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Abstract 
 
An outlier is an observation that deviates so 
much from other observations as to arouse 
suspicion that it was generated by a different 
mechanism (Hawkins, 1980). Outlier detection 
has many applications, such as data cleaning, 
fraud detection and network intrusion. The 
existence of outliers can indicate individuals or 
groups that have behavior very different from 
the most of the individuals of the dataset.  
Frequently, outliers are removed to improve 
accuracy of the estimators. But sometimes the 
presence of an outlier has a certain meaning, 
which explanation can  be lost if the outlier is 
deleted. 
 
In this paper we compare detection outlier 
techniques based on statistical measures, 
clustering methods and data mining methods. In 
particular we  compare detection of outliers 
using robust estimators  of the center and the 
covariance matrix  for the Mahalanobis distance, 
detection of outliers using partitioning around  
medoids (PAM), and two data mining 
techniques to detect outliers: Bay’s algorithm for 
distance-based outliers (Bay and Schwabacher, 
2003) and the LOF a density-based local outlier 
algorithm (Breuning et al., 2000). The effect of 
the presence of outliers on the performance of 
three well-known classifiers is discussed. 

1 Introduction. 

According to Hawkins (1980),  “An outlier 
is an observation that deviates so much from 
other observations as to arouse suspicion that it 
was generated by a different mechanism”. 

Almost all the studies that consider outlier 
identification as their primary objective are in 
the field of statistics. A comprehensive treatment 
of outliers appears in Barnet and Lewis (1994). 
They provide a list of about 100 discordancy 
tests for detecting outliers in data following well 
known distributions. The choice of an 
appropriate discordancy test depends on:   a) the 
distribution, b) the knowledge of the distribution 
parameters, c) the number of expected outliers, 
and d) the type of expected outliers. These 
methods have two main drawbacks: First, almost 
all of them are for univariate data making them 
unsuitable for multidimensional datasets. Second, 
all of them are distribution-based, and most of 
the time the data distribution is unknown. Real-
world data are commonly multivariate with 
unknown distribution.  

Detecting outliers, instances in a 
database with unusual properties, is an important 
data mining task. People in the data mining 
community got interested in outliers after Knorr 
and Ng (1998) proposed a non-parametric 
approach to outlier detection based on the 
distance of an instance to its nearest neighbors.  
Outlier detection has many applications among 
them: Fraud detection and network intrusion, 
and data cleaning. Frequently, outliers are 
removed to improve accuracy of the estimators. 
However, this practice is not recommendable 
because sometimes outliers can have very useful 
information. The presence of outliers can 
indicate individuals or groups that have behavior 
very different from a standard situation. 

Section 2 of this paper includes a brief 
discussion of  the treatment of outliers for 
univariate data. The section 3 focuses on 



 

methods for detection of multivariate outliers. 
Four methods of outlier detection are 
considered: a method based on robust estimation 
of the Mahalanobis distance, a method based on 
the PAM algorithm for clustering, a distance-
based method and a density-based method. The 
section 4 of this paper covers the effect and 
treatment of outliers in supervised classification.  
The experimental results appear in section 5, and 
the conclusions of our work are presented in 
section 6. 

2.  Univariate Outliers 

Given a data set  of  n observations  of a 
variable x, let  x be the mean and let s be 
standard deviation of the data distribution.  One 
observation  is declared as an outlier if lies 
outside of the interval 
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where  the value of  k is usually taken as 2 or 3. 
The justification of these values relies on the 
fact that assuming normal distribution one 
expects to have a 95% (99%, respectively) 
percent of the data on the interval centered in the 
mean with a semi-length equal to two (three, 
respectively) standard deviation. Also, one 
expects to have the whole data inside an interval  
centered at the mean and three standard 
deviations as semi-length. From equation (1), 
the observation x  is considered an outlier if  
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The problem with the above criteria is that  it 
assumes normal distribution of the data 
something that frequently does not occur. 
Furthermore, the mean and standard deviation 
are highly sensitive to outliers.  

John  Tukey  (1977) introduced  several methods 
for exploratory data analysis, one of them was 
the Boxplot. The Boxplot  is a graphical display 
where the outliers appear  tagged.  Two types of 
outliers are distinguished: mild outliers and 

extreme outliers. An observation x is declared  
an extreme outlier if it lies outside of the interval 
(Q1-3×IQR, Q3+3×IQR). Notice that the center 
of the interval is (Q1+Q3)/2  and its radius is 
3.5×IQR, where IQR=Q3-Q1 is called the 
Interquartile Range and can be considered a 
robust estimator of variability which can replace 
s in  equation (2).  On the other hand, (Q1+Q3)/2 
is a robust estimator of the center that can be 
used instead of x in equation (1).  An 
observation x is declared a mild outlier if it lies 
outside of the interval (Q1-1.5×IQR, 
Q3+1.5×IQR). The numbers 1.5 and 3 are 
chosen by comparison with a normal distribution. 
All major statistical software applications 
include boxplots among their graphical displays. 
Figure 1 shows the outliers detected through 
their boxplots  of the features in the class 1 
(setosa) of the very well known Iris dataset, 
which has 150 instances and three classes.  

Figure 1. Outliers of the features in class 1 of  the 
Iris data set  

 Using the same graphical display we detect as 
outliers the instance number 99 in the second 
class  which has an abnormal value in the third  
feature and the instance 107 that has an 
abnormal value in the first feature of class 3. 

3. Multivariate Outliers 



 

Let us consider a dataset D with p 
features and n instances. In a supervised 
classification context, we must also know the 
classes to which each of the instances belongs. It 
is very common to include the classes as the last 
column of the data matrix. The objective is to 
detect all the instances that seem to be unusual, 
these will be the multivariate outliers. One might 
think that multivariate outliers can be detected 
based on the univariate outliers in each feature, 
but as shown in the figure 2 this is not true. The 
instance appearing in the upper right corner is a 
multivariate outlier but it is not an outlier in each 
feature. On the other hand, an instance can have 
values that are outliers in several features but the 
whole instance might not be a multivariate 
outlier. 

There are several methods to detect multivariate 
outlier. The methods discussed in this paper are: 
statistical-based outlier detection, outlier 
detection by clustering, distance-based outlier 
detection and density-based local outlier 
detection. The before mentioned methods are 
discussed in the next sections.  

3.1. Statistical based outlier detection. 

Let x be an observation of a multivariate data set 
consisting of n observations and p features. Let 
x  be the centroid of the dataset, which is a p-
dimensional vector with the means of each 
feature as components. Let X be the matrix of 
the original dataset with columns centered by 
their means. Then the p×p matrix  S=1/(n-1) 
X’X represents the covariance matrix of the p 
features.The multivariate version of equation (2) 
is                                          

kD >−−= − )x(x)Sx(xxx, 1)(2 .        (3) 

where D2 is called the Mahalanobis square 
distance from x to the centroid of the dataset.  
An observation with a large Mahalanobis 
distance can be considered as an outlier. 

Assuming that the data follows a multivariate 
normal distribution it can be proved that the 
distribution of the Mahalanobis distance behaves 

as a Chi-Square distribution for a large number 
of instances. Therefore the proposed cutoff point 
in (3) is given by  k=  , where χ2

)1,( αχ −p
2  stands 

for the Chi-Square distribution and α is a 
signification level usually taken as .05.  

 

Figure 2.  Example of a bidimensional outlier that is 
not an outlier in either of its projections.  

A basic method for detecting multivariate 
outliers is to observe the outliers that appear in  
the boxplot of the distribution of the 
Mahalanobis distance of  the all instances. 

Looking at figure 3 we notice that only two 
outliers (instances 119 and 132) are detected in 
class 3 of the Iris dataset. People in the data 
mining community prefer to rank the instances 
using an outlyingness measures rather than to 
classify the instances in two types: outliers and 
non-outliers. Rocke and Woodruff (1996) stated 
that the Mahalanobis distance works well 
identifying scattered outliers. However, in data 
with clustered outliers the Mahalanobis distance 
measure does not perform well detecting outliers.  
Data sets with multiple outliers or clusters of 
outliers are subject to the masking and swamping 
effects.  



 

Masking effect. It is said that an outlier masks a 
second one that is close by if the latter can be 
considered an outlier by itself, but not if it is 
considered along with the first one.  

Figure 3. Boxplots of the Mahalanobis distances for 
each instance in the three classes of the Iris dataset   

Equivalently after the deletion of one outlier, the 
other instance may emerge as an outlier. 
Masking occurs when a group of outlying points 
skews the mean and covariance estimates toward 
it, and the resulting distance of the outlying 
point from the mean is small.  

Swamping effect.  It is said that an outlier 
swamps another instance if the latter can be 
considered outlier only under the presence of the 
first one. In other words after the deletion of one 
outlier, the other outlier may become a “good” 
instance. Swamping occurs when a group of 
outlying instances skews the mean and 
covariance estimates toward it and away from 
other “good” instances, and the resulting 
distance from these “good”  points to the mean 
is large, making them look like outliers. 

For instance,  consider the  data set due to 
Hawkins, Bradu, and Kass (Rousseeuw and 
Leroy, 1987) consisting of 75 instances and 3 
features, where the first fourteen instances had 

been contaminated to be outliers. Using the 
Mahalanobis distance only observation 14 is 
detected as an outlier as shown in Figure 4. The 
remaining 13 outliers appear to be masked. 

 

Figure 4: The Masking effect of  multivariate 
outliers in the Hawkins data set 

The masking and swamping problem can be 
solved by using robust estimates of the centroid 
(location) and the covariance matrix (shape), 
which by definition, are affected less by outliers. 

Outlying points are less likely to enter into the 
calculation of the robust statistics, so they will 
not be able to influence the parameter estimates 
used in the Mahalanobis distance. Among the 
robust estimators of the centroid and the 
covariance matrix are the minimum covariance 
determinant (MCD) and the minimum volume 
ellipsoid (MVE) both of them introduced by 
Rousseeuw (1985).  

The Minimum Volume Elipsoid (MVE) estimator 
is the center and the covariance of  a subsample 
size  h (h ≤ n) that minimizes the volume of  the 
covariance matrix associated to the subsample. 
Formally,  



 

                          MVE=( * , *
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where  

J={set of  h instances: *( ) ( )*
J KVol S Vol S≤  for 

all K s. t. #(K)= h}. The value of h can be 
thought of as the minimum number of instances 
which must not be outlying and usually 
h=[(n+p+1)/2], where [.] is the greatest integer 
function.   

On the other hand the Minimun Covariance 
Determinant (MCD) estimator is  the center and 
the covariance of a subsample of size  h (h ≤ n)  
that minimizes the  determinant of the 
covariance matrix associate to the subsample. 
Formally, 

                 MCD=( * *,J JSx ) ,           (5) 

where  

J={set of  h instances: * *| | | |J KS S≤  for all K s. t. 
#(K)= h}. As before, it is common to take 
h=[(n+p+1)/2]. 

The MCD estimator underestimates the scale of 
the covariance matrix, so the robust distances 
are slightly too large, and too many instances 
tend to be nominated as outliers. A scale-
correction has been implemented, and it seems 
to work well. The algorithms to compute the 
MVE and MCD estimators are based on 
combinatorial arguments (for more details see 
Rousseeuw and Leroy, 1987). Taking in account 
their statistical and computational efficiency, the 
MCD is preferred over the MVE. 

In this paper both estimators, MVE and MCD, 
have been computed using the function cov.rob 
available in the package lqs of R. This function 
uses the best algorithms available so far to 
compute both estimators.  

Replacing the classical estimators of the center 
and the covariance in the usual Mahalanobis 

distance, equation (3), by either the MVE or 
MCD estimator, outlying instances will not 
skew the estimates and can be identified as 
outliers by large values of the Mahalanobis 
distance. The most common cutoff point k is 
again the one based in a Chi-Square distribution, 
although Hardin and Rocke (2004) propose a 
cutoff point based on the F distribution that they 
claim to be a better one.  

In this paper, two strategies to detect outliers 
using robust estimators of the Mahalanobis 
distances have been used: First, choose a given 
number of instances appearing at the top of a 
ranking based on their robust Mahalanobis 
measure. Second, choose as a multivariate 
outlier the instances that are tagged as upper 
outliers in the Boxplot of the distribution of 
these robust Mahalanobis distances. 

In order to identify the multivariate outliers in 
each of the classes of the Iris dataset through 
boxplots of  the distribution of the robust version 
of the Mahalanobis distance, we consider 10 
repetitions of each algorithm obtaining the 
results shown in tables 1 and 2. 

Table 1. Top outliers per class in the Iris dataset 
by frequency and the outlyingness measure 
using the MVE estimator 

Instance Class Frequency Outlyingness 
44 1 8 5.771107 
42 1 8 5.703519 
69 2 9 5.789996 
119 3 8 5.246318 
132 3 6 4.646023 

Notice that both methods detect two outliers in 
the first class, but the MVE method detects the 
instance 42 as a second outlier whereas the 
MCD method detects the instance 24. All the 
remaining outliers detected by both methods are 
the same. Three more outliers are detected in 
comparison with the use of the Mahalanobis 
distance. 



 

The figure 5 shows a plot of the ranking of the 
instances in class 3 of the Iris dataset by their 
robust Mahalanobis distance using the MVE 
estimator.  

Table 2. Top outliers in class 1 by frequency and 
the outlyingness measure using the MCD 
estimator 

Instance Class Frequency Outlyingness 
44 1 10 6.557470 
24 1 10 5.960466 
69 2 10 6.224652  
119 3 10 5.390844 
132 3 7 4.393585 

 The Figure 6 shows a plot of the ranking of the 
instances in class 3 of Iris by their robust  
Mahalanobis distance using the  MCD estimator.  

 

Figure 5. Plot of the instances ranked by their 
Mahalanobis distance using MVE estimator 

According to Rocke and Woodruff (2002) robust 
methods work well detecting  scattered outliers 
but fail to detect  clustered outliers. For this type 
of outliers it is better to use a clustering 
algorithm as will be discussed in the next section. 

3.2. Detection of outliers using clustering 

A clustering technique can be used to detect 
outliers. Scattered outliers will form a 
cluster of size 1 and clusters of small size 
can be considered as clustered outliers. 
There are a large number of clustering 
techniques. In this paper we only considered 
the Partitioning around Medoids (PAM) 
method. It was  introduced by Kaufman and 
Rousseeuw (1990) uses k-clustering on 
medoids to identify clusters. PAM works 
efficiently on small data sets, but it is 
extremely costly for larger ones. This led to 
the development of CLARA (Clustering 
Large Applications) (Kauffman and Rousseuw,  
1990) where  multiple samples of the data set 
are generated, and then  PAM is applied to the 
samples.  

 

Figure 6. Plot of the instances ranked by their 
Mahalanobis distance using MCD estimator 

Given k, the number of partitions to construct, 
the PAM method creates an initial partitioning. 
It then uses an iterative relocation technique that 
attempts to improve the partitioning by moving 
instances from one group to another. The 



 

general criterion of good partitioning is that 
instances in the same cluster are  “close” or 
related to each other, whereas instances of 
different clusters are '”far apart” or very 
different. 

In order to find k clusters, PAM’s approach is to 
determine a representative instance for each 
cluster. This representative instance called 
medoid, is meant to be the most centrally located 
instance within the cluster. More specifically, a  
medoid can be defined as that instance of a 
cluster, whose average dissimilarity to all the 
objects in the cluster is minimal. After finding 
the set of medoids, each object of the data set is 
assigned to the nearest medoid.   

The PAM algorithm’s complexity is O(k(n-k)2). 
Hence it becomes too costly for large values of n 
and k. PAM is very robust to the presence of 
outliers and does not depend on the order in 
which instances are examined. After the 
allocation of the instances to the k clusters, one 
must determine the separation between them. 
The separation of the cluster C is defined as the 
smallest dissimilarity between two objects; one 
of which belong to Cluster C and the other 
which does not. If the separation of an outlier is 
large enough then all the instances that belong to 
the cluster are considered outliers. In order to 
detect the clustered outliers one must vary the 
number k of clusters until clusters of small size 
are obtained that have a large separation from 
others clusters. The PAM algorithm can be 
evaluated using the function pam available in 
the library cluster in R.  

Looking at the separation measures of ten 
clusters generated by the PAM algorithm in each 
of the classes of the Iris dataset, we detected the 
outliers shown in table 3. Notice that in the third 
class, PAM detects the instance number 107 as 
an outlier but does not detect the instance 119. 

3.3. Distance based outlier detection 

Given a distance measure on a feature space, 
two different definitions of distance-based 
outliers are the following: 

Table 3. Outliers in the Iris dataset according to 
the PAM algorithm 

Instance Class Separation 
42 1 0.6244998 
58 2 0.6480741 
61 2 0.6480741 
94 2 0.6480741 
99 2 0.6480741 
107 3 0.9110434 
118 3 0.8185353 
132 3 0.8185353 

1.  An instance x in a dataset D is an outlier with 
parameters p and λ if at least a fraction p of the 
objects are a distance greater than λ from x. 
(Knorr and Ng, 1997, 1998, Knorr et al. 2000). 
This definition has certain difficulties such as 
the determination of  λ and the lack of a ranking 
for the outliers. Thus an instance with very few 
neighbors within a distance λ can be regarded as  
strong outlier as an instance with more 
neighbors within a distance λ. Furthermore, the 
time complexity of the algorithm is O(kn2), 
where k is the number of features and n is the 
number of instances. Hence it is not an adequate 
definition to use with datasets having a large 
number of instances.  

2. Given the integer numbers k and n (k<n), 
outliers are the top n instances with the largest 
distance to their k-th nearest neighbor. 
(Ramaswamy et al., 2000). One shortcoming of 
this definition is that it only considers the 
distance to the k-th neighbor and ignores 
information about closer points. An alternative is 
to use the greatest average distance to the k 
nearest neighbors. The drawback of this 
alternative is that it takes longer to be calculated. 

In this paper a variant of one recently developed 
algorithm (Bay and Schwabacher, 2003) for 
distance-based outlier detection has been used. 

The Bay’s Algorithm.  

Bay and Schwabacher (2003) proposed a 
simple nested loop algorithm that tries to 



 

reconcile definitions 1 and 2. It gives near 
linear time performance when the data are in 
random order because a simple pruning rule 
is used. The performance of the algorithm in 
the worst case is of quadratic order. The 
algorithm is described in Figure 7. 

Input: k: number of nearest neighbors; n: 
number of outliers to return; D: dataset 
randomly ordered, BS: size of blocks in which D 
is divided. 
1. Let distance(x,y) return the Euclidean 
distance between x and y. Another type of 
distance such as the Manhattan can be used 
instead of the Euclidean distance. 
2. Let maxdist(x,Y) return the maximum 
distance between the instance x and the set of 
instances Y. 
3. Let Closest(x,Y,k) return the k closest 
instances in Y to x.  
4. Let score(x) return median distance to the k 
neighbors 
5. Begin 
c← 0 Set the cutoff for pruning to 0. 
O←φ Initializate the set of outliers as the empty 
set. 
NB←ceiling(# instances in D/BS) 
       While nb<NB { 
        Neighbors(b)←φ for all b in B(nb) 
        For each d in D { 
               For each b in B, b≠d{ 
                       If |Neigbors(b)|<k or 
distance(b,d)<maxdist(b,Neighbors(b)){ 
     Neighbors(b) ←Closest(b,Neighbors(b)Ud,k) 
                   If(score(Neighbors(b),b)<c{ 
                    Remove b from B(nb) 
                    }}}} 
      O←Top(B(nb) ∪ O, n)  ; Keep only the top 
n outliers 
      c←min(score(o)) for all in O ; The cutoff is 
the score of the weakest outlier 
} 
end 

Output: O, a set of outliers 

Figure 7.  Bay’s Algorithm for finding distance-
based outliers 

The main idea in the algorithm is that for each 
instance in D one keeps track of the closest 
neighbors found so far. When an instance’s 
closest neighbors achieve a score lower than a 
cutoff then the instance is removed because it 
can no longer be an outlier. In this paper the 
score function used has been the median 
distance to the k neighbors. Bay used the 
average distance to the k neighbors, but the 
median is more robust than the mean. As more 
instances are processed the algorithm finds more 
extreme outliers and the cutoff increases along 
with pruning efficiency.  

Bay and Schwabacher showed experimentally 
that the Bay’s algorithm is linear with respect to 
the number of neighbors and that is almost linear 
with respect to the number of instances. Using 
six large datasets they found a complexity of 
order O(nα) where  α varied from 1.13 to 1.32.  
Working with three datasets: Ionosphere, 
Vehicle and Diabetes we have obtained an  α 
value near to 1.5. 

The top 20 outliers in the third class of the Iris 
dataset according to the Bay’s algorithm are 
shown in Figure 8. Clearly the instance 107 is 
detected as an outlier. There is a second group 
that includes 119, 120, 132, 123 and 118. 

3.4. Density-based local outliers. 

In this type of outliers the density of the 
neighbors of a given instance plays a key role. 
Furthermore an instance is not explicitly 
classified as either outlier or non-outlier; instead 
for each instance a local outlier factor (LOF) is 
computed which will give an indication of how 
strongly an instance can be an outlier.  

The figure 9 taken from Breuning et al.(2000) 
shows the weakness of the distance-based 
method which identifies as outlier  the instance 
o1, but does not consider o2 as an outlier.  

 



 

 

Figure 8. Instances of class 3 of the Iris dataset 
ranked by the Bay’s algorithm outlyingness measure  

 

Figure 9. Example to show the weakness of the 
distance-based method to detect outliers 

The following two definitions are needed in 
order to formalize the LOF algorithm   

Definition 1.  k-distance of an instance x 

For any positive integer k, the k-distance of an 
instance x, denoted by k-distance(x), is defined 

as the distance d(x,y) between x an instance y ε 
D such that: 

(i) for at least k instances y’ ε D-{x} it 
holds that d(x,y’) ≤ d(x,y) 

(ii) for at most k-1 instances y’ ε D-{x} 
it holds that d(x,y’) < d(x,y). 

Definition 2. Reachability distance of an 
instance x w.r.t. instance y 

Let k be a positive integer number. The 
reachability distance of the instance x with 
respect to the instance y is defined as  

reach-distk(x,y)=max{k-distance(y),d(x,y)}  (6) 

The Local outlier factor (LOF) of an instance x 
is defined by  
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where lrd(.)  represents  the  Local reachability 
density of an instance. Given an instance x, its 
lrd  is defined as the inverse of the average 
reachability distance based on the MinPts-
nearest neighbor of the instance x.  

The density-based local algorithm to detect 
outliers requires only one parameter, MinPts, 
which is the number of nearest neighbors used in 
defining the local neighborhood of the instance.  

The LOF measures the degree to which an 
instance x can be considered as  an outlier. 
Breunig et al. show that for instances deep inside 
a cluster their LOF’s are close to 1 and should 
not be labeled as a local outlier. Since LOF is 
not monotonic, they recommended to find the 
LOF for each instance of the datasets using 
MinPts-nearest neighbor, where MinPts assumes 
a range of values from MinPtsLB to MinPtsUB. 
They also suggested MINPtsLB=10 and 
MinPtsUB=20. In this paper, LOF were found in 
a range of MinPtsLB=10 and MinPtsUB=20 or 



 

MinPtsLB=20 and MinPtsUB=30, depending on 
which range produced a more monotonic graph. 
Having determined MInPtsLB and MinPtsUB, 
the LOF of each instance is computed within 
this range. Finally all the instances are ranked 
with respect to the maximum LOF value within 
the specified range. That is, the ranking of an 
instance x is based on: 

Max{LOFMinPts(x) s.t. 
MinPtsLB≤MinPts≤MinPtsUB} (8) 

The LOF algorithm is shown in figure 10. 

Input: Dataset D, MinptsLB, MinptsUB 
Let Maxlofevct=φ 
For each   i in the interval [MinPtsLB, 
MinPtsUB] 
{ 
1. Find the i nearest neighbors and their distance 
from each observation in D 
2. Calculate the local reachability density for 
each observation in D 
3. Compute the lof of each observation in D 
4. Maxlofvect=max(maxlofvect, lof) 
  } 
end 
Output: Maxlofvect 

Figure 10. The LOF Algorithm 

Breunig et al. state that the time complexity of 
the maxLOF algorithm depends on the 
dimensionality of the data and it can be analyzed 
by studying independently the time complexity 
of the two main steps required to produce the 
LOF factor for each instance of the dataset. The 
first step, finding the k-distance neighborhood, 
has a runtime complexity of O(n*time for a k-nn 
query). Therefore, the actual time complexity of 
this step is determined by the method used to 
perform the k-nn queries. For low 
dimensionality (no more than 5 features), if a 
grid based approach is used the query can be 
performed in constant time leading to a 
complexity of O(n) to complete the entire step.  
For medium dimensionality (between 5 and 10 
features), an index can be used that would 

provide an average complexity of O(log n) for 
the k-nn queries, leading to a total complexity of 
O(nlogn).  Finally, for high dimensional data, a 
sequential scan may be used with a complexity 
of O(n) that would lead to a total complexity of 
O(n2).  Finding the maximum outlier factors of 
all observations in the dataset can be done in 
linear time.  Using the Ionosphere dataset, which 
has 32 features and 351 instances, the  time 
complexity estimated by us was  O(n1.95). 

In figure 11 we show the top 10 outliers of the 
third class in the Iris dataset using the LOF 
algorithm. Clearly the instance 107 is detected 
as an outlier. There is a second group that 
includes 119, 118, 132 and 123. After this group, 
instance 106 is chosen. 

4. Effect of the treatment of outliers in 
supervised  classification. 

In the literature, it is frequently 
mentioned that the presence of outliers affects 
the performance of a classifier, but there are few 
studies verifying such claim. This is not the case 
in a regression context where there are a large 
number of studies showing the effect of outliers 
in regression problems. Two main aspects to 
consider in supervised classification are feature 
selection and the estimation of the 
misclassification error rate. In this paper, an 
evaluation of the effect of outliers in those 
aspects is considered.  We have considered three 
classifiers: Linear discriminant analysis (LDA), 
k-nearest neighbor classifier and a classifier 
based on decision trees named Rpart. We use 
10-fold cross validation as the estimation 
method for the misclassification error rate. There 
are plenty of feature selection methods and we 
choose two that have given us good results in 
our previous work (Acuna et al. 2003). One is 
the sequential forward selection (SFS) method 
and the second one is the Relief. The first one is 
a wrapper method that requires a classifier and 
the second one is a filter method that does not 
require a classifier and usually selects more 
features than a wrapper. After the detection of 
outliers we want to see how they affect a) the 
estimation of the misclassification error rate, b) 



 

the feature selection process and, c) the 
misclassification error rate after feature selection. 

5. Experimental results   

Two well-known Machine Learning 
datasets: Iris and Bupa are used to show the 
effect of outliers on feature selection and on the 
estimation of the misclassification error rate. 
These datasets are available on the Machine 
Learning database repository at the University 
California, Irvine ( Blake and Mertz, 1998). 
Using all the criteria described in section 3 and 
the visual help provided by the parallel 
coordinate plot (Wegman, 1990) to decide about 
the doubtful outliers, the following outliers have 
been detected in the Iris dataset. 

 

Figure 11. Instances of the class 3 in the Iris 
dataset ranked by the LOF’s algorithm 
outlyingness measure  

Outliers in class 1: (7) 
16, 15 ,34, 42, 44, 24, 23 
 
Outliers in class 2 (7) 
71, 63 ,58 ,61, 94, 99, 69 

 
Outliers in class 3 (5) 
107, 119, 132, 118 ,120 
 
In Table 4, the misclassification error of the 
three classifiers has been computed using three 
type of samples: a) the original sample, b) 
deleting the outliers from the original sample 
and, c) deleting a random subsample from the 
original sample. 

Notice that all three classifiers are affected 
when outliers are removed, whereas there is 
only a minimum change on the 
misclassification error when a random 
subsample of instances is removed.  

Table 4. The misclassification error rate for the 
LDA, knn and rpart classifiers in Iris using three 
different types of samples  

 Original  
Simple 

Deleting 
outliers 

Deleting a 
random 
subsample  

LDA 2.02  1.54 2.30 
Knn(k=1) 4.05  2.35 4.10 
Rpart 6.69  2.90 7.32 

Table 5 shows the feature selected using the 
three type of samples described before. The 
feature selected methods used here are the 
sequential forward selection (SFS) with the three 
classifiers used in table 4 and the Relief 

Table 5. Features selected in Iris using SFS and 
Relief for the three type of samples 

 Original 
Sample 

Deleting 
outliers  

Deleting a 
random 
subsample  

SFS(lda) 4,2 4,2 4,3 
SFS(knn) 4,3 4,3 4,3 
SFS(rpart) 4 4 4 
Relief 2,3,4 4,3 4,3 

There are few differences between the subset of   
features selected by the four methods.  



 

Finally  table 6 shows the misclassification error 
rates of the three classifiers after feature 
selection and for the three type of samples. Once 
again the performance of  the three classifiers 
are affected by the deletion of outliers. 

Let us consider now the Bupa dataset, which 
have 345 instances, 6 features and 2 classes. 
Using all the criteria described in section 3 we 
have detected the following outliers in each class 
of  Bupa.   

 Outliers in class 1: (22) 
168, 175, 182, 190, 205, 316, 317, 335, 345, 148, 
183, 261, 311, 25, 167, 189, 312,  326,  343,  
313,  20,  22 

Table 6.  Misclassification error rate after 
feature selection in Iris for the three type of 
samples 

 Original 
Sample 

Deleting 
outliers   

Deleting a 
random 
subsample  

LDA  3.70 2.33 5.31 
knn(k=1)  4.01 1.87 4.80 
Rpart  5.29 2.29 5.25 
 
Outliers in class 2   (26) 
36, 77,  85, 115, 134, 179, 233, 300, 323, 331, 
342, 111, 139, 252, 294, 307, 123, 186, 286, 2, 
133, 157, 187, 224, 278, 337 

In Table 7 the misclassification  error of  three 
classifiers: LDA, knn and rpart had been 
computed based on the three type of samples 
considered before. 

Table 7. The misclassification error rate for the 
LDA, knn and rpart classifiers in Bupa using 
three different type of samples 

 Original  
Simple 

Deleting 
outliers 

Deleting a 
random 
subsample  

LDA 31.82 26.23 31.17 
Knn(k=7) 31.55 27.65 32.26 
Rpart 31.86 33.24 35.07 

Notice that the classifiers LDA and Knn are the 
most affected and the least affected has been the 
Rpart. The latter makes sense since it is well 
known that Rpart  is a classifier that  is robust to 
outliers. 

Table 8 shows the feature selected using the 
three type of samples described before. The 
feature selected methods used here are the 
sequential forward selection (SFS) with the three 
classifiers used in table 4 and the Relief 

Table 8. Features selected in Bupa using SFS 
and Relief for the three type of samples 

 Original 
Sample 

Deleting 
outliers  

Deleting a 
random 
subsample  

SFS(lda) 5,4,3,6 5,3,4 5,4,3,6 
SFS(knn) 5,3,1 5,3,1,6 5,3,4,1 
SFS(rpart) 5,3,6,2 5,3,2 5,3,2 
Relief 6,3,4 4,2,5,3 2,4,3 

There are differences between the subset of   
features selected by the four methods.  Finally in 
table 9 the misclassification error rates of the 
three classifiers after feature selection and for 
the three type of samples.  

Table 9.  Misclassification error rate after 
feature selection in Bupa for the three types of 
samples 

 Original 
Sample 

Deleting 
outliers   

Deleting a 
random 
subsample  

LDA  34.94 26.72 35.62 
knn(k=7)  36.53 30.65 40.99 
Rpart  37.47 32.48 39.78 

Notice that the lower misclassification errors are 
obtained for a sample where the feature selection 
is performed after deleting outliers. 

An alternative to deleting outliers is treating  
them as  missing values. Some people prefer the 
latter because it avoids the loss of sample size 
but other people do not like it too much because 



 

it can create bias in the estimation. In this paper 
we have not experimented with this option. 

6. Conclusions 
 
In this paper we have used several methods for 
outlier detection.  We can not recommend a 
unique method to detect outliers because some 
methods are efficient for detecting certain types 
of outliers but fail  to detect others. On the other 
hand, our experimental results evidence the 
effect of the deletion of outliers on the 
performance of classifiers.  The LDA and K-nn 
classifiers seem to be more affected by the 
presence of outliers than the Rpart classifier. On 
the other hand, the presence of outliers shows 
some effect on feature selection but this effect 
does not seem to be as evident as is in the 
estimation of the misclassification error rate. 
In a future work we are planning to include more 
outlier detection methods and to consider larger 
datasets. 
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