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Abstract

A lot of research is being conducted on combining classification rules (classifiers) to produce a
single one, known as an ensemble, which in general is more accurate than the individual classifiers
making up the ensemble. Two popular methods for creating ensembles are  Bagging introduced by
Breiman, (1996) and, AdaBoosting by Freund and  Schapire (1996). These methods rely on resampling
techniques to obtain different training sets for each of the classifiers. Previous work has demonstrated
that combining techniques are very effective for unstable classifiers, such as decision trees, neural
networks and naive Bayes. In this paper we present some results in application of Bagging to
classifiers where the class conditional density is estimated using Kernel density estimators.
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1.     Introduction

 Many researches have investigated the technique of combining the predictions of
multiple classifiers to produce a single classifier: Wolpert (1992), Breiman (1996, 1998),
Quinlan (1996), Freund and Schapire (1996), Maclin and Optiz (1997), Bauer and Kohavi
(1999), etc. The resulting classifier, also known as an ensemble, is generally more accurate
than the individual classifiers making up the ensemble. Three popular methods for creating
ensembles are: Bagging (Bootstrap aggregating) introduced by Breiman, (1996), AdaBoosting
by Freund and Schapire (1996) and Arcing (Adaptively resampling and combining) by
Breiman (1998). These methods rely on resampling techniques to obtain different training sets
for each of the classifiers. Stacking (Wolpert, 1992) is another method to combine classifiers
but it does not use resampling, in this case the learning data set is divided in v parts similar to
v-fold cross validation and then a classifier is estimated in each of the part. The stacked
classifier is a linear combination of the single classifiers.

Breiman (1996) heuristically defines a classifier as unstable if a small change in the
learning data L can make large changes in the classification. Unstable classifiers have low
bias but high variance, meanwhile the opposite occurs for stable classifiers. CART and neural
networks  are not stable classifiers, linear discriminant  analysis and K-nearest neighbor
classifiers are stable. It is expected a reduction of the bias and variance after the classifiers are
combined.



Table 1. Results of previous experiments in Bagging

Reference Classifier Relative Error
Reduction (%)

# of datasets
(w-l-t)

Breiman (1996) CART 29.0 7 (7-0)

Freund & Schapire (1996) C4.5 20.0 27(22-2-3)

Quinlan (1996) C4.5 10.0 27(24-3)

Maclin & Opitz (1997) C4.5 18.5 23(21-1-1)

Maclin & Opitz (1997) Neural Nets 13.3 23(22-0-2)

Breiman (1998) CART 36.0 11(11-0)

Bauer & Kohavi (1999) MC4 14.5 14(14-0)

Table 2. Results of previous experiments with Adaboosting

Reference Classifier Relative Error
Reduction (%)

# of datasets
(w-l-t)

Freund & Schapire (1996) C4.5 24.8 27(22-4-1)

Quinlan (1996) C4.5 15.0 27(21-6)

Maclin & Opitz (1997) C4.5 22.0 23(21-2)

Maclin & Opitz (1997) Neural Nets 17.1 23(19-4)

Breiman (1998) CART 48.4 11(10-1)

Bauer & Kohavi (1999) MC4 27.0 14(10-4)

Bagging and Adaboosting are very effective for unstable classifiers such as decision
trees: CART, C4.5 and MC4 (see Breiman (B96, B98), Quinlan (Q96), Freund and Schapire
(FS96), Bauer and Kohavi (BK99)) and neural networks (see Maclin and Optiz (MacO97)). A
summary of these results is shown in table 1. Adaboosting  applying to decision trees and
Naïve-Bayes performs generally better that Bagging, but not uniformly better, sometimes they
degraded compared to the single classifier. The same conclusions were obtained for neural
networks classifiers  (MacO97). In table 2 appears a summary of previous results in
adaboosting. When tree classifiers are used, Bagging mainly reduces the variance, whereas
boosting reduces, both the bias and the variance (B98 and BK99).Bagging can be easily be
implemented in parallel, but Adaboosting are essentially sequential and parallelized versions
have not been implemented so far (BK99).

In the table 3, we show the misclassification errors of applying combining techniques
to the 10 datasets used in this paper, they are described later in section 3. Note that in 2 of
these datasets: Vehicle and Iris the best single classifier beats the combining techniques. In the



breastw dataset the improvement is minimum and the remaining 7 the combining techniques
do a good job.

Table 3. Comparison of results of experiments on Bagging, Boosting and Arcing with the best
single classifier for the  datasets used in this paper

Dataset Q96
C4.5

FS96
C4.5

Mac097
C4.5

B96
CART

B98
CART

Mac0Nnet Best  Single
Classifier

Iris 5.13b 5.0ab 4.6b NA NA 2.9x 2.0 LDA
Sonar 19.62a 19.0a 19.7a NA NA 12.5a 15.5 1-NN
Glass 23.55a 22.7a 28.4b 24.9b 21.6x 31.5x 23.8 1-NN
Heart-c 21.39a 20.9b 17.4a NA NA 16.7b 18.2 NN
Ionosphere NA 5.8a 6.0ab 8.6b 6.3x 7.0x 8.1 C4.5
Breast-w 4.09a 3.2b 3.1a 4.2b 3.2a 3.2x 3.3 NN
Diabetes1 23.63b 24.4b 21.9b 18.8b 23.9b 22.8a 22.3 Log
Vehicle1 22.72a 22.6a 24.8a NA NA 19.5a 15.0 Qdisc
German1 25.81b 24.6b 22.8b NA NA 24.3b 28.3 NN
Segment1 1.87a 1.4a 2.3a NA NA 3.7x 3.0 Ker

1: Statlog Project                  LDA: Linear discriminant analysis            NN: Neural Network
b: bagging                             1-NN 1-Nearest neighbour                         Ker: Kernel classifier
a: Adaboosting                      Log Logistic regression
x: Arcing                               Qdisc: Quadratic discrimination

2.     Classifiers based on Kernel Density estimators

     From a Bayesian point of view, supervised classification  is equivalent to compare
estimates of the probabilities of belonging to each class with each other, assigning an object
with measurement vector x to the class with the largest f̂ (j/x), j=1,2… .J. In order to obtain
such estimates, one can estimate them indirectly via the class conditional density f(x/j) using
the Bayes' theorem. Kernel density estimators can be used to carry out that task. For a given
class j and a random sample X1,X2,… ..Xn of  the p-dimensional random vector X with
continuos components, the  product kernel of the class conditional density at the point x is
given by
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where the kernel K will be usually a radially symmetric unimodal density function, for
instance the multivariate normal density, and hv represents the bandwidth of the v-th predictor.
There are several approaches to select the optimal bandwidth.

In the Statlog Project (Michie, et. al. 1994), where 23 classifiers are compared in 22
datasets, classifiers based on kernel density estimators (ALLOC80) performed better than
CART (a 13-8 victory) and tied with C4.5 (11-11). However, ALLOC80 appeared as the top 5
classifier for 11 datasets whereas C4.5 and CART appeared only for 5 and 3 datasets
respectively. Classifiers based on kernel density estimation are unstable due to singularities



presented in the log-likelihood function, and to the effect of outliers in the selection of the
bandwidth.

In this paper we have used kernel density estimation with both fixed  and adaptive
bandwidth. The fixed bandwidth is originated by assuming that the class conditional density is
a multivariate normal (see Silverman, p86). This is, )4/(1))2(/4( ++= p

opt pnh , where p is the
number of predictors and n is the number of instances. In the adaptive kernel, the bandwidth
varies from one point to another, and its value will depend on the concentration level of  data
in the neighborhood  of the point . The basic idea of this approach is to combine the standard
kernel density estimation with the nearest neighbor approach (for more details see Silverman,
p101).

We have also considered kernel density estimators for categorical predictors: binary,
nominal and ordinal predictors In the first case we have followed the proposal presented in
Aitchison and Aitken’s paper. That is, given n p-dimensional sample data points xj the kernel
density estimate of f at the point x is given by
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corresponding components of x and xj. The smoothing parameter h has to be estimated,
usually by crossvalidation. In 1980, Titterington gave a explicit formula for h and in addition
he considered also kernel density estimates for nominal and ordinal variables. A kernel
density estimator for a categorical variable X with k values and vector of sample proportions r
can be written as r')(̂ Cxf = , where C=I+(1-h)G is a square matrix of order k, and G is a
matrix such that Gii=-1, G1’=0 and Gij>0 for i≠ j. El smoothing parameter h is estimated by
minimizing the mean squared error and, is given by
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where V=n-1(Λ-rr’) and Λ=diag(r1,… .rk).

In the multivariate case if our vector of predictors x can be decomposed as x=(x(1),x(2)),
where x(1) contains the p1 categorical predictors and x(2) includes the p2 continuous predictors,
then a mixed product kernel density estimator will be given by
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the kernel density estimator of the vector x(2) of continuous predictors.



3. Experimental Methodology

We chose 10 datasets coming from the Machine Learning Database at University of
California Irvine (UCI) to evaluate  the effect of combining KDE classifiers considering
mixed type of predictors: continuous and categorical and fixed as well as adaptive
bandwidths. Next we describe briefly each of these datasets.
Iris (iris): It contains  150 instances, 4 continuous features and 3 classes of Iris: Setosa,
Versicolor and Virginica There exists multivariate normality of the predictors in the three
classes. There is not high correlation among the predictors in each of the classes. The
predictors do not present outliers.
Sonar (sonar): It includes 208 instances, 60 continuous features  and two classes: metal and
rock. There is not multivariate normality in both classes. Few  predictors are highly correlated.
Forensic Glass (glass): 214 instances, 9 features and 6 classes. The feature 9 assume the
same value on the class 5 and it has been omitted, the feature 8 also assume one value in class
5 and few different values in other class and also has been deleted, the same happens with
feature 6 that assume the same value in class 5. There exists multivariate normality in three
classes and several predictors have normality on some classes.
Cleveland Heart disease (heartc): There are 303 instances,  13 features: continuous
(1,4,5,8,10), binary  (2, 6, and 9), nominal (3,11,13) and ordinal (7,12) and two classes. There
are 6 instances containing  missing values ( feature 12 has 5 missing and feature 13 has 2
missing)  hence only 297 instances were considered. There is not multivariate normality, but
there are some predictors where normality holds. The distribution of the predictors is quite
similar in  both classes and they have  outliers. The predictors in general are low correlated.
Ionosphere (Ionosphere): 351 instances, 34 continuous features and two classes: “Good” and
“Bad “ radar returns. The second feature was eliminated because assume the same value for
all instances. The first feature assumes the same value in one of the classes and was also
eliminated.  There is not multivariate normality in any of the classes. The predictors have
plenty of  outliers in the second class. The predictors in general are low correlated.
Wisconsin breast cancer (breastw): There are 699 instances, 9 continuous features and two
classes. There are 16 instances containing missing values (all of them in the feature 6)
therefore only 683 instances were considered.  There is not multivariate normality in any of
the classes. There is not high correlation among the predictors in each of the classes. The
distribution of the predictors is quite different between the classes.
Pima Indian diabetes (diabetes) It includes 768 instances, 8  continuous features and two
classes. There is not multivariate normality in any of the classes. The correlation coefficient
among all the pair of features  is low. The predictors have plenty of  outliers and in general are
low correlated. The distribution of the predictors is quite similar in both classes.
Vehicle Silhouettes (vehicle): 846 instances, 18 continuous features and 4 classes of vehicles.
There is not multivariate normality in any of the four classes. Some predictors  are highly
correlated  in all the classes. The distribution of the predictors is quite similar in  the four
classes and there are  outliers.
Credit German (german): It contains 1000 instances, 20 features: continuous
(2,5,8,11,13,16,18), binary (19 and 20), nominal (1,3,4,6,9,10,12,14,15,17) and ordinal (7)
and 2 classes of customers. There is not multivariate normality in both classes. The predictors
in general are low correlated. The distribution of the predictors looks somehow similar in both
classes and there are  outliers.
Segmentation (segment): It includes 2310 instances, 19  continuous features and 7 classes.
The third feature was eliminated because assumes the same value for all instances. Also



features 4 and 5 present only two or three different values in all the classes and they were
omitted. There is not multivariate normality in any of the 7 classes. Some predictors  are
highly correlated  in all the classes. The distribution of the predictors looks different in  the 7
classes and there are outliers.

For each dataset we have performed the following procedure: The dataset is randomly
divided in 10 parts,  the first one is taken as the test sample and the remaining is considered as
the learning sample. Next, 50 bootstrapped samples are taking from the learning sample and a
KDE classifier is constructed with each of them. Finally, each instance of the test sample is
assigned to a class by voting using the 50 classifiers previously constructed. The proportion of
instances incorrectly assigned will be the bagged misclassification error. We repeat the steps
considering now the second part as the test set and in this way we continue until the tenth part
is considered as the test set. The procedure is repeated 10 times. The misclassification error of
a single classifier is estimated by a 10-fold crossvalidation and averaged over 50 runs. The
bagged misclassification error is averaged on 100 repetitions.  We also computed the ratio of
the misclassification errors of the bagged classifier versus the single one. The
misclassification errors and the ratios are shown in the table 4. We have written a  S-Plus
program  to  carry out all our tasks. The program was tested in a DELL Workstation with a
dual Processor Pentium Xeon running at 933 Mhz.

Table 4. Comparison of misclassification error rates for single and bagged  KDE classifiers

Standard Kernel Adaptive KernelDataset
Single Bagged Ratio Single Bagged Ratio

Iris 3.59 3.66 1.01950 4.47 4.26 0.95302
Sonar 17.40 17.59 1.0109 16.37 15.70 0.95907
Glass 45.39 45.18 0.99537 35.46 35.51 0.99859
Heart 22.44 21.97 0.97906 21.43 20.97 0.97853
Heart* 23.30 21.88 0.93906 22.27 20.80 0.93399
Heart** 22.30 20.80 0.93274 21.70 20.10 0.92626
Ionosfera 10.93 10.48 0.95883 10.33 10.08 0.97579
Breastw 3.66 3.81 1.04098 3.94 3.80 0.96446
Diabetes 26.37 26.27 0.99621 26.29 25.95 0.98706
Vehicle 35.33 34.85 0.98641 36.88 34.16 0.92624
German 34.61 33.81 0.97688 35.06 33.74 0.96235
German* 30.0 27.28 0.90933 30.0 25.9 0.86330
German** 28.50 27.90 0.97438 28.24 25.58 0.90580
Segment 15.86 15.32 0.96595 13.34 13.31 0.99770

* Here only continuous and binary variables are considered
**Here all the predictors are considered as continuous.

The average of  the error reduction for the 10 datasets after Bagging using the standard
Kernel was 2.24% whereas for the adaptive Kernel was 4.77%. When C4.5 classifier was
bagged (Quinlan. 1997) the average error reduction for the same datasets was 8.83%. Notice
that we get improvement with the adaptive kernel although is very slight in  some datasets.



3.1   Bagging after Feature selection

To deal with the curse of dimensionality problem we perform feature selection. A
forward selection procedure was used and  repeated 10 times. First we select the single feature
that produces the highest classification rate using the classifier based on kernel density
estimator. Once that this is done we search for the second feature that together with the first
one  yields the highest classification rate. The procedure continues until the classification rate
decreases. The table 5 shows the original number of features and the number of features
selected in each dataset for  both the standard kernel and the adaptive kernel classifier. The
table also includes which variables were selected.

Table 5: Features selected for both types of kernel density estimators

Dataset Number of Features
(0/SK/AK)

Standard Kernel Adaptive Kernel

Iris 4/3/2 2,4,3 3,4
Sonar 60/10/10 10,11,12,15,16,

17,21,22,37,46
11,12,16,18,20,
21,22,36,46,49

Glass 9/3/3 2,4,7 4,5,7
Heartc 13/5/6 2,6,8,12,13 2,3,8,10,12,13

Ionosphere 34/7/6 1,2,3,4,12,13,14 1,3,4,5,6,30
Breastw 9/4/4 1,2,4,6 1,2,3,6,7
Diabetes 8/4/3 2,6,7,8 2,6,8
Vehicle 18/8/7 1,3,4,5,6,7,10,18 1,4,5,6,9,10,18
German 20/5/4 1,2,3,5,10 1,2,3,4,6
Segment 19/7/7 1,2,11,13,14,16,19 1,2,8,14,16,18,19

Once that the predictors are selected we create two subsets of each of the datasets and then we
perform bagging using the corresponding kernel classifier. In table 6, we show the
misclassification rates of the single and bagged kernel classifiers after feature selection

4. Conclusions

Our experiments have lead us to the following conclusions
a) Increasing the number of bootstrapped samples seems to improves the misclassification

error for both types of kernels. We have tried 10 and 50 and on average we gained 2%.
But the computing time increases more than three times.

b) Without feature selection the adaptive kernel performs better than the standard kernel, but
it requires between 3 and 6 times more computing time.

c) After feature selection the performance of bagging deteriorates for both time of kernels.
d) Features selection does a good job, because after that kernel density classifiers gives lower

misclassification errors than CART classifiers.
e) Bagging classifiers gets better results when it is applied to datasets where the single

classifier performs poorly. In most of the datasets of this paper kernel density classifiers
have performed quite well.



Table 6.  Comparison of bagging and boosting KDE classifiers after feature selection

Standard Kernel Adaptive KernelDataset
Single Bagged Ratio Single Bagged Ratio

Iris 3.58 3.60 1.00559 3.59 3.66 1.01950
Sonar 15.58 15.76 1.01155 14.98 15.23 1.01669
Glass 35.66 36.73 1.03001 32.47 32.05 0.98706
Diabetes 24.75 22.81 0.92162 23.93 23.58 0.98537
Heart* 17.39 18.00 1.0358 18.76 19.10 1.01812
Heart** 20.34 20.26 0.99607 21.76 17.74 0.81526
Breastw 3.45 3.54 1.02609 3.24 3.42 1.05556
Ionosphere 7.09 7.12 1.00423 9.15 8.68 0.94863
Vehicle 29.53 29.20 0.98882 32.99 32.01 0.97029
German** 25.38 24.32 0.95823 25.17 23.74 0.94318
Segment 3.29 3.36 1.02128 4.36 4.48 1.02752
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