily Data
MPE Pixel 1 MPE Pixel 2 4 MPE pixels 4 MPE pixels
POD 0.62 0.58 0.57 0.833
FAR 0.51 0.42 0.45 0.128
DB 1.24 1.01 1.04 0.956
H 0.87 0.89 0.82 0.879

Moreover, the probability of detection (POD) is the likelihood that the
event would be estimated by the radar, increasing with the time step, with
0.833 for the daily data. Daily estimates eliminate the influence of light
rainfalls that the radar cannot detect. For the hourly time step, the Pixel 1
POD was higher than the POD for Pixel 2 and the average of 4 MPE pixels.
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6.2.4 FALSE ALARM RATES OR PORTION OF ESTIMATED
RAINFALL EVENTS

False alarm rates or portion of estimated rainfall events that fail to mate-
rialize are similar in Pixels 1, 2 (0.50 and 0.42, respectively) and the four
pixels average (0.45). For the daily time step there was a considerable
reduction in the FAR (0.128). Figures 6.7 and 6.8 show the distribution of
false alarms and the probability of no detection by the radar during 2007.
Events in which the radar did not detect rainfall and the rain gauges did
measure rainfall (¢) were assigned a value of 1 in the graph. Events in
which the radar did detected rainfall and the gauges did not measure rain-
fall (b) were assigned a value of 2. Differences in time when false alarms
and probability of no detection quantities occurred can be observed in the
graphs, and detailed statistics are presented in Tables 6.2 and 6.3.

6.2.5 MEAN FIELD BIAS (BIAS)

A mean field bias (Bias) was calculated for the MPE Pixel 1, 2 and overall
4 pixels, as the ratio of the average of the rain gauge rainfall and the mean

False Alarm at Pixel 1
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FIGURE 6.7 Hourly False Alarm Time Series for the MPE Pixel 1 for 2007.
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False Alarm at HE pixel
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FIGURE 6.8 Hourly False Alarm Time Series for the MPE Pixels within a HE Pixel for
June to December 2007.

TABLE 6.3 Continuous Validation Scores for the MPE Pixels and Time Scales

Mean Hourly Daily Data
MPE MPE 4 MPE 4 MPE pixels 4 MPE
Pixel 1 Pixel 2 pixels Rain > 0.3 mm pixels
RMSE - - 0.012 - 0.368
Bias 3.85 1.58 2.77 1.55 1.23
STD Bias 4.21 2.73 8.18 2.14 1.65

rainfall sensed for the MPE pixels using the area weights for each time step
(hourly, daily, monthly and annually accumulations). Hourly mean field bias
time series during the 2007 are displayed in Figure 6.9 for the MPE Pixel 1
only and Figure 6.10 for the mean four MPE pixels within the HE pixel.
Large biases were found at the hourly time step and are associated
with small radar rainfall and rain gauge detections (Figure 6.9). The pos-
sible effect is that the radar minimum precipitation depth capable of being
detected is 0.01 inches or 0.254 mm; while our rain gauge network has
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Mean Field Bias in Pixel 1

100
* R ** bad . e . :
* \d *
M . o 2 2 : ¢ L 24 o o0 : te ¢
10 o, 3 % <, 0: o . ¢ 0." PR NP
.
SRR S U TS S ESSE TRt IS 0 iz,"o
N 3 DR * ¢ 0 * * * . 2
1 St BRI ‘.'{: o . ““.:" Wl .t o
9 ¥ “'i I AR TR A RIS SRR I
g < "o’ LAY ?3 ‘0”‘: ge o‘o . ,;" K .} . s
¢ % $e ‘0.0.‘:{ 0.1'3‘ * ‘0‘ ot 0
$ . o 3 i LR LA ] .
0.1 . % #3 es ¥ O .
- “o’ P . ® - .
#: * . . ‘e o o .
. ., MRS . ¢ e
. * ¢ . e
0.01 S . . .
*
0.001
§L N (N SRS { S (N SR A SO (N LN { S\ { S L\
W ¢ 0T peT g Y W 8T e 0T (OF e

FIGURE 6.9 Hourly Mean Field Bias for the MPE Pixel 1 during 2007.
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a rainfall depth resolution of 0.1 mm. In addition, the NEXRAD in Puerto
Rico is located about 100 km from the study area in Cayey at a site ele-
vation of 850 meters amsl. Due to the earth curvature, the beam has an
elevation of 600 m above the study site at Mayagiiez, affecting the cloud’s
measurement in the lower troposphere.

To neutralize the noise effect of small rainfall quantifications in the
hourly bias computation, rainfall depths less than 0.3 mm were eliminated.
A considerable hourly bias reduction was observed in time (Figure 6.11)
and in the average and standard deviation computation across the year as
well as monthly (Tables 6.3 and 6.4).

The continuous validation scores for MPE rainfall validation (Table 6.3)
show a root mean square error is greater (0.368 mm) in daily accumula-
tions than in hourly (0.012 mm). The mean field bias average for 2007 in
Pixel 1 is 3.85 with a standard deviation average of 4.21. The four MPE
pixels present a lower Bias (2.77) but a large standard deviation (8.18).
The annual average Bias is improved after eliminating rainfall depths less
than 0.3 mm, diminishing to 1.55 and a standard deviation of 2.14 for the
four MPE pixels with rainfall greater than 0.3 mm.

Mean Field Bias at HE pixel without rain less than 0.3mm
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FIGURE 6.11 Hourly Mean Field Bias for the overall MPE Pixels within a HE Pixel
for January to December, 2007.
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In the months of April and May some data in the rain gauge network
were missing, and as a consequence, the mean field bias was calculated
only for the existing data. In addition, the MPE Pixels present the complete
accumulations for these months while the rain gauge column showed only
the existing data. The MPE total accumulations are 120.9 and 187 mm
for April and May (Table 6.4), but the MPE accumulations only for the
time window that correspond to the rain gauge data are 22.41 mm and
143.61 mm for April and May, respectively and these data was not consid-
ered in the computations of Bias.

The mean field bias tended to decrease when the calculation was per-
formed for the whole HE pixel area (16 km?). Therefore, when the MPE is
accumulated (e.g., over several hours or days) the bias is reduced and the
standard deviation as well. Table 6.19 provides detailed bias computations
for year 2007 results.

The results indicate that the month with largest hourly bias was December
(5.68), which also had the highest variability (STD =12.92). These results
are decreased to 1.53 and 2.52 respectively, when the average rainfall less
than 0.3 mm in radar and rain gauges were eliminated. The greatest daily

Probability Plot for Daily Bias: Rain/ MPE
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Bias occurred in November with 2.24 and a standard deviation (STD) of
2.6. The months with Bias close to 1 are June, July, August and September
but only August and September maintain the value close to one in monthly
accumulations.

Different probability distributions were tested with a 95% of confi-
dence to determine which particular distribution fits to the daily rainfall
bias. The null hypothesis is that the data follow the distribution selected if
P-value is greater than 0.05. The normal distribution with Box-Crox trans-
formation (A = 0.15) was the probability distribution that obtains a better
fit to the data. Goodness of fit was evaluated using the Anderson Darling
(AD) test (0.677) [3] and P-value equal to 0.677. Additionally the expo-
nential, lognormal and Weibull distributions were tested (Figure 6.12), but
obtained P-values less than 0.05 and the hypothesis was rejected, although
Anderson Darling [3] values were small.
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7.1 INTRODUCTION

This Chapter analyzes the uncertainty propagation due to the model.
Comparisons between rainfall resolutions and hydrologic model resolu-
tions serve as a guide for modelers and radar developers to know how

! This chapter is an edited version from, “Alejandra Maria Rojas Gonzdlez, 2012. Flood prediction
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico — Mayagiiez
Campus”.

2 Numbers in brackets refer to the references at the end of this book.
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much detail is necessary to archive a reliable solution in small water-
sheds in terms of flow prediction using ensembles. This chapter presents
Predictability Limits Due to Up-scaling.

7.2 PARAMETER UNCERTAINTY PROPAGATION
DUE TO RAINFALL SPATIAL VARIABILITY AND
HYDROLOGIC MODEL CONFIGURATIONS

Hydrologic evaluation was performed at the TBSW to evaluate the uncer-
tainty due to spatial rainfall variations. A most comprehensive meth-
odology was described in Section 4.4 under Chapter 4, where different
interpolation methods represent rainfall coverage over MBDB model. The
ensemble forecast procedure in principle draws a finite sample from the
probability distribution describing the uncertainty of the initial state of
the atmosphere (rainfall) or hydrologic model. Each input, parameter or
model configuration combination is called the ensembles of initial condi-
tion, and each one represents a possible initial state consistent with the
uncertainties in observation and analysis.

Using a deterministic model, it is possible to evaluate the propagation
of the entire initial state probability distribution by the governing physi-
cal laws. The evaluation would bring information reliable to a determined
initial state and would be a decision support to evaluate procedures that
would be applied to obtain goodness of fit models at different resolu-
tions or selecting a rainfall cell size when rainfall information is avail-
able at scales below NEXRAD resolutions. Here, the word “probability” is
treated as conditional, because parameters were perturbed in their physical
bounds, using scalar factors, selection of possible hydrologic configura-
tion and input resolution without giving any spatial weight.

Monte-Carlo method approximation is based on a large number of
possible initial hydrologic states drawn up randomly from the PDF of
initial-condition uncertainty in the phase space. The stochastic dynamic
simulation is constructed by a substantial amount of hydrologic simula-
tions, repeatedly running the model is where the knowledge of the real
PDEF’s are required. It is important that the initial ensemble member should
be chosen well, their selection is further complicated by the fact that initial



Flood Prediction Limitations in Small Watersheds 117

condition of PDF in space required for a distributed model is unknown
and it changes from day to day, so that the ideal of simple random samples
from this distribution cannot be achieved in practice. As a practical man-
ner, computing time is a limiting factor at operational flood forecast cen-
ters. The modeler must make a subjective judgment balancing the number
of ensemble members to include in relation to the spatial resolution of the
hydrologic model used taking into consideration their physical bounds.

Using methods to resample parameters, it was possible to reduce the
uncertainty due to slope degradation that result in lowest peaks and vol-
umes retarding the runoff and smoothing the hydrograph. Five hydrologic
model configurations at different scales were tested with a distributed
model. The computation of the parameter statistics is shown in Table 7.1.

Grid scales are from 10 m to 400 m, with changes in total area though
3.56 km? for a high-resolution model (10 m) to 3.84 km? for coarser reso-
lution (400 m). Average parameter values were maintained though the up-
scaling at the TBSW. Terrain slope is reduced from 30.98 to 24.63% for
average values and from 97 to 60.28% for maximum slopes. The most
important change was due to channels cells ratio, because to increase the
grid size the number of cells that represent overland and river cells are
reduced. In the high-resolution model the total cells were 35,235 in which
318 cells were attributed to channel representation with a ratio of 0.9%.
For coarser model resolutions up to 400 m, 18 cells were dedicated to
overland process, and 6 cells for channel processes.

Additionally, rainfall and stage information are necessary to feed and
validate the model. Five important events were selected from the monitor-
ing time period (October 2007 to May 2009) for stage and rainfall. The
methodology used to transform the pressure measurements of transducer
installed at the outlet of the TBSW to stage measurements and poste-
rior flow-stage curve generation has been described before in Chapter 4.
Table 7.2 shows important information for the selected events, as time
to peak; peak flow and average runoff depth over the TBSW. These vari-
ables compared to observed data give more descriptive information of the
hydrograph shape than statistics based on error variances. The observed
hydrograph for each event are displayed in Figure 7.1. The base flow was
removed as a constant value from the observations because this creek has
a very short concentration time due its size and high slopes.
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TABLE 7.1 Descriptive Variables and Statistical Quantification for Hydrologic Model
Resolution TBSW Configuration

Variable RESOLUTION MODEL (m)
10 50 100 200 400

Area (km?) 3.56 3.64 372 376 3.84
Number of cells 35235 1393 342 82 18
Number of channel cells 318 61 30 12 6
Channel Cells Ratio (%) 0.90 438 877 14.63 3333

Minimum  0.02 0.02 0.02 002 0.02
Roughness Average 0.12 0.11 011  0.10 0.10

Maximum  0.15 0.15 015 0.15 0.15
Minimum  27.00 10.00 10.00 0.10 1.25
Slope (%) Average 3098  29.83 27.69 2621 24.63
Maximum 97.00  87.54 86.10 70.84 60.28
Minimum  0.15 064 0.64 064 0.64
Hyd. Conductivity (cm/h) Average 0.69 0.69 0.69 0.69 0.70
Maximum  2.84 0.86 0.86 086 0.86

Wetting Front (cm) Average 31.62 31.62 31.62 31.62 31.62
Minimum  0.26 042 042 042 042

Effective Porosity Average 0.43 0.43 0.43 0.43 0.43
Maximum  0.45 045 045 045 045
Minimum 0 0 0 0 0

Impervious Average 0.02 0.02 0.03 003 0.02

Maximum  0.63 063 058 046 030
Minimum  0.08 0.00 0.15 0.15 0.15

Abstraction (cm) Average 0.80 0.80 0.78 080 0.84
Maximum  1.25 1.25 1.25 1.25 1.25
Channel Width (m) Average 5.00 5.00 5.00 500 5.00

Events over the year represent different initial states of the parameters
and atmospheric characteristics. Antecedent soil moisture represented by
initial saturation in the model is a spatially distributed parameter and it is
time dependent, affecting principally the runoff depth. Low initial saturation
values increase the infiltration capacity due to soil moisture and reduce the
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TABLE 7.2 Inventory of Observed Events

Events Observed peak Observed runoff Observed time
Flow (m®/s) Depth (mm) to peak (h)

22-Oct-07 10.13 16.6 15:15

2-May-08 9.38 34.6 15:30

5-Jun-08 52 6.51 18:15

28-Aug-08 6.69 10.34 16:00

3-Sep-08 21.2 54.6 3:45

runoff depth. Rainfall information was collected from the rain gauge network
for the events selected. Some rain gauges produced erroneous results or mal-
functioned and were eliminated from the analysis. The minimum number of
rain gauges used to produce a time step rainfall map was: 15 for May 2, 2008
and a maximum number of 18 rain gauges for October 22, 2007.

Table 7.3 presents storm totals for each rain gauge, average storm
total for all gages and standard deviations. May 2 and September 3, 2008
events present the highest rainfall variability with a standard deviation of
24.3 mm and 20.8 mm between rain gauges; and totals rainfall of 80.4 mm
and 95.7 mm respectively. Additionally, standard deviation at each rain
gauge though the events were calculated at 10 min time step; presenting a
maximum value of 3.29 mm, 4.29 mm, 3.23 mm, 2.88 mm and 2.59 mm
for October 22, 2007; June 5, September 3, May 2, and August 28, 2008
respectively. The standard deviation calculated for both: partial and total
storms reflect the spatial variability with a 4 x 4 km? pixel (Table 7.3).

Antecedent rainfall defines how much runoff will be produced and
is an indicator of the antecedent soil moisture condition 5 days before
the event occurred. The May 2 antecedent rainfall was 64.27 mm, while
September 3 antecedent rainfall was only 4.41 mm. Therefore, initial soil
moisture will be different for both events. Combinations of important
smaller rainfall events with low and high antecedent rainfall accumulation
were analyzed in this work.

Precipitation was interpolated using ArcGIS 9.3 software with the inverse
distance weighted method at 10 min time steps. The method is a commonly
used technique for generating weighted averaged surfaces of scatter points,
and which places more weight (influence) by nearby points and less by dis-
tant points. The average storm for each event is shown in Table 7.4.
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FIGURE 7.1 Observed flows for the events studied.

Convective and orographic rainfalls are the most common in west-
ern Puerto Rico and can occur daily during the wet season. In orographic
events along the western coast of Puerto Rico, masses of wet air are trans-
ported by a sea breeze mechanism towards the east where it converges
with the easterly trade wind over the mountains of western Puerto Rico.
This, combined with the heating of the land causes the wet air to move
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TABLE 7.3 Total Rainfall Event Measured in Rain Gauges Network Over 4 x 4 km? Area

Gauge station

22-Oct-07 2-May-08 5-Jun-08

C01
C02
C03
C04
Co5
C06
C07
Co08
C09
C10
Cll1
Cl12
L02
L03
Lo4
LO05
LO6
LO7
L08
L09
L11
L13
L14
L15
L16
Average (mm)
STD (mm)

Antecedent rainfall:
Average total rainfall
previous 5 days (mm)

324
38.1
478
40.4
424
427
49.5
48.6
51.7
43.0
48.6
454

32.7

40.1

48.5
28.1
22.5
64.0
42.58
9.63

51.61

57.5

83.8
86.7
101.1
55.7
70.3
83.3
96.3
94.3

85.3

449
136.7
80.39
24.28

64.27

Total Rainfall (mm)
28-Aug-08 3-Sep-08

51.7 35.7 105.3
46.7 32.6 105.4
522 34.5 117.5
51 - -
49.5 44 112.2
40 315 -
- 23.6 107.6
48.8 29.9 90.2
43.5 30.5 97.3
- 28.1 108.9
34.1 14.2 97
- 332 943
- 49.9 60.3
52.3 - -
- 11.6 38.1
18.5 - -
47 37.6 82.8
44.1 49.2 116.5
40.2 - -
49.5 - 100.2
18.6 - -
39.8 453 97.9
42.79 33.21 95.72
10.49 10.93 20.79
2.66 24.06 441
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vertically upward forming convective cloud, within which the air is cooled
and moisture is condensed causing precipitation. Convective precipitation
falls over a certain area for a relative short time with a limited horizon-
tal extent and variable intensity, forming rainfall cells over limited areas.
Figure 7.2 shows the temporal variation between two selected cells after
interpolation was made at 10 min time scale. Table 7.4 indicates the total
storm rainfall averaged over the TBSW area, where the storm total is
slightly different for each interpolation resolution.

Additionally small differences across model resolutions are due to
changes in area, where the grid is intended to represent the shape of the basin.

Ogden and Julien [74] discussed the appropriateness of the correla-
tion length as indicator of spatial structure and obtained an intergage dis-
tance of 2.5 km. Distances greater than this value will not capture the true
rainfall spatial variability. With the existing average distance between the
TBSW rain gauges network of 200 m, this work ensures to capture the real
spatial variability for each time step though the event.

TABLE 7.4 Storm Total Produced for Different Resolutions

Total Rain (mm)
Model Rainfall Rain grid size (meter) Average Standard
ﬁ::;olution event 100 200 400 1000 2000 (mm) ?;\Ifli;tion
Grid 10 2-May-08 80.1 80.1 80.0 812 774 7938 1.4

3-Sep-08  100.5 100.6 1004 97.5 101.3 100.1 1.5
22-Oct-07 449 449 448 441 444 446 0.3
28-Aug-08 302 303 303 302 346 31.1 2.0
5-Jun-08 423 423 425 422 446 428 1.0
Grid 50 2-May-08 799 799 798 81.1 77.6 79.7 1.3
3-Sep-08  100.5 100.5 1004 97.2 101.2 100.0 1.6
22-Oct-07 45.0 450 449 442 405 439 1.9
28-Aug-08 30.0 30.0 30.0 29.8 344 309 2.0
5-Jun-08 422 422 424 4211 444 427 1.0
Grid 100 2-May-08 80.6 80.6 80.5 81.5 77.7 80.2 1.5
3-Sep-08  100.7 100.7 100.6 98.1 101.5 100.3 1.3
22-Oct-07 44.8 448 448 441 404 438 1.9
28-Aug-08 30.8 30.8 30.8 30.8 349 31.6 1.8
5-Jun-08 425 425 426 433 448 431 1.0
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TABLE 7.4 Continued

Total Rain (mm)

Model Rainfall Rain grid size (meter) Average Standard
Resolution event 100 200 400 1000 2000 (mm) deviation
(m) (mm)

Grid 200 2-May-08 802 79.6 795 80.8 769 794 1.5
3-Sep-08  100.5 1003 100.1 96.6 101.4 99.8 1.9
22-Oct-07 45.0 447 446 439 402 437 2.0
28-Aug-08 303 304 31.7 30.0 347 314 1.9
5-Jun-08 422 424 425 423 448 428 1.1
Grid 400 2-May-08 787 79.1 80.4 80.5 77.0 79.1 1.4
3-Sep-08  100.3 100.4 100.7 94.0 101.5 994 3.0
22-Oct-07 447 449 447 435 403 43.6 1.9
28-Aug-08 299 297 309 292 348 309 23
5-Jun-08  44.0 423 424 423 446 433 1.2

Hyetographs for individual cells
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FIGURE?7.2 Hyetographs extracted from two cells (100 m resolution) for September 3, 2008.
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7.3 EVALUATION OF PREDICTABILITY LIMITS

The predictability analysis due to rainfall inputs and hydrologic models
resolution was performed using a total of 15,625 runs with combinations of
five parameter perturbations to roughness, hydraulic conductivity and initial
saturation; five hydrologic model configuration resolutions (10 m, 50 m,
100 m, 200 m, and 400 m); five rainfall resolutions (100 m, 200 m, 400 m,
1000 m and 2000 m) and five events presented in Table 7.3. The events
were tested to evaluate temporal or season dependence and cover different
mechanisms of rainfall generation as convective or orographic movements.

The total number of runs was reclassified in different ways depending
on the type of analysis. Box plots summarize information about the shape,
dispersion (confident levels of the ensemble at 5 and 95 quartiles), center
of the data and outliers; also are presented as exploratory measures. A total
of 125 runs that describes the dispersion of hydrologic predictions due to
parameter perturbation were grouped, for each combination of model and
rainfall resolution, where peak flows, runoft depth and times to peak were
compared with observed data. In box plot graphs, the horizontal line rep-
resent the median of the data, the vertical lines extending from the box are
called whiskers. The whiskers extend outward to indicate the lowest and
highest values in the data, excluding outliers. Extreme values or outliers
are represented by asterisks (*).

The event of October 22, 2007 was one of the largest flows measured
at the flow gauge during the testing period, with a discharge runoft depth
of 16.6 mm and peak flow of 10.11 cms, and a runoff-rainfall ratio of 0.37
(Table 7.2). October 22, 2007 ensembles show a tendency almost constant
between rain resolutions, with a slight decrease of mean peak flows with
increase of the rainfall resolution. Additionally, hydrologic model results
are shown in the different panels for 10 m, 50 m, 100 m, 200 m and 400 m
resolution (Figure 7.3A).

The averages are around the observed peak flow (red line), and hydro-
logic model 50 m and 100 m present outliers for high peaks in all rain
gauge resolutions. In the case of runoff depth (Figure 7.6A), the average
ensembles are around the observed volume (red line) with a tendency to
overestimate at 10 m hydrologic model and underestimate the observed
volume for the others hydrologic model resolutions in all rainfall maps.
No outliers were present in runoff depth box plots. The time to peak graphs
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FIGURE 7.3 Box plots of peak flows for events on: (A) October 22, 2007; (B) May 2, 2008.

(Figure 7.6A) indicate low dispersions in modeled values for the 10, 100
and 200 m hydrologic models.

The event of May 2, 2008 with a discharge depth volume of 34.6 mm,
and peak flow of 9.38 CMS, and a runoff-rainfall ratio of 0.43 shows a
tendency almost constant for the peaks though rain sizes and hydrologic
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Hydrologic Model (m) = 10 Hydrologic Mode! (m) = 50 Hydrologic Model (m) = 100

A GE

5.2

Hydrologic Model (m) = 200 Hydrologic Model (m) = 400

—
§
5 100 200 400 1000 2000

5.2

SaBIE N

T T T T T T T T T T
100 200 400 1000 2000 100 200 400 1000 2000

Rain Resolution (m)
A
August 28, 2008
Hydrologic Model (m) = 10 Hydrologic Model (m) = 50 Hydrologic Model (m) = 100

6.69

.
4

100 200 40 1000 2000

Hydrologic Model (m) = 200 Hydrologic Model (m) = 400

Peak Fow (cms)

6.69

© § 8

100 200 400 1000 2000 100 200 400 1000 2000
Rain Resolution (m)

B
FIGURE 7.4 Box plots of Peak flows for events on: (A) June 5, 2008; (B) August 28, 2008.

models, with a slight decrease of mean peak flows with increase in the
rainfall resolution (Figure 7.3B). The average ensembles are around the
observed peak flow, and hydrologic model 200 m presents some outli-
ers for high peaks in all rain gauges sizes. In the case of runoff depth
(Figure 7.6B), the average ensembles underestimate the runoff depth
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except for the 10 m hydrologic model with 100 m rainfall size. The aver-
age ensemble for runoff depth decreases with increasing of rainfall reso-
lution and hydrologic model resolution. No outliers were present in runoff
depth box plots. Figure 7.9B shows the time to peak modeled where the
average ensemble values are around the observed and low dispersions
were found.

Box plots for June 5, 2008 are shown in Figure 7.5A for peak flow and
Figure 7.7A for runoff depth. The event had a discharge volume of 6.51
mm and 5.2 cms flow, and a runoff-rainfall ratio of 0.154.

The average ensembles tended to overestimate peaks and volumes as
well, therefore, showing a tendency almost constant for the peak aver-
age though rain sizes and hydrologic models, with an increase of mean
peak flows with increase rainfall resolution (Figure 7.4A) for the 400 m
hydrologic model. Hydrologic models presented some outliers for high
peaks in all rain gauges sizes, except for the 10 m hydrologic model. In
the case of runoff depth (Figure 7.7A), the simulations for 10 m resolution
model were out of the observed volume and the others ones ensembles
slightly covering the observed volume. The average resemble of runoff

September 3, 2008

Hydrologic Model (m) = 10 Hydrologic Model (m) = 50 Hydrologic Model (m) = 100

48

36

2 21.2
~~
g 124
&
~ 04

T T T T T

5 100 200 400 1000 2000
= Hydrologic Model (m) = 200 Hydrologic Model (m) = 400
g *

36
Z9 212
12

100 200 400 1000 2000 100 200 400 1000 2000
Rain Resolution (m)

FIGURE 7.5 Box plots of Peak flows for September 3, 2008 event.
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depth decrease to increase the rainfall resolutions and hydrologic model
resolution. No outliers are presented in runoff depth box plots. Time to
peak ensemble means (Figure 7.10A) are within the observed value of
18:15 min for June 5, 2008 with underestimation in hydrologic models
greater than 50 m. For hydrologic models 200 and 400 m the quartile 95
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are below the observed value.
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FIGURE 7.6 Box plots for runoff depth: (A) October 22, 2007; (B) May 2, 2008.
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FIGURE 7.7 Box plots for runoff depth: (A) August 28, 2008; (B) September 3, 2008.

The event of August 28, 2008 has a discharge depth volume of 10.34 mm,
6.69 cms peak flow, and a runoff-rainfall ratio of 0.34. It shows a ten-
dency almost constant between rain sizes, with a slighter increase of mean
peak flows with increase of the rainfall resolution, additionally the range
between quartiles 5 and 95 is also increased (Figure 7.4B). The average
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FIGURE 7.8 Box plots for runoff depth for September 3, 2008.

ensembles are below the observed peak flows, and all hydrologic models
present outliers for high peaks in all rain gauges resolutions. In the case of
runoff depth (Figure 7.7B), the average ensembles are below the observed
volume with a tendency to underestimate, except for 10 m hydrologic
model and rainfall resolution of 2000 m. Therefore, for some ensembles
the quartiles 95 are very close to the observed volume. No outliers were
present in runoff depth box plots.

The reason is that computations with very low initial saturation (0.25)
did not represent the antecedent soil moisture and high hydraulic conduc-
tivities. Figure 7.10B shows the time to peak box plots showing values
around the observed (August 28 16:00) with low dispersion for the hydro-
logic model of 100 m resolution. The hydrologic models with more disper-
sion are 50 and 400 m resolution.

The event of September 3, 2008 was the largest peak flow measured
at the flow gauge in the studied period, with a discharge depth volume of
54.6 mm, 21.2 cms peak flow, and a runoff-rainfall ratio of 0.5. September 3,
2008 shows a tendency almost constant between rain sizes, with slight
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FIGURE 7.9 Box Plot of time to peak for (A) October 22, 2007; (B) May 2, 2008.

changes of mean ensemble peak flows (Figure 7.5). The ensemble aver-
ages are underestimating the observed peak flow and the 10 m hydrologic
model results are closer to the observed values as is the 400 m resolution
hydrologic model as well. Hydrologic model at 50 m, 100 m and 200 m
present outliers for high peaks in all rain gauge resolutions. In the case of
runoff depth (Figure 7.8), the average ensembles at 10 m hydrologic model
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FIGURE 7.10 Box Plot of time to peak for (A) June 5, 2008; (B) August 28, 2008.

are around the observed depth volume with a tendency to underestimate
the observed depth volume. The observed runoff depth volume is near to
the quartile 95 for 50, 100, 200 and 400 m hydrologic model resolutions.
No outliers were present in volume depth runoff box plots.
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FIGURE 7.11 Box Plot of time to peak for September 3, 2008.

Figure 7.11 indicated high dispersions for the 50, 100, 200 and 400 m
hydrologic models resolutions and a tendency to overestimate the observed
time to peak (September 3, was 3:35). The significant dispersions are due
to the form of the observed hydrograph that consist in three limbs. With
low initial saturations and high hydraulic conductivities the first jump is
absorbed and peaks are greater in the second or third limb.

In general the average ensembles were underestimating the peak flow
and runoff depth for the analyzed events, except for June 5, 2008 where
the contrary situation was obtained. This event is characterized by an ante-
cedent dry period and medium rainfall in a short time, revealing an anom-
aly for dry periods and lighter rainfall events.

7.4 EVALUATING HYDROLOGIC MODELS RESOLUTIONS
AND RAINFALL RESOLUTIONS: PROBABILITY PLOTS

The 15,625 runs were grouped in a different way that helps to explain
differences between rainfall resolutions and hydrologic model resolu-
tions as well. Probability with normal distribution and confident levels
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(5-95) were calculated and plotted for ensemble with observed values in
Figures 7.12-7.16. The ensembles for example consist of 625 runs for
each hydrologic model including the perturbation parameters and varia-
tions in rainfall sizes. Goodness of fit statistics was calculated to compare
the data to probability distribution.

7.4.1 PEARSON CORRELATION COEFFICIENT

The Pearson correlation coefficient measures the strength of the linear
relationship between the X and Y variables on a probability plot (The value
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FIGURE 7.12 Probability plots for October 22, 2007: (A) Rain ensembles for peak flow,
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth
volume, (D) Hydrologic Model ensembles for discharge depth volume.
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FIGURE 7.13 Probability plots for May 2, 2008: (A) Rain ensembles for peak flow,
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth
volume, (D) Hydrologic Model ensembles for discharge depth volume.

close to 1 indicates that the relationship is highly linear). Almost all graphs pres-
ent Pearson correlation coefficient values above 0.93. The event that presents the
lowest was August 28, 2008 (Figure 7.15A) for peak flows with 0.875 coeffi-
cient of determination. Additional information such as mean and standard devia-
tion of the ensemble are shown in Figures 7.12—7.16. The lowest extreme values
in peak and runoff depth did not have good agreement with the PDF, and was
produced by low initial soil saturation values (0.25) in combination with high
hydraulic conductivities. In general, the ensemble means and standard deviation
decreased with increasing rain resolution input or increase of model resolution.
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FIGURE 7.14 Probability plots for June 5, 2008: (A) Rain ensembles for peak flow,
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth
volume, (D) Hydrologic Model ensembles for discharge depth volume.

7.4.2 RPS COMPUTATION

The statistical measures (Bias, MSE, RMSE and the RPS) were calculated
for the 625 members for each ensemble explained above. The RPS compares
each category with observed values; 12 categories were selected for the RPS
computation. Table 7.5 shows the statistics calculated for October 22, 2007
where the lowest RPS for peak flow variable and different rainfall resolu-
tions are for rainfalls of 100 m (0.79) and 400 m (0.79) with similar RMSE
(8.09 mm and 8.05 mm, respectively); and 100 m (RPS: 0.7) follow by 200
m (RPS: 0.77) and 400 m (RPS: 0.77) for runoff depth. Therefore, the lowest
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FIGURE 7.15 Probability plots for August 28, 2008: (A) Rain ensembles for peak flow,
(B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge depth
volume, (D) Hydrologic Model ensembles for discharge depth volume.

RMSE (9.23 mm) is for 400 m rainfall resolution. The time to peak pres-
ents the best RPS (0.43) for 400 m rainfall with the lowest RMSE (49 min)
and the Bias is close to one. When the ensembles grouped by hydrologic
model were analyzed, the best RPS for peak flow are 0.78 and 0.79 for the
400 m and 200 m hydrologic models, respectively. The best lowest RMSE,
6.91 cms is for 400 m and 7.52 cms for 200 m. Analyzing the runoff depth
volume variable, the 10 m hydrologic model obtained a good RPS (0.75) as
did the 50 m (RPS: 0.83) and 100 m (RPS: 0.83) m hydrologic model.

The hydrologic model that produced the best time to peak according
to the RPS is 10 and 100 m resolution models with 0.38 and 0.41 RPS’s,
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FIGURE 7.16 Probability plots for September 3, 2008: (A) Rain ensembles for peak
flow, (B) Hydrologic model ensembles for peak flow, (C) Rain Ensembles for discharge
depth volume, (D) Hydrologic Model ensembles for discharge depth volume.

additionally, these resolutions present lower RMSE’s of 40 and 34 min.
Table 7.6 presents the ensemble statistics and skill of the prediction
according to rainfall resolution and hydrologic model resolution for the
event occurring on May 2, 2008. Evaluating peak flow and time to peak
due to rainfall variations the RPS’s do not clearly favor any resolutions.
Therefore 100 m, 200 m and 400 m resolution obtain similar value of RPS.
In the case of runoff depth volume, the RPS favors rainfall resolutions of
100 m and 1000 m with RPS values of 1.28 and 1.36, respectively.
Ensembles grouped by hydrologic resolution provide RPS values that
favor the 10 and 100 m resolution for peak flow, volume and time to peak.
Table 7.7 shows the statistics and skills of the prediction for June 5,
2008 where the rainfall resolutions favor the 100 m, 200 m and 400 m



Flood Prediction Limitations in Small Watersheds 139

TABLE 7.5 Ensemble Statistics and Skill of Prediction According to Rainfall Resolution
and Hydrologic Model Resolution for October 22, 2007

Rainfall Hydrologic Model
100 200 400 1000 2000 10 50 100 200 400

Peak

Bias 091 091 091 092 08 071 121 0.67 073 0.77
MAE 674 6.74 673 6.78 6.79 699 836 6.64 640 5093
RMSE 8.09 8.09 805 813 808 809 10.16 7.71 7.52 691
RPS 0.79 080 0.79 083 108 086 1.10 095 079 0.78
Volume

Bias 1.50 141 141 134 123 205 129 128 122 1.15
MAE 832 792 794 805 824 899 805 807 812 832
RMSE 10.02 921 923 932 981 11.24 935 938 948 974
RPS 0.70 0.77 0.77 085 088 0.75 083 0.83 094 1.03
Time

Bias 1.002 1.002 0.998 1.002 1.026 1.014 1.036 0.993 0.986 1.001
MAE  0:34  0:34  0:29 035 0:50  0:24  0:51  0:25  0:29  0:54
RMSE 1:09 1:12 0:49 1:17 1:45 0:40 1:40 0:34 0:35 2:04
RPS 047 045 043 047 072 038 0.69 041 066 094

hydrologic model for peak flow, depth volume and time to peak with the
lowest RPS values around 0.6, 1.7 and 0.77, respectively. Therefore, the
RMSE are very similar between the resolutions. There was no clarity
in terms of the best hydrologic model resolution, because the peak flow
favored the 50 and 100 m resolution; runoff depth volume favored the 200
and 400 m and time to peak favored the 10 and 50 m resolution model,
respectively.

The August 28, 2008 event in Table 7.8 indicates the statistics and skills
of the ensembles where the RPS favored the rainfall resolution of 2000 m
with 0.76 for peak flow and 1.11 for depth volume. Time to peak did not
present differences between 100 m, 200 m and 400 m rainfall resolution.
The skill ensemble by hydrologic models gave the lowest RPS for 50 m
resolution for peak flow and the second lowest value for time to peak.

The mean ensemble for peak and volume are underestimated for the
event occurring on September 3, 2008, where the RPS are similar between
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TABLE 7.6 Ensemble Statistics and Skill of the Prediction According to Rainfall
Resolution and Hydrologic Model for May 2, 2008

Rainfall Hydrologic Model
100 200 400 1000 2000 10 50 100 200 400

Peak

Bias 0.89 088 090 096 076 101 080 0.82 074 1.02

MAE 557 551 558 575 538 520 538 558 548 6.15

RMSE 649 640 651 672 622 6.16 6.18 641 634 721

RPS 073 073 073 076 0.75 071 0.75 0.78 0.79 0.80

Volume

Bias 250 230 232 238 211 3.02 224 226 212 196

MAE 17.63 18.01 17.94 1795 18.67 1523 1831 1831 1879 19.55
RMSE 2045 20.63 20.56 20.59 2130 1742 21.01 21.01 21.50 2227
RPS 1.28 145 146 136 169 095 149 147 1.64 184

Time

Bias 0.992 0992 0.990 0.991 1.003 1.001 1.014 0.991 0.981 0.985
MAE  0:30  0:29  0:29 0:32 046 0:22  0:41  0:27  0:29  0:46

RMSE 0:44 0:42 0:41 0:57 1:55 0:33  1:09 0:36 0:34  1:56

RPS 020 0.18 0.18 021 027 014 030 015 022 0.55

rainfall resolutions for peak flow and the 10 m and 400 m hydrologic model
are favored. The depth volume variable and the time to peak favored the
rainfall resolution of 2000 m and a hydrologic model of 10 m followed
by 50 m.

Beven [14] has recognized that the nonuniqueness of a model, espe-
cially in distributed models similar to the one used in this research, can
produce results close to the observed peak flow, runoff depth and time
to peak, using different combination of parameters and inputs. Results in
this chapter also reveal the coexistence of alternative parameter sets that
provide a suitable framework for model calibration and uncertainty esti-
mation. The configuration ensemble that was out of the range around the
peak flow, 5 and 95 quartiles and minimum peak flow estimation, was
the model at 10 m resolution with all rainfall resolutions. This ensemble
overestimates simulated flows and cannot reproduce flows for June 5,
2008. For the time to peak the ensembles for hydrologic model 100 m and



Flood Prediction Limitations in Small Watersheds 141

TABLE 7.7 Ensemble Statistics and Skill of the Prediction According to Rainfall
Resolution and Hydrologic Model for June 5, 2008

Rainfall Hydrologic Model
100 200 400 1000 2000 10 50 100 200 400

Peak

Bias 242 239 241 245 314 313 196 213 242 3.6
MAE 886 875 887 9.19 11.87 12.02 695 758 8.61 1238
RMSE 12.14 12.01 12.16 12.63 15.74 1545 10.11 10.75 11.36 16.17
RPS 0.61 060 0.61 063 099 106 049 058 0.62 1.19
Volume

Bias 334 335 337 336 386 568 3.03 303 290 264
MAE 1190 1192 12.01 12.01 14.06 23.07 10.22 10.23 9.69 8.69
RMSE 1473 14.74 1484 1476 16.86 24.51 12.40 1241 11.71 10.53
RPS 1.70 171 172 178 226 486 150 149 143 1.15
Time

Bias 0.978 0978 0.978 0978 0.971 0.991 0984 0.976 0.966 0.963
MAE  0:30  0:29  0:30  0:32 0:33 0:23 0:25  0:28  0:37  0:41
RMSE 0:33 0:33  0:34  0:37  0:36 0:29  0:32 0:31 0:39 0:42
RPS 078 0.77 0.77 082 1.09 036 053 082 130 1.62

2000 m rainfall; 200 m hydrologic model and rains: 400 m, 1000 m and
2000 m; 400 m hydrologic with rains: 100 m, 200 m, 1000 m 2000 m are
out of 95% confident level. June 5, 2008 is characterized by dry conditions
and low peak flow and volume.

The ensembles that can reproduce well the time to peak when the hydro-
graphs present 2 limbs (October 22, 2007); or 3 bumps (September 3, 2008)
are the 10 m hydrologic model for all rainfall resolution for September and
the 10 m, 100 m and 200 m hydrologic models for all rainfall resolutions.
For events with only one limb like August 28 and May 2, 2008 the best
models with low dispersions around the observed time to peak were 10 m,
100 m and 200 m hydrologic models.

Based on the RPS calculated for the rainfall resolution ensembles in
combination with all models resolution (625 members for each event) and
parameter perturbations the best rainfalls simulations were observed at the
100 m for peak flow followed by 200 m and 400 m with RPS values very
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TABLE 7.8 Ensemble Statistics and Skill of the Prediction According to Rainfall
Resolution and Hydrologic Model for August 28, 2008

Rainfall Hydrologic Model
100 200 400 1000 2000 10 50 100 200 400

Peak

Bias 036 036 037 038 062 051 030 033 038 0.58

MAE 494 493 492 494 479 474 512 499 482 487

RMSE 534 534 533 536 550 525 547 536 526 554

RPS 1.07 107 106 105 0.76 087 120 1.13 1.02 0.78

Volume

Bias 082 082 083 084 131 173 076 0.79 070 0.65

MAE 843 842 837 830 7.72 546 877 865 9.04 932

RMSE 941 941 936 934 893 635 972 962 997 10.25
RPS 1.73 173 1.68 167 111 066 195 191 196 2.07

Time

Bias 1.007 1.007 0.997 0.998 1.005 1.058 1.114 0973 1.012 0.858
MAE  1:331 1:30 1:16 1:33 1:08 1:03 2:03 0:31 046 2:34

RMSE 2:47 246 2:19 3:01 2:18 1:30 3:27 0:36 1:07 4:24

RPS 036 036 038 037 040 021 049 057 042 092

similar. For runoff depth the rainfall at 100 m gives the better RPS for
3 events and the exceptions favor 2000 m for August 28 and September 3,
2008 (Table 7.9). The RPS for time to peak favored 200 m followed by
400 m rainfall resolution. These findings reveal that the hypothesis that the
100 m rainfall resolution will produce the best ensemble behavior for any
event is rejected. The rainfall quantification due to rainfall interpolation
will produce similar hydrologic ensembles behavior.

In the case of the hydrologic model resolution, the hypothesis for-
mulated was that the hydrologic model with high-resolution (10 m) will
generate the best ensemble behavior for the events analyzed. This state-
ment is true only for 2 events evaluating the peak flow variable. For runoff
depth, the 10 m hydrologic model did not produce the best RPS for dry
conditions and light rainfall event (June 5, 2008) with a storm total rain-
fall of 42.79 mm. the high-resolution model obtained the better behavior
for time to peak. This resolution model is not operationally practical for
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TABLE 7.9 Ensemble Statistics and Skill of the Prediction According to Rainfall
Resolution and Hydrologic Model for September 3, 2008

Rainfall Hydrologic Model
100 200 400 1000 2000 10 50 100 200 400

Peak

Average 13.72 13.67 13.80 13.48 1334 17.18 10.74 11.62 11.89 16.58
Bias 0.65 064 0.65 064 063 081 051 055 056 0.78

MAE 11.13 11.15 11.18 11.36 10.95 10.03 12.75 12.01 10.82 10.17
RMSE 1275 1277 12.82 1295 12.50 11.72 14.04 13.46 1234 12.07
RPS 1.06 1.07 1.07 111 108 078 154 135 124 0.77

Volume

Average 36.80 35.64 36.23 36.28 38.11 47.47 34.52 34.62 3393 32.53
Bias 1.74 168 171 171 180 224 1.63 163 1.60 1.53

MAE 2240 2285 2290 2280 22.14 17.75 2347 2345 23.80 24.62
RMSE 2694 2731 2730 27.23 26.63 2093 2797 2796 28.40 29.29
RPS 120 128 126 125 113 0.79 135 133 137 154

Time

Average 4:30 4:29  4:25  4:20 4:58  3:58 447 437 449 430

Bias 120 120 118 1.16 132 1.06 128 123 128 1.20

MAE 0:30  0:29 0:29 032 046 0:22  0:41  0:27  0:29 0:46

RMSE  0:44 0:42  0:41 0:57 1:55 033 1:09 0:36 0:34  1:56

RPS 054 052 051 048 050 022 032 045 088 092

larger basins, and therefore an alternative has to be selected. The RPS
analysis favored the 200 m model resolution for time to peak (5 events),
runoff depth (4 events) and peak flow (3 events) followed by 400 m model
resolution principally for peak flow.

7.5 SELECTION OF THE OPTIMAL RAINFALL
AND GRID RESOLUTION FOR THE MBDB MODEL

The goal of the research study in Part I was to develop recommendations
for rain and grid resolutions that will provide equal accuracy with a 100 m
and 10 m rainfall and grid resolution model, respectively (i.e., the smallest
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TABLE 7.10 Mean RPS Values for Peak Flow, Volume and Time to Peak for 5 Storms,
5 Rainfall Resolutions and 5 Grid Resolutions

Storm Rainfall Resolution Grid Resolution
100 200 400 1000 2000 10 50 100 200 400
m m m m m m m m m m
Peak Flow RPS Peak Flow RPS

3-Sep-2008 1.06 1.07 1.07 1.11 1.08 078 154 135 124 0.77
5-Jun-2008  0.61 0.60 0.61 0.63 0.99 1.06 049 058 0.62 1.19
28-Aug-2008 1.07 1.07 1.06 1.05 0.76 0.87 120 1.13 1.02 0.78
22-Oct-2008 0.79 0.80 0.79 083 1.08 0.86 1.10 095 0.79 0.78
2-May-2008 0.73 0.73 0.73 0.76 0.75 0.71 0.75 0.78 0.79 0.80

MEAN 085 085 0.85 088 093 0.86 1.02 096 0.89 0.86
Runoff Depth RPS Runoff Depth RPS
3-Sep-2008 1.20 1.28 126 125 1.13 - 1.35 133 137 154
5-Jun-2008 1.70 1.71 1.72 1.78 226 - 1.50 149 143 1.15
28-Aug-2008 1.73 1.73 1.68 1.67 1.11 - 1.95 191 196 2.07
22-Oct-2008 0.70 0.77 0.77 085 0.88 - 0.83 0.83 094 1.03
2-May-2008 1.28 145 146 136 1.69 - 149 147 164 184
MEAN 1.32 139 138 138 141 - 142 141 147 1.52
Time to Peak RPS Time to Peak RPS

3-Sep-2008  0.54 052 051 048 050 022 032 045 088 0.92
5-Jun-2008 0.78 0.77 0.77 082 1.09 036 053 082 130 1.62
28-Aug-2008 036 036 038 037 040 021 049 057 042 092
22-Oct-2008 047 045 043 047 0.72 038 0.69 041 0.66 094
2-May-2008 0.20 0.18 0.18 021 027 0.14 030 0.15 022 0.55
Mean 047 046 045 047 059 0.26 046 048 0.70 0.99

resolutions evaluated). To achieve this objective, the RPS values are sum-
marized in Table 7.10; and were evaluated in a Two-Way ANOVA test.
The RPS data were determined to be normally distributed and have equal
variances, which is a requirement for the Two-Way ANOVA test.

The goal of the evaluation is to determine significant differences
between the mean of the RPS for the highest resolution (100 m rainfall
resolution and 10 m grid resolution) and the means for the other resolu-
tions. If there is no significant difference between the mean of the RSP
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for the finer resolution and a coarser resolution, then the model can be
up-scaled to the coarser resolution without loss of accuracy relative to
the finer resolution. A gray highlighted cell in Table 7.10 indicates that a
significant difference exists between that resolution and the highest resolu-
tion. For rainfall resolution, there is a significant difference between the
100 m resolution and the 2000 m resolution. For the grid resolution, there
is a significant difference between the 10 m resolution and the 200 and
400 m resolutions. Therefore, based on the Two-Way ANOVA analysis of
the RPS, the recommended up-scaled rainfall resolution, which will pro-
vide equivalent accuracy with the 100 m rainfall resolution, is 1000 m, and
the recommended up-scaled grid resolution, which will provide equivalent
accuracy with the 10 m resolution, is 100 m.
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8.1 INTRODUCTION

This chapter reveals findings in Chapters 1-7 applied to the MBDB
using a distributed model with a resolution of 200 m and radar informa-
tion for 2003. Predictability limits (maximum and minimum peak flows

! This chapter is an edited version from, “Alejandra Maria Rojas Gonzdlez, 2012. Flood prediction
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico — May-
agiiez Campus”.

*Numbers in brackets refer to the references at the end of this book.
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and runoff depths) were calculated for the calibration developed at the
basins. The hydrologic model of 100 m was recommended in the previous
section. However, the 200 m hydrologic model was tested because not
significance differences were found for peak flow and runoff depth, vari-
ables analyzed here.

8.2 CALIBRATION/VALIDATION OF A DISTRIBUTED
HYDROLOGIC MODEL AT MBDB

The rainfall source used to run one-year simulation (2003) was the NWS
MPE radar-rainfall products. This source has a mean systematic error
(Bias) correction for Puerto Rico and in some places cannot remove the
local bias, correctly, principally for small areas. In section 6 of this chap-
ter, an evaluation of the efficiency in removing the local Bias from MPE
was conducted at the TBSW and additionally bias corrections need to be
developed for small subwatersheds.

At observed flow locations, the base flow must be removed to obtain
runoff observations. The PART computer program analyzes daily stream-
flow records and estimates a daily ground water discharge. The method
designates groundwater discharge to be equal to streamflow on days that
fit a requirement of antecedent recession; linearly interpolates groundwa-
ter discharge for other days; and is applied to a long period of record to
obtain an estimate of the mean rate of groundwater discharge and remove
base flow at daily a time step [83].

8.2.1 MONTHLY BASE FLOW SEPARATION

Table 8.1 shows the results for monthly base flow separation for 2003 at
three USGS stream flow stations obtained from the PART computer model
(Figure 8.1A—8.1C for Rio Guanajibo near Hormigueros, Rio Grande de
Afasco near San Sebastian and Rio Rosario near Hormigueros, respec-
tively). Additionally daily computations were obtained to add them to the
Vflo runoff results for comparison with the observed stream flow.

Figure 8.2 shows the simulated and observed accumulated runoff depth
for the three USGS stations for 2003. The percent of errors for runoff
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TABLE 8.1 Base Flow Separation at Three USGS Streamflow Stations for 2003

Guanajibo near Afiasco near San Rosario near
Hormigueros Sebastian Hormigueros
Stream Base Runoff Stream Base Runoff Stream Base  Runoff

flow flow flow flow flow flow
mm mm  mm mm mm  mm mm mm mm

Jan 10.2 9.4 0.8 442 419 23 32.0 30.7 13
Feb 4.8 4.1 0.8 28.2 257 25 25.1 23.6 1.5
March 4.1 2.8 1.3 20.6 185 2.0 19.3 173 2.0
April 333 147 185 59.9 30.0 300 45.0 26.7 183
May 282 185 9.7 231.6 1394 922 97.3 704 269
Jun 8.9 7.6 1.3 90.4 70.6 198 66.5 48.5 18.0
Jul 9.7 6.9 2.8 46.5 37.8 8.6 57.7 414 163
Aug 12.2 8.4 3.8 97.3 533 439 59.9 42.7 17.3
Sep 45.7 254 203 136.7 68.6  68.1 99.1 61.5 376
Oct 1234 76.7 46.7 280.7 1427 1379 2344 1674 67.1
Nov 235.0 1229 112.0 4542 2555 198.6 2654 1704 95.0
Dec 72.6 485 241 170.2 1255 447 1224 945 279
Total 588.0 3459 242.1 1660.4 1009.7 650.7 1124.2 795.0 329.2

depth around these values were 1.81%, 1.07% and 4.47% for Guanajibo,
Anasco and Rosario USGS outlet points. Nash—Sutcliffe model efficiency
coefficients calculated for these outlet points were 0.46, 0.10 and 0.02,
respectively.

Some systematic errors in the MPE rainfall product were revealed in
the simulation period, where the MPE sensed larger amounts of rainfall
than actually occurred within the study MBDB area. In this cases the
observed discharges were lower than the simulated (Figures 8.3A and
8.3B) for Anasco and Rosario rivers. Additionally, maximum and mini-
mum discharges were calculated perturbing the roughness and hydraulic
conductivity within their limits evaluated in previous sections (0.25 and
1.75, respectively), while setting the initial saturation to 0.25 and 0.95,
respectively. It is clear that, for certain rainfall events, large differences
between the modeled and observed data exist (Figures 8.4A and 8.4B),
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FIGURE 8.1 Daily stream flow and baseflow computation for 3 USGS stations, 2003.
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FIGURE 8.2 Runoff depth accumulated for the USGS stations for 2003.

indicating systematic errors due to MPE rainfall quantification, and lim-
iting flood predictability in western Puerto Rico using the MPE radar
product.

The stream flow examples in Figures 8.4A and 8.4B, illustrate cases in
which the up-scaled model could not reproduce the observed flow because
the rainfall could not be quantified accurately using the MPE product.
Forcing the model to produce maximum and minimum peak flows by judi-
ciously parameterizing the model showed that the predictability limits of
the model were well above the magnitude of the observed flow.

8.3 SUMMARY

The implications of these results are that a better rainfall product is needed
within the study area before accurate flood forecasts can be expected. It is
hoped that the high-resolution CASA radar product, currently under devel-
opment, may fulfill this important need.
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9.1 INTRODUCTION

A hydrologic model was evaluated for its potential to perform real-time
flood forecasting within the Mayagiiez Bay drainage basin (MBSB,
819.1 km?), located in western Puerto Rico. Minimal run times, enhanced
prediction skill, parameterization of variables and the understanding the
dynamics of the system are issues that need to be faced to enhance flood
prediction. In distributed models, the parameter values are physically

! This chapter is an edited version from, “Alejandra Maria Rojas Gonzdlez, 2012. Flood prediction
limitations in small watersheds with mountainous terrain and high rainfall variability. Unpublished
PhD Thesis for Department of Civil Engineering and Surveying, University of Puerto Rico — May-
agiiez Campus”.

2Numbers in brackets refer to the references at the end of this book.
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based and the watershed is represented by grids, which approximates the
parameter distribution and the initial conditions of the system. The mod-
eler assigns the grid size resolution to the model, rainfall input scales and
parameter values in a subjective way; subjective because the modeler has
to select among various methods available for assigning grid point val-
ues (e.g., slope), and each method can influence the hydrologic result of
the model. Each parameter and input are spatially and temporally scale-
dependent, probability distributions are not known a priori, and the impli-
cations, in terms of uncertainty propagation though the system, are well
understood.

This research study in Part [ provides a guide for the modeler to develop
a hydrologic model knowing the implications of scale and parameter
uncertainties on the flow response in small watershed where the uncer-
tainties affect more the prediction and answers several important research
questions. An objective of this research was to address the following three
research questions indicated in Chapter 1:

RQ1. How flood prediction is affected by the spatial variability of
point rainfall at scales below that of the typical resolution of radar-based
products?

RQ2. How does parameter resolution affect the model’s predictive
capabilities and the errors of the hydrologic system?

RQ3. Would the assumptions developed for the small scale enhance
the hydrologic predictability at larger scales?

The main conclusions that can be drawn from this research are pre-
sented below:

« Rainfall variability was measured in a mountainous area of 4 x 4 km?
(16 km?) using a high-density rain gauge network. High spatial vari-
ability over short distances was measured. The standard deviation
increased with increasing rainfall depth and the trend slope line
(coefficient of variation) between average rainfall and standard
deviation increased with increasing area of coverage (from 4.5 to
16 km?), [RQ1].

* NOAA’s MPE (Multi-sensor Precipitation Estimation) product was
evaluated in an area of 16 km? using the rain gauge network at hourly
and daily time steps. MPE overestimated rainfall at the hourly time
step and underestimated at the daily time step. Non-significances



Flood Prediction Limitations in Small Watersheds 157

were found in the hit rate between time steps. The probability of
detection (POD) by the radar increased with the time step from 0.57
(hourly) to 0.833 (daily). False alarm rates were reduced with the
larger time step, [RQ1].

» Large biases were found in the hourly time step and are associated
with small rainfall detections and the resolution of both instruments.
The bias between radar and the rain gauge network was event and
time dependent. It is a random variable and follows a normal with
box-crox distribution, [RQ1].

* Hydrologic predictability was studied as influenced by rainfall res-
olution inputs and hydrologic model resolutions, indicating their
respective effects on flow response. The May 2 and September 8§,
2008 events produced the greatest total average rainfalls and stan-
dard deviations, with high and low values of 5 days antecedent rain-
fall, respectively. No significant changes in total storm rainfall were
observed with the interpolations at different scales, but produced
important differences in rainfall intensity changes cell to cell though
time, [RQ1].

* The slope map is an important input to the model. Decreases in the
average slope will delay the time to peak and reduce peak flows.
Up-scaling methods were tested to conserve the average slope and
Method 2 was recommended to upscale a slope map in mountainous
basins with high elevation variability over short distances, [RQ2].

* Rio Rosario watershed was most sensitive to overland roughness
with a Sr average of —13.7 followed by channel roughness with
—=7.4, overland hydraulic conductivity with —3.3 and initial soil
moisture with 2.8 for peak flow. Sr for Rio Grande de Afiasco and
Rio Guanajibo watersheds indicate that the most sensitive param-
eters were channel roughness with —13.8 and —19.0, respectively,
followed by overland roughness with —8.5 and —10.6 and initial soil
moisture with 6.6 and 6.1, respectively, [RQ2].

* Rio Rosario, Grande de Afiasco and Guanajibo watersheds were
most sensitive to initial soil moisture followed by overland hydraulic
conductivity and soil depth for runoff depth, [RQ2].

* Variations between events can change the ranking of the input
parameters studied. This was observed in the case of both variables
(peak flow and runoff depth) indicating time or event dependence in
Sr computations related to antecedent soil moisture, [RQ2].
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» Rainfall ensembles for different resolutions were evaluated and
a guide was presented in which the modeler can decide or to know
the uncertainties associated with each resolution. In general, the rain-
fall ensemble at 100 m, followed by 400 m and 200 m can represent
very well the peak flow, volume and time to peak, three variables
that indicate a good agreement between the observed hydrograph
and the prediction, [RQ1, RQ2, RQ3].

* Hydrographs that present various bumps during the event can be
represented very well with the hydrologic model at 10 m grid size
spacing, locating the time to peak with the corresponding peak flow.
However, this grid size has problems with volume computations
for dry conditions. Another hydrologic model that can capture the
bumps is the 100 m grid size spacing and can produce the results for
runoff depth very well, [RQ2, RQ3].

* Based on the analyzes presented in this research, the recommended
up-scaled rainfall resolution, which will provide equivalent accuracy
with the 100 m rainfall resolution, is 1000 m. The recommended up-
scaled grid resolution, which will provide equivalent accuracy with
the 10 m resolution, is 100 m, [RQ1, RQ2].

* Another useful result, but not specifically related to any of the
research questions, pertains to the estimation of potential evapo-
transpiration (PET). The temperature/elevation linear regression
equations of Goyal et al. [40] were evaluated to calculate the PET
at a daily time step using the Hargreaves-Samani equation [45] and
the results showed similar regression coefficients between observed
and calculated 7, , T and T  values with the temperature/eleva-
tion lineal regression equations by Goyal [40]. The most sensitive
parameter is the solar radiation, because the temperature model [40]
cannot represent the spatial variability of this parameter using the
daily interpolation for extraterrestrial radiation and the 7 and T

calculated with the elevation model. Therefore, the use of Eq. (2) in

Chapter 3 is recommended with measured values of solar radiation

and temperature values either measured or estimated using the Goyal

et al. [40] method.

For future works, it is recommended to include more events in the
analysis for the TBSW, covering different event types, magnitudes and
antecedent soil moisture condition as was covered in this research, from
dry to wet conditions. Including more events would validate the findings
in this research.
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The Part I includes Bias as an additional perturbation parameter, using
a normal with Box-crox transformation (lambda = 0.15) probability distri-
bution function, to evaluate the uncertainty propagation though the hydro-
logic model.

The methodology used in this research to evaluate the rainfall resolu-
tion impact on hydrologic response using the bias corrected MPE product,
could be reevaluated using the CASA radar data (when available) with
high-resolution grid size to decide which resolution is desirable from
a hydrologic point of view.

Currently, a high-density rain gauge network, extending over the
MBDB area, which could be used to validate the NEXRAD rainfall esti-
mates, does not exist. In the near future, it is hoped that this rainfall resolu-
tion gap will be filled by the CASA radars and that the hydrologic model
formulated can be tested.

9.2 SUMMARY OF RESEARCH STUDY IN PART I

An evaluation of the interrelation between different up-scaling parameters
and inputs were evaluated to quantify their influence on hydrologic pre-
dictability in complex terrain and small watersheds. An up-scaling exper-
iment was performed, consisting of increasing the grid size to produce
incrementally coarser resolution maps of each parameter, terrain and rain-
fall inputs. Each resolution was evaluated by an ensemble approach and
generalized likelihood uncertainty estimation (GLUE) methodology using
high-resolution rain gauge network (rainfall resolution of 100 m) and fully
distributed hydrologic model (10 m). Each parameter perturbation, hydro-
logic model resolution, and rainfall resolution combination were modeled
producing deterministic forecasts called “ensemble members”.

Objective functions were used to evaluate the behavior of each ensem-
ble with observed data using the variables time to peak, runoff depth
and peak flow observations. Ensemble skill was evaluated using scalar
measures of accuracy for continuous prediction as mean absolute errors
(MAE), root mean square error (RMSE) and bias between the average
ensembles to observation variable. Probabilistic distribution functions
(PDF) were generated for each ensemble and prediction skill was mea-
sured by ranked probability score (RPS). Based on the analyzes presented
in this research, the recommended up-scaled rainfall resolution, which will
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provide equivalent accuracy with the 100 m rainfall resolution, is 1000 m,
and the recommended up-scaled hydrologic model grid resolution, which
will provide equivalent accuracy with the 10 m resolution, is 100 m.
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10.1 INTRODUCTION

Chapters 10 to 20 in Part II of this book volume will present in detail the
research study on flood alert system using high-resolution radar rainfall
data.

Portions of western Puerto Rico are subject to flash flooding due
to sudden, extreme rainfall events, some of which fail to be detected
by NEXRAD radar located approximately 120 km away in the town
of Cayey, Puerto Rico and partially obstructed by topographic features.
The use of new radars with higher spatial resolution and covering areas

! This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using
Rainfall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department
of Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

2 Numbers in brackets refer to the references at the end of this book.
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missed by the NEXRAD radar, are important for flood forecasting efforts,
and for studying and predicting atmospheric phenomena.

Recently, Trabal et al. [85] at the University of Puerto Rico —
Mayagiiez Campus initiated investigations using two types of radars,
namely: Off-the Grid (OTG) and TropiNet, with radius of coverage of
15 km and 40 km, respectively. This network will monitor the lower
atmosphere where the principal atmospheric phenomena occur. This
study indicates for the first time that TropiNet radar technology can be
used for hydrologic analyzes and specifically for rainfall forecasting in
western Puerto Rico.

Short-term rainfall forecasts have commonly been made using
Quantitative Precipitation Forecasting (QPF). The introduction of QPF
in flood warning systems has been recognized to play a fundamental
role. QPF is not an easy task, with rainfall being one of the most dif-
ficult elements of the hydrological cycle to forecast [24], and great
uncertainties still affect the performances of stochastic and determin-
istic rainfall prediction models [86]. Currently, this capability does not
exist in western Puerto Rico, and it is needed because of the potential
for flooding in certain areas (e.g., in flood plains near the principal riv-
ers of the region).

The Part II on flood alert system using high-resolution radar rainfall
data includes a research study where short-term rainfall forecast anal-
ysis is performed using nonlinear stochastic methods. Once obtained,
the rainfall forecast is introduced into a hydrologic/inundation model
Vflo and into the Inundation Animator configured for the Mayagiiez Bay
Drainage Basin (MBDB). Specific components of the research in this
Part II are:

* The inclusion of calibration and validation of rainfall estimates pro-
duced by the TropiNet radar network,

* The development and validation of the stochastic rainfall prediction
methodology,

* The calibration and validation of the inundation algorithm at selected
locations within the MBDB, and

* The proto-type of an operational, real-time flood alarm system for
the MBDB. The proto-type, automated Flood Alarm System (FAS)
will be able to send near-real time updated inundation images to a
website on the Internet.
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10.2 OBJECTIVES

The prediction or forecast of natural disasters is critically important for
emergency management workers. An aim of forecasting is to gain ade-
quate time to evacuate people from disaster zones, to minimize loss of life,
and reduce damage to structures and infrastructure, and minimize eco-
nomic loss. Every country around the world is exposed to various types
of natural disasters depending on its geographical location (e.g., torna-
dos, hurricanes, volcanoes, earthquakes, flash floods, hail, snow, drought,
tsunamis, fire and others).

Flash flooding is defined as the rapid rise in water level causing flood-
ing of an area. It may be caused by heavy rainfall associated with storms,
hurricanes or tropical storms. The World Meteorological Organization
(WMO) has defined the flash flood as “a flood that follows the causative
precipitation event within 6 h of time [113]”. The National Weather Service
has estimated that more than 70% of flash flood warnings may be issued
with less than a one hour lead-time and that more than 50% of flash flood
occurrences allow no lead-time whatsoever (personal communication,
Ernesto Rodriguez, NWS, San Juan [57]).

Small watersheds have short time of concentration and reaching its
peak, the response time of smaller basins could be on the order of a few
hours or less than one hour. Recently in Puerto Rico, flash flooding has
occurred from some significant rainfall, events that can occur over very
short time scales (e.g., one to several hours on September 22, 2008, over
almost whole of Island). The susceptibility of the island of Puerto Rico
to flooding is high due to a variety of factors including its mountainous
runoff that drains into flat floodplain terrain with poor drainage, intense
rainfall and urban development, and the variability of rainfall in the island
is a huge argument to use radars in the precipitation forecast [56].

Lately, some researchers have been using radars and they have indi-
cated that a key factor for accurate flood estimates and forecast is accurate
rainfall for input to the hydrological model. Rainfall data are traditionally
obtained from an often-sparse network of rain gauges that may not record
the rainfall event with adequate spatial and temporal scales. Especially
during heavy convective storm, a significant rainfall occurs over a limited
areal extent and the weather radar has enormous potential in this field,
with high spatial resolution and temporal continuity [83].
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The rainfall forecast is an important component of the flood alert
system that is designed to collect, handle, analyze and distribute informa-
tion for the purpose of providing advanced warning of a flood condition.
This is possible when there is a good stochastic rainfall prediction, and
a good hydrological model. The most important hydrologic model out-
puts are: the predicted peak flow, runoff volume and time to peak. These
parameters are dependent on the quality of the hydrologic model and the
rainfall estimated from the rain gauge or radar network [56].

To manage these conditions, the current study seeks the use of
the high-resolution rainfall from the TropiNet radar network that will
provide an excellent source of rainfall data, previously not available
for short-term rainfall and flood prediction studies in Puerto Rico.
Furthermore, the current study introduces the application of a novel
nowcasting model, improvements in the accuracy of short-term rainfall
forecast due the high spatial and temporal resolution in radar rain-
fall data, technology for real-time inundation mapping, which has
not been used in previous flood prediction studies in Puerto Rico, and
which will be a powerful new tool in the hands of emergency flood
management personnel. The methodology proposed in this research can
be applied to other watersheds in Puerto Rico or in others regions within
the tropics.

Rainfall forecast and their integration into the disaster plan can have
social and economic benefits, with a lead-time adequate to allow evacu-
ation from flood prone areas within the Mayagiiez Bay Drainage Basin
(MBDB).

Therefore, the interest of this study was to develop a forecasting model
for the prediction of short-term rainfall in the western Puerto Rico. The
forecast results were then introduced within a hydrologic model Vflo and
an Inundation model “Vflo Inundation Animation” to get the animation of
the flow into the rivers. Specific study objectives were:

a. Analyze the rainfall structure and behavior to develop an accurate
stochastic model to forecast short-term rainfall for selected areas
within the MBDB. The results using the forecasting model were
compared and analyzed statistically with the observed data for
validation and calibration of the model.
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b. Apply the forecast rainfall data to the hydrologic model Vflo and
Inundation Analyst module to obtain animation of flooding at
selected locations within the MBDB in real time and to compare the
results of the rainfall and hydrologic forecasts with observed data.

c. Develop a proto-type real-time flood forecast alarm system for the
MBDB.
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11.1 STOCHASTIC MODELING AND SHORT-TERM RAINFALL
FORECASTING

This chapter presents the literature review on flood alert system using
high-resolution radar rainfall data. There are many approaches that
can be used to predict the future direction and magnitude of a physical
process, such as rainfall. Forecasting is a large and varied field having

"'This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using
Rainfall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department
of Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

2 Numbers in brackets refer to the references at the end of this book.
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two predominant branches: Qualitative Forecasting and Quantitative
Forecasting [38]. Quantitative Forecasting should satisfy two condi-
tions, the accessible numerical information about the past and assump-
tions that some aspects of the past patterns will continue into the future.
Quantitative Forecasting can be divided into two classes: time series and
explanatory models. Explanatory models assume that the variables to be
forecasted exhibit an explanatory relationship with one or more other
variables, in contrast, time series forecasting uses only information on
the variable to be forecasted, and make no attempt to discover the factors
affecting its behavior [38]. The time series models attempt to capture
past trends and extrapolate them into the future. There are many dif-
ferent time series models but the basic procedure is the same for all as
illustrated in Figure 11.1.

Some of the most common time series methods include: Autoregressive,
Moving Average, Exponential Smoothing, Autoregressive Moving
Average, Extrapolation, Linear Prediction and others [5]. This research
includes a new type of time series nonlinear with stochastic and determin-
istic components, which will be explained later.

The autoregressive (AR) method is a type of random process, which
is used to predict some types of natural phenomena, falling within the
group of linear prediction formulas. The moving average (MA) method is
a way where the current observations depend on all past observations [5].
Exponential smoothing is a popular scheme to produce a smoothed time
series; exponential smoothing assigns exponentially decreasing weights
to the observations as they get older. That is to say recent observations are
given relatively more weight in forecasting than the older observations.

With the Autoregressive Moving Average (ARMA) method, models
are used to describe stationary time series, which represent the combina-
tion of an autoregressive (AR) model and moving average (MA) model.
The order of the ARMA model in discrete time (¢) is described by two
integers (p, q), which are the orders of the AR and MA parts, respectively.

A, z':l,........,t:> I:> Ft+7), 7=12,.....(t+1)

I Historical data I | Forecast I

FIGURE 11.1 Flowchart for a stochastic model [5].
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A process is considered to be stationary when parameters, such as the
mean and variance, do not change over time or maintain the same range.
Autoregressive (AR) or ARMA are the models that are widely used in the
prediction of flows in water resources. Other time series methods include
extrapolation and linear prediction, and the nonlinear prediction with
exponential component, depending of data behavior.

A time series is part of a stochastic process. The word stochastic comes
from the Greek stokhastikos, an adjective that refers to system whose behavior
is intrinsically nondeterministic, or sporadic, and categorically not intermit-
tent [48]. The stochastic methods are techniques used in prediction of events,
such as: winds, hurricane tracks, temperature, humidity, rainfall, floods, etc.
The stochastic concept has been used in hydrology since the beginning of
twentieth century [74] applied in the river flow sequence analysis, but only
in the 1970’s were autoregressive models applied to seasonal and annual
hydrologic time series. Research in hydrologic time series has aimed towards
studying the main statistical characteristics, providing physical justification
for some stochastic models, developing new models, improving existing
modeling parameters, developing new modeling procedures, improving tests
of goodness of fit and other parameters applied to hydrology [74].

Forecasting is a relatively new science within hydrology and the atmo-
spheric sciences [75]. Its application has led to the reduction in deaths
caused by natural disasters. “The Time Series Analysis” of Box and
Jenkins [5] constitutes an important contribution to the field of stochastic
analysis for the purpose of forecasting hydrologic phenomena. The book
focuses on the application of the autoregressive and moving average mod-
els for forecasting.

A number of researchers have developed hurricane prediction tracking
models in Puerto Rico. For example, Ramirez-Beltran [62] used histori-
cal data to develop a stochastic model to predict the behavior of hurricane
tracks. The parameter estimation scheme, based on recursive and iterative
algorithms, used historical records for hurricanes to fit vector autoregres-
sive models. The identified models have been classified according to the
order of the model. The first observations of a given hurricane are com-
pared with historical hurricane tracks. Ramirez-Beltran [62] concluded that
the vector ARMA model has an excellent potential and may help reduce
official forecasting error compared with a Statistical-Dynamical Hurricane
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Track Prediction Model (NHC90) from the National Meteorological
Center. Ramirez-Beltran et al. [64] introduced a rainfall forecast method-
ology based on NEXRAD data that was used as the basis to formulate the
new rainfall methodology.

The ideal forecast rainfall is based on the meteorological analysis but
this is not always available, when this information is not accessible, the
forecast rainfall can be based on current and past rainfall. The forecast-
ing of rainfall has been investigated by Burlando et al. [8]. Their research
relates on whom to forecasting rainfall at a point, with a simple formula-
tion. Various models can be used for representing forecasting at point.
Several models have been developed which describe storm arrivals fol-
lowing a Poisson process. However, the formulation for real time rainfall
forecasting based on these models is too complex [65].

Burlando et al. [8] discussed forecasting of short-term rainfall using
ARMA models defined at 1 h and 2 h of time scale. They suggested that
parameter estimation models based on short-term precipitation records
defined at hourly time-scale is more complex than when data is defined at
longer time periods such as months. They forecasted rainfall by assuming
that hourly rainfall follows an ARMA process. This assumption is based
on the fact that the autocovariance structure of some point processes, such
as the hourly rainfall.

Burlando et al. [8] investigated two estimation and fitting procedures.
The first takes all rainfall occurrences throughout the period of record as
the basis for parameter estimation, thus a given set of parameters results
are obtained for a given month or season, and the second is an event-based
estimation approach, each storm or independent rainfall of the month or
season is considered separately for parameter estimation. Thus a different
parameter set was determined for each storm or rainfall event considered.
These procedures were compared for rainfall data at a point and rain-
fall data averaged over the basin. The analysis used hourly rainfall from
two gauging stations in Colorado, USA and from some stations in Central
Italy. Their research is related to forecasting rainfall at a point using rain
gauges, Thyessen polygons were used to weigh contribution from each
rain gauge. The results show that the event-based estimation approaches
yields better forecasts than the continuous approach and is capable of pro-
ducing the rainfall intensity fluctuations (Figure 11.2).
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FIGURE 11.2 Forecast 1 h and 2 h ahead of hourly rainfall intensity and accumulative
rainfall. Using event-based approaches for the event of 18 February 1953, Denver station,
Colorado, USA [8].

Burlando et al. [8] assumed that the rainfall processes are typically
nonstationary and skewed. To circumvent nonstationary, the rainfall data
are grouped by month of season; thus the model is applied separately
for data of a given month or a given season. Accordingly, model param-
eters such as autoregressive and moving average coefficients were deter-
mined from precipitation data pertaining to a given month or season only.
Parameter estimation of ARMA models based on short-term precipitation
records defined at hourly time-scales is more complex than when data is
defined at longer time periods such as months. The main reason is the
intermittent characteristic of hourly precipitation. Therefore, two alterna-
tive approaches were followed by Burlando et al. [8] for parameter estima-
tion and forecasting. The first was referred to as the continuous approach
and the second as the event based approach.

In the continuous approach, all the precipitation events which occurred
in a given month or season were considered for parameter estimation.
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Thus, a given set of parameters results for a given month or season. In
the continuous approach, the precipitation data used for parameter estima-
tion were arranged in two different ways. In the first, no differentiation
was made between storm events, and the whole dataset, including zero
recorded precipitation, was used for estimation.

In the event-based estimation approach, each storm event regardless
of the month or season is considered separately for parameter estimation.
Thus, a different parameter set was determined for each storm event con-
sidered. On the other hand, in the event-based approach, as only data of the
current storm is used for estimation, the number of observations is small,
and especially at the beginning of the storm event when only a few rainfall
measurements are available. The influence of the storm movement was
not considered here, and the scale of temporal and spatial aggregation at
which data should be monitored are two factors which they may improve
the reliability of rainfall forecasts [8].

Delleur and Kavvas [15] used the autoregressive moving average
(ARMA) model to study the average rainfall time series over 14 basins.
Results showed that the model is adequate for a short-range forecast at
one or two time steps ahead. They claimed that due to the rotation of the
earth around the sun, the monthly rainfall time series exhibit a yearly peri-
odicity. The time series models are usually fitted to the stationary random
component of the spectrum or equivalently to the decaying part of the
autocorrelation function. They said that this is necessary to remove the
nonstationary component of the process.

Delleur et al. [16] used a model that included a Markov chain to simu-
late the sequences of dry and wet days. They found that the models simu-
lated the sequences of dry and wet days well. However, the amount of
daily rainfall was not described adequately.

McLeod [47] demonstrated that the principle of Parsimony is helpful in
selecting the best model for forecasting river flow. His work demonstrated
the importance of model adequacy for seasonal river flow and incorporated
seasonal periodic correlation. Briefly, their experience with river flow time
series suggests that the best forecasting results are obtained by following
the general model building philosophy implicit in Box and Jenkins [5]
with suitable modifications and improvements. Box and Jenkins [5] gave
a method to estimate the orders of the AR and MA terms of a model based
on autocorrelations and partial autocorrelations.
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A popular decision rule for comparing models in the time series litera-
ture is the Akaike Information Criterion (AIC) [1]. This criterion is known
as the test for the Parsimony of parameters. Several investigations have
used AIC criterion for choosing the model type, order and in constructing
an appropriate model for a given streamflow series. The following proce-
dure is usually followed:

a. The appropriate type of model, among AR, MA, ARMA, ARIMA
(autoregressive integrated moving average) and seasonal ARIMA
models is selected.

b. The choice of order for the selected model is determined.

c. The parameters in the model using the given stream flow series
are estimated; and validation of the model by residual testing and
by simulation is performed. This procedure is applied to identify
models for forecasting and synthetic generation.

Mujumdar and Nagesh [50] used two criteria for the model selection,
Maximum Likelihood rule (ML) and Mean Square Error (MSE) are used for
the selection of the best model for each of the rivers considered. The selec-
tion of a model by the ML rule involves evaluating a likelihood value for
each of the candidate models and choosing the model which gives the highest
value. In general, as the number of parameters increase in the function, the
likelihood value decreases. Thus it is to be expected that the ML rule selects
models with a small number of parameters, this is the principle of parsimony
propounded by Box and Jenkins [5]. The maximum likelihood estimation cri-
terion is suited for the selection of a model for simulation purpose. For short-
term forecasting, such as one step ahead forecasting, the mean square error
(MSE) criterion may be more useful [40]. Selection of a model based on an
MSE criterion is quite simple and can be summarized as follows:

a. Estimate the parameters of different models using a portion, usually
half of the available data.

b. Forecast the second half of the series one step ahead by using the
candidate models.

c. Estimate the MSE corresponding to each model and

d. Select the model that results in the least value of the MSE.

For all cases presented by Mujumdar and Nagesh [50], the simple
model AR resulted in the minimum value of the MSE, underlining the
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fact that for one step ahead forecasting, quite often the simplest model
is sufficient. Additionally, the case study revealed that as the number of
parameters increased, the MSE increased, which is an interesting result
contrary to the common belief that models with larger number of param-
eters, give better forecasts. For all series of the stream flows considered,
the AR model is strongly recommended for use in forecasting the series
one step ahead. Salas and Obeysekera [75] worked with time series mod-
els in streamflow and have stated that data generation and forecasting of
seasonal streamflow are often needed in the planning and management
of water resources systems. Both data generation and forecasting are
based either on stochastic models alone or in combination with corre-
sponding conceptual models of the system under consideration. In most
cases, stochastic model are usually developed, based on the available
data on hand.

In modeling time series of annual flows, the assumption of stationarity
of the series is usually made, so that stationary stochastic models can be
applied in the study. When dealing with time series of seasonal flows, the
modeling is more complex. The main reason is the inherent periodicity in
several statistical characteristics that invariably lead to stochastic models
with periodic parameters. Most techniques available for diagnostic checks
have been limited to stationary models, although some approximations
have been suggested for models with periodic parameters. A number of
conceptual simulation models representing the hydrologic cycle of water-
sheds have been suggested in the literature since early 1960 s. Examples
of such models are the new version of the Stanford watershed model [39]
and the Sacramento model of the National Weather Service [9]. Extensive
literature already exists on these two modeling approaches. However, less
attention has been given to linking both conceptual and stochastic model-
ing schemes.

Kohnova et al. [42] conducted a study involving the modeling and fore-
casting of discharge and rainfall time series in the area of the Klastorske
Luky wetland — Slovakia. They first analyzed the systematic components
(trends, seasonality, periodicity and residual components). Subsequently,
prediction models for the mean monthly discharges and the mean monthly
precipitation totals were derived. The models tested were linear ARMA
models. The results obtained could help ecologists in making decisions on
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wetland management, improving the ecological conditions in the analyzed
wetland, and planning future ecotechnical measures.

Many problems related to water resources and environmental systems
deal with temporal data which need to be analyzed by means of a time
series analysis, which has become a major tool in hydrology. Time series
analysis is used for building mathematical models to describe hydrological
data, forecast hydrologic events, detect trends, provide missing data, etc.

After analyzing some types of autoregressive models, Kohnova et al.
[42] concluded that the ARMA model can be used to generate synthetic
traces of monthly rainfalls, particularly useful in the analysis of water
resources projects on basins.

Katz and Skaggs [41] studied statistical problems that may be encoun-
tered in fitting ARMA processes to meteorological time series. They used
techniques that lead to an increased likelihood of choosing the most appro-
priate ARMA process to model the available data are emphasized. ARMA
models are well suited to the analysis and forecasting of time series which
are by nature or by manipulation persistent and thus, are especially useful
in climatological analysis.

Box and Jenkins [5] are primarily responsible for making readily acces-
sible the necessary statistical methodology for applying ARMA models to
real data and for taking advantage of the use of these models in forecast-
ing. While ARMA processes have many advantages over other somewhat
similar processes, their application to modeling meteorological data may
require an increased degree of mathematical sophistication on the part of
the researcher.

Other examples of rainfall forecasting models were developed and avail-
able in the literature. Prediction of Rainfall Amount Inside Storm Events
(PRAISE) is a stochastic model developed by Sirangelo et al. [80] to fore-
cast rainfall height at site. PRAISE is based on the assumption that the
rainfall height accumulated on a delta time is correlated with a variable that
represent antecedent precipitation. The mathematical background is given
by a joined probability density function and by a bivariate probability dis-
tribution, which is referred to the random variable that represents rainfall in
a generic site and antecedent precipitation in the same site. The peculiarity
of PRAISE is the availability of the probabilistic distribution of rainfall
heights for the forecasting hours, conditioned by the values of observed
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precipitation. The Calabria region in southern Italy was selected to test
performances of the PRAISE model [80]. PRAISE was applied to all of
the telemetering rain gauges of the Calabria region, in Southern Italy. The
calibration model showed that the hourly rainfall series present a constant
value of memory equal to 8 h, for every rain gauge of the Calabria network.

11.2 NOWCASTING

The interest from rainfall forecast with high spatial and temporal reso-
lution has been increased in contemporary days. Only some equipment
like radars is capable of producing high spatial and temporal resolution.
Early algorithms were based on pattern recognition of rainfall echoes from
which cross-correlation coefficients can be calculated and used to predict
the motion of the storm feature [21].

Dixon and Wiener [20] developed a nowcasting system called TITAN
(Thunderstorm Identification Tracking Analysis Nowcasting) to predict
convective rainfall. TITAN uses real-time automated identification track-
ing and short-term forecasting of storm which besides is able to nowcast
storm development and movement.

Nowecasting can be described as the production of short-term (0-3)
hours lead-time precipitation forecasts based mainly on the extrapolation
of future data from current radar data images [81]. Nowcasting has ben-
efited many different fields in addition to flood forecasting, including more
general public weather warnings, water management, storm sewer opera-
tion, and irrigation, wet deposition of pollutants, construction site manage-
ment, and transportation systems [7].

11.3 RADAR RAINFALL ESTIMATION AND VALIDATION

The National Weather Service is incharge of providing weather, hydrology,
and climate forecasts and warnings for the United States including Puerto
Rico and U.S Virgin islands, working with a network of 159 high-resolu-
tions Doppler weather radars, commonly referred to as NEXRAD (Next-
Generation Radar). The technical name for NEXRAD is WSR-88D, which
stands for Weather Surveillance Radar, 1988, Doppler [52]. NEXRAD
detects precipitation and atmospheric movement or wind. The NEXRAD
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radars can provide information that can help mitigate disasters caused by
flash floods. Errors can occur with the methodology for observations far
from the radar, where the earth’s curvature limits the observation of the
lower atmosphere (Figure 11.3).

NEXRAD coverage has limitations in observing below 10,000 feet
or 3 kilometers (called the Gap) above sea level for the Mayagiiez area
and nearby towns [12]. At these locations, NEXRAD cannot “see” if rain-
drops are forming within the Gap, resulting in a different rain rate than
other radars which can measure the lower portion of the cloud (OTG and
TropiNet). In the OTG and TropiNet radars, the rain rate equations can
be selected, whereas NEXRAD rain rate uses the tropical equation with a
threshold reflectivity (2) of 53 dBZ, Z values above 53 dBZ are assumed
to be hail and are not considered [73]. Other difference between NEXRAD
and TropiNet radar is that NEXRAD has Doppler capabilities given infor-
mation on cloud motion, and TropiNet has Polarimetric capabilities which
give information on precipitation type and rate. Polarimetric radars refer
to dual-polarization radars which transmit waves that have horizontal and
vertical orientations. The horizontal wave provides a measure of horizontal
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dimension of the cloud and rainfall where the vertical wave provides a
measure of particle size, shape and density.

The use of the new radars OTG and TropiNet with higher spatial
resolution and their observations of the lower atmosphere in the western
Puerto Rico area can provide better atmospheric information in the lower
zone because curvature effect is minimal, at minimum elevation [12]. The
OTGs radars have been developed based on the modification of off-the-
shelf marine radars, which are characterized by low power consumption
(~180 Watts), short range (15 km) and low cost (~$30,000) [12]. The OTG
radars are capable of operating independently of the existing power grid
and communication infrastructure.

On January 2010, the OTG Radar No. 1 was successfully installed at
the PR-1 radar tower on the rooftop of the Stefani Engineering Building
at the University of Puerto Rico, Mayagiiez campus. The radar has an
estimated sensitivity of 12 dBZ at 15 km, a range and a mean cross-beam
resolution of 120 m and 500 m, respectively, and is a 4 kw X-band marine
radar [12]. This technology was developed by the Student Test Bed of
the NSF Engineering Research Center for Collaborative Adaptive Sensing
of the Atmosphere (CASA) in Mayagiiez, Puerto Rico. Arocho et al. [3]
conducted a preliminary calibration of estimated rain rates on the OTG
Radar No. 1.

Recently, new radars (TropiNet-1) were installed in Cornelia hill
(Guanajibo) and (TropiNet-2) in Lajas, while another will be installed
in Isabela (UPR- agricultural Exp. Station). Previous known project as
Puerto Rico Student Test Bed, is now part of the Puerto Rico Weather
Radar Network (http://weather.uprm.edu). The RXM-25 radar is referred
to as TropiNet because of the name of the project, and is designed to cover
a range between 30 and 50 km at very high sampling resolution spatial
60 x 60 meters and temporal one minute that offers state-of-the-art radar
data products. The RXM-25 is prepared to operate as a single radar unit
or as a radar network, allowing both manual and automated control while
the radar allows a motion over the whole hemisphere. Additionally, it
uses a low operating cost magnetron transmitter capable of delivering up
to 12 watts of average power per polarization channel. The RXM-25 is
designed for easy access and maintenance, all of its signal processing and
radar control software runs on a single server. Due to these characteristics,
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it is possible that the RXM-25 will provide the best overall data in western
Puerto Rico area to forecast important rainfall events [25].

11.4 HYDROLOGIC AND INUNDATION (FLOOD) MODELING

Numerical hydrologic models are commonly used to predict surface run-
off from watersheds, estimate peak stream flow and stage elevation. These
models fall within three main categories: lumped, semilumped and distrib-
uted models. The lumped model bulks all of the rainfall/runoff processes
into a few watershed scale parameters. An example of this type of model
is the Sacramento Soil Water Accounting System [9]. The advantage of
the lumped type model is that they are relatively easy to configure and to
use. The semilumped model allows for the distribution of parameters in
a watershed within homogeneous hydrologic response units (HRUs). An
example of a semilumped hydrologic model is the Precipitation Runoff
Modeling System (PRMS) developed by the U.S. Geological Survey
(USGS) [44].

The third type of hydrologic model is the numerically distributed
model. The most common numerical methods used for this type of model
are the finite difference or finite element methods. An example of a numer-
ically distributed model and the one that is used in this research is Vflo,
developed by Vieux [96]. Some hydrologic studies in Puerto Rico have
used the Vflo model, including Vieux and Vieux [100] and Rojas [56].

Vflo uses radar rainfall data as hydrological input to simulate distrib-
uted runoff and is based on Geographic Information Systems (GIS) data. It
provides high-resolution, physics-based distributed hydrologic modeling
for managing water from catchment to river basin scale, the prediction of
flow rate and stage can be made in every grid cell in a catchment, river
or region, and the output is integrated with the Vflo -Inundation-Analyst
module. This module along with the Digital Elevation Model (DEM) data
can be used to show the extent of flooding superimposed onto a land map.

Rojas [69] used Vflo to evaluate the influence of the interrelation
between different up-scaling parameters and inputs on hydrologic predict-
ability for use in flood prediction in the Mayagiiez Bay Drainage Basin.
Based on the analysis, the recommended upscaled rainfall resolution,
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which will provide equivalent accuracy with the 100 m rainfall resolution,
is 1000 m, and the recommended upscaled hydrologic model grid resolu-
tion is 200 meters.

Much of the data used by Rojas [69] for the MBDB was originally devel-
oped by Prieto [61] as part of a preliminary hydrologic regional conceptual
model for the MBDB and implemented in an integrated, fully distributed,
physically based, numerical model Mike She [17]. The fully integrated model
was capable to simulate surface and groundwater flow within the MBDB.

11.5 REAL-TIME FLOOD FORECAST SYSTEMS

The USGS has developed the Real Time Flood Alert System (RTFAS) for
Puerto Rico [94]. RTFAS is a web-based computer program, developed
as a data integration tool, and designed to assist emergency managers to
predict flooding of streams in Puerto Rico. RTFAS is available online at
“Real Time Flood Alert System — http://rtfas.er.usgs.gov/”. It should be
noted that the system is limited to providing stage elevation data at the
locations of the USGS stream gauges.

The National Weather Service (NWS) establishes Flash Flood Guidance
estimates in real time based on the Sacramento soil moisture accounting
model [9, 27]. The analysis allows for the development of curves that
relate threshold runoff to flash flooding. Unfortunately, the model has
not been successfully implemented in all of the island’s watersheds. For
example, the model is incapable of producing accurate results in some
of the watersheds of south-eastern Puerto Rico (personal communication,
Ernesto Rodriguez, NWS, San Juan [57]), perhaps owning to the fact that
some streams in this area loose significant amount of their flow to the
underlying superficial aquifers [18].

Sepulveda et al. [79] developed a hydrologic model to forecast real-
time rainfall runoff within the Carraizo reservoir basin. The model esti-
mated water volumes at the reservoir from the rainfall and discharge data
obtained from the network stations within the basin.
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12.1 INTRODUCTION

This chapter discusses the methods that were used to study the flood alert
system using high-resolution radar rainfall data.

The University of Puerto Rico at Mayagiiez has a research weather
radar network and a rain gauge network developed by Luz Estella Torres-
Molina for research work. The radar network provides information with
higher spatial and temporal precision. TropiNet has a 60 x 60 meter spatial
resolution at every pixel and temporal resolution of 1 min. A flood warn-
ing model must be operated based only on the data available at the time of
forecast. Only the radar can display data in real time. This is not possible
using rain gauges but the rain gauges are used for data validation. Rain
gauges based systems must have a dependable and redundant telemetry
system that will accurately and efficiently transmit data a central loca-
tion for processing. The Data from TropiNet radar is used for rainfall pre-
diction in MBDB, using stochastic methods. Once the rainfall forecast is
obtained, the use of hydrologic models is necessary for analysis of flood-
ing in this area.

This project is the first attempt to implement new technology using
high-resolution radars for performance of flood alert/warning systems.
This research is focused at the western Puerto Rico and can be applied in
general to other areas or regions with the same rainfall type with the cor-
responding hydrologic soil and coverage data.

12.2 STUDY AREA

The study area, which encompasses the MBDB, is 819.1 km? in area [56, 61]
and is located in western Puerto Rico. The region has three important water-
sheds: Rio Grande de Anasco, Rio Guanajibo and Rio Yagiliez. The area
includes 12 municipalities: Mayagiiez, Anasco, Las Marias, San Sebastian,
Lares, Maricao, Yauco, Adjuntas, Sabana Grande, San German, Hormigueros



Flood Alert System Using High-Resolution Radar 189

and part of Cabo Rojo. These three important rivers discharge into Mayagiiez,
Anasco and Cabo Rojo branches, respectively. According the U.S. Census
Bureau, Mayagiiez has 89,080 habitants and a total area of approximately
143.53 km? of which about 25.20 km? are in flooding areas; Afiasco has
29,261 habitants with a total area of about 102.82 km? and 23.11 km?are in
flooding areas; and Cabo Rojo has 50,917 habitants with a total area of about
187.81 km? and 44.42 km?are in flooding area [88], as shown in Figure 12.1.
The Rio Grande de Afasco originates at the Cordillera Central, flows
west and discharges into the Bahia de Mayagiiez. The alluvial valley covers
an area of approximately 46.62 km?. It is bounded by hills to the north, east
and south and by the Bahia de Afiasco to the west. The major tributaries of
the Afiasco River that flow into the lower valley are the Rio Dagiiey and the
Rio Cafias. The basin is located in west-central Puerto Rico, in the municipal-
ities of Afiasco, Lares, Las Marias, Maricao, Mayagiiez and San Sebastian.

12.2.1 BASIN OF THE RIO GRANDE DE ANASCO

The basin of the Rio Grande de Afiasco has an area of 467.7 km? of which
approximately 10% of the area is flat land and the other remaining 90%
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FIGURE 12.1 Population in floodable areas, U.S. Census Bureau [88].
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is mountainous. The floodplain covers approximately three-fourths of the
flat land. The residential developments in the Afiasco municipality are
partially within this area, and therefore can be affected by flooding. Rio
Grande de Afiasco flows westerly 74 km to the coast, where its discharges
into the Bay of Mayagiiez. Changes in elevation (DEM model) are shown
in Figure 12.2 and vary from zero meters at mean sea level in the coastal
areas to 960 meters in the mountainous areas. The upper reaches of the
basin contain four interconnected reservoirs: the Lago Toro, Lago Prieto,
Lago Guayo and Lago Yahuecas, to the Afiasco watershed downstream
of the lakes which is not significant for regional water budget estimation
[61]. These transport outside water to Lago Luchetti and then to the Lajas
Valley. The total lake drainage area is about 116.55 km? and is used as
a boundary condition in the current model.

According to Flood Insurance Study by Federal Emergency Management
Agency [23], the land use on the Rio Grande de Afasco watershed are dis-
tributed as follows: 278 km? are cropland; 114 km? are pasture; 85 km? are
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forest and woodland; 33 km? are idle, and 13 km? are urban development
and other uses. The vegetation in the floodplain was primary sugar cane.
Soils in the floodplain are clay loams. The entire Rio Grande de Anasco
watershed is in the humid, mountainous physiographic area of Puerto Rico.
The Atalaya Mountains extend from the coastline eastward along the north
side of the floodplain, merging with dissected plateau remnants at slightly
lower elevations, north of the City of Afiasco [23].

Flood problems in this study area are serious and widespread. Periodic
flood damage to pastureland, roads, and a number of residential areas is
significant. Flood waters have inundated the main Rio Grande de Afiasco
floodplain 17 times in a period of 31 years, an average of approximately
once every 2 years. The floodplain of the lower Rio Grande de Afasco has
been inundated extensively at least six times during the period 1899—-1975:
September 1975 (major), September 1928, September 1932, September
1952, October 1970, August 1899, and September 1899 [23].

12.2.2 RIO GUANAJIBO BASIN

The Rio Guanajibo basin originates in the cordillera central of western
Puerto Rico. It rises approximately 10 kilometers north-east of Sabana
Grande at an elevation of 800 meters approximately. The topography of
the area includes mountains, foothills and valleys. The Rio Guanajibo val-
ley is approximately 27 km long and is fan-shaped, with a width varying
from approximately 0.6 kilometers in the area located between the town
of Sabana Grande and San German, to approximately 5.2 kilometers in
the Cabo Rojo and Hormigueros region, and approximately 2.8 kilome-
ters in the valley outlet, near the mouth [23]. The Rio Guanajibo basin is
subdivided into subbasins for each principal tributary: Rio Rosario, Rio
Duey, Rio Cain, Rio Cupeyes, Rio Cruces, and Rio Loco. The top of the
Guanajibo valley lies in the east of Sabana Grande. In this area, serpen-
tinite and volcanic rocks are predominant, in the south serpentinite pre-
dominates in a strip along the border. Rocks along the southern border of
the valley near Punta Guanajibo consist of weathered serpentinite, with
some volcanic-related rocks.

The urban areas are around Sabana Grande, San German, Cabo Rojo,
Hormigueros, and a little portion of the City of Mayagiiez. Land use in
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the Guanajibo River Basin can be divided into three main groups: agricul-
ture with 59%, forested with 33% and residential housing with 8% [23].
Information on the historic floods of the basin can be found in the USGS
hydrologic Investigations Atlas HA-456 by Haire [32]. One of the great-
est floods ever recorded in the basin was caused by Tropical storm Eloise,
which occurred on September 15-17, 1975 and had a recurrence interval
of approximately 100 years.

Unfortunately, no efforts have been directed toward obtaining suffi-
cient data to do flow-frequency analyzes. Of the known floods, the events
of August 9, 1899, was the largest, followed by the flood of September 13,
1928. Both floods were associated with the passing of a hurricane over the
island [32]. Water-surface elevations recovered from these floods were not
sufficient to adequately define the floodplain boundaries. Other significant
floods occurred on December 3—4, 1960; May 17-18, 1963; July 30, 1963;
November 27, 1968; and September 15-17, 1975. The flooding area in
this zone has been delineated on the topographic map using the flood of
July 30, 1963, it is fairly representative of floods in 1945, 1952, 1954 and
1960 [32].

12.2.3 RIO YAGUEZ BASIN

The Rio Yagiiez Basin is located in the west-central portion of Puerto Rico.
It flows westerly into the Bay of Mayagiiez. The drainage basin is narrow
with a length-width ratio of approximately 10 to 1 and a total drainage area
of 35.5 km?. The City of Mayagiiez, through which Rio Yagiiez flows, is
among the largest cities in Puerto Rico [23]. The largest known flood on
Yagiiez River occurred on March 3, 1933 24-hours precipitation total of
44.2 centimeters was recorded at Mayagiiez by the national Oceanic and
Atmospheric Administration (NOAA) on that date. This resulted in a flood
with a peak discharge of 708 m?/s and a recurrence interval of 75 years. In
1968, a flood protection project for the City of Mayagiiez was started, the
total project consisted of a channel and a reservoir to protect the city from
floods. Currently, the channel with the existing structures has a capacity of
326 m’/s, but there are plans to rebuild some of these structures, thereby
increasing the capacity of the channel [23].
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12.3 SOIL CLASSIFICATION

The soil map was provided by United States Department of Agriculture —
Natural Resources Conservation service (USDA-NRCS [55]), Soil Survey
Geographic Database (SSURGO) for the Mayagiiez [89], Lajas Valley
[90], Arecibo [91] and Ponce area [92]. These were used in the conceptual-
ization of the soils surface texture for the study area (Figure 3). Hydraulic
parameter initial values for clay, loam, clay-loam, gravel, rock and sand
soil surface texture were assumed based on values from the literature for
representative physical properties of soil texture [82].

The soil textures present in this study as percent of area are clay with
62.49%, clay—loam 24.96%, rock 8.69%, loam 3.00%, sand 0.81% and
gravel 0.04%. A soil map describing the class distribution is necessary to
assign the values the Green-Ampt infiltration parameters (Figure 12.3).

Harmsen et al. [36] developed an algorithm of Water and Energy
Balance for Puerto Rico using data from the Geostationary Operational
Environmental Satellite (GOES). GOES-PRWEB uses an energy balance

FIGURE 12.3 Soil textures present in the study area [Source: Soil Survey Geographic
(SSURGO)].
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approach similar to Yunhao et al. [109]. The latent heat flux component of
the algorithm is used to estimate actual evapotranspiration. The algorithm
depends on solar radiation, which is determined using GOES satellite data.
Gautier et al. [26] were first to propose a physical model for estimating the
incident solar radiation at the surface from the GOES.

Harmsen et al. [36] provided solar radiation data with spatial resolution
of one km for Puerto Rico. In this chapter, authors developed a subroutine
in MatLab to convert the original one km resolution to 200-meter resolu-
tion to obtain potential evapotranspiration estimation in a resolution com-
patible with the hydrologic model in this chapter.

National Digital Forecast Database [NDFD] estimates daily average
wind velocity for Puerto Rico. They adjusted the virtual instrument height,
depending on the height of vegetation. Minimum, average and maximum
and dew point air temperatures are obtained from a lapse rate approach
calibrated for Puerto Rico by Goyal et al. [30]. These temperatures are
daily adjusted with a nudging technique, using forecast temperature data
from the NDFD [51]. Detailed description of the methodology used to
obtain potential evapotranspiration is presented by Harmsen et al. [35, 36].

12.4 LAND USE CLASSIFICATION

A digital map of the land cover developed by the Xplorah project [107]
was used to conceptualize the different land cover categories present in the
study area. The data was developed by the School of Planification of the
University of Puerto Rico — Rio Piedras [Xplorah project, 107], as shown
in Figure 12.4.

Twenty (20) different classes of land cover and forest type are present
over the study area corresponding to different kind of forest, woodland
and agriculture. The classification of land cover in this model is used to
assign values for physical based parameters which are important in the
simulation with Vflo, other important parameters with the land use are
manning’s roughness coefficient, rainfall interception, evapotranspiration,
crop coefficient and other.

Prieto [61] classified the land use for this watershed in six (6) major cat-
egories, shrub land, woodland and shade coffee with an area of 529.16 km?,
pastures with 172.84 km? of area, urban and barren area with 60.02 km?,
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FIGURE 12.4 Land Use by Xplorah project [School of Planification of the University of
Puerto Rico — Rio Piedras, 107].

agriculture with 55.06 km?, other emergent wetlands with 1.26 km? and
Quarries, sand and rock with 0.75 km?.

12.5 THE LOCAL CLIMATE

The climate of the study area is considered humid subtropical. The average
temperature at the Mayagiiez City, Puerto Rico station (666073) is 70.7°F
between the years 1971-2000, and the average max temperature in the
Mayagiiez city station between the years 1971-2000 is 88.7°F, National
Climatic data Center (NCDC) [52]. The amount of rainfall varies consid-
erably throughout the study area. Most of the rainfall occurs during the
month of September with 10.62 inches on average. The months of January
through April are considered the dry season with 1.60 inches in January,
2.59 inches in February, 3.35 inches in March and 4.17 inches in April on
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average rainfall. South-east Regional Climate Center [SERCC, 78] pres-
ents detailed reports (figures and tables) on the climate in the study area.

In the west, the sea breeze effect carries wet air from the Mona Channel
eastward, converging with the Trade Wind and resulting in intense convec-
tive rainstorms almost every afternoon within the MBDB during the wet
season. Rainfall and temperature data obtained from the National Climatic
data Center [52]. Table 12.1 shows the average temperature between
1948-2012 at Mayagiiez City, Puerto Rico, [South-east Regional Climate
Center (SERCC), 78] and Table 12.2 presents the precipitation average
between 1948-2012 at Mayagiiez area [South-east Regional Climate Center
(SERCC), 78].

Other record in the Mayagiiez area is the station in the Mayagiiez
Airport. Figure 12.5 shows the average of precipitation monthly between
the years 1981 and 2010. This agrees with the Mayagiiez city station with
September been the month with more precipitation.

12.6 HIGH-RESOLUTION RAINFALL RADAR PRODUCT

Commonly, the flood alert systems have fulfilled the role of providing
flood notification to the community and have saved lives and buildings.
However, many alert systems fail due to low precision of the models and
the sudden change of the atmosphere. One of the greatest sources of uncer-
tainties in the prediction of flooding is the rainfall input [56]. Therefore, it
is essential to have an accurate source of rainfall spatial and temporal data,
and this is possible with properly working radars.

National Weather Service has a network of approximately 150 Doppler-
radar stations S-band (10-cm wavelength) radar distributed across the con-
tinental United States, Alaska, Hawaii, Guam and Puerto Rico only one
here [52].

The first installation of a WSR-88D for operational use in everyday
forecasts was in Sterling, Virginia on June 12, 1992. The radars provide
spatial rainfall estimates at approximately 16-km? resolution. This network
was originally designed to support Departments of Defense, Transportation
and Commerce objectives for detection and mitigation of severe weather
events [111].
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FIGURE 12.5 The average of precipitation recorded for each month of the year between
1981-2010, at Station Mayagiiez Airport, Puerto Rico. Source: NCDC, (2013). National
Climatic Data Center — National Oceanic and Atmospheric Administration (NOAA), US
Government. (http://www.ncdc.noaa.gov/)

NEXRAD has been used by the NWS to estimate rainfall in Puerto
Rico. The NEXRAD facility for Puerto Rico is located near the City of
Cayey at 860 m above mean sea level and at approximately 120 km from
Mayagiiez city. The location of radars provides full nationwide coverage
over the contiguous United States at a specified height above each of the
individual radars, but this may present a problem in the western Puerto
Rico due to the distance from the NEXRAD radar and topography of the
Island. Digital distributed-precipitation radar products can be downloaded
directly from NWS.

The WSR-88D (Weather Surveillance Radar 1988, Doppler) radar,
commonly referred to as NEXRAD, was developed to replace preDop-
pler technology radars for the purpose of providing an advanced early
warning system for tornadoes. The first prototype system was installed
in Norman, Oklahoma, in 1988. The first full scale WSR-88D radar was
deployed in 1992. The main objective of the NWS’s NEXRAD program
from a hydrologist’s perspective is to provide, in real-time, accurate quan-
titative precipitation estimates (QPE) from its network of radars [2].
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An equation relating reflectivity (Z) and rainfall (R) as the power func-
tion, Z = aR’, is normally used to retrieve estimated values for rainfall
rates. The parameters a and b are selected according to the specific region.
In Puerto Rico, NWS commonly uses a = 250 and b = 1.2. The Z-R coeffi-
cients have been shown to vary as a function of many factors and previous
studies have shown that it is not possible to derive a single equation that is
accurate at every point in a given radar domain, and for every storm-type
and storm intensity [87]. As part of research in this chapter, it is important
develop a program to convert binary coded files into ASCII-formatted files
that contain a rainfall intensity estimate in mm/h for every latitude and
longitude in the specific area.

The NEXRAD (Next-Generation-Radar) located in Cayey measures
reflectivity to one km by one degree resolution for a diameter (distance)
of 460 km [52]. Figure 12.6 shows the coverage of NEXRAD radar in
Puerto Rico.

Currently, the Puerto Rico Weather Radar Network (PRWRN) admin-
istrated by UPR-Mayagiiez has five radars; of which three are OTG and
two are polarimetric TropiNet (RXM-25) radars.
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FIGURE 12.6 NEXRAD radar coverage in Puerto Rico.



Flood Alert System Using High-Resolution Radar 203

Figure 12.9 presents the TropiNet radar at Cabo Rojo in Cornelia
Hill, while Figure 12.8 shows the TropiNet radar at UPR-Agricultural
Experimental Station in Lajas. A new TropiNet radar is being installed at
the UPR Agricultural Experiment Station in Isabela, which has the same
characteristics as the other two. When all three TropiNet radars are operat-
ing simultaneously, the cover area will be approximately one third of the
island.

Figure 12.9 shows the coverage of the three TropiNet radars in the
western Puerto Rico. The OTG radars were developed with a heteroge-
neous network using off the shelf hardware. The network was designed to
provide detailed precipitation estimates (QPE) to the public, including the
NWS staff in Puerto Rico.

12.7 TROPINET RADARS

Radars are active sensors that emit electromagnetic pulses into the sur-
roundings. A typical radar system consists of at least the following four

FIGURE 12.7 TropiNet-1 at Cornelia Hill in Cabo Rojo.
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20 Miles

FIGURE 12.9 TropiNet’s radars coverage.

components: a transmitter that generates high frequency signals, an antenna
that sends the signal out and receives the echoes returned, a receiver that
processes the returned signals and a data display systems [67]. Lower
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frequency and higher wavelength suggest that the radar has robust signal
power and less attenuation, the weather radar system discussed in the cur-
rent research is based in X-band. The common weather radar system can
be classified as listed in Table 12.3.

The TropiNet (RXM-25) radars are Doppler polarimetric radars, which
allow the radar beam to measure reflectivity close to the ground, overcom-
ing the shadow effect of the Earth’s curvature, while maintaining high
range and azimuth. The first TropiNet radar has been in operation since
February 2012. TropiNet 1 is located in “Cerro Cornelia” Cabo Rojo,
Puerto Rico at 18.16°N, 67.17°W, and 200 ft elevation (msl), approxi-
mately. The radars, working with the X-band frequency, are about three
times stronger than that of the traditional radar frequencies at S-band mak-
ing the measurements of rainfall more attractive. They have high space
and time resolution for weather monitoring and detection, and are capable
of generating very high-resolution data with a range of 40 km of radius or
maximum radial distance (horizontal range) of 80 km of diameter.

TropiNet radar being Doppler and Polarimetric can show velocity
data of the cloud and reflectivity for every azimuth angle from 0° to 12°.
TropiNet displays reflectivity logarithmically (10 log(Z)), or dBZ. The
working frequency is 9.41 GHz + 30 MHz, which corresponds to the
X-band (in free space has a 3.19 cm wavelength). The TropiNet radar was
designed and developed by Colorado State University (CSU) and (UPRM)
to serve as the principal Internet-controllable node of the TropiNet radar

TABLE 12.3 Radar Bands with Frequencies and Wavelength. Source: [http://stb.ece.
uprm.edu/fullscreen/mobile.html]

Radar band Frequency Wave length
GHz cm

L 1-2 30-15

S 2-4 15-8

C 4-8 84

X 82 4-2.5

K, 12-18 2.5-1.7

K 18-27 1.7-1.2

K, 27-40 1.2-0.75

W 40-300 0.75-0.01
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network [25]. The Operational use of radar and hydrological models are
indicated in Table 12.4. The Table 12.5 presents the specifications of
TropiNet radar.

To analyze the data it was necessary to develop a model to convert raw
data to NetCDF data and after convert the reflectivity data in dBZ to rain-
rate in (mm/hr) using empirically derived Z-R relationships to transform
reflectivity to rain rate. Marshal and Palmer [46] equation is the default
Z/R relationship employed by the WSR-88D and TropiNet.

NOAA-NWS [53] report recommended that Z-R relationship in use
at the time of the event be changed from Z = 300R'* to a relationship
more representative of raindrop distributions in a warm tropical storm.
The Z-R relationship for warm tropical events recommended by the NWS
Operational Support Facility since 1995 for all WSR-88D sites experienc-
ing heavy rainfalls, and now adopted by TropiNet is Z = 250R!? [96].

The Z-R relationship used in Puerto Rico is the convective, further-
more was necessary to define a maximum precipitation rate threshold for
decibels above 53 dBZ [96]. The convective rainfall is a type of precipita-
tion with some characteristics like very high horizontal gradient and very

TABLE 12.4 Operational Use of Radar and Hydrological Models [72]

Country Spatial Temporal Radar Hydrological Hydrological

resolution resolution type model type model name
Czech 2x2km?> 10 min C-band Several Several including
Republic (1 x 1 km? PACK, API
planned) Sacramento
Finland I x1km> 15 X, C, Conceptual, FEI
S-band  distributed
France I x1km? 5min C Conceptual R-R  SOPHIE
Germany Various projects, resolutions and models
Poland I x1km? 10 min C-band Conceptual R-R  IHMS-based
Slovenia I x1km? 10 min C-band Lumped R-R HEC-1
conceptual
Spain I x1km? 6-10min  C-band Distributed, TOPDIST
grid-based,
conceptual
United Smallest 5 min C-band Various Various

Kingdom 1 x 1 km?
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TABLE 12.5 TropiNet Radar Specifications. Source: CRIM, (1998). Center for Municipal
Tax Revenues of Puerto Rico.Digital Elevation Model

Transmitter

Specification

Type

Magnetron

Center Frequency
Peak power output
Average power output
Pulse Width
Polarization

Max. Duty cycle

Antenna and Positioner

9410 +/— 30 MHz
8.0 kW (per channel)
12 W (per channel)
400-660 ns

Dual linear, H and V
0.16%

Specification

Type (diameter) Dual-polarized parabolic reflector (1.8 m)
3-dB Beam width 1.4 deg

Gain 42 dB

Max. scan rate 60 deg/s

Receiver Specification

Type Parallel, dual channel, linear I/Q output
Dynamic range 95 dB (BW=1 MHz)

Noise Figure 5dB

Data Acquisition System Specification

Sampling rate 200 Msps

Dynamic range 105 dB (BW=1 MHz)

large vertical depths. These characteristics imply that the weather radar
is the best tool for detecting convective precipitation, but the presence
of different types of hydrometeors, especially hail and storm dynamics
yielding fast varying Vertical Profile Reflectivity (VPR) usually results in
considerable random error in quantitative precipitation estimates. Large
differences can be found especially when comparing rain gauges and radar
estimates because of the high temporal and spatial variability of the con-
vective storm and related vertical profile of reflectivity [71].

PRWRN has been developing an interactive web site where it is pos-
sible to observe weather conditions in real time using both, the OTG and
TropiNet radars. It is possible to observe the overlap between these radars
and NEXRAD. Figure 12.10 presents the web site under development.
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FIGURE 12.10 Coverage Website OTG’s and TropiNet radars in real time, [http://stb.
ece.uprm.edu/fullscreen/mobile.html].

The web site is user friendly and accessible to the interested public who
wish to observe weather conditions in real time with higher resolution
than NEXRAD. This web site includes five radars: TropiNet — Cabo Rojo,
TropiNet-Lajas, OTG-Mayagiiez- OTG-Ponce, and OTG-Aguadilla. Only
one TropiNet-Cabo Rojo data was used in this research.

On the other hand, Luz Torres-Molina with support of Red de Radars
del Tiempo project developed a Rain Gauge network for comparison of
data radar from TropiNet-Cabo Rojo. These rain gauges series are distrib-
uted at University of Puerto Rico Mayagiiez Campus (UPRM) and nearby
locations.

12.8 RADAR DATA PROCESSING TROPINET

A radar application in MatLab was developed to access the store of binary
volume files that contain the respective information as determined by the
operator like reflectivity, azimuth, velocity, beam width, range, elevation
and other radar products. The operator can apply one of several possible
scan configurations. For instance, in the Range Height Indicator (RHI), the
radar holds its azimuth angle constant but varies its elevation angles. This
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is essential to provide vertical resolution where the radar continuously
scans through elevation angles at a given azimuth angle (Figure 12.11).
Another common scan configuration is the Plan Position Indicator (PPI).
The radar holds its elevation angle constant but varies its azimuth angle,
rotating through 360 degrees (Figure 12.12).

For this research, it was necessary to hold the radar scan in PPI with
a constant elevation angle of 3 degrees. Every radar scan has two angles
of 3 degrees and 5 degrees with a duration time of 30 seconds. The data
information is saved in the server at http://www.weather.uprm.edu. The

FIGURE 12.11 Range Height Indicator (RHI).

FIGURE 12.12 Plan Position Indicator (PPI).



210 Flood Assessment: Modeling and Parameterization

raw data files are stored by date, every hour, minute and second of scan
in binary format. Each volume scan from radar has been interpolated to a
fixed Polar grid and, after it is necessary, to convert to the fixed Cartesian
grid. As part of the effort to further post-process the radar data, a model
in MatLab was developed. This model performs the conversion from raw
data polar coordinate system to ASCII data to Geographic coordinate sys-
tem necessary for the hydrological software, Vflo.

In addition, a comparison between NEXRAD and TropiNet in random
pixels was made with the objective of validating the rainfall location using
a time series for every storm in each pixel.

12.8.1 RADAR DATA PROCESSING: NEXRAD

The NOAA webpage (http://www.ncdc.noaa.gov/nexradinv/map.jsp)
indicates the data from NEXRAD. NEXRAD inventory has the option to
choose day and product [52]. There are a total of 41 level III products rou-
tinely available from the National Climatic Data Center (NCDC), general
products include the baseline reflectivity, velocity and algorithmic graph
products spectrum width. The base reflectivity [NOR] product is used to
detect precipitation, evaluate storm structure, locate boundaries and deter-
mine hail potential, and a display of echo intensity measured in dBZ.
Four lowest elevation angles are available. For this study, Level III [NOR]
short-range base reflectivity (16 level/230 km) with 0.5 degrees was used.
The WSR-88D NEXRAD radar data is stored on the NCDC robotic
mass storage system, commonly known as the Hierarchical data Storage
System (HDSS). The data is easily accessible with the NEXRAD
Inventory Search tool, which allows users to view the data completeness
and download individual products. The ordered data is ready for use with
the NCDC Weather and Climate Toolkit. Each order may contain up to
24 h of data at a time for a single site. Once the data is downloaded, it is
necessary to change data format from NetCDF to ASCII. This is only pos-
sible with a developed routine in MatLab from the current this research.

12.9 RAIN GAUGE NETWORK

As leverage to the NSF — CASA center, with support from NOAA’s
Cooperative Remote Sensing Science and Technology Center (CREST),
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a rain gauge network was deployed for validation of data from NEXRAD,
OTG and TropiNet radars. The rain gauges are distributed over the
University of Puerto Rico at Mayagiiez Campus (UPRM) and other loca-
tions close to the campus.

These rain gauges are tipping bucket-type rain gauges that measure
rainfall in 0.254 mm (1/100th inch) increments. The self-emptying, tip-
ping bucket design is accurate (+2%) and reliable. The logger is capable of
saving 48 days of rainfall data with a 10 min reading interval. Double rain
gauges were installed at each location to minimize errors in data collection.

A major source of error in hydrologic models is the poor quantification
of the areal distribution of rainfall, typically due to the low density of rain
gauges. For a good spatial distribution of data it is necessary put hundreds
of rain gauges in a small area, otherwise it is not possible to obtain a good
precipitation distribution.

Some data from TropiNet radars was compared with rain gauge data
for selected storms. Figure 12.13 shows the distribution of the rain gauge
network in the vicinity of UPRM campus.

Rainfall dates are traditionally obtained from an often-sparse network
of rain gauges that may not record the rainfall event with adequate spa-
tial and temporal scales, especially for heavy convective storms when sig-
nificant rainfall occurs over a limited areal extent [83]. Weather radar has
enormous potential in this field, as it can measure rainfall in real-time with
high spatial resolution and temporal continuity [83].

t“‘ €3C10 Cornelia

4."“_
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L11, L12PR- 100

Google garth
<

FIGURE 12.13 Detailed rain gauges network.
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A favorable rainfall distribution is only acquired with radars, therefore
it is necessary the use of weather radars, a rain gauge located at a single
point may not represent an extensive area, with only one value. The spatial
distribution of precipitation can have a major influence on the hydrologi-
cal models Errors may occur in the resulting hydrograph when the spatial
pattern of the rainfall is not preserved. These errors will be magnified for
intense, short duration and localized events especially in areas of high
topographic variability subject to convective storms [105].

Similarly, errors in rain gauges are known from turbulence and increased
winds around the gauge, affecting precipitation quantification in events
where the wind is an important factor (e.g., hurricanes). Investigators
have used mean areal precipitation as calculated by, for example, Thiessen
polygons, [95, 105], and interpolation methods, such as Spline, Inverse
Distance Weights, and Krigging and polynomial surface. But all of these
methods are limited by the number of rain gauges [105].

12.10 PHYSICALLY-BASED HYDROLOGIC MODEL

The hydrologic model used in this research is Vflo [97]. Vflo is a fully
distributed physically based hydrologic (PBD) model capable of using
geographic information and multisensory input to simulate rainfall runoff
from major river basins to small catchments (Figure 12.14).

Vflo is a hydraulic approach to hydrologic analysis and prediction.
Overland flow and channels are simulated using the Kinematic Wave
Analogy (KWA). The model uses GIS grids to represent the spatial vari-
ability of factor controlling runoff. Runoff production is from infiltra-
tion excess and is routed downstream using kinematic wave analogy.
Computational efficiency of the fully distributed physics-based model is
achieved using finite elements in space and finite difference in time. Vflo is
suited for distributed hydrologic forecasting in post-analysis and in a con-
tinuous operation mode, derives its parameters from soil properties, Land
use, and topography and in this case the precipitation is obtained from
radar TropiNet. The goal of distributed modeling is to better represent the
spatial-temporal characteristics of a watershed governing the transforma-
tion of rainfall into runoff.
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FIGURE 12.14 Detailed GIS grid runoff in the watershed.

The hallmark of Vflo is prediction of flow rates and stages for every
grid cell in a catchment, watershed, river basin or region. Vflo provides
high-resolution, physics-based distributed hydrologic modeling for man-
aging water from catchment to river basin scale. Improved hydrologic
modeling capitalizes on access to high-resolution quantitative precipita-
tion estimates from model forecasts, radar, satellite, rain gauges, or com-
binations of multi sensor products.

Model input consists of rain-rate maps at any time interval from
radar or multisensor sources. Data input for this model (besides rain-
fall), is derived from various commonly available sources of digital data.
Parameters include topography and drainage networks derived from a dig-
ital elevation model (DEM), infiltration derived from soils, and hydraulic
roughness derived from land use/cover. These parameters may be input
and edited manually or via ArcView grids.

The model formulation is a kinematic wave analogy (KWA) for over-
land flow is a simplification of the conservation of mass and momentum
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equations, wherein the principle gradient is the land surface slope. The
conservative form of the full dynamic equation relates the temporal and
x-direction gradients of flow depth y and velocity V as:

oV ov Oy

—+V—+

o e e )0 M

where, if all other terms are small or of an order of magnitude less than the
bed slope s, or friction gradient, s ’ then the KWA is an appropriate rep-
resentation of the wave movement downstream [10], V" is the component
of velocity g, is acceleration due to gravity, (0V/0¢) is local acceleration,
V(0Ov/0x) is horizontal momentum advection and (0y/0x) is hydrostatic
pressure. The one-dimensional continuity equation for overland flow, with
depth £, resulting from rainfall excess is:
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where, R is rainfall rate; / is infiltration rate; 4 is flow depth and u is over-
land flow velocity.

In the KWA, the bed slope is associated with the friction gradient
which amounts to the uniform flow assumption. Using this fact together
with an appropriate relationship between overland flow velocity u and
flow depth £ such as the Manning equation is obtained:

s 1/2
u="p" 3)
n
where, s, is the bed longitudinal slope and 7 is the Manning’s hydraulic
roughness.

Velocity and flow depth depend on the land surface slope and the
friction induced by the hydraulic roughness. Important parameters are
the saturated hydraulic conductivity K controlling infiltration rate /, and
Manning’s roughness # are three of the most important parameters within
the model. Hydraulic conductivity controls the total amount of water that
will be partitioned into the surface runoff and the subsurface, whereas the
hydraulic roughness mainly affects the peak flow and the time to peak
[98]. Model results obtained from Egs. (1)—~(3) are adjusted by scalars
applied to spatially distributed parameters:
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where, the three scalars g, v, @ and are multipliers controlling the infiltra-
tion rate / rainfall rate R, and hydraulic roughness n, respectively. The flow
depth is £, and slope s, is the principal land-surface slope at the center of
each grid cell.

The slope and hydraulic roughness are spatially variable, while rain-
fall, infiltration and flow depth are spatially and temporally variable.
Infiltration excess (IE) is treated by the model as the source of runoff.
The model represents overland flow as a uniform depth over a computa-
tional element. From hillslope to stream channel, there may be areas of I[E
and Saturation Excess (SE), however the model treat runoff generation as
solely IE. Simulation of IE requires soil properties and initial soil moisture
conditions. The well-known Green-Ampt equation is used to account for
the effects of initial degree of saturation on infiltration rate [98].

12.10.1 CALIBRATION PROCESS

There is a sequence called the “Ordered Physics Based Parameters
Adjustment” (OPPA) method developed by Vieux and Moreda [100]. The
calibration process (OPPA) approach include estimates of the spatially
distributed parameters from physical properties, assigns channel hydrau-
lic properties based on measured cross-sections where available, studies
model sensitivity for the particular watershed, and identifies response sen-
sitivity to each parameter. It furthermore runs the model for a range of
storm from small, medium to large events. It observes the characteristics
of the hydrograph over the range of storm size and any consistent volume
bias. Then it derives a range of response for a given change in a param-
eter and categorizes and ranks parameter sensitivity according to response
magnitude.

The optimum parameter is that set which minimizes the respective
objective function and matches volume by adjusting hydraulic conductiv-
ity. It can match the peak by adjusting overland flow roughness and read-
just hydraulic conductivity and hydraulic roughness if necessary. The Vflo
model does not simulate base flow, only direct runoff; it can be simulated
assigning a fixed value to every channel cell for every event to simulate.
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For a long-term analysis it is necessary to quantify the base flow using
known methodologies [31]. The OPPA procedure outlined above can be
stated as: increasing the volume of the hydrograph is achieved by decreas-
ing hydraulic conductivity, and similarly, increasing peak flow is achieved
by decreasing hydraulic roughness.

12.11 INUNDATION (FLOOD) MODEL

The Inundation Analyst extension is a Vflo [97] that provides images,
animations and simulated inundation, which is an indication of flood
risk. The extension is especially useful for flood management applica-
tions. For example, a forecast inundation is useful for operational deci-
sions, warning or notification, and coordinating emergency response. The
Inundation Analyst operates independently from the }V'flo model, but can
use data exported from Vflo as input for generating inundation forecasts.
The Inundation Analyst requires a digital elevation model (DEM), a flow
direction map, a channel flow direction map, and stage data. All input data
must be in ESRI ASCII grid format (*.asc). The DEM and flow direction
maps must have the same number of columns and rows. The DEM must
be in units of either feet or meters, in this research the units are in meters.
Stage data inputs are exported from a Vflo model. The resolution of the
maps affects the quality of inundated area display, so high-resolution data
are recommended. When a flow direction map of a different grid definition
is used, filter files called BAG files (*bag) may be used to convert Vflo
stage data to the grid definition of the flow direction map. Background
images can be included at any resolution, so long as their extent is the
same the other form the DEM and flow direction map. Background images
must be in JPEG or bitmap format [103].

Some storms were used as validation of the flow/inundation model.
The methodology of validation included: comparing the stream flow and
stage using gauge data from the U.S. Geological Survey (Current Water
Data for Puerto Rico, [95]) with the observer data from TropiNet radar
and rainfall nowcasting. All input data are ASCII and the flow direction is
extracted from the DEM watershed. The DEM have units of meters, the
stage data input are exported from Vflo model, and a background water-
shed image is included in bitmap format. The inundation results are listed
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in order to create the animation. Once all stage files are listed in the appro-
priate order, the images that are produced show the primary inundation
Analyst window.

12.12 STOCHASTIC MODELING OF RAINFALL OF SHORT-
TERM DURATION

For atmospherics phenomena, it is difficult to predict deterministically
what will occur in the future. A mathematical expression which describes
the probability structure of the time series that was observed due to the
phenomenon is referred to as a stochastic process. The precipitation is an
example of stochastic phenomenon that evolves in time according to prob-
abilistic laws. A time series model is adapted to a series in order to cali-
brate the parameters of stochastic process. Stochastic models are able to
provide reliable predictions over small temporal and spatial scales, which
are interested in hydrological applications.

Other types of prediction are the meteorological models, they produce
qualitative and quantitative rainfall forecasting for 24—72 h. At these fore-
casting horizons, an absolute precision is not required, but rather an order
of magnitude. They are based on atmospheric phenomena developing on a
synoptic scale, but in general they are not able to provide reliable predic-
tions for small temporal and spatial scales, which are of interest in hydro-
logical applications [14].

12.12.1 TIME SERIES ANALYSIS

A time series is a set of observations that are arranged chronologically.
In time series analysis, the order of occurrence of the observations is cru-
cial. When a meteorologist wants to predict a storm or a rainfall using
forecasting or nowcasting, the more important factor is the chronological
order of the data or the data time series. If this chronologic data is ignored,
the information contained will be difficult to use.

In the time series analysis, stochastic models are used for describing the
system hydrology for purposes that include modeling, forecasting, gener-
ating and investigating the underlying characteristics of the rainfall data.
A time series is a set of observations that are arranged chronologically.
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In this work, the observations are reflectivities which were changed to
rainfall. They were derived from TropiNet radar obtained between the
months of March and December of 2012 and some months in 2014. Some
of the precipitation events from TropiNet radar observed were modeled to
obtain the nowcasting of 10 min, 20 min and 30 min, and then this data was
compared with the observed data of 10 min, 20 min and 30 min. In total
10 events in Range Height Indicator (RHI) mode were used between 2012
and 2014, when the radar was available.

12.12.2 TYPES OF FORECASTS

There are some properties needed to distinguish between different types of
forecast. Forecast can extend to different scales in space and time; the spa-
tial is doing reference in a fixed location in a specific area o city, e.g., the
precipitation on a grid from TropiNet radar over Mayagiiez city. The tem-
poral range of a forecast is furthermore called lead-time. Short range fore-
cast cover very close events, like the next few hours or next minutes as our
case, the long range forecast is considered the mean value of a meteoro-
logical parameter over a few days or months.

In this research, the data is correlated in space and time, where the
strength in general decreases with spatial and temporal distance. Our mod-
els are designed to do forecast in time and space. This increases the dif-
ficulty as compared with prediction models that only use the forecast in
time at a given place (e.g., forecast in rain gauges).

Other types of forecast are deterministic. In this case a single forecast
value is issued at each occasion, pretending a confidence that hides the
forecaster’s uncertainty about the outcome. They are easy to interpret even
for user without stochastic background knowledge. The simplest case is a
deterministic binary forecast. This area decision, like yes or no, and addi-
tionally a generalization in the forecast if necessary, distinguishes between
types of variables to be forecasted. The variable of interest can be ordinal,
which can be expressed by a number and can be defined by an appropriate
number of threshold values (e.g., light rain, middle rain or heavy rain).

Other variable of interest is the nominal, where there is no natu-
ral ordering, like qualitative observation of the kind of precipitation
(e.g., snow, rain, ice or other). A deterministic evaluation is furthermore
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named Quantitative Precipitation Forecast (QPF), which induces the user
to suppress information and judgment about uncertainty. In fact, it may
create the illusion of certainty, while a probabilistic forecast is indicated
as Probabilistic Quantitative Precipitation Forecast (PQPF). In order to
reflect the uncertainty of the future outcome, probabilistic statements are
more appropriate.

For this research a methodology that embrace a space-time stochas-
tic model is used, and is considered a “discrete time-series model” that
include a special kind of nonlinear model with stochastic and deterministic
components. Here, the rainfall process is described at a discrete time steps,
are not intermittent and, therefore, can be applied for describing the fore-
cast within storm rainfall.

The other investigators prefer to use of meteorological model. These
are useful qualitative and quantitative rainfall forecasting tools on 24-72 h
interval and on a large spatial scale. In such cases, indeed absolute preci-
sion is not required for practical application. In meteorological models
when the forecasting lag time and spatial scale decrease, the effectiveness
and the precision of kind of model additionally decrease [43]. The next
section shows some types of forecast models widely used.

12.13 AUTOREGRESSIVE-MOVING-AVERAGE MODELS

Autoregressive-moving-average models (ARMA) are mathematical mod-
els of autocorrelation in a time series. ARMA models are widely used in
hydrology and were popularized by Box and Jenkins [5] who elaborated
a comprehensive theoretical and practical development of time series mod-
els. There are several possible reasons for fitting ARMA models to data.
ARMA modeling can contribute to understanding the physical system by
revealing something about the physical process that builds persistence into
the series. ARMA models can additionally be used to predict behavior
of a time series from past values alone. Such a prediction can be used as
a baseline to evaluate possible importance of other variables to the system.

The model consists of two parts: an autoregressive (AR) part and a
moving average (MA) part. The AR model expresses a time series as a
linear function of its past values. The order of the AR model indicates
how many lagged values are included. The MA model is a form of ARMA
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model in which the time series is regarded as a moving average of a
random shock. The model is usually then referred to as the ARMA (p,q)
model where p is the order of the autoregressive part and ¢ is the order of
the moving average part. ARMA models in general, after choosing p and
g, are fitted by iterative procedure of a nonlinear least squares regression
to find the values of the parameters which minimize the error term. The
ARMA modeling process is commonly an iterative, trial and error process.
Thus, it is necessary to use the least possible number of parameters that
will adequately produce forecasted values with similar statics of the his-
torical data [19].

ARMA is a methodology widely used to do predictions of all types, for
economy as well as for the weather predictions. In any case, it is necessary
to have a long historical data. In the literature ARMA model has been used
to predict at one or two rain gauges at a single point but not at radar field.
Since the ARMA model predicts at a single point. This is an important
reason to avoid the use of ARMA methods in this research. This principle
was applied to this thesis or this model, at the same time the principle of
parsimony to obtain results in the model with small possible error.

12.14 POINT PROCESS MODEL

Point Process is a type of random process for which any action consists
of a set of isolated points in time or in space. The example more global in
point process model is the Poisson Process that counts the number of events
(storm) and the time that these events occurs in a given time interval,. Usually
the time between each events development has an exponential distribution
and the numbers of occurrences are independent of each event (storm).

The Point process model has been used commonly to forecast rain-
fall in which storm origins occur in a Poisson process. The Point process
model is applied at a single site or fixed point where the storms arrive in
a Poisson process. Each storm incorporates a group of random number of
rain cell, where each cell has a random duration or lifetime and depth. The
total rate of precipitation at time () is the sum of contributions from all
active cells at (¢) [70]. This type of model uses complex equations and the
analysis of precipitation is in time at a fixed point in space and the proper-
ties of the natural process can be deduced via the mathematical model.
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Stern and Coe [84] have modeled daily rainfall in which wet and dry
days occur in a Markov chain with seasonally dependent transition prob-
abilities. In it, the amounts of rain per wet day have a gamma distribution
with seasonally dependent parameters.

12.15 SPECIAL “NONLINEAR EMPIRICAL MODEL”

An algorithm for predicting 10, 20 and 30 min in advance the spatial dis-
tribution of rainfall rate is based on the assumption that TropiNet radar
rainfall rate data provides estimations of the rainfall with high spatial and
temporal resolution. Some researchers have compared radar rainfall data
with rain gauge measurements [6, 71, 77, 108]. These comparisons may
not been useful since a rain gauge measures precipitation at a single point
located at the surface level, whereas the weather radar measures the aver-
age of reflectivity at certain elevation and over a much larger area. A sto-
chastic function is used to estimate the rainfall rate based on reflectivity.

When a rain gauge is compared with radar, it is expected that the aver-
age rainfall will behave as an individual point. It is known that the average
will behave differently than that of an individual observation; therefore,
these quantities should not be expected to be equal. When several rain
gauges are averaged and compared with the radar measurements, the aver-
age of the rain gauges is inconsistent because it was developed with few
points whereas the average of the radar was developed with a much larger
number of points. The rainfall modeled over a watershed shows that the
peak flow measurements and overall runoff from radar performed better
that the estimated peak flow using rain gauges [76]. Additional studies
have concluded that the peak discharge of stream-flow computed with
radar data were more accurate than those computed from rain gauges alone
[68]. Thus, there is no instrument that precisely measures the amount of
rainfall over a large area. The weather radar provides an estimation of the
rainfall rate over larger areas.

The suggested algorithm uses TropiNet (RXM-25) data to predict the
variability of the rainfall field in time and space. It is assumed that for
a short time period (10, 20 and 30 min), a rain cloud behaves as a rigid
object, with all pixels moving in the same direction at a constant speed.
Thus, the most likely future rainfall areas are estimated by tracking rain
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cell centroid advection in consecutive radar images. The suggested algo-
rithm is a special kind of nonlinear model with stochastic and determinis-
tic components. The rainfall process exhibits significant changes in time
and space, and it can be characterized as a nonstationary stochastic pro-
cess. To face the nonstationary characteristic of the process, parameters
are estimated at every time and spatial domain.

The model consists in considering the rainfall shape data as a rect-
angular grid with 940 columns and 740 rows of pixels for a total of
695,600 pixels, every pixel size is 0.06 kilometers wide and 0.06 kilome-
ters long. From the grid data select a zone of 81 pixels that was divided
in squares of Ax x Ay pixels, where (Ax) is referenced to columns of
9 pixels and (Ay) rows of 9 pixels with total zones of 8528 (82 x 104)
in every window (Figure 12.15). Several zones sizes were explored for
Ax and Ay = {7, 9, 11, ..., 25} and it was found that the larger the zone
size, the larger the number of degree of freedom. However, resolution was
degraded with increased zone size.

In the model, the use of the same zone in the before windows (¢ — 1)
(t — 2) and is necessary (Figure 12.16). Every zone (9 x 9) should have

Zone 940 cols

Ay =9 rows

AT

Ax =9 cols

740 rows

FIGURE 12.15 Rectangular grid of rainfall data.
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FIGURE 12.16 Zone 9 x 9 at time ¢, /1, and 2.

a minimum of 24 rain pixels with 20 degrees of freedom. Zones with less
pixel of rain could not be selected to forecast analysis. In zones where the
prediction movement suggest there is a rainfall cell but the zone has not
the necessary pixels required (24 pixels) an interpolation was applied. The
interpolation was “Kriging simple” using the 20 five pixels nearest to pixel
that has no prognostic.

The model is defined by the following equation:

hr,k(i,j) = {at,k + (ﬁt,k O )cDr,k

72 ST s k(i) 0 20 o i) 830k Zia s
|:1_e ( b -1k(iLj) k-2 k(i) b r-1k( /)) +8t k(ivj)} (5)

where, (i,j) represents the geographic position or coordinates latitude and
longitude of every pixel in the grid, & is the zone. This process starts in
pixel 1 until pixel 8528. In every zone, unknown parameters should be
determined (a, B, @, 81, 82, 63): a is the minimum value found between
previous values of 7, i) and 7, ¥ in their respective zones (k), B is the
reflectivity maximum value found between previous values of 4, , .. and
h,, K in the specific zone (k).

The mathematical structure of the model is based on a previous work
by Ramirez-Beltran [63]. In the current work, this model was used because
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this scheme ensures that rainfall forecasts will fall inside of the most likely
rainfall intensity domain [a, b], which was derived by the observed local
rainfall distribution.
I;H’ ki) is the reflectivity average value in the time (#1). The average
value was determined in every pixel into each zone. It was obtained averaging
the eight pixels closest to the pixel under study. Similarly, }_ztfz’ ki) is the aver-
age reflectivity value in the time (+-2), as shown in Figures 12.17 and 12.18.
The variable Z_| K is the ratio between the pixels with maximum
reflectivity. Z ¥ in every cloud or cell and the nearby pixels Z, |, ¥
forming the cloud or cell and the random variable ¢, . - is a sequence of an
unobserved random variable with mean zero and constant variance associ-

ated to the pixel (i,j). Therefore, we have:
_ Zi - Zm[n
Tz 7 (6)

max min

The variable Phi (®,,) is changing in the equation every zone (9 x 9)
in each window. This variable was determined first by linearization of the

—h, (i,

940 cols

————— £9 rows

740 rows

FIGURE 12.17 Average pixels at a specific zone using the eight nearest pixels.
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hu2,1) hi2,2) hi2,3)

hu(3.1) h(3.2) hu(3,3)

hu-z(i,j)
FIGURE 12.18 Average pixel at /2, for (2,2).

nonlinear equation (Phi-initial) and after using optimization nonlinear
techniques with constrains Sequential Quadratic Programming (SQP),
where the Phi parameter is a bias correction factor and its maximum value
must not exceed 1.1.

0<®;, <11 @)

The initial coefficient deltas (6, 6,, and 6,) were obtained through the
estimation method “/east squares” by linearization of nonlinear equation
(exponential). Once the variables initial deltas were found, the next step
is to find the variable Phi (®,,) initial. These values were used to forecast
rainfall at one lead-time and successively with the following forecasts.

An additional important step in this research was defining the cloud
motion vector in each cell, with capacity to predict the rainy pixel areas,
plus the joint with the forecast rainfall estimation using the main equation.
For the cloud motion, /4, and &, , direction and movement were neces-
sary to determine the direction motion vector and velocity. This veloc-
ity is compared with velocity obtained for TropiNet to assure the right
movement of the clouds.

The proposed rainfall prediction algorithm requires the implementation
of three major tasks: (1) Develop the cloud motion vector, (2) Predict the
future location of the rainy pixels, and (3) Estimate the rainfall rate in the
future rainy pixels.
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12.15.1 CLOUD MOTION VECTOR

Derivation of the cloud motion vector requires tracking cloud rainfall
cells [64]. The algorithm identifies first the cloud convective core based
in a sequence of radar images between /4 _,, h, | and h, using an empirical
distribution method for cloud classification. Then by determining the dis-
tance between cloud center at time /1 and the cloud center at time ¢ of the
same cloud (Figure 12.19).

The motion algorithm was based on a spatial and temporal comparison,
classifying clouds with high reflectivity and removing pixel with very low
reflectivity, in this work the minimum reflectivity was 3 dBZ. The next
step is the normalization of reflectivity values between a range of zero and
one using minimum and maximum values of reflectivity in each image or
windows, as shown in the following equation, where N is the normalized
reflectivity, Z, reflectivity in each pixel, Z = minimum reflectivity 3 dBZ
and Z  is the maximum reflectivity in the window.

N,~ — Zi — Zmin (8)
Zmax - Zmin

The classification of the normalized values is divided into two groups.
This result was stored in a binary matrix B . The value N, exceeding the
percent of pixel with a minimum reflectivity N is assigned value of one
and the value N that is smaller than the perceﬁt of pixel with a minimum
reflectivity N is assigned the value of zero. In this case, N, is 10 per-
cent of pixels’with values of minimum reflectivity. ’

B =0if N <N )

rmin

(lat, lon,)
/ (lat,,, lon,.)
Y ~--==-——-CE8

d = distance

t-1
FIGURE 12.19 The motion cloud between time #—1 and time ¢.
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B =1ifN <N__ (10)
Next, the binary matrix is imported into another subroutine which clas-
sified the cell with separations by rows and columns, grouping the con-
tinuous pixels. The method for cloud classification looks for a minimum
group of 250 pixels successive with binary data. When there are more than
three (3) rows or three (3) columns of pixels without data into the grid it
is possible to have a division of clouds. This is the form to separate every
one cell or cloud (Figure 12.20).

The contiguous pixels in the radar image are used to form the convec-
tive cell. It is necessary to know the centroid of every cell and the latitude
and longitude of each pixel into the cell at the times t—2, — 1, and ¢.

The distance (d), direction (6) and velocity (v) are properties between
the centroids of the cells that are moving in every lag-time. This is calcu-
lated using the next equations.

di = %/(xti — X )2 + (yn' - yti—l)z = \/2 Ax* + Ayz (km) (11)

A
0 =tan"' =X (rad) (12)
Ax
3 pixels 940 cols
3 Cloud 1
’ Cloud 2

740 rows

FIGURE 12.20 An example of separation of clouds.
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L dem
t(min)

(13)

To determine the centroid of the cells, it is necessary to calculate latitude
(La) and longitude (Lon) of every pixel group.

L_azlzla,, (14)
niio

S

Lonz—Zloi (15)
noic

Dixon and Wiener [20] found that a convective cell have a mean veloc-
ity of 64 km/hr. This value agrees with the velocity cell measure from
other research [54]. For this model a velocity means of 72 km/h approx-
imately or 12 km/(10 min) was used. To apply this maximum distance
between clouds at every lag time of 200 pixels was necessary if the analy-
sis is every 10 min. If this analysis time increases, then the distance could
increase (Figure 12.20).

The 200 pixels represent the maximum distance of translation cell in
two different times. Figure 12.21 shows the cloud 1 moving a A¢ from
(t—2) to (¢t — 1). This is furthermore referred to as coverage diameter in
two successive times or a delta time At.

12.15.2 ESTIMATION OF PRECIPITATION USING
THE NOWCASTING MODEL

The precipitation was estimated using Eq. (5), applied to each zone in
every time window. The rain estimated, }Azm,k(,-,/) at time (¢ — 2) is the
result of the prediction interval Az (10, 20, 30) between the instants iA¢
and (i+1) Az. It is a function of the previous database on dynamic sets
of parameters. The constants (a, B, ®, 51, 82, 83) were determined in
each zone (9 x 9) using optimization techniques for nonlinear regres-
sion equations. The main equation includes four fundamental products:
}7,_1, k(,.x/.),}z_z’ vy Mgy @d Z, .. These are the average observed rain
at time # — 1 and # — 2. The average is calculated between the eight nearest
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FIGURE 12.21 Cloud movement at time ¢ — 2 and ¢-1.
pixel to the prediction pixel. The other 4 is the value of the rain at

t — Lk(ij)
time (1 — 1), and the Z, | Hid) is the ratio of reflectivity at time (¢ — 1). The

Eq. (5) has some restrictions in the parameters (a, 3, @, 61, 62, 63), which
are changing in time and space. The clouds are in movement and the val-
ues of the variables are changing at every time and space domain. After the
optimization, the deltas values are restricted to be positive or equal to zero.

S0 20;i=1,2,3 (16)

The variables of a and B are the minimum and maximum reflectivity
values, respectively, between the last two windows at (¢ — 1) and (¢ — 2)
at the zone (9 x 9), these variables are changing in time and space (every
zone 9 x 9). Moreover, the variable @, changes in every zone and time
windows but having a restriction limit of 1.1 in the optimization routine.

o= min(Zt_l, ,_2) (17)

ﬂzmax(zt—nz:—z) (18)
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0<d,, <1.1 (19)

Once the variables were found, the next step was to estimate the rain
rate forecast in every pixel using Eq. (5). Pixels for which it was not possi-
ble to do the estimation prediction or there is not enough data at time ¢ — 1
and/or at ¢ — 2. The “Kriging” interpolation method was used to estimate
the rain pixel to derive the corresponding predictors [110]. Figure 12.22
shows the cloud movement sequence with the centroid and their distance
between them.

12.15.3 INITIAL VARIABLES AND THEIR OPTIMIZATION

The variables into the nonlinear equation model are fundamental in the
precipitation forecast trend. A well-planned approach is needed to properly
solve the nonlinear constrained problem. The explored approach includes
two steps: (i) identifying the initial point and (ii) using a constrained non-
linear optimization technique to estimate the final parameter set for each
zone and every window [63].

Pixel i,
o in site
,/'.C
/// 1
» 7 tH
” P 3 A y{
) 3 ' AXi
& !
v AYi
(./
// AXi
w7 t-1
S AYi
AXi
t-2
" Observed ' Observed ' Forecast

FIGURE 12.22 Cloud movement sequence.
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To estimate the initial values of deltas, it was not necessary to apply the
constrain, so that the initial deltas values can be positives or negatives. The
Eq. (5) was linearized by considering values of /, Lk a a ,
o,.P,andZ_ . 2 and the unknown values of 81, 82 , 63, left the param-
eter phi @, temporarily ignored.

This method consists in solving the equivalent linear model and using
these values as the initial point. The convergence of nonlinear routine
heavily depends on the selections of the initial points. Thus, if the initial
point is far away from the optimal solutions the algorithm may converge
to a suboptimal point or may not converge. Linearizing the Eq. (5) and
ignoring the phi variable [63], we get:

h. -« Sy hy i+ 0200k g 4
—Ln|1—-| =20 = :Z e P +€t,k(i,j) (20)
B.—a, +33,,Z

t=1,k(i,j)

where

B> hyyand o, <h,y 1)

€, 4in is an unknown random variable at time ¢ and at location (i,j) of the
k zone. The initial values of delta are obtained by solving the linear regres-
sion Eq. (20) by the least square method.

The phi parameter is a bias correction factor and can be estimated
using a second linear regression. Once the delta values are estimated, the
next step is to find the phi value (®, ), which can be estimated using the
following equation:

kT at,k |
For: B3, , > ht’k anda, v <P
€, 4,18 AN unknown random variable at time # and at location (i,j) in the
zone 9 x 9.
Simplifying Eq. (22) with the initial delta estimates, the following
equation is obtained:
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/lt,k(i,j) = ch,k (Qt,k (i./) ) + r’r,k(i,j) (23)
where,
p) _ ht,k(i,j) &
tk(i,j)
! ﬂf,k O (24)
_ _ZSI/J; fllfl.k(l, )+521‘k;’1724k(/‘/)+331.kZlfl,k(l. )
tk(inj) — |:1 e ' ' :| (25)
Nokiy is an unknown random variable in Eq. (23) at time ¢ and at loca-

tion (i,j) of the k zone, 5’s are the previous estimated or initial values of
deltas.

The next step is to find the optimum values of variables 61, 82 , 83,
and @ , from initial values determined in the previous steps. The param-
eters of the nonlinear regression model can be easily estimated by solving
a constrained nonlinear optimization problem. Since the main model or
Eq. (5) includes four parameters with a bounded constraint:

Si, >0;i=1,2,3 (26)

0<d, <11 27)

Therefore, it can be solved by using the sequential quadratic program-
ming algorithm [49, 66]. The derived initial point was ingested into the
constrained nonlinear subroutine to facilitate convergence. The param-
eters of the exponential term were restricted to be positive, and the phi
parameter was restricted to be in the range of 0 to 1.1. This threshold
was derived by inspection and using statistical analysis. The optimization
objective was to minimize the errors between the estimate values for the
regression and the observed values by radar.

In these regions during the prediction, there are clouds (or cells) pres-
ent in the movement estimation, but not the required minimum number
of pixels. The pixels estimation predictions were obtained by Kriging
interpolation.
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12.15.4 LEAST SQUARE METHOD

The least squares estimate of the multiples regression parameters were
used to calculate the initial values of deltas variables. The multiple linear
regression model is typically stated in the following form:

yﬂ=U0+U1x17+U2x27+...+UNxN}+67 (28)

Where, the dependent variable is Y, U, U, U,...U,are the regression
coefficients and €, is the random error assuming E(ey) =0and Var(sﬂ) =0’
fory=1,2,...M.

The multiple linear model can be expressed in matrix format:

y =XU + ¢, where 29)
I x50 Xy U, €
X=Xy Xp... X [U=|U...le=|¢,... (30)
Xt Xz - x/\/l/\/ U/\/fl €M

And finally U values are estimated solving the following multiple lin-
ear regressions equation:

U=X'X)'X'y (31)

It was assumed that (X’ X) is a nonsingular matrix [106].

12.15.5 SEQUENCE QUADRATIC PROGRAMMING

The function used for optimization was finincon. This function has a con-
strained minimum of a scalar function of several variables starting at an
initial estimate. This is generally referred to as constrained nonlinear opti-
mization or nonlinear programming [49].

The function fmincon uses one of four algorithms: active-set, inte-
rior-point, sqp or trust-region-reflective. The Sequential Quadratic
Programming (SQP) is one of the most successful methods for the numeri-
cal solutions of constrained nonlinear optimization problems (NLP) [4].



234 Flood Assessment: Modeling and Parameterization

A nonlinear programming problem is the minimization of a nonlinear
objective function f(X), xeR™ of m variables, subject to equation and
inequality constrains involving a vector of nonlinear functions (x). The
formulation can be:

minimize f(x), xeR"
subject to g(x)<0i=1,2,....m (32)
h(x)=0

where, f: R™ — R is the objective functional, the functions h: R® — R™
and 8: R" — RP describe the equality and inequality constraints.

The nonlinear optimization problem (NLP) has special cases linear
and quadratic programming routines, when f'is linear or quadratic and the
constraint functions g and h are affine. SQP is an iterative routine, which
models the NLP for a given iterative X*" by a Quadratic Programming
(QP) subroutine, solves that QP sub problem, and then uses the solution to
construct a new iterative x¥*!. This construction is done in such a way that
the sequence (x¥) converges to a local minimum x* of the NLP.

The NLP resembles the Newton and quasi-Newton methods for the
numerical solution of nonlinear algebraic systems of equations. However,
the presence of constraints renders both the analysis and the implementa-
tion of SQP methods much more complicated [37].

12.15.6 KRIGING INTERPOLATION

Kriging is based on the assumption that the parameter being interpolated
can be treated as a regionalized variable. A regionalized variable is inter-
mediate between a truly random variable and a completely deterministic
variable in that it varies in a continuous manner from one location to the
next. Therefore, the points are near to each other and have a certain degree
of spatial correlation. Yet, points that are widely separated are statistically
independent [13].

The Kriging techniques are based on the estimation of weighting coef-
ficients with an assumption of unbiased-ness. Each data has its own coef-
ficient w, which represent the influence of a particular data on the value of
the final estimation at the selected grid node. The relationship between the
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existing data and the estimation point has been expressed by variogram
values or by covariance in case of second order stationarity. Such values
describe the spatial dependence and the influence of the particular location
in terms of its distance and direction from the estimated location [45]. The
basic equation used in ordinary Kriging is as follows:

F(xy) = wafa (33)
i=1

where, n is the number of scatter points in the set, f are the values of the
scatter points, and w, are the weights assigned to each scatter point. The
weights are found through the solution of the simultaneous equations:

wlS(d”)+W2S(a’]2)+w3S(d13)+> =S(a’lp)
wS (dyy )+ w,S (dyy)+w,S(dyy)+> =S(d,,) (34)
w]S(dB)+w2S(d23)+w3S(d33)+> =S(d3p)

where, S(d,»j) is the model variogram evaluated at a distance equal to the
distance between points i and j. It is necessary that the weights sum to unity.

w +w,+w,=1.0 (35)

The Kriging techniques add some constraints to the matrices, to minimize
the error, and these techniques are unbiased-ness estimations. These factors
would describe some external limit on the input data, which cannot simply
be observed in the measured values [45]. The constraint factor in Ordinary
Kriging equations is called the Lagrange multiplicator (A). It is used to mini-
mize possible estimation error and then the Eq. (34) can be written as:

wS(dy,)+w,S(dy,)+wS(dy)+> =S(d,)
wS (dyy )+ w,S (dyy )+ wyS(dyy)+> =S(d,,) (36)
wS (dys ) +w,S (doy )+ wiS (dsy)+> =S(ds,)

where:



236 Flood Assessment: Modeling and Parameterization

wtw,+w +0=1.0 (37)

The equations are then solved for the weights w , w,, and w,. The f'value
of the interpolation point is then calculated as:

JoTwifi twaf, T wf, (%)

An important feature of Kriging is that the variogram can be used to
calculate the expected error of estimation (c?) at each interpolation point
since the estimation error is a function of the distance to surrounding scat-
ter points. The calculation of error variance for the output pixel estimate
includes adding the Lagrange coefficient:

o,=w S(d,,) +w S(d )+w Sd )+ A 37)

12.16 SELECTION OF EVENTS

To select the events, it was necessary to analyze every storm during 2012
and 2014 that was collected by the radars. The analysis has three steps: The
first was taking every minute data from TropiNet radar and plot it. For this,
it was necessary to create an efficient routine in MatLab to determine that
the radar data had not interruptions or was damaged. If the radar had corrupt
data, the storm is discarded. In some cases, it was found that the radar col-
lected data in Plan Position Indicator (PPI) and after the radar is changed to
Range High Indicator (RHI), such data was also discarded.

The next step was to select the radar data with the same elevation
angle (3°). The TropiNet radar has the capacity of store data with two
o more different elevations angles. Within the model it was necessary
to include a subroutine with efficiency to select a determined elevation
angle. The final step was to choose those precipitations that have data
with complete storm duration.

Table 12.6 includes the dates and specifications of every storm in the
current study. The information incorporated in the column “Storm Impact”
was provided by NWS at Carolina, Puerto Rico [58].
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TABLE 12.6 Characteristics of Studied Storms

237

Date Duration Storm type Storm impacts at western
(UTC) Puerto Rico
March 28,2012 7 hr. Stationary trough  Impacts rivers, water on the
16:27-23:58 road, and significant rainfall
' ’ accumulation
March 29, 2012 6 hr. Stationary trough Impacts rivers, water on
00:36-06:53 the road, significant rainfall
accumulation
April 30,2012 5hr. Convective storm Numerous showers over
17:55-22:21 western Puerto Rico at the
’ ’ afternoon
October 10,2012 5 hr. Convective storm  Some urban flooding
16:10-21:43
February 12,2014 7 hr. Heavy convective Reduced visibilities and
16:00—23:29 Storm ponding of water on roadways
’ ’ and low lying areas
May 06, 2014 7 hr. Convective storm  Street flooding and reduced
16:45-23:59 visibility on the highways.
May 21, 2014 7 hr. Heavy convective The water covers the roadway.
16:46-23-:00 Storm Ponding of water on roadways
June 29, 2014 S hr. Convective storm  The shower activity produced
17:00-22:00 periods of moderate to locally
downpours
June 30, 2014 4 hr. Thunderstorms Moderate to heavy rain,
16:00-20:15 associated to the ~ urban and small stream flood
' "7 leading edge of a  advisory
tropical wave
July 05, 2014 4 hr. Convective storm Heavy rain, urban flood.
16:44-20:00

12.17 HYDROLOGIC MODEL COMPOSITION

As mentioned in this chapter, the hydrological model used in this research
was Vflo. This model uses finite elements, which can simulate streamflow
based on geospatial data to simulate interior locations in the drainage net-
work and determine channel flow and overland flow.
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Google earth

Google earth
C

FIGURES 12.23 AND 12.24 Flow stations within radar coverage (top) and within basin
(bottom).

Figures 12.23 and 12.24. Flow stations within radar coverage (top) and
within basin (bottom).

It was fundamental to study the physical configuration of the watershed,
such as a Digital Elevation Model (DEM), the digitized topography, soils
map, land use map and information about the basin. Some hydrologic and
hydraulic studies have been conducted by Sepulveda et al. [1996]; Villalta
[103]; Prieto [61]; Rojas [69]. In addition, other studies by U.S Geological
Survey -Current Water Data for Puerto Rico [2014] and FEMA [23] are
used in this research as additional information. Some stations from the
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TABLE 12.7 USGS Flow Stations

Source ID Station Station Name Lat. Long. Elev. Data
(m)

USGS 50131990 Rio Guanajibo at Hwy 18.09 —67.03 45.0 Rain, Stage
119 at San German

USGS 50136400 Rio Rosario near 18.17 —67.07 50.0 Rain, Stage,
Hormigueros Flow

USGS 50138000 Rio Guanajibo near 18.14 —67.15 2.2 Rain, Stage,
Hormigeros Flow

USGS 50141500 Lago Guayo at 18.21 —66.83 426.8 Rain, Stage
Damsite near Castaner

USGS 50142500 Lago Prieto near 18.19 —66.86 600.2 Rain, Stage
Adjuntas

USGS 50146073  Lago Daguey above 18.301 —67.13 40.0 Rain, Stage
Afiasco

USGS 50141100 Lago Yahuecas near 18.22 —66.82 426.8 Rain, Stage
Adjuntas

USGS 50143930 Rio Grande de Anasco 18.28 —67.02 64.9 Rain, Stage
at Bo. Guacio

USGS 50144000 Rio Grande de Afiasco 18.285 —-67.05 31.6 Rain, Stage,

near San Sebastian Flow
USGS 50145395 Rio Casey above 1825 —67.08 75.0 Rain, Stage,
Hacienda Casey Flow

* U.S Geological Survey — Current Water Data for Puerto Rico, 93.

USGS were used to compare and validate the runoff with the results from
the hydrological model using radar data (Table 12.7, Figures 12.23, 12.24).

FEMA [23] implemented the most recent Flood Insurance Study (FIS)
for the Commonwealth of Puerto Rico. Standard hydrologic and hydraulic
study methods were used to determine the flood hazard data required for
this countywide FIS. The flood events have magnitude of exceeding once
at any given day during the recurrence period of 10 years, 50 years, 100
years and 500 years. These events have a percent chance of 10%, 2%, 1%
and 0.2%, respectively. The equation employed were Mean Annual Rainfall
(MAR) obtained from Mean Annual Precipitation (MAP) developed by
NOAA in 2006 [precipitation record 1971-2000]. The regression analysis
was performed based on depth to rock (DR) and contributing drainage
area (CDA) as variables that govern the peak streamflow. A summary of
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TABLE 12.8 Drainage Area Peak Discharge Relationship. Source: FEMA. Flood
insurance study: Preliminary for Commonwealth of Puerto Rico: June 22. Federal
Emergency Management Agency (FEMA), US Government;22 June 2012; Volume 1 of 5

Drainage Station name Peak discharge (m%/s)
area (sq. km)

10 year S0year 100 year 500 year

467.73 Rio Grande Anasco at 1,809 3,797 5,130 10,542
Mouth

347.33 Rio Grande Anasco Near 1,390 3,031 4,078 8,329
San Sebastian

385.26 Rio Grande Anasco 1,527 3,289 4,432 9,070
upstream confluence Rio
Casey

414.88 Rio Grande Afiasco 1,631 3,481 4,695 9,624
downstream confluence
Rio Casey

35.4 Rio Yagiiez at Mouth 292 595 770 1,289

329.65 Rio Guanajibo at Mouth 1,352 3,896 5,745 14,294

310.53 Rio Guanajibo 1,215 3,637 5,343 13,196
Near Hormigueros

91.39 Rio Guanajibo at Hwy 604 1,325 1,713 2,991
119 at San German

303.04 Rio Guanajibo 1,206 3,507 5,137 12,620

downstream confluence
Rio Rosario

drainage area-peak discharge relationship for all of the streams studied is
shown in Table 12.8 [23].

The following sections present the analysis of each variable in the
hydrological model and determine the best parameters for a good opera-
tion. The analysis was based on existing literature within the study area.

12.17.1 POTENTIAL EVAPOTRANSPIRATION

A GOES satellite-based potential evapotranspiration (PET) product, with
resolution of 1 kilometer over the entire island each day, was used in this
research. The PET product was obtained from Dr. Eric W. Harmsen of
the Agricultural and Biosystems Engineering Department, UPRM [59].
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Although PET method by Hargreaves [33, 34] is simpler to use, yet it does
not yield PET that can be close to actual field conditions.

One of the most used methods to calculate PET or reference evapotrans-
piration, and the method used in this study, is the FAO Penman-Monteith
method [22]. A large number of empirical methods have been developed
over the last 50 years, and the Penman-Monteith method was considered to
offer the best result with minimum possible error. The Penman-Monteith
reference evapotranspiration equation is given by

0.408A(R, ~G)+7 20y, (e, ~e,)
ETo = T+273 (38)
A+y(1+0.34u, )

where, ETo is reference evapotranspiration (mm day™'), R net is radiation
at the crop surface (MJm2day'), G is soil heat flux density (MIm2day!),
T is mean daily air temperature at 2 m height (°C), u, is wind speed at
2 m height (ms™), e_is saturation vapor pressure (kPa), e_is actual vapor
pressure (kPa), e, — e is saturation vapor pressure deficit (kPa), A is slope
vapor pressure curve (kPa’C™), y is psychrometric constant (kPa°C™).
The Eq. (40) uses standard climatological records of solar radiation,
air temperature (°C), humidity and wind speed (ms™'). The weather mea-
surement should be made at 2 m (or converted to that height) above an
extensive surface of a hypothetical green grass with an assumed height
of 0.12 m, a fixed surface resistance of 70 sec m™' and an albedo of 0.23.

Evapotranspiration (mm/day) Evapotranspiration (mm/hr)
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FIGURE 12.25 Left panel potential evapotranspiration (mm/day) and right panel
potential evapotranspiration (mm/h) on March 28, 2012, Puerto Rico.
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FIGURE 12.26 Left panel potential evapotranspiration (mm/day) and right panel
potential evapotranspiration (mm/h) in the basin area on March 28, 2012.

The original PET data resolution is 1 km and the units are (mm/day).
The hydrological Vflo model uses PET in units of mm/h and the same
resolution as the Digital Elevation Map in the current study. A subroutine
in MatLab was developed to change the resolution of the PET data from
1 km to 200 meters, and the units from (mm/day) to (mm/hours).

The current study’s days were: March 28, 2012; March 29, 2012; April 30,
2012; October 02, 2012; February 02, 2014; May 06, 2014; May 21, 2014;
June 29, 2014; June 30, 2014 and July 05, 2014. Figures 12.25 and 12.26
show the potential or reference evapotranspiration for March 28, 2012.

To evaluate the study area in western PR, it was necessary to develop an
algorithm in MatLab to extract values of PET from the PR datasets and to
assign them to appropriate locations within the study area (Figure 12.26).
Finally, the 1-km PET data was projected onto a 200-meter resolution grid
using an interpolation methodology in MatLab. Interpolation is a method
for estimating the value at a query location that lies within the domain of
a set of sample data points. This transformation was successful for the ten
storm days analyzed and the data provided by the GOES-based PET was
more accurate than PET based on a limited number of available weather
stations (two) within the study area.
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FIGURE 12.27 Basin slope map 200 m resolution.

12.17.2 SLOPE CHARACTERISTICS

The slope map was developed using the digital elevation map (DEM)
at 200 meters and 10 meters resolution from USGS. The digital eleva-
tion model (DEM) data consist of a sampled array of regularly spaced
elevation values referenced horizontally either to a Universal Transverse
Mercator (UTM) projection or to a geographic coordinate system. The grid
cells are spaced at regular intervals along south to north profiles which are
ordered from west to east. Figure 12.27 presents the slope map for the
basin derived from the DEM at 200 meters resolution.

An aspect map is elaborated in Figure 12.28. The aspect map is a mea-
sured counterclockwise in degree from 0 (due north) to 360 (again due
north, coming full circle). The value of each cell in an aspect grid indicates
the direction in which the cell’s slope faces. Flat slope have no direction
and are given a value of —1. There are many different reasons to use the
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FIGURE 12.28 Basin aspect map 200 m resolution.

aspect function. For example it can be used to identify areas of flat land,
slope in a mountainous region, and locations where is possible identify the
runoff direction.

12.17.3 CHANNEL SPECIFICATIONS

The study area includes three main rivers and their branch, Rio Grande de
Anasco, Rio Guanajibo and Rio Yagiiez, (Figure 12.29).

The roughness coefficients developed by FEMA [23] gives a general
roughness for the Rio Afiasco of 0.040 in the channel and 0.100 in the
overbank. In the Rio Yagiiez, the roughness range is between 0.030 to
0.050 in the channel and for the overbank it is between 0.150 and 0.200.
For the Rio Guanajibo, the channel roughness coefficient for the channel
is between 0.040 and 0.045 and the overbank is 0.100.
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FIGURE 12.29 Map showing three rivers.

TABLE 12.9 Surveyed Sections Coordinates at Rio Grande de Afiasco [103]

Sections Location Average reach from
Coordinates UTM, NAD 1927 the mouth (km)
Latitude Longitude

Pl 2,019,561.15 721,233.41 53.80

AN12 2,019,437.49 721,056.76 52.48

ANCO 2,021,257.06 717,276.30 46.24

ANC2 2,021,592.71 717,240.97 45.99

ANCI1 2,021,575.04 716,905.32 45.43

AMA 2,020,603.43 714,785.44 41.592

AN21 2,021,098.07 714,538.12 40.82

AN22 2,021,469.05 714,379.13 40.41

AN32 2,021,981.35 713,319.19 39.08

AREA 2,022,246.34 710,792.99 36.32
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TABLE 12.9 Continued

Sections Location Average reach from
Coordinates UTM, NAD 1927 the mouth (km)
Latitude Longitude

AREABA 2,022,317.00 710, 510.34 35.99
GRAVERO ANTES 2,023,465.27 707,895.92 30.26
GRAVERO DESPUES  2,023,500.60 707,295.19 29.56

AN40 2,023,694.93 706,765.22 28.51

ANCG 2,022,617.32 704,044.70 21.79

ANCG2 2,021,769.37 701,730.50 16.60

ESPINO ANTES 2,022,264.00 699.504.62 14.19

ESPINO DESPUES I 2,022,122.68 699,363.29 13.99

ESPINO DESPUES 2 2,021,274.73 699,151.31 12.74
OVEJAS-LILLY 1 2,021,398.39 697,932.37 11.17
OVEJAS-LILLY 3 2,020,635.42 696,879.87 8.53

SECCION K 2,021,342.50 695,800.43 5.86

SECCION L 2,021,512.95 694,840.73 3.49

SECCION N 2,020,963.71 693,294.01 1.78

SECCION O 2,020,824.82 692,574.31 1.07

TABLE 12.10 Surveyed Sections Coordinates at Rio Guanajibo [103]

Sections Location Average reach from
Coordinates UTM, NAD 1927 the mouth (km)
Latitude Longitude
ANTES 114 2,006,663.29 695,231.54 6.69
S. DESPUES 114 2,006,763.13 696,049.47 6.45
S. DESPUES 102 2,006,933.46 695,802.80 6.05
SECCION S-3 2,007,315.21 695,321.20 4.71
SECCION S-2 2,008,184.45 694,528.31 322
SECCION S1 2,008,237.31 694,287.51 2.81
SECCION S2 2,008,848.12 693,541.61 1.57
SECCION S3 2,009,053.68 693,300.81 1.19
SECCION S4 2,009,359.09 693,054.14 0.81

SECCION S5 2,009,756.40 692,713.49 0.46
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Using ArcGIS, three necessary products were determined to include in
the hydrologic model Vflo. These are flow direction, overland slope and
stream location, the products were developed with an extension of ArcGIS
“Arc Hydro” using a DEM of 30 meters from the USGS, other cross sec-
tion were obtained using DEM of 10 meters where no data was available to
define the flood plain in these areas, and channel slope. In most rivers section

TABLE 12.11 Surveyed Sections Coordinates at Rio Yagiiez [103]

Sections Location Average reach from
Coordinates UTM, NAD 1927 the mouth (km)
Latitude Longitude

SECCION 1 2,014,456.14 699,585.62 6.77

SECCION 2 2,014,340.71 699,545.94 6.42

SECCION 3 2,014,346.72 699,175.58 5.90

SECCION 4 2,014,213.24 698,919.45 5.23

Legend

B Surveyed Sections

Rivers

0 2 4 8 Miles
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FIGURE 12.30 Cross sections.
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FIGURE 12.31 First transversal section farthest to mouth at Rio Grande de Anasco.
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FIGURE 12.32 First transversal section farthest to mouth at Rio Guanajibo.
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FIGURE 12.33 First transversal section farthest to mouth at Rio Yagiiez.
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channel width is about 5 to 10 meters, coinciding with Rojas [69]. Villalta’s
[103] survey sections data was provide by Alejandra Rojas [69], we can
observe in Table 12.9 the surveyed sections of Rio Grande de Afiasco.

Table 12.10 show the surveyed sections of Rio Guanajibo and
Table 12.11 presents the surveyed sections of Rio Yagiiez, the sections
conserve the original name present in Villalta [103], Prieto [61] and
Rojas [69].

Figure 12.30 presents the first upstream surveyed sections in the study
area. Figure 12.31 presents the first upstream surveyed sections in Rio
Grande de Afiasco. Figure 12.32 shows the first upstream surveyed section
in Rio Guanajibo and Figure 12.33 presents the first upstream surveyed
section in Rio Yagiiez. The others transversal sections were also included
into the hydrologic model.

12.17.4 INFILTRATION AND ROUGHNESS PARAMETERS

The infiltration is an important parameter to be able to estimate the run-
off. The runoff is caused only when the rainfall rates exceed infiltration
rates. The hydrologic model use Green-Ampt infiltration routine to model
infiltration. Other characteristic parameters in the infiltration process are
necessary: Hydraulic conductivity, wetting front, effective porosity, soil
depth, initial saturation, abstraction and impervious area, these variables
are affected by land use and soils properties. The infiltration parameter was
developed using the SSURGO maps and database from USDA [89-92],
which contains six textural soil classes in the basin area.

Figure 12.34 presents the six basic textures into the basin area, a large
amount area of clay is observed. The soils name present into the clay area
are: Alluvial land, Aguilita, Aibonito, Bajura, Consumo, Daguey, Delicias,
Humatas, Lares, Jacana, Los Guineos, Malay, Mabi, Mariana, Mariaco,
Montegrande, Mucara, Nipe and other. For the Clay Loam texture the
soil name presents are: Anones, Caguabo, Descalabrado and Morado. For
the Loam texture the soils are: Coloso, Corcega, Dique, Guainabo, Mani,
Maresua, Palmarejo, Reilly, Talante, Toa and other. Soils that correspond
to the rock texture are: Limestone, Serpentine and Volcanic rock land,
for the sand texture was found the soils: Catafio, Leveled and River wash
and the last texture is Gravel which only has one soil with the same texture
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Soil percent in the Basin Area

Rock
8%

Loam
9%

Gravel
0.02%

FIGURES 12.34 AND 12.35 Basic soils textures in the basin area (top: Figure 12.37),
and percent of each type soil texture in the basin area (bottom: Figure 12.38).

name. Figure 12.35 presents the percentage of textures into the watershed,
in which the clay encompasses most the study area with 63% of total area.
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FIGURE 12.36 Hydrologic group basin map.

A

2% Hydrologic Group in the Basin Area

FIGURE 12.37 Percentage distribution of hydrologic group basin area.

On the other hand, the minimum texture present in the basin is the gravel
with a value approximate to 0.02%.

The hydrologic group is a parameter that affects the infiltration and run-
off. The Figure 12.36 presents the basin area with the hydrologic group A,
B, C and D. The most representative groups are C and D, C with a 32% total



252 Flood Assessment: Modeling and Parameterization

area and D with a 40% total area, (Figure 12.37). These results match with
the textures presented in the Figures 12.34 and 12.35, where clay and clay
loam texture have more influence in the area. These soils are forming part
of hydrologic groups C and D, which have the minimum infiltration rate.
Other parameters such as hydraulic conductivity, wetting front and
effective porosity were assigned from literature [31, 103]. Table 12.12
presents the soils texture classification with Green-Ampt infiltration param-
eters. The hydraulic conductivity (K) may especially control the infiltra-
tion process when rainfall occurs over already saturated soil; the hydraulic
conductivity was specified for a single layer soil profile for this study area.
The wetting front is the average capillary potential of the Green-Ampt
infiltration routine, this parameter is important because it can calculate
infiltration under unsaturated conditions and its value is independent of

TABLE 12.12 Green-Ampt infiltration parameter for each texture class.

Soil texture class  Effective Wetting Depth (cm) Hydraulic
porosity front (cm) conductivity (cm/h)

Clay 0.385 31.63 300 0.03

Clay Loam 0.309 20.88 300 0.10

Gravel 0.24 1.5 300 2.27

Loam 0.43 8.89 300 0.66

Rock 0.17 1 300 0.036

Sand 0.42 4.95 300 11.78

TABLE 12.13 Manning Roughness and Impervious

Land Use Manning Roughness (n) Impervious % Area (Km?)
Agriculture 0.166 5 55.92
Agriculture /hay 0.190 4 0.12

Forest, shrub, woodland 0.191 2 529.12

and shade coffee

Other emergent wetlands ~ 0.050 1 1.24

Pasture 0.225 5 173.2
Quarries, sand and rock 0.020 95 0.56

Urban and barren 0.080 81 58.68
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FIGURE 12.38 Map showing Manning’s roughness coefficient.

soil moisture at any particular time. The effective porosity is the difference
between total porosity and residual soil moisture content, this property is
independent of soil moisture at any time, its range is between 1 and 0, with
complete porosity being a value of one, and the value zero is for the zero
porosity. The soil depth is the depth to which the infiltration can occur in
the soil. If the wetting front is obstructed by a perched water table then the
depth to the water table is the limiting depth. If the soil profile is limited by
an impermeable layer, then the depth to that layer is the limiting depth. Soil
depth can be modified through the calibration of simulations to observed
stream flow [103]. The soil depth data was obtained from USDA [89-92].
Table 12.13 shows Manning’s roughness coefficients. The Figure 12.38
shows Manning’s roughness coefficients in the study area.
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13.1 INTRODUCTION

Chapters 13—19 of this book, in detail, discusses the results of the current
research, which includes: data acquisition, nowcasting model results,
comparison between estimation data and observation data from TropiNet
radar. Hydrologic models were compared between the estimation results
and observation stations data collected by the USGS. Furthermore, a com-
parison between rain gauges, TropiNet and NEXRAD was done. Finally
the conclusions for this study are presented in Chapter 20.

"' This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using
Rainfall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department
of Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

2Numbers in brackets refer to the references at the end of this book.
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13.2 DATA ACQUISITION

Numerous storms were analyzed during 2012 and 2014 to select the suit-
able storms to be forecast. Some requirements to choose the storm were
defined: the data should be constantly available without interruptions, the
radar should have the same elevation angle for all storms, the data may
not be altered, and the radar should not stop during the storm or change
its position.

All radar data storage by the system were plotted to observe the behav-
ior and movement of the clouds. This was the first step in the selection
data, graphing the data was only possible to select the data according to the
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FIGURE 13.1 TropiNet storm sequence (from left to right and top to bottom).
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NEXRAD and Tropinet (dBz)
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FIGURE 13.2 TropiNet and NEXRAD (Super-imposed) May 06, 2014 at 17:42 PM.

features mentioned above. In the plot, the clouds should have a time series
constant with an angle of 3° for TropiNet and 0.5° for NEXRAD.

Finally, more storms were analyzed but only 10 storms were selected for
this research, out of which 5 are from 2012, and the other 5 from 2014. As
an example, Figure 13.1 shows TropiNet storm sequence. The Figure 13.2
shows a time series of cloud movement for the storm of May 06, 2014.

The TropiNet data was accessed from http://weatheruprm.edu server,
and the data was raw data in binary format. Two types of transformations
from binary to NetCDF were needed to handle data and from NetCDF to
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Mat-file format. These transformations required the development of sub-
routines in MatLab. Other transformations necessary included changing the
polar coordinates to Cartesian coordinates, and it was done to handle the data
in the hydrological model Vflo that has been discussed in Chapters 14—19.
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14.1 INTRODUCTION

A routine was implemented to compare the data among Rain Gauges,
TropiNet and NEXRAD data. The NEXRAD pixels have 1 km? area and
the TropiNet pixels have 60 meter for each side (0.0036 km? area). This
means that 256 TropiNet pixels is equivalent in size to one NEXRAD
pixel. In other words, within one NEXRAD pixel there are 256 TropiNet
pixels. Two comparison types were done: the first was pixel to pixel, and
the second was average TropiNet pixels (256) with one NEXRAD pixel.

"'This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using
Rainfall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department of
Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

*Numbers in brackets refer to the references at the end of this book.
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14.2 COMPARISON AMONG RAIN GAUGES, TROPINET
AND NEXRAD

The Figure 14.2 in Chapter 13 shows comparison and superimposed data
for TropiNet and NEXRAD, for May 06, 2014 — 17:42. UPR rain gauge
network is shown in Figure 14.1.

When the graphical comparison was done, the next step was to compare
the rain-rate data pixels and rain gauges. Figure 14.2 (Left) presents one
of many comparisons between Rain Gauge, NEXRAD and TropiNet with
the original resolution at rain gauge station designate as C1 with latitude
18.2094° and longitude 67.1401°, date: May 21, 2014. The Figure 14.2
(right) also shows the comparison between NEXRAD and TropiNet at

FIGURE 14.1 UPRM Rain Gauge Network.

Comparison Rain Gauges and Radars: 20140521 Comparison Rain Gauges and Radars: 20140521

180+~
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FIGURE 14.2 Left: Comparison Rain Gauge-NEXRAD and TropiNet at station C1 on,
May 21, 2014 (Heavy Rain); Right: Comparison Rain Gauge-NEXRAD and TropiNet
Average at station C1, on May 21, 2014 (Heavy Rain).
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station C1, event May 21 of 2014, for the average pixels (256) in TropiNet,
which was changed to match the resolution with NEXRAD.

As shown in Figure 14.2—-14.6, the RMS increases under heavy rain
conditions. Yet in all cases (light, moderate and heavy rain), TropiNet
consistently yields the smallest error as compared to NEXRAD.

Table 14.1 includes the statistical results, where MSE is the Mean
Squared Errors between Rain gauge-TropiNet and Rain gauges-NEXRAD;
and RMSE is the root means squared errors. The error is greater for the
comparison between rain gauge and NEXRAD data. Likewise, the best

Comparison Rain Gauges and Radars: 20140506
25

T T
Rain Gauge

— TropiNet

— NEXRAD

20

o

rain rate (mm/hr)

=)

L

0
11 12 13 14 15 16 17 18 19 20

FIGURE 14.3 Comparison between Rain Gauge-NEXRAD and TropiNet at station C1, on
May 06, 2014 (Moderate Rain) with original resolutions data for TropiNet and NEXRAD.

Comparison Rain Gauges and Radars: 20140506
25

Rain Gauge
TropiNet
— NEXRAD

20

rain rate (mm/hr)

Lo

1 12 13 14 15 16 17 18 19 20
time (hour AST)

FIGURE 14.4 Comparison between Rain Gauge-NEXRAD and TropiNet Average at station
C1, on May 06, 2014 (Moderate Rain) with Tropinet data degraded to match NEXRAD’s
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Comparison Rain Gauges and Radars: 20140212
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FIGURE 14.5 Comparison between rain gauge, NEXRAD and TropiNet at station Cl1,
on February 12, 2014 (Light Rain). Values between TropiNet and rain gauge are very

similar showing good agreement.
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FIGURE 14.6 Comparison between rain gauge, NEXRAD and TropiNet Average at station

C1, on February 12, 2014 (Light Rain). The pixel resolution for TropiNet was downgraded in
order to match NEXRAD resolution. This produces larger disagreement with rain gauge data.
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TABLE 14.1 Statistical Results at Station C1, on May 21, 2014

Radar-rain gauge MSE (mm/h)? RMSE (mm/h)
TropiNet 344.2848 18.5549
Average TropiNet (256 pixels) 393.8165 19.8448
NEXRAD 577.1688 24.0243

result was observed between rain gauge and TropiNet data radar, when it
has the original resolution (60 meters). The statistical calculations were
done using following equations:

e, =R -T, (1)
ey = R —N, ()
SSE, = e, 3)

i=1
SSE, = ey, (4)

MSE, = (5)
n

MSE,, = 2. (6)
n

(7

@®)
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In Egs. (1)~(8): e,, and e, , are the errors between Rain gauge-TropiNet
and Rain gauge-NEXRAD réspectively, R, is the Rain gauge data, T is the
TropiNet data and N, is NEXRAD data, SSE is the sum-squared errors, the
subscript 7 refers to TropiNet and subscript refers to NEXRAD, MSE is
the mean square errors in TropiNet (7) and NEXRAD (N), and RMSE is
the root mean squared errors.

Figures 14.3 and 14.4 show the comparison at the station C1 but for
May 06, 2014. In Figure 14.3, TropiNet with the original resolution (60 x
60 m?) presents a rain rate data with more appropriate values at C1 stations,
considering rain gauge observations as the true values. This is possible
due to proximity of TropiNet to the land surface and its high-resolution
data. Using the simplest interpolation method, the TropiNet resolution
was downgraded to the NEXRAD resolution (1 x 1 km?) (Figure 14.4).
When it was compared with the other equipments, the rain rate value from
TropiNet was more approximate to the NEXRAD rain rate value at the
Cl1 station, but in more disagreement with the rain gauges. Possibly, it was
due to the loss resolution.

The data tendency is very similar between TropiNet and rain gauge and
NEXRAD, but NEXRAD presents significant subestimation. The statisti-
cal analysis showed that the errors were maximum when NEXRAD data
was used (Table 14.2).

Other comparisons were done on February 12, 2014 at the same
pixel C1. Figures 14.6 and 14.7 present precipitation distribution for rain
gauge-NEXRAD-TropiNet and rain gauge-NEXRAD-TropiNet average,
respectively. When the TropiNet’s resolution is downgraded to match
NEXRAD pixel resolution, it shows less agreement with the rain gauge
values.

For this event, the tendency between TropiNet and rain gauges is the
same but different to NEXRAD. The trend of TropiNet continues to be

TABLE 14.2 Statistical Results at Station C1, on May 06, 2014

Radar-rain gauge MSE (mm/hr)? RMSE (mm/hr)
TropiNet 4.1778 2.0439
Average TropiNet (256 pixels) 6.0680 2.4633

NEXRAD 10.8604 3.2955
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FIGURE 14.7 Cloud motion, forecast and observed: Top — March 28, 2012-17:10;
bottom — on March 28, 2012-18:00.

TABLE 14.3 Statistical Results at Station C1, on February 12, 2014

Radar-rain gauge MSE (mm/hr)? RMSE (mm/hr)
TropiNet 0.0373 0.1931
Average TropiNet (256 pixels) 0.0428 0.2070
NEXRAD 7.0266 2.6507

more similar to rain gauges data, specifically when this radar uses its

original resolutions, as shown in Table 14.3.

Other comparisons were done with different dates between 2012 and
2014. Unfortunately, 20 rain gauges were used, but only few captured
good data. In most cases, rain gauges alterations to the equipment were
found due to the natural or human factors.
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15.1 INTRODUCTION

In this chapter, author discusses the results of a research study on nowcast-
ing model movement and reflectivity analysis.

There are many methods for forecasting with longer lead-time of §, 24,
and 36 h or weekly, using autoregressive methods, moving averages and
others. However, the current study is a special kind of Nowcasting method
for shorter lead-time in minutes. In the western Puerto Rico, sudden

"'This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using
Rainfall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department of
Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

*Numbers in brackets refer to the references at the end of this book.
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precipitations occur with short durations due to atmospheric conditions
and topographic features at a given location. Precipitation events may
develop, occur and dissipate immediately, with its duration of about 1, 2
or 3 h.

Knowing the precipitation characteristics, the nowcasting model
developed in the current research only needs two lag times for prediction.
This means that the model has the capacity to forecast the rainfall even
if the duration is very short. The developed model is presenting the best
prediction when the lead-time is 10 min. The postulated rainfall nowcast-
ing algorithm involves two major tasks: (a) predicting the future location
of the rain pixels, and (b) predicting rainfall at each pixel.

15.2 NOWCASTING MODEL MOVEMENT AND REFLECTIVITY
ANALYSIS

Figure 7.7 (top) in Chapter 7 shows the cloud motion comparison between
observed (right) movement and estimated (left) movement at storm date
March 28,2012, 17:10 h. The black point is the centroid at initial time and
the red point is the centroid at the final time. In some cases there is more
than one cloud centroid, and therefore there is more than one black and
red point in this Figure. This happens when the division cloud method has
detected more than one cloud system within the area. Figure 7.7 (bottom)
presents the separation cloud with two centroids at cloud forecast, storm
date March 28, 2012 18:00 h.

In this chapter, Figure 15.1 presents the sequence of event during 40 min
considering each ten min of cloud motion within a total duration event of 7 h
where ¢ = 16:50 h, on March 28, 2012. Figure 15.2 has the same sequence
with a lead-time of 20 min where 7 = 17:10 hr. In this case the sequence of
event during 80 min was considered. Figure 15.3 shows 120 min of the
event, the sequence for a lead-time of 30 min where 7 = 17:30 hr. Other
storms were processed in the same way. The figures and results are in the
office “Red de Radares del Tiempo” University of Puerto Rico at Mayagiiez.

The comparison of estimated or predicting reflectivity using the main
Eq. (5) and observer reflectivity at each pixel were furthermore performed.
Figure 15.4 shows the comparison with a lead-time of 10 min where
t =16:50 hr.
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RE 15.1 Cloud motion sequence with a lead-time of 10 min, # = 16:50 hr,
on March 28, 2012.
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FIGURE 15.2 Cloud motion sequence with a lead-time of 20 min, ¢ = 17:10 hr,
on March 28, 2012.
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FIGURE 15.3 Cloud motion sequence with a lead-time of 30 min, ¢ = 17:30 hr,
on March 28, 2012.
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FIGURE 15.4 Reflectivity sequence with a lead-time of 10 min, £ = 16:50 hr on
March 28, 2012.
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FIGURE 15.5 Reflectivity sequence with a lead-time of 20 min, £ = 17:10 hr on
March 28, 2012.
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FIGURE 15.6 Reflectivity sequence with a lead-time of 30 min, ¢ =

March 28, 2012.
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Figure 15.5 presents a comparison between estimated and observed
data but with a lead-time of 20 min of the event where 7 = 17:10 hr. Finally,
Figure 15.6 is with a 30 min lead-time where 7 = 17:30 hr.

For all events, the best results were presented with a prediction of
10 min (Figure 15.4). Western Puerto Rico area geographical position
makes it susceptible to sudden rainfalls that are changing rapidly in time
and space. Due to this change, a lead-time of 10 min is the time predic-
tion more adequate to this precipitation class. A larger lead-time results in
greater statistical errors. Contrarily using a lead-time smaller than 10 min,
the purpose of flood alert system will be annulled by the absence of time
to evacuation.

It is important to mention that the algorithm to forecast precipitation
uses a sequence of the observed rainfall data to estimate the movement
direction and size of the cloud or cell. And then using the main Eq. (5) in
Chapter 12, rainfall is estimated in each pixel within every zone. Thereby,
the suggested regression model was developed under the following
assumption. It is expected that in a short time (10 min) period a rain cloud
behaves approximately as a rigid object and the cloud rain pixels moves in
a constant speed and direction. Thus, the most likely future rainfall areas
can be estimated by using the advection of the centroids of the rain cells in
consecutive images. The current estimation reflectivity is a function of the
previous reflectivity images observed. Rainfall nowcasting algorithm task
is predicting rainfall rate at each pixel.
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16.1 INTRODUCTION

This methodology was applied to estimate four unknown parameters (31, 62,
03, and @) so as to:

* Find the optimum values with a bounded constraint: first linearized
the main equation;

¢ Identify the initial point trough a nonlinear regression model where
the phi @ is temporarily ignored, and the deltas values initial are
obtained by solving the linear regression; and

"'This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using
Rainfall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department
of Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

2Numbers in brackets refer to the references at the end of this book.
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* Find the optimum values using a constrained nonlinear optimization
technique to estimate the final parameter set for each zone (9 X 9)
and every window where the phi ® parameter is a bias correction
factor introduced in the optimization.

16.2 ESTIMATION OF PARAMETERS

The optimum parameters for the nonlinear regression model were esti-
mated by solving a constrained nonlinear optimization problem (finincon),
as shown in Table 16.1.

The derived initial point was ingested into the constrained nonlinear
subroutine to facilitate convergence, the delta parameters were restricted
to be positives and phi parameter was restricted to be in the range of 0 to
1.1 values. For purposes of demonstration, Table 16.1 presents the initial
point and final point of the estimated parameters (61, 62, 83, and @) for a
random zone (9 x 9) that occurred on March 28, 2012.

Figure 16.1 shows the distribution of initial and optimal values of phi
(®) with a lead-time of 10 min. For the comparison between the parameters,
initial deltas and optimal deltas were used as a statistic test (T-statistics) to
determine whether or not the optimization causes a change in mean values.
If the optimum mean values are significantly different from the original
mean values, it is possible to conclude that the treatment has a significant
effect. Figure 16.2 presents the median phi coefficient for the initial value
and optimal value.

TABLE 16.1 Parameter Estimation for a Random Zone (9 x 9), on March 28, 2012 for a
Lead-Time of 10 min

Parameter Initial point (Linear Regression) Nonlinear regression
Estimation T-statistics Final Estimation
- 0.03546 0.65098 0.00507
ok 0.06596 2.89453 0.47448
. —2.47237 -1.01741 0.00012
0, 2.18039 - 0.81903

RMSE, 29.51233 - 2.01960
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FIGURE 16.5 Distribution of initial value of phi (left) and the optimal values of phi
(right) for the storm date: March 28, 2012, for a lead-time of 30 min.
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Figure 16.3 presents the distribution of initial variable phi (®) and the
optimal value for a lead-time of 20 min and Figure 16.4 is the median of
the value phi for lead-time 20 min. Figure 16.5 presents the distribution
of initial variable phi (@) and the optimal value for a lead-time of 30 min.
And Figure 16.6 is the median of the value phi for lead-time 30 min. The
analysis was made for all storms (10) and similar results were obtained.
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17.1  INTRODUCTION

An analysis for the nowcasting requires a combination of meteorologi-
cal and hydrological statistics, as this permits a better understanding of
behavior of the spatial and temporal accuracy of storm prediction. A good

'This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using Rain-
fall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department of Civil
Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

2 Numbers in brackets refer to the references at the end of this book.
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nowcasting include accuracy of the spatial, as well as in the temporal level
and accuracy of the predicted rainfall intensity. Model performance cri-
teria for the prediction required quantitative comparison measures, these
measures include ten storms mentioned before in Table 12.6 in Chapter 12.

17.2 NOWCASTING MODEL VALIDATION

The accuracy of rainfall prediction of each pixel can be measured by
decomposing the rainfall process into sequences of discrete and continu-
ous random variables, i.e., the presence or absence of rainfall events and
rainfall intensity. Examples of quantitative parameters used in the current
research include: Contingency table, Mean square Error (MSE), Root
Mean Square Error (RMSE), Bias Ratio (BR) and Mean Absolute Error
(MAE). These parameters will be discussed in detail below.

The joint distribution of the forecast and observations has fundamental
interest with respect to the verification of forecasts. In the most practical
setting, both the forecast and observations are discrete variables. Even if
the forecasts and observations are not already discrete quantities. Denote
the forecast by y, which can take on any of the possible / values (v, y,,
Vy---»¥,); and the corresponding observations as O, which can take on any
of the possible J values (O,, O,, O,,..., O)). Then the joint distribution of
the forecast and observation is denoted as:

p(3.0,)=Pr{y,.0,} =Pr{y,~O }:i=L..Lj=1..0 (1)

This is a discrete bivariate probability distribution function, associat-
ing a probability with each of the / X J possible combinations of forecast
and observation [104]. The contingency table (Figure 17.1) / x J shows
the arrangement of four possible combinations of forecast/event pairs for
a simple / =J = 2 case.

17.3 ATTRIBUTES RELATED WITH THE CONTINGENCY TABLE

Hit rate (HR) is the ratio of correct forecasts to the number of times this
event can occur, as shown in the following equation:
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Observed
Yes No
+ Yes a b a+b
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a+c b+d | p=atb+ctd

- E A

Sample size

Marginal totals
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FIGURE 17.1 Contingency table based on Wilks [104].

HR:&
(a+b+c+d)

2

The probability of detection (POD) as the fraction of those occasions
when the forecast event occurred on which it was furthermore forecasted,
in this case it is the probability that rain occur.

a

POD = 3)

a+c

The False Alarm Ratio (FAR) is the relation of the forecast events that
fail to materialize: the best possible FAR is zero and the worst possible
FAR is one.

FAR=—— “
Bias = (ath) ®)
(a+0¢)

The Bias (Bias) is the ratio of the number of yes forecasts to the num-
ber of yes observed. Unbiased forecast exhibit Bias = 1, indicating that
the event forecasted the same number of times that it was observed [104].
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Table 17.1 shows the contingency table for the storm of March 28,
2012 with a lead-time of 10 min, 20 min and 30 min. Table 17.2 shows
the contingency table for the storm of March 29, 2012 with a lead-time of
10 min, 20 min and 30 min.

Table 17.3 shows the contingency table for the storm of April 30, 2012
with a lead-time of 10 min, 20 min and 30 min. Table 17.4 shows the
contingency table for the storm of October 10, 2012 with a lead-time of
10 min, 20 min and 30 min. Table 17.5 shows the contingency table for
the storm of February 12, 2014 with a lead-time of 10 min, 20 min and
30 min. Table 17.6 shows the contingency table for the storm of May 06,
2014 with a lead-time of 10 min, 20 min and 30 min. Table 17.7 shows
the contingency table for the storm of May 21, 2014 with a lead-time of
10 min, 20 min and 30 min.

Table 17.8 shows the contingency table for the storm of June 29, 2014
with a lead-time of 10 min, 20 min and 30 min. Table 17.9 shows the con-
tingency table for the storm of June 30, 2014 with a lead-time of 10 min,
20 min and 30 min. Table 17.10 shows the contingency table for the storm
of July 05, 2014 with a lead-time of 10 min, 20 min and 30 min. Finally,
Table 17.11 shows the average the contingency table associated with the
ten studied storms.

The performance index is introduced in this research to measure the
overall dichotomous (rain/no rain) forecast accuracy of the model, and is
computed as a function of HR, FAR and POD. The performance index var-
ies from zero to one, and a value of one correspond to the best algorithm
performance; whereas, zero corresponds to the worst case. The perfor-
mance index (P/) is defined as follows:

PI:l—FAR_POf_HR+2 6)

Table 17.12—17.14 present model performance score: HR, POD, FAR,
Detection Bias (DB) and PI for the ten storms with 10 min, 20 min and
30 min of lead-time. And finally Table 17.15 shows the average of detec-
tion results for all storms to the model or the performance score of all
storms.
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TABLE 17.15 Detections Results: Model Accuracy Score Considering All Events
as a Single Group

Forecast
Skill Score 10 min 20 min 30 min
HR 0.90011 0.86536 0.84961
POD 0.61797 0.50160 0.41961
FAR 0.27597 0.38367 0.46176
Bias 0.85352 0.81386 0.77959
PI 0.74737 0.66110 0.60248

17.4 HIT RATE

For lead-times of 10, 20 and 30 min, the storms provide an average hit rate
(HR) 0f 0.90, 0.86 and 0.84, respectively. The hit rate score is the fraction
of observed events that is forecast correctly. It ranges from zero (0) at the
poor end to one (1) at the good end. The probability of detection (POD)
of storms varies from 0.61, 0.50 and 0.41. While the false alarm rates
(FAR) is 0.27, 0.38 and 0.46 for lead-time of 10, 20 and 30 min, respec-
tively. Figure 17.2 shows POD values and FAR values for the complete

POD and FAR
0.7
0.6
0.5
04
0.3
0.2
0.1
0
10 minutes 20 minutes 30 minutes
HPOD MWFAR

FIGURE 17.2 Probability of detection and false alarm for the all storms.
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set of storms. In the ideal situation POD should approach to one (1), while
the FAR results should approach to zero (0). The performance index was
0.74, 0.66 and 0.60 for 10 min, 20 min and 30 min, respectively for the
model, (Figure 17.3).

Similarly, the Hit Rate (HR) of the model for the all storms was 0.90,
0.86 and 0.84 for the 10, 20 and 30 min, respectively (Figure 17.4). Other
strategy for validations was made: In this case the validation is for the
quantity of rainfall estimation, by comparing each pixel predicted of rain-
fall intensity at a given time and a given specific lead-time with the cor-
responding observed rainfall intensity.

Performance Index (PI)

0.8
0.7

0.6
0.5
0.4
0.3
0.2
0.1

0

10 minutes 20 minutes 30 minutes

FIGURE 17.3 Performance Index for the all storms.

Hit Rate

0.8
0.6
0.4
0.2

10 minutes 20 minutes 30 minutes

FIGURE 17.4 Hit rate for the all storms.
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17.4.1 ROOT MEAN SQUARE ERROR (RMSE) AND BIAS RATIO

These results were analyzed using the Root Mean Square Error (RMSE)
and Bias Ratio (BR), as a mean for the estimation quantity. The calculation
of these scores is given as follows:

N N,
RMSE1+1 = \/2i=12j=1[yt+/ (l’]) Vi (Z’J):I

, for1=10,20,30 (7)

nxm
" RMSE,,,
RMSE, === forl=10,20,30 (8)
I Piis )
BR,, = z’njzgn‘ I for1=10,20,30 9)
Zi:lzl/':ly’”(l’J)
gy ZN BRr+l
BRy = S for1=10,20,30 (10)

where, )A/H,(i, Jj) is the predicted rainfall intensity made at time ¢ with
lead-time / units for a pixel located at (i,j), and y , (i,j) is the correspond-
ing observed rainfall intensity, N is the total number of units of time that
rainfall was observed, n* is the total number of rows and m is total number
of columns of rainfall area.

The RMSE and BR for each event with a lead-time of 10, 20 and 30 min
are given in Tables 17.16—17.18.

The Root mean square error (RMSE) and Bias ratio (BR) measure the
accurate of the simulation for all ten studied events are given in Table 17.19,
which furthermore shows the corresponding average values for each lead-
time 10, 20 and 30 min, respectively. The RMSE average values are 0.026,
0.077 and 0.144 mm and the Bias average values are 0.97, 0.98 and 1.04
for lead-times of 10, 20 and 30 min, respectively.

The estimation Bias ratio for a lead-time of 30 min presents an aver-
age over estimation prediction, while the estimation Bias ratio for a lead-
time of 10 min and 20 min shows sub estimation. The Bias ratio for the
three lead-times is near to one; this means that they are good estimates [60].



297

Flood Alert System Using High-Resolution Radar

LO008'T  LES86'0  SEILET  TPLER'0  PET8L'O0  6LIY80  TLIS8O  CTSIOI'T  €PEL6'0  [06C8°0 Selg uonewnsy
LYEOT'0  vrp91°0  88YSI'0  €CSIT'0  SO8Y0'0  0OSCTSI'O0  €vp9€0  60€v0°0  8LYPEO'D  €S90T0 (wuur) FSIAA
SOLOVIOT 0€90V10T 6T90FI0T ITSOVIOT 90SOYI0T TITOVIOC OIOITIOT 0€Y0TIOC 67€0CI0T 8TEOTIOT JusAY

ISBII0]

UL (€ SWN-PEI -S)NSIY UOHEWHST

UIW ()¢ JO SWIL-PLa] & YIIA S}Nsay uonewnsy gL /L 319VL

POSITT  0S666°0  LvEYO'l  S9006°0  9LSTB0  €OLI60  vEPT6'0  6VLIT'T  6S8L6°0  TI116°0 Sselqg uonewnsy
I18901°0  ¥¥CLO'0  OVIOI'0O  8S6S0°0  968C0°0 600900  S6SFI'0  66TE00  SYICO0  PEBET0 () FSINA
SOLOVIOT 0€90VI0T 6T90FI0T ITSOVIOT 90SOYIOT TITOVIOC OIOITIOT 0€V0TIOT 6T€0CI0T 8TEOTIOT ELERYC |

1SBIAA0

UL (7 SW)-PEdY ~S)NSAY UONEWSH

I (Z JO QWL -PeaT © YiA SYnsay uonewnsy  £1°ZL I14VL

8C8YO' T €LY06'0  LITOI'T  €CIT6'0  S9168°0 859960  €C0S6'0  8ILTO'T  SLTL6'0  9¥SH6'0 seld uonewnsy
§C6C0°0  0TCE00  191€0°0 668100  L8CTIOO  SLSTO'0  SOLSO'O  66L000  ¥I0I0O0  I¥IV00 () FSIAA
SOLOYIOT 0€90V10T 6T90FI0C ITSOVIOT 90SOYI0T TITOVIOC OIOITIOT 0€Y0TIOC 67€0CI0T 8TEOTIOT JUIAH

JSeI2.10

UL (] SWN-ped -S)[NSIY UoREWHST

UIW (] JO SWIL-PRaT B YiLm SHNSY uonewnsg  91°Z1L 319VL



298 Flood Assessment: Modeling and Parameterization

TABLE 17.19 Average Root Mean Square Error and Bias Rate for 10 Events

Estimation Results

Forecast Errors Average

Lead-time 10 min 20 min 30 min
RMSE (mm) 0.02673 0.07776 0.14474
Estimation Bias Ratio 0.97293 0.98336 1.04690

The RMSE average in 10 min lead-time presents the best result compared
with the other lead-time of 20 min and 30 min. The RMSE is increasing due
to the fact that large errors are occurring because the lead-time is increasing.

17.5 ACCUMULATION OF RAINFALL

Figure 17.5 shows the accumulation of rainfall for the first five events
with a lead-time of 10 min, and Figure 17.6 presents the last five events.
This accumulation is for every pixel and total duration. The storm duration
is different for each date. The left panel shows the accumulated predicted
rainfall in millimeters for 10 min of lead-time and the right panel shows
TropiNet observed accumulated rainfall with a lead- time of 10 min.

Figures 17.7 and 17.8 show the average rainfall for all rain pixels dur-
ing each time interval (10 min) for the events. In these figures, it is possible
to observe a time shift due to cloud velocity movement. In this methodol-
ogy the velocity was assumed as constant for each event. Corfidi et al. [11]
determined that velocity in the convective systems required two compo-
nents: the cell velocity of the system and the propagation velocity due to
occurrence, development and merger of the convective cell. The most dif-
ficult task is determined the propagation velocity [11]. The time shift defi-
ciency due the absence of atmospherics factors to evaluate the propagation
velocity, could be fixed with mean time shift estimation for all storms
depending of their lead-time.

The forecast results present the same tendency of the observed data
where the peaks with more precipitation in TropiNet events are coinciding
with the forecasted data. They are in good agreement considering that the
prediction is in short time and space.
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FIGURE 17.5 Rainfall accumulated during the each event, the first 5 events. The left
column is the forecasted cumulated rainfall and the right column is the observed cumulated
rainfall.
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FIGURE 17.6 Rainfall accumulated during the each event, the last 5 events. The left
column is the forecasted cumulated rainfall and the right column is the observed cumulated

rainfall.
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Rainfall Time Series, March 28, 2012 Rainfall Time Series, March 29, 2012
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FIGURE 17.7 The average rainfall for all rain pixels in each time interval with lead-time
of 10 min during the first 5 events. The blue line represents the observed data (TropiNet)
and the green line represents the forecasted data accumulated precipitation for all rain pixel
along the total storm event.

Figure 17.9 present for the first five events, left panel is the accumulated
average rainfall for all rain pixels during the total event. It was calculated
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Rainfall Time Series, May 06, 2014 Rainfall Time Series, May 21, 2014
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FIGURE 17.8 The average rainfall for all rain pixels in each time interval with lead-time
of 10 min during the last 5 events. The blue line represents the observed data (TropiNet)
and the green line represents the forecasted data accumulated precipitation for all rain pixel
along the total storm event.

taking the rainfall total during the storm and the precipitation total area.
The right panel is the scatter plot at the same rainfall event. Similarly,
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Figure 17.10 shows the results for last five events. These figures show that
model exhibits a small underestimation in all events. But it is possible to
perceive in general that the forecast is highly similar to the observed data.
They have the same tendency in the time series during all events.
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Cumulated Rainfall, October 10,2012 Rainfall Scatter Plot, October 10,2012
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FIGURE 17.9 Left panel shows the accumulated precipitation average for all rain pixels
during the all rainfall events. The blue line represents the observed precipitation and the
green line the forecast. The right panel shows the corresponding scatter plot of the same
rainfall event (first 5 events).
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Cumulated Rainfall, May 21, 2014 Rainfall Scatter Plot, May 21, 2014
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Cumulated Rainfall, July 05, 2014 Rainfall Scatter Plot, July 05, 2014
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FIGURE 17.10 Left panel shows the accumulated precipitation average for all rain
pixels during the total events. The blue line represents the observed precipitation and the
green line the forecast. The right panel shows the corresponding scatter plot of the same
rainfall event (last 5 events).

17.6 SUMMARY

The rainfall nowcasting algorithm uses consecutives images of weather
radar to forecast rainfall rate. The algorithm searches for contiguous rain
pixels and identifies rain cells in the last two radar images to estimate the
cloud motion vector. The cloud motion vector is then used to estimate
the most likely future locations of the rain pixels, and finally, nonlinear
regression models are developed to forecast the intensity of rainfall rate at
each rain pixel. The new rainfall nowcasting algorithm was validated with
ten storms and results show that the nowcasting algorithm is a potential
tool to couple with a hydrological numerical model to predict the most
likely inundation areas.
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18.1 INTRODUCTION

The hydrological model Vflo required the ensemble of various layers that
perform the physical and topographic characteristics of the basin area. These
layers are formed by parameters that were previously presented as: effective
porosity, hydraulic conductivity, wetting front, roughness, soil depth, and
initial saturation which can be most sensitive in the watershed. Spatially
distributed parameter and input from radar rainfall requires new methods
for adjustment in order to minimize differences between simulated and
observed hydrographs. The hydraulic roughness (#), hydraulic conductivity

!'This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using Rain-
fall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department of Civil
Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus™.

2 Numbers in brackets refer to the references at the end of this book.
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(K) and initial saturation (0) are the most sensitive parameters of the hydro-
logical model. These values are estimated from physical properties of the
watershed adjusted to reproduce system behavior [100]. The hydraulic con-
ductivity controls the total amount of water that will be split into the surface
runoff. The hydraulic roughness affects the peak flow and the time to peak
and initial saturation is related with the existing humidity into the soil.

18.2 VALIDATION OF HYDROLOGIC MODEL Vflo

Scalars are multiplied by these parameter maps to adjust the value in
each grid cell while preserving the spatial heterogeneity. The sequence of
adjustment was recommended by Vieux and Moreda [100] to minimize
the objective function for volume, and then peak flow, obtaining an over-
all optimal parameter set for the storms. The OPPA procedure for adjust-
ment can be stated as: increasing the volume of the hydrograph is achieved
by decreasing hydraulic conductivity, and similar, increasing peak flow
is achieved by decreasing hydraulic roughness. Several adjustments were
made when it was necessary to produce consistent results at the USGS sta-
tions compared with every storm.

The reference hydrographs were developed from point observations or
observed data of USGS stations numbers: #50144000 at Rio Grande de
Anasco (San Sebastian), #50136400 at Rio Rosario (Hormigueros) and
#50138000 at Rio Guanajibo (Hormigueros) (U.S Geological Survey —
Current Water Data for Puerto Rico [93]) and compared with results from
the hydrological model.

The ground surface optimum resolution in the model was 200 meters.
This was based on the previous studies by Prieto [61] and Rojas [69].

The watershed parameters were adjusted upstream of the observed
point (USGS flow stations) by the adjustment method described by Vieux
and Moreda [100]. They employ a scalar to adjust parameter maps so that
the proposal scalar magnitudes change while the spatial variation is pre-
served. The scalar used to multiply the n, K and 6 parameter maps area is
defined as follows [29]:

N, :%(2+3i) (M

ii=0.1.2.3.4
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N, is the adjustment factor, where the #, K and 6 values can be pertur-
bated from 25% to 175%. Study model sensitivity was done for the water-
shed to identify response sensitivity for peak flow to each storm changing
the multiplicative factor in the parameters. The events evaluated were the
same 10 events presented in Table 18.6. A list of parameter ensembles is
created for each storm in every station (Figure 18.1). A total of 450 simula-
tions were done for this analysis.

Figures 18.2—18.4 present spider plots of rate of change for peak flow
using five different adjustment factors in the roughness parameter. The
three USGS stations were taken to perform this analysis if the given station
recorded the corresponding event. It is possible to observe that when the
roughness factor decreases, the rate of change increases and show a higher
change. When the adjustment factor is >1, the range of change in peak
flow falls and tends to remain constant or with a minimum change in the
peak flow, just below the referenced value.

Similarly, results for effect of the hydraulic conductivity are presented
in Figure 18.5. Here the maximum rate of change takes to place for the
minimum values of hydraulic conductivity. These results are consistent
with statements presented in Gourley and Vieux [29].

Nowcasting
Rainfall
1 |
San Sebastian Guanajibo Rosario
(USGS) (USGS) (USGS)

10 10 10
Events Events Events
e -] &) Led 2] tg] Ul
N= Ne= Ni= M= M= N= N= M= N=
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25
0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62 0.62
1.0 1.0 1.0 1.0 1.0 1.0 10 1.0 1.0
137 1.37 1.37 1 137 1.37 137 1.37 Tt
175 7] A7 Iy .78 .78 A 175 175

FIGURE 18.1 Flow chart of the calibration factor panel for peak flow.
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FIGURE 18.2  Spider plot for rate of change of peak flow changing the adjustment factor
in the roughness parameter. Dates of rainfall events are shown in the legend.
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FIGURE 18.3 Spider plot for peak flow changing the adjustment factor in the hydraulic
conductivity parameter. Dates of rainfall events are shown in the legend.
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FIGURE 18.5 The left panel is runoff observed data (USGS) blue line and simulated
data (Nowcasting) red line at San Sebastian station on March 28, 2012. The right panel is
a scatter plot of USGS vs. Nowcasting.

Figure 18.6 shows the results of the sensitivity analysis for the initial
saturation. In this case one can observe that for adjustment factor <one,
the peak flow presents few changes or continues constant. When the factor
adjustment in the initial saturation is 1.37, the peak flow increases exces-
sively and becomes independent of the initial saturation for higher values.
The hydrological model with the current characteristics is most sensitive
to initial saturation parameters. It may be due to the more presence of clay
in the watershed. The clay is included in the soil group D. This group has
soils with high potential runoff and very low infiltration capacity, when
they are saturated.

The analysis suggests that the initial saturation is the parameter with
the highest sensitivity in the peak flow for different storms with short dura-
tion. Initial saturation is a parameter that depends of how many storms
have occurred previously to the studied storm (antecedent soil moisture).
Different results are possible to obtain with a sample of continuous storms.

Similar results were found in peak flow with variations of roughness
and hydraulic conductivity for all events. Low variations were found in
peak flow when the adjustment factor takes values greater than one.

A compilation of individual simulations is determined based on com-
parison with the observed stream flow data from (U.S. Geological Survey-
Current Water Data for Puerto Rico [93]). The hydrologic evaluation
consists of making multiples runs, setting the sensitive parameters in each
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San Sebastian Station-March 29,2012 Scatter Plot- San Sebastian Station-March 29,2012
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FIGURE 18.6 The left panel is runoff observed data (USGS) blue line and simulated
data (Nowcasting) red line at San Sebastian station on March 29, 2012. The right panel is
a scatter plot of USGS vs. Nowcasting.

event, yielding the best simulation between observed data from USGS and
estimated data from the nowcasting model. The matching of both peaks
in every storm was successfully accomplished with flow values.

The separation base flow method used in the USGS stations was the
straight line method. It is achieved by joining with a straight line the begin-
ning of the surface runoff to a point on the recession limb representing the
end of the direct runoff. Comparison results indicate that the nowcasting
model is capable of estimating hydrographs at distributed positions within
a watershed based on knowledge of hydrographs at USGS stations. The
hydrograph shape is observed with high accuracy, with rising and falling
limbs, and hydrograph peaks timed well. Small adjustment between 0.8
and 1.20 were present in the calibration factor. Figure 18.7 presents the
hydrograph (left panel) of observed data from the San Sebastian USGS
station compared with the simulated results using the nowcasting approach
in the hydrological model Vflo.

Figures 18.6—18.16 show that the USGS hydrograph at San Sebastian
station compared well with the nowcasting hydrograph for the events
recorded. The right panel shows a scatter plot of the relation USGS vs.
nowcasting results, for different events.

The Mean Square Error (MSE) and Root Mean Square Error (RMSE)
analyzes were performed in order to directly determine the effective-
ness of the connection between the hydrological model and the rainfall
nowcasting model for various events and durations. Results for the MSE
showed varying degrees of both overestimation and underestimation for
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San Sebastian Station-October 10,2012 Scatter Plot- San Sebastian Station-October 10,2012
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FIGURE 18.7 The left panel is runoff observed data (USGS) blue line and simulated data
(Nowecasting) red line at San Sebastian station on October 10, 2012. The right panel is a
scatter plot of USGS vs. Nowcasting.
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FIGURE 18.8 The left panel is runoff observed data (USGS) blue line and simulated data
(Nowcasting) red line at San Sebastian station on May 06, 2014. The right panel is a scatter
plot of USGS vs. Nowcasting.
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FIGURE 18.9 The left panel is runoff observed data (USGS) blue line and simulated data
(Nowecasting) red line at San Sebastian station on May 21, 2014. The right panel is a scatter
plot of USGS vs. Nowcasting.
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San Sebastian Station-June 29 2014 Scatter Plot- San Sebastian Station-June 23,2014
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FIGURE 18.10 The left panel is runoff observed data (USGS) blue line and simulated
data (Nowcasting) red line at San Sebastian station on June 29, 2014. The right panel is a
scatter plot of USGS vs. Nowcasting.
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FIGURE 18.11 The left panel is runoff observed data (USGS) blue line and simulated
data (Nowecasting) red line at San Sebastian station on June 30, 2014. The right panel is a
scatter plot of USGS vs. Nowcasting.
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FIGURE 18.12 The left panel is runoff observed data (USGS) blue line and simulated
data (Nowecasting) red line at San Sebastian station on July 05, 2014. The right panel is a
scatter plot of USGS vs. Nowcasting.
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Guanajibo Station-October 10,2012
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FIGURE 18.13 The left panel is runoff observed data (USGS) blue line and simulated
data (Nowcasting) red line at Guanajibo station on October 10, 2012. The right panel is a
scatter plot of USGS vs. Nowcasting.

Guanajibo Station-July 05,2014

——us6S
Nowcasting
10
8
E 6
=] \
L <
s’ \A_
NS
0
0 5 10 15 20 25 El]

time (hours)

Nowecasting Q(m°/s)

Scatter Plot- Guanajibo Station-July 05,2014

6
4 2
8
H,

T /,....mf’

2 >
+  USGS vs Nowcasting
a e e f i
0 2 4 6 8 10 12

USGS Q(m/s)

FIGURE 18.14 The left panel is runoft observed data (USGS) blue line and simulated
data (Nowecasting) red line at Guanajibo station on July 05, 2014. The right panel is a
scatter plot of USGS vs. Nowcasting.
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FIGURE 18.15 The left panel is runoff observed data (USGS) blue line and simulated
data (Nowcasting) red line at Rosario station on March 28, 2012. The right panel is a
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Rosario Station- July 05,2014 Scatter Plot- Rosario Station- July 05,2014
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FIGURE 18.16 The left panel is runoff observed data (USGS) blue line and simulated
data (Nowcasting) red line at Rosario station on July 05, 2014. The right panel is a scatter
plot of USGS vs. Nowcasting.

the various storm events in the three different basins: San Sebastian,
Guanajibo and Rosario.

Table 18.1 presents the statistic results at San Sebastian stations. The
analysis compares the runoff between the hydrological model using the
rainfall forecast and the observed data provided by USGS. Only eight
events were considered for this analysis, because the USGS observed data
were not available for the events on April 30, 2012 and February 12, 2014.
Table 18.2 presents the hydrological statistic results between compari-
sons: observed data and estimated data for the two events analyzed in the
Guanajibo station.

Figures 18.15 and 18.16 present the comparison between data and
results on March 28, 2012 and July 05, 2014, respectively at Rosario sta-
tion USGS. Table 18.3 shows the statistical results using the hydrologi-
cal model at Rosario station USGS. It is important to note that the most
rainfall occurred into the area nearest to Rio Afiasco, comprising the San
Sebastian station.

The event on July 05, 2014 had superior results than the previous
events with respect to the tendency, peak flow and runoff at Rosario sta-
tion. Results indicate that global nowcasting model can be used to estimate
the shape, timing and magnitude of hydrographs.
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TABLE 18.1 Hydrological Statistic Results at San Sebastian Station

USGS - Nowcasting MSE (m?/s)? RMSE (m®/s)
March 28, 2012 330.7064 18.1853
March 29, 2012 85.9784 9.2724
October 10, 2012 97.1203 9.8549

May 06, 2014 2.3539 1.5342

May 21, 2014 54.3021 7.3690

June 29, 2014 0.7535 0.8680

June 30, 2014 7.8139 2.7953

July 05, 2014 1.3781 1.1739

TABLE 18.2 Hydrological Statistic Results at Guanajibo Station

USGS — Nowcasting MSE (m?/s)? RMSE (m?/s)
October 10, 2012 1.8137 1.3467
July 05, 2014 2.1434 1.4640

TABLE 18.3 Hydrological Statistic Results at Rosario station

USGS — Nowcasting MSE (m?/s)? RMSE (m?/s)

March 28, 2012 2.9655 1.7220
July 05, 2014 0.9432 0.9711
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CHAPTER 19

FLOOD ALERT SYSTEM USING
HIGH-RESOLUTION RADAR
RAINFALL DATA: INUNDATION
(FLOOD) ANALYSIS' 2

LUZ E. TORRES MOLINA
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19.1 INTRODUCTION

The probabilistic flood forecast developed in this research together with
the inundation model is capable of providing a forecast of when and where
river banks are likely to be overtopped. This could be more detailed with
several cross sections into the river.

Decisions for evacuation can be categorized by determining the risk
that overtopping represent to residents in areas adjacent to rivers or stream
flows. The available knowledge when the evacuation decision can be made
include probabilistic flood forecast published by each zone or location

"'This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using
Rainfall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department
of Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

2 Numbers in brackets refer to the references at the end of this book.
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with large historical floods. Furthermore, it is then associated with the
relevant topographical and demographical information for the basin and
river, and the cost associated with the flooding and evacuation.

The approach of Flood Alert System (FAS) is to minimize loss of life
and disruptions to communities through identification of the evacuation
decision and strategy that has the maximum expected value under current
conditions. The potential cost related with the decision model for evacu-
ation can be categorized as losses resulting from preventable flood dam-
age and losses from evacuation. The first is associated with deaths and
injuries. Potential damage to building and property should not be con-
sidered when making an evacuation decision, as this damage is the same
regardless of whether an evacuation is ordered or not. Losses from evacu-
ation refer to evacuation and emergency services, cost associated with the
inconvenience, and that associated with the vacating of houses and build-
ings. Using a FAS model and an adequate flooding history, it is possible
to determine a potential evacuation savings or amount of money saved as
a result of no evacuation.

19.2 INUNDATION (FLOOD) ANALYSIS

Inundation Analysis is a Vflo extension that provides images and anima-
tion showing the extent of forecast inundation, which can be used an indi-
cation of flood risk [103].

To show the full potential of this tool in enhancing the visualization of
the flood area, the program was run with a large storm data. Figure 19.1
presents a time-series flow for the basin area on March 28, 2012. The
area north was the most affected by the rainfall on this event. Inundation
Analysis presents an inundation sequence each hour. Other events were
modeled using inundation animation, but the March 28, 2012 event is good
enough to show the potential of this tool. The flow depths results from Vflo
model were introduced into the inundation to create the animation flow.
The animation flow is attached as a link in: http://www.mediafire.com/
download/142s3nbpprk08ib/Appendix.zip.
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FIGURE 19.1 Inundation sequence each hour, on March 28, 2012 (from the left to right
and top to bottom).
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20.1 INTRODUCTION

This chapter concludes the research study presented in Part II. It indicates
that TropiNet radar technology has been used first time for hydrologic
analyzes and specifically for rainfall forecasting in Puerto Rico. Results

! This chapter is an edited version from: “Luz E. Torres Molina, 2014. Flood Alert System Using
Rainfall Data in the Mayagiiez Bay Drainage Basin, Western Puerto Rico. PhD Thesis, Department
of Civil Engineering and Surveying, University of Puerto Rico, Mayagiiez Campus”.

2 Numbers in brackets refer to the references at the end of this book.
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from the nowcasting model at spatial and temporal scales demonstrated
the capability of the model to reproduce observed rainfall, for each now-
casting lead-time with relatively good agreement.

The best statistical results were found in the rainfall nowcasting model
with a lead-time of 10 min. It is well known that prediction of sudden
storms using rainfall nowcasting models represent the category that are the
most difficult to predict, and consequently, providing accurate flash flood
warnings from these types of storms is a major challenge.

The nowcasting model has a limitation in the time shift, because it is
assumed that the cloud is a rigid object and that the cloud speed is con-
stant, when in reality these parameters can vary. To find the actual weather
conditions, more atmospheric parameters should be taken into account.
In fact, cloud speed depends on its formation, and other physical param-
eters that are constantly changing [11]. These factors should be taken into
account in future works.

Several parameter estimations were developed at each spatial and
temporal domain, and the stochastic behavior of rainfall intensity was
represented by an exponential time and spatial lag model, which is an
approximation of a stochastic transfer function.

The rainfall nowcasting algorithm searches for contiguous rain pixels
and identifies rain cells in the last two radar images to estimate the cloud
motion vector. This newly developed rainfall nowcasting algorithm
was validated with ten storms and results comparing the algorithm with
observed data as well as the hydrological results showed that the nowcast-
ing model is a suitable tool for predicting the most likely areas to become
inundated.

Comparisons between rain gauges, TropiNet and NEXRAD demon-
strated that the TropiNet radar system provides a higher degree of accuracy
in rainfall estimation compared to NEXRAD. The RMSE was increased for
heavy rain conditions, nevertheless in all cases (light, moderate and heavy
rain), TropiNet consistently yielded the smallest error compared with rain
gauges, while NEXRAD produced the largest errors. This was the first
attempt to evaluate a rainfall prediction in the western Puerto Rico area.
The most hydrological sensitive parameter in the basin area is the initial
saturation.
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When the hydrologic model was evaluated within the Mayagiiez bay
drainage basin with three USGS reference stations, the San Sebastian sta-
tion showed the highest flow. The events under analysis presented more
rainfall in the north basin area.

Use of a GOES based satellite remote sensing product allowed for
the spatial and temporal distribution of potential evapotranspiration input
(PET, mm/h) in the hydrologic model. The post-processing algorithm
developed in this study provided the ability to change the PET size resolu-
tion through interpolation.

Differences in the order of 0.75 and 330 MSE percent between the
observed data from USGS and the results of hydrological model may be
due to initial conditions prior to storms, such as soil moisture and daily
evapotranspiration distribution.

A study of flood levels can be conducted with the model in the future
within the study watershed to estimate flood depths resulting from embank-
ment overtopping, thereby providing recommendations for improving cur-
rent flood hazard maps.

The nowcasting model was evaluated with the available events from
TropiNet radar, but it was also developed to work with events with high
precipitation. At the same order, the hydrological model was evaluated
in this study with relatively small flow (180 m¥/s), but can be evaluated
with extraordinary events when they occur. Unfortunately, during the
study period, there were no high precipitation events. The data for this
research is available in the link below: http://www.mediafire.com/down-
load/142s3nbpprk08ib/Appendix.zip.

20.2 STUDY LIMITATIONS

The nowcasting model presents a time shift limitation in the prediction
of 10, 20 and 30 min. This can be a linear trend in the given data. In the
future, an algorithm may be configured to fix the time shift using more
than 10 events within the study area.

Figure 20.1 presents a prototype of result with the time shift correction
in the average rainfall for all pixels for a time interval of 10 min. In this
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Rainfall Time Series, March 28, 2012
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FIGURE 20.1 Adjusted average rainfall plots using a bias correction factor in the time
variable on March 28, 2012.

case, Figure 7.7 in Chapter 17 would look like Figure 20.1. The Figure 20.2
presents a prototype of results with the time shift correction in the accu-
mulated rainfall average for all rain pixels during the complete event on
March 28, 2012. It can be seen that the bias in accumulated rain is reduced
with this time shift correction. The events selected were limited to the data
available in the TropiNet radar server. It is recommended to extend both
methodologies to high precipitation events.

20.3 FUTURE WORK

The nowcasting model and hydrological model can be evaluated with
extreme event data. When the three TropiNet radars are finally operating
as a network, they will provide higher resolution data that can be used in
the nowcasting model and hydrological model. Using a bias correction in
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Cumulated Rainfall, March 28, 2012
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FIGURE 20.2 Adjusted accumulated precipitation average rainfall results using a bias
correction factor in the time on March 28, 2012.

the time shift, it is possible to make predictions more accurately. To imple-
ment this, an extensive number of events, physical and atmospheric data
will be necessary.

20.4 SUMMARY OF RESEARCH STUDY IN PART II

Floods are one of the most costly types of natural disasters in the world.
The current work is an attempt to introduce a Flood Alert System in the
western Puerto Rico, using radars with high temporal and spatial resolu-
tion and developing a forecasting model for convective precipitation for
time periods of a few hours or less (nowcasting).

The accuracy of these forecasts generally decreases very rapidly during
the first 30 min because of the very short lifetime of individual convective



330 Flood Assessment: Modeling and Parameterization

pixels. A number of observational studies have shown that individual con-
vective cells have mean lifetime of about 20 min, with best performance
associated with a lead-time of 10 min. Numerical simulation studies have
contributed significantly to the understanding of storm composition and
duration; this is just beginning to be recognized in current nowcasting sys-
tems. In Part II, a review of the literature is provided related to what is
currently known from numerical and observational studies about the orga-
nization, lifetime and motion of storms.

The nowcasting technique proposed in this chapter is a special kind of
nonlinear model with stochastic and deterministic components. The rain-
fall forecasts obtained using the considered method is then routed through
a rainfall runoff model Vflo. Thus, a coupled rainfall-runoff forecasting
procedure can be implemented for a watershed in western Puerto Rico.
The prediction results with lead-time of 10, 20 and 30 min were analyzed
and compared using statistical methods. The forecast result with lead-time
of 10 min is the best alternative with least percent of error. It was used in
the hydrological model Vflo to compare the estimated hydrograph with
the observed hydrograph from USGS stations. Furthermore, it was used
in the flooding model /nundation Animator to show the extent of flooding
superimposed onto a land map.
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Flood Assessment
Modeling and Parameterization

About 7,000 people lose their lives and nearly 100 million people are adversely affected by floods
each year worldwide. Severe flooding also costs billions of dollars each year in damage and
economic losses. This new volume focuses on two detailed studies that employ physically based
hydrologic models to predict flooding in the particularly challenging environment of small
watersheds with mountainous terrain and high intensity/high variability rainfall.

The first study, by Dr. Alejandra Rojas Gonzalez, discusses flood prediction limitations in small
watersheds with mountainous terrain and high rainfall variability. The hypothesis of the study is that
it is possible to perform a small-scale, affordable model calibration, and then scale-up the
parameters to a larger basin-scale model. The study specifically addresses the following scientific
questions: How is flow prediction affected by the spatial variability of point rainfall at scales below
that of the typical resolution of radar-based products? How does parameter and hydrological model
resolution affect the model’s predictive capabilities and the errors of the hydrologic model? Would
the assumptions developed for the small scale enhance the hydrologic predictability at larger
scales?

The second study, by Dr. Luz E. Torres Molina, describes the development of a stochastic model to
forecast short-term rainfall for a tropical basin. The high-resolution rainfall data (=~ 100-m) was
derived using the TropiNet radar system at the University of Puerto Rico-Mayaguez Campus,
representing possibly the only study of its kind in a tropical environment. The predicted short-term
rainfall data was input into a hydrologic model, and flood inundation levels were estimated at
selected locations within the basin. Results of the rainfall and hydrologic forecasts are compared
with observed data. The study also provides a prototype for a flood forecast alarm system.
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