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Abstract 
 
An outlier is an observation that deviates so much from other observations as to arouse suspicion that 
it was generated by a different mechanism (Hawkins, 1980). Outlier detection has many applications, 
such as data cleaning, Fraud detection and network intrusion. The existence of outliers can indicate 
individuals or groups that have behavior very different to the most of the individuals of the dataset.  
Frequently,  outliers are removed to improve accuracy of the estimators. But sometimes the presence 
of  an outlier has a certain meaning which explanation can  be lost if  the outlier is deleted. 
In this work we  compare detection outlier techniques based on  statistical measures, clustering 
methods and data mining methods. In particular we  compare detection of outliers using robust 
estimators  of the center and the covariance matrix  used in the Mahalanobis distance, detection of 
outliers using partitioning around  medoids (PAM), and two data mining techniques to detect outliers: 
The Bay’s algorithm for distance-based outliers (Bay, 2003) y the LOF a  density-based local outlier 
algorithm (Breunig et al., 2000).  A  decision on  doubtful outliers is taken by looking  into two 
visualization techniques for high dimensional data: The parallel coordinate plot and the surveyplot.  
The comparison is carried out  in 15 datasets. 
 

1 Introduction. 
According to Hawkins (1980),  “An outlier is an observation that deviates so much from other 

observations as to arouse suspicion that it was generated by a different mechanism”. Almost all the 

studies that consider outlier identification as their primary objective are in the field of statistics. A 

comprehensive treatment of outliers appears in Barnet and Lewis (1994). They  provide a list of about 

100 discordancy tests for detecting outliers in data following well known distributions. The choice of 

an appropriate discordancy test depends on:    

a) the distribution,  

b) the knowledge of the distribution parameters,  

c) the number of expected outliers, and  

d) the type of expected outliers.  

These methods have two main drawbacks. First, almost all of them are for univariate data making 

them unsuitable for multidimensional datasets. Second, all of them are distribution-based, and most of 

the time the data distribution is unknown. Real-world  data most of the time is multivariate with  

unknown distribution.  
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Detecting outliers, instances in a database with unusual properties, is an important data 

mining task. People in the data mining community got interested in outliers after Knorr and Ng  

(1998) proposed a non-parametric approach to outlier detection based on the distance of a instance to 

its nearest neighbors.  Outlier detection has many application among them: Fraud detection and 

network intrusion, and  data cleaning. Frequently,  outliers are removed to improve accuracy of the 

estimators. However, this practice is not recommendable  because sometimes outliers can have very 

useful information. The presence  of outliers can indicate individuals or groups that have behavior 

very different  of a normal situation. 

The section 2  of this paper includes a brief  discussion of  treatment of outliers for univariate data. 

The section 3  focuses in  methods for detection of multivariate outliers. Four methods of outlier 

detection are considered: a method based on robust estimation of the Mahalanobis distance, a method 

based on the PAM algorithm for clustering, a distance-based method and a  density-based method. 

The last section of this chapter covers the effect and treatment of outliers in supervised classification.  

 

2.  Univariate Outliers 

 

Given a data set  of  n observations  of a variable x. Let  x be the mean and let s be standard deviation 

of de data distribution .  One observation of the data set is declared as an outlier if lies outside of the 

interval 

),( ksxksx +−                 (1) 

where  the value of  k is usually taking as 2 or 3. The justification of these values relies in the fact the 

assuming normal distribution one expects to have a 95% percent of the data on the interval centered 

in the mean with a radius equals to two standard deviation. Also one expects to have the whole data 

inside an interval  centered at the mean and three standard deviation as radius. 

From   equation (1), the observation x  is considered an outlier is  

k
s

xx >− ||
                (2) 

The problem with the above criteria is that  assumes normal distribution of the data 

something that frequently does not occur. Furthermore, the mean and standard deviation are highly 

sensitive to outliers.  
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John  Tukey  (1977) introduced  several methods for exploratory data analysis, one of them 

was the Boxplot. The Boxplot  is a graphical display where the outliers appear  tagged.  Two types of 

outliers are distinguished: mild outliers and extreme outliers.  

An observation x is declared  an extreme outlier if lies outside of the interval (Q1-3×IQR, Q3+3×IQR). 

Notice that the center of the interval is (Q1+Q3)/2  and its radius is 3.5×IQR, where IQR=Q3-Q1 , 

called the Interquartile Range, is a robust estimator of variability which can replace s in  equation (2).  

On the other hand  (Q1+Q3)/2 is a robust estimator of the center that can be used instead of x in 

equation (1).   

An observation x is declared a mild outlier is lies outside of the interval (Q1-1.5I×QR, Q3+1.5×IQR). 

The interval has a center at (Q1+Q3)/2  and its radius is 2×IQR.  

The numbers 1.5 and 3 are chosen by comparison with a normal distribution. All the major statistical 

software include boxplots among their graphical displays.  

The following figures show the outliers of the features in the three classes of the dataset Iris detected 

through their boxplot 

 
Figure 1. Outliers of the features in class 1 of  the Iris data set  
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Figure 2. Outliers of the features in class 2 of  the Iris data set 

 
Figure 3. Outliers of the features in class 3 of  the Iris data set. 
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3. Multivariate Outliers 

 

Let us consider a data set D with p features and n instances. In a supervised classification context we 

must know also the classes where each of the instances belongs to. It is very common include the 

classes as the last column of the data matrix. The objective is to detect all the instances that seems to 

be unusual, these will be the multivariate outliers. One  might think that multivariate outliers can be 

detected based on the univariate outliers on each feature but as it is shown in the figure 4 this is not 

true. The instance appearing in the upper right corner is a multivariate outlier but it is not an outlier in 

each feature. On the other hand, an instance can have values that are outliers in several features but 

the whole instance might be  not a multivariate outlier. 

There are several methods to detect multivariate outlier. The methods discussed in this paper are: 

statistical-based outlier detection, outlier detection by clustering, distance-based outlier detection and 

density-based local outlier detection. The before mentioned methods are discussed in the next 

sections.  

 

3.1. Statistical based outlier detection. 

 

Let x be an observation of  a multivariate data set consisting of n observations and p features. Let x  

be the centroid of the dataset, which is a p-dimensional vector with the means of each feature as 

components. Let X be the matrix of the original dataset with  columns centered by their means. Then 

the p×p matrix  S=1/(n-1) X’X represents the covariance matrix of the p features. 

The multivariate version of equation (2) is 

 

                                   kD >−−= − )x(x)Sx(xxx, 1)(2     (3) 

 

where D2 is called the Mahalanobis square distance from x to the centroid of the dataset.  An 

observation with a large Mahalanobis distance can be considered as an outlier. 

Assuming that the data follows a multivariate normal distribution then it has been shown that the 

distribution of the Mahalanobis distance behaves as a Chi-Square distribution for a large number of 

instances. Therefore the proposed cutoff  point in (3) is given by  k= 2
)1,( αχ −p  , where χ2  stands for the 

Chi-Square distribution and α is a signification level usually taken as .05.  
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Figure 4.  Example of a bidimensional outlier that is not an outlier in neither of its projections.  

 

A basic method to detect  multivariate outliers is by looking  for the outliers that appear in  the 

boxplot of the distribution of the Mahalanobis distance of  the all instances as it is shown in the 

following example. 

Example 1.  Find out the multivariate outliers in each of the classes of the dataset Iris by building 

boxplots. 

Notice that only two outliers (119 and 132) are detected in class 3. People in the data mining 

community prefers to rank the instances using an outlyngness measures rather to classify the 

instances in outliers and non-outliers. Rocke and Woodruff (1996) stated   the Mahalanobis  distance 

works well identifying scattered outliers. However in data with clustered outliers the Mahalanobis 

distance measures does not perform well detecting outliers.  Data sets with multiple outliers or 

clusters of outliers are subject to the masking and swamping effects.  
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Figure 5. Detecting multivariate outliers by boxplots in the  Iris dataset   

 

Masking effect. It is said that an outlier masks a second one close by if the latter can be considered 

outlier by himself, but no any more if it is considered along with the first one. Equivalently after the 

deletion of one outlier other instance  may emerge as an outlier. 

Masking occurs when a group of outlying points skews the mean and covariance estimates toward it, 

and the resulting distance of the outlying point from the mean is small.  

Swamping effect.  It is said that an outlier swamps other instance if the latter can be considered 

outlier only under the presence of  the first one. In other words after the deletion of one outlier other 

outlier may become a “good” instance. Swamping occurs when a group of outlying instances skews 

the mean and covariance estimates toward it and away from other “good”  instances, and the resulting 

distance from these  “good”  points to the mean is large making them look like outliers. 
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Example 2.  Consider the  data set due to Hawkins, Bradu, and Kass (Rousseuw and Leroy, 1987) 

consisting of 75 instances and 3 features,   were the first fourteen instances had been contaminated to 

be outliers.  

Using the Mahalanobis distance only the observation 14 is detected as an outlier as is shown in Figure 

6. The remaining 13 outliers appear to be masked. 

 
Figure 6: The Masking effect of  multivariate outliers in the Hawkins data set 

 

The masking and swamping can be solved by using robust estimates of the centroid (location) and the 

covariance matrix (shape), which by definition are less affected by outliers. 

Outlying points are less likely to enter into the calculation of the robust statistics, so they will not be 

able to influence the parameters used in the Mahalanobis distance.  Some robust estimators of the 

centroid and the covariance matrix  include the minimum covariance determinant (MCD) and the 

minimum volume ellipsoid (MVE) both of them introduced by  Rousseeuw (1985).  

 

Minimum Volume Elipsoid (MVE) estimator is the center and the covariance of  a subsample size  h 

(h ≤ n) that minimizes the volume of  the covariance matrix associated to the subsample. Formally,  
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MVE=( * *,J JSx ) ,     (4) 

 

where J={set of  h instances: * *( ) ( )J KVol S Vol S≤  for all K s. t . #(K)= h}. 

 

The value of h can be thought as the minimum number of instances which must not be outlying and 

usually h=[(n+p+1)/2], where [.] is the greatest integer function.   

 

Minimun Covariance Determinant (MCD) estimator is  the center and the covariance of a subsample 

of size  h (h ≤ n)  that minimizes the  determinant of the covariance matrix associate to the subsample. 

Formally, 

 

MCD=( * *,J JSx ) ,           (5) 

where J={set of  h instances: * *| | | |J KS S≤  for all K s. t . #(K)= h} 

 

As before,  it is common to take h=[(n+p+1)/2], where [.] is the greatest integer function.   

 

The MCD estimator underestimates the scale of the covariance matrix, so the robust distances are 

slightly too large, and too many instances tend to be nominated as outliers. A scale-correction has 

been implemented, and it seems to work well. The algorithms to compute the MVE and MCD 

estimators are based in combinatorial arguments (for more details see Rousseeuw and Leroy, 1987). 

In this paper both estimators, MVE and MCD, have been computed using  function cov.rob available 

in the package lqs of R. This function uses the best algorithms available so far to computed both 

estimators.  

Taking in account their statistical and computational efficiency, the MCD is preferred over the MVE. 

Replacing the classical estimators of the center and the covariance in the usual Mahalanobis distance, 

equation (3), by either the MVE or MCD estimator, outlying instances will not skew the estimates 

and can be identified as outliers by large values of the Mahalanobis distance. The most common 

cutoff point k is again the one based in a Ch-Square distribution, although Hardim and Rocke (2004) 

propose a cutoff point based on the F distribution that they claim to be a better one.  

In this paper, two strategies to detect  outliers using robust estimators of the Mahalanobis distances 

have been used: First,  choose a given number of  instances  appearing at the top of  a ranking based 
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on their robust Mahalanobis measure.  Second,  choose as a multivariate outliers the instances that are 

tagged as  outliers in the Boxplot of the distribution of these robust Mahalanobis distance. 

 

Example 3.  Find out the multivariate outliers in each of the classes of the Iris dataset  by building 

boxplots for the distribution of the robust version of the Mahalanobis distance. 

Using the robout function written in R (see appendix) and considering 10 repetitions the results 

appearing  in the following tables have been obtained. 

 

Table 1. Top outliers per class in the Iris dataset by frequency and the outlyingness measure using the 

MVE estimator 

Instance class Frequency Outlyingness 

44 1 8 5.771107 

42 1 8 5.703519 

69 2 9 5.789996 

119 3 8 5.246318 

132 3 6 4.646023 

 

 

Table 2. Top outliers in class 1 by frequency and the outlyingness measure using the MCD estimator 

Instance Class Frequency Outlyingness 

44 1 10 6.557470 

24 1 10 5.960466 

69 2 10 6.224652  

119 3 10 5.390844 

132 3 7 4.393585 

 

Notice that both methods detect two outliers in the first class, but the MVE method detects the 

instance 42 as a second outlier whereas the MCD method detects the instance 24. All the remaining 

outliers  detected by both method are the same. Three more outliers are detected in comparison with 

the use of the Mahalanobis distance.  

 

The figure 7 shows a plot of the ranking of the instances in class 3 of Iris by their robust Mahalanobis 

distance using the MVE estimator. 
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Figure 7. Plot of the instances ranked by their Mahalanobis distance using MVE estimator 

 

The Figure 8 shows a plot of the ranking of the instances in class 3 of Iris by their robust  

Mahalanobis distance using the  MCD estimator. According to Rocke (2002) Robust methods work 

well detecting  scattered outliers but fail to detect  clustered outliers. For this type of outlier is better 

to use a clustering algorithm as will be discussed in the next section. 

 

3.2. Detection of  outliers using clustering 

A clustering technique can be used to detect outliers. Scattered outliers will form a cluster of 

size 1 and clusters of small size can be considered as clustered outliers.  There are a large 

number of clustering techniques. In this paper only  the Partitioning around Medoids (PAM) 

method  will be considered. PAM was introduced by Kaufman and Rousseeuw (1990) uses 

k-clustering on medoids to identify clusters. It works efficiently on small data sets, but is 

extremely costly for larger ones. This led to the development of CLARA 
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Figure 8. Plot of the instances ranked by their Mahalanobis distance using MCD estimator 

 

 (Clustering Large Applications) (Kauffman and Rousseuw,  1990) where  multiple samples 

of the data set are generated , and then  PAM it is applied to the sample. CLARA chooses the 

best clustering as the output, basing quality on the similarity and dissimilarity of objects in 

the entire set, not just the samples. A modification of CLARA that is applied to very large 

datasets is  CLARANS (Ng and Han, 1994).    

Given k, the number of partitions to construct, a partitioning method creates an initial partitioning. It 

then uses an iterative relocation technique that attempts to improve the partitioning by moving 

instances from one group to another. The general criterion of good partitioning is that instances in the 

same cluster are 'close' or related to each other, whereas instances of different clusters are 'far apart' or 

very different. 

In order to find k clusters, PAM’s approach is to determine a representative instance for each cluster. 

This representative instance called medoid, is meant to be the most centrally located instance within 

the cluster. More specifically, a  medoid can be defined as that instance of a cluster, whose 



 13 

average dissimilarity to all the objects in the cluster is minimal. After finding the set of 

medoids, each object of the data set is assigned to the nearest medoid.   

If Oj is a non selected instance and Oi is a selected medoid, we say  that Oj belongs to cluster 

represented by Oi  if d(Oi,Oj) = minOe d(Oj,Oe) where  the minimum is taken over all medoids Oe, and 

d(Oa,Ob) denotes the dissimilarity or distance between instances Oa and Ob. 

The algorithm  PAM  consists of   two steps: 
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ii) The  SWAP-step: If the objective function  J = Σ d(i, mvi), which is the sum of the 

dissimilarities of all instances  to their nearest medoid mv can be reduced by interchanging 

(swapping) a selected object with an unselected object, then the swap is carried out. This is 

continued until the objective function J can no longer be decreased.  

There are  k(n-k) possible pairs of (Oi ,Oh). For each pair computing  J requires the examination of (n-

k) non-selected instances. Thus the combined complexity is: O(k(n-k)2). Hence PAM becomes too 

costly for large values of n and k. 

 

PAM is very robust to the presence  of outliers and do not depend on the order in which 

instances are examined. 

After the allocation of the instances to the k clusters, one must determine the separation 

between them. The separation of  the cluster C is defined as the smallest dissimilarity 

between two objects; one of which belong to Cluster C and the other does not. 

SeparationC = min dlh, l C, h C  

If the separation of a outlier is large enough then it is considered all the instances that belong 

to the cluster are considered outliers. In order to detect the clustered outliers one must vary 

the number k of clusters until obtain clusters of small size and with a large separation from 

others clusters.  

The algorithm  PAM can be  evaluated using the function pam available in the library cluster in R. 
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Example 4: Find out the outliers of the Iris dataset  using the PAM  algorithm. 

Looking at  the separation measures of ten clusters generated for each class,  the detected  outliers are 

shown in the table 3.  

 

Table 3. Outliers in the Iris dataset according to the PAM algorithm 

Instance Class Separation 

42 1 0.6244998 

58 2 0.6480741 

61 2 0.6480741 

94 2 0.6480741 

99 2 0.6480741 

107 3 0.9110434 

118 3 0.8185353 

132 3 0.8185353 

 

Notice that in the class 3, PAM detects the instance number 107 as an outlier but it does not detect the 

instance 119. 

 

3.3. Distance based outlier detection 

 

Given a distance measure on a feature space, two different definitions of distance-based outliers are 

the following. 

1.  An instance x in a dataset D is an outlier with parameters p and λ if at least a fraction p of the 

objects are a distance greater λ from x. (Knorr and Ng, 1997, 1998, Knorr et al. 2000). This definition 

has certain difficulties such as the determination of  λ and the lack of a ranking for the outliers. Thus 

an instance with very few neighbors within a distance λ can be regarded as  stronger outlier as a  an 

instance with more neighbors within a distance λ. Furthermore,  the time complexity of the algorithm 

is O(kn2), where k is the number of features and n is the number of instances. Hence it is not an 

adequate definition to use with datasets having a large number of  instances.  
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2. Given the integer numbers k and n (k<n). Outliers are the top n instances with the largest 

distance to their k-th nearest neighbor. (Ramaswamy et al., 2000). One shortcoming of this  

definition is that only considers the distance to the k-th neighbor and ignores information 

about closer points. An alternative is to use the average distance to the k nearest neighbors is 

greatest. The drawback of this alternative is that it takes longer to be  calculated. 

 

In this paper a variant of  one recently algorithm (Bay and Schwabacher, 2003)  for distance-based 

outliers detection has been used. 

 

The Bay’s Algorithm.  

Bay and Schwabacher (2003) proposed a simple nested loop algorithm that tries to conceal definitions 

1 amd 2 . It gives linear time performance when the data is in random order and a simple pruning rule 

is used. The performance of the algorithm in the worst case is of  quadratic order. The algorithm is 

described in Figure 9. 

The main idea in the algorithm is that for each instance in D one keeps track of the closest neighbors 

found so far. When an instance’s closest neighbors achieve a score  lower than a cutoff then the 

instance is removed because it can no longer be an outlier. In this paper the score function used has 

been the median distance to the k neighbors. Bay used  the average distance to the k neighbors, but 

the median is more robust than the mean. As more instances are processed the algorithm finds more 

extreme outliers and the cutoff increases along with pruning efficiency. 

Bay and Schwabacher showed experimentally that the Bay’s algorithm is linear with respect to the 

number of neighbors and that is almost linear with respect to the number  of instances. Using 6 

datasets they found a complexity of order O(nα) where  α varied from 1.13 to 1.32.  In this paper 

working with   three datasets Ionosfera, Vehicle and Diabetes an  α value near to 1.5 has been 

obtained. 

A  bayout function (see appendix) has been written in R  language to perform Bay’s algorithm. 

 

Example 5.  Find out the outliers of the class 3 in the Iris dataset using the Bay’s algorithm. 

Using the bayout function   the top 20 outliers are shown in Figure  10. 

Clearly the instance 107 is detected as an outlier. There is a second group that includes 119, 

120,132,123 and 118. 
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Input: k: number of  nearest neighbors; n: number of outliers to return; D: dataset randomly ordered, 

BS: size of blocks in which D is divided. 

Let distance(x,y) return the Euclidean distance between x and y. 

Let maxdist(x,Y) return the maximum distance between the instance x and the set of instances Y. 

Let Closest(x,Y,k) return the k closest instances in Y to x.  

Let score(x) return median distance to the k neighbors 

Begin 

c← 0 Set the cutoff for pruning to 0. 

O←φ Initializate the set of outliers as the empty set. 

NB←ceiling(# instances in D/BS) 

       While nb<NB { 

        Neighbors(b)←φ for all b in B(nb) 

        For each d in D { 

               For each b in B, b≠d{ 

                       If |Neigbors(b)|<k or distance(b,d)<maxdist(b,Neighbors(b)){ 

                            Neighbors(b) ←Closest(b,Neighbors(b)Ud,k) 

                   If(score(Neighbors(b),b)<c{ 

                    Remove b from B(nb) 

                    }}}} 

      O←Top(B(nb) ∪ O, n)  ; Keep only the top n outliers 

      c←min(score(o)) for all in O ; The cutoff is the score of the weakest outlier 

} 

end 

Output: O, a set of outliers 

 

Figure 9.  Bay’s Algorithm for finding distance-based outliers 
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Figure 10. Instances of the class 3 in Iris dataset ranked by the Bay’s algorithm outlyingness measure  

 

3.4. Density-based local outliers. 

 

In this type of outliers the density of the neighbors of a given instance plays a key role. Furthermore 

an instance is not explicitly classified as either outlier or non-outlier instead for each instance a local 

outlier factor (LOF) is computed which  will give an indication of how strong an instance can be an 

outlier.  

The following figure taken from Breuning et al (2000) shows the weakness of the distance-based 

method which   identify as outlier  the instance o1, but does not consider o2 as an outlier.  
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Figure 11. Example to show the weakness of the distance-based method to detect outliers 

 

Several definitions are needed in order to formalize the algorithm   

Definition 1.  k-distance of an instance x 

For any positive integer k, the k-distance of an instance x, denoted by k-distance(x), is defined as the 

distance d(x,y) between x an instance y ε D such that: 

 

(i) for at least k instances y’ ε D-{x} it holds that d(x,y’) ≤ d(x,y) 

(ii) for at most k-1 instances y’ ε D-{x} it holds that d(x,y’) < d(x,y). 

 

Definition 2.  k-distance neighborhood of an instance x 

Given an instance x of a data set D its k-distance neighborhood  contains every instance whose 

distance from x is not greater than the k-distance. That is, the set of k-nearest neighbors of x is given 

by 

                   

Nk-distance(x)={y ε D-{x} s.t. d(x,y) ≤k-distance(x)}   (6) 

 

Definition 3. Reachability distance of an instance x w.r.t. instance y 

Let k be a positive integer number. The reachability distance of the instance x with respect to the 

instance y is defined as  

 

reach-distk(x,y)=max{k-distance(y),d(x,y)}  (7) 
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The density-based local algorithm to detect outliers requires only one parameter, MinPts, which is the 

number of  nearest neighbors used in defining the local neighborhood of the instance.  

Definition 4.  Local reachability density of an instance x 

Given an instance x of a dataset D its  local reachability density  is defined by 

 

}
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This is the inverse of the average reachability distance based on the MinPts-nearest neighbor de x. 

Finally the definition of the outlyingness measure is given below. 

Definition 5. Local outlier factor (LOF) of an instance x 

 

}
|)(|

)(
)(

/{1)(
)(

xN

xlrd
ylrd

xLOF
MinPts

xNy MinPts

MinPts

MinPts
MinPts

�
∈=   (9) 

 

The LOF  measures the degree to which an instance x can be considered as  an outlier. Breunig et al 

show that for instances deep inside  a cluster their LOF’s are close to 1 and should not be labeled as a 

local outlier. Since LOF is not monotonic, Breuing et al recommended  to find the LOF for each 

instance of the datasets using MinPts-nearest neighbor, where MinPts assumes a range of values from 

MinPtsLB to MinPtsUB. They suggest MINPtsLB=10 and MinPtsUB=30. In this paper the default 

value of MinPtsUB was chosen to be 20. Having determined MInPtsLB and MinPtsUB, the LOF  of 

each instance is computed within this range. Finally all the instances are ranked with respect to the 

maximum LOF value within the specified range. That is, the ranking of an instance x is based on: 

               

Max{LOFMinPts(x) s.t.  MinPtsLB≤MinPts≤MinPtsUB} (10) 

 

A  maxlof function (see appendix) has been written in R  language to perform the LOF algorithm. 

The LOF algorithm is shown in figure 12. 

Breunig et al. states that the time complexity of the LOF depends of the dimensionality of the data. 

For low dimensionality data (no more than 5 features) the complexity is O(n),for medium 

dimensionality data ( between 5 and 10 features) the complexity is O(nlogn) and for very high 
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dimensional data the complexity is O(n2). Using the Ionosfera dataset, which has 32 features, the  

time complexity estimated was  O(n1.95). 

 

Input: Dataset D, MinptsLB, MinptsUB 

Maxlofevct=φ 

For each   i in the interval [MinPtsLB, MinPtsUB] 

{ 

1. Find the i nearest neighbors and their distance from each observation in D 

2. Calculate the local reachability density for each observation in D 

3. Compute the lof of each observation in D 

4. Maxlofvect=max(maxlofvect, lof) 

  } 

end 

Ouput: Maxlofvect 

 

Figure 12. The LOF Algorithm 

 

Example 6.  Find out the outliers of the class 3 in the Iris dataset using the LOF algorithm. 

Using the maxlof  function the top 10 outliers are shown in Figure 13. Clearly the instance 107 is 

detected as an outlier. There is a second group that includes 119, 118,132 and 123. After that it comes 

instance 106. 

 

4. Effect and treatment of outlier in supervised  classification. 

In the literature  is frequently mentioned  that the presence of outliers affects the performance 

of a classifiers, but there are few studies verifying such claim. This is not the case in a regression 

context where are a large number of studies showing the effect of outliers in regression problems   

Two main aspects in supervised classification are feature selection and the misclassification error rate. 

In this paper an evaluation of the effect  of outliers in the those aspects is considered.  
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Figure 13. Instances of the class 3 in the Iris dataset ranked by the LOF’s algorithm outlygness measure  

 

The Bupa dataset , which have 345 instances, 6 features and 2 classes will be used to show 

the effect of outliers. 

Example 7. Use the Bupa dataset to show the effect of outliers in feature selection and the estimation 

of the misclassification error rate. 

Using all the criteria described in the previous section and with the help of a parallel coordinate plot 

to decide about the doubtful outliers the following outliers have been detected in the Bupa dataset.   

Outliers in class 1: (22) 

168 175 182 190 205 316 317 335 345 148 183 261 311  25 167 189 312 326 343 

313  20  22 

Outliers in class 2   (26) 

 [1]  36  77  85 115 134 179 233 300 323 331 342 111 139 252 294 307 123 186 286 

[20]   2 133 157 187 224 278 337 
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In Table 4 the misclassification  error of  three classifiers: LDA, knn and rpart had been computed 

based on: the original sample, the original sample without outliers and the original sample extracting 

from her a random sample of size equal to the number of outliers.  

 

Table 4. The misclassification error rate for the LDA, knn and rpart classifiers using three different 

type of samples 

 

 Original  Sample Original sample 

without outliers 

Original Simple minus a 

random sub-sample 

LDA 31.82 26.23 31.17 

Knn(k=7) 31.55 27.65 32.26 

Rpart 31.86 33.24 35.07 

 

Notice that LDA and knn are the most affected classifiers and the least affected classifier has been the 

Rpart. The later makes sense since it is well known that Rpart  is a classifier that  is robust to outliers. 

Table 5 shows the feature selected using the three type of samples described before. The feature 

selected methods uses here are the sequential forward selection (SFS) with the three classifiers used 

in table 4 and the Relief 

 

Table:5. Features selected using SFS and Relief for the three type of samples 

 Original Sample Original sample 

without outliers 

Original sample minus a 

random sub-sample 

SFS(lda) 5,4,3,6 5,3,4 5,4,3,6 

SFS(knn) 5,3,1 5,3,1,6 5,3,4,1 

SFS(rpart) 5,3,6,2 5,3,2 5,3,2 

Relief 6,3,4 4,2,5,3 2,4,3 

  

There are differences between the subset of   features selected by  the four methods.  Finally in table 6 

the misclassification error rates  of the three classifiers after feature selection and for the three type of 

samples.  
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Table 6.  Misclassification error rate after feature selection for the three type of samples 

 Original Sample Original sample 

without outliers  

Original sample minus a 

random subsample 

LDA  34.94 26.72 35.62 

knn(k=7)  36.53 30.65 40.99 

Rpart  37.47 32.48 39.78 

 

Notice that the lower misclassification error are obtained for a sample where the feature selection is 

performed after eliminating outliers. 

Another option to delete outliers  is to treat them as  missing values. Some people prefer the latter 

because avoid the loss of sample size but other people does not like it too much because it can create 

bias on the estimation. 
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