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The Misclassification Error

Let C(x, L ) be the classifier constructed by 
using the training sample L., and   T  another 
large sample from the same population as L  
was drawn from, then the misclassification error 
(ME) of the classifier C is the proportion of 
misclassified cases of T  using C.  
The ME can be descomposed as

ME(C)=ME(C*)+Bias2(C) +Var(C)
where C*(x)=argmaxjP(Y=j/X=x) (Bayes 
Classifier)
Methods to estimate ME: Resubstitution, 
Crossvalidation, Bootstrapping



The classifier  may either overfit the data (Low bias 
and large variance)  or underfit the data ( Large 
bias and small variance).
Breiman (1996) heuristically defines a classifier as 
unstable if a small change in the data L can make 
large changes in the classification. Unstable 
classifiers have low bias but high variance.
CART and Neural networks  are unstable 
classifiers. 
Linear discriminant  analysis and K-nearest 
neighbor classifiers are stable. 



Overfitting
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Combining classifiers

Combining the predictions of several classifiers 
the variance and bias could be reduced. This 
combination  is called an Ensemble and in 
general is more accurate than the individual 
classifiers.
Methods for creating  ensembles are: Bagging
(Bootstrap aggregating by Breiman, 1996)
AdaBoosting (Adaptive Boosting by Freund 
and Schapire, 1996) 
Arcing (Adaptively resampling and combining, 
by Breiman (1998).



The Bagging Algorithm: Breiman (1996)

Input: learning set L   , classifier C, integer T
(number of bootstrap   samples)

1. For i=1 to T {

2. Bi= Bootstrap sample from L   (  i.i.d. sample
with replacement)

3.  Ci=C(Bi)

4. }

5. CA(x)= ∑
=∈ jxiCiJj )(:

1maxarg
},.....1{

 (The class most

voted)
Output: Ensemble CA



Bagging
From the training sample L select B random samples with replacement (bootstrap 
samples) obtaining   B different traioning samples  L1,...,LB of size N. 
For each sample Lb a classifier  Cb is built . 
Using 10-fold cross validation , each case x of  E is assigned to the class c*(x)=j 
by voting.

…

C1 C2 CB

train train train

…

x

c1(x) c2(x) cB(x)

c* c*(x) = maxcntb [cb(x)]

E1 E2 EB



Adaboosting Algorithm:Freund & Schapire[1996] 

Input: Learning set L  ,  classifier C, integers N, T  

1. B= L   with weights w1(xj)=1/N. For j=1,…..N 

2. For i=1 to T {     Ci=C(B) 

3. Set     ∑
≠∈

=
jjij yxCBx

jii we
)(:

)(x   . If either ei>1/2 or ei =0 then restart 
assigning equal weights. 

4.  Set           βi=ei/(1-ei) 

5. Udpate the weights: for each xj ∈ B, if Ci(xj)≠yj then 
wi+1(xj)=wi(xj)/2ei , else wi+1(xj)=wi(xj)/2(1-ei )} 

6.C*(x)= ∑
=∈ jxCi iJj i )(:},.....1{

1logmaxarg β
 

Output: Ensemble C* 
 



Previous results on combining classifiers

Reference Classifier Relative Improv. (%)
Bagging Boosting

Breiman (1996) CART 29.0 ------
Freund & Schapire (1996) C4.5 20.0 24.8
Quinlan (1996) C4.5 10.0 15.01

Maclin & Opitz (1997) C4.5 18.5 22.0
Maclin & Opitz (1997) Neural Net 13.3 17.1
Breiman (1998) CART 36.0 48.4
Bauer & Kohavi (1999) MC4 14.5 27.0
Dietterich(2000) C4.5 16.9 22.4
Daza (2002) G.M. 10.1 0.8
Acuna & Rojas (2002) Kernel 4.9 1.9



Bagging reduces variance. AdaBoosting reduces 
both bias and variance
Bagging can be parallelized easily, but   Boosting 
is essentially sequential and only some part of the 
algoruthm can be parallelized.
Boosting is only useful for large sample datasets 
and for classifiers that perform poorly.



Bayesian approach to classification

An object with measurement vector x is assigned 
to the class j* if  

P(Y=j*/x)>P(Y=j/x) for all j≠j*

By Bayes’s theorem P(Y=j/x)=πjf(x/j)/f(x)
πj=P(Y=j): Prior of the j-th class
f(x/j): Class conditional density
f(x): Density function of x 

Thus, j* =argmaxj πjf(x/j).

f



Density estimators

Histograms
K-nearest neighbors: 
Kernel density 
estimators

knV
kf =)(ˆ x

nV
kxf =)(ˆ For x in V

Vk is the volumen including 
the k nearest neighbors



Experimental Methodology

Each dataset is randomly divided in 10 parts. 
The first of this part is taking as the test sample 
and the remaining  ones as the training sample. 
Next, 50 bootstrapped samples are taking from 
the training sample and a KDE classifier is 
constructed with each of them. Finally each 
instance of the test sample is assigned to a 
class by voting using the 50 classifiers. The 
procedure is repeated with each part and then 
the whole experiment is repeated 10 times.



Datasets
 Features Dataset 

Instances Classes C B N O 

Iris 150 3 4 - - - 
Sonar 208 2 60    
Glass 214 6 9 - - - 
Heart-c 303 2 5 3 3 2 
Bupa 345 2 6 - - - 
Ionosphere 351 2 34    
Crx 690 2 6 4 5 - 
Breast-w 699 2 9    
Diabetes 768 2 8 - - - 
Vehicle 846 4 18    
German 1000 2 7 2 10 1 
Segment 2310 7 19 - - - 

Source: UCI Machine Learning Depository 
 



Statistical properties of datasets
Dataset Normality Correlation Outliers 

Iris Yes Some Few 

Sonar No Low Plenty 

Glass Some Low Few 

Heart-c Some None     Few 

Bupa Some Low Some 

Ionosphere No High Plenty 

Crx No None Plenty 

Breast-w No None Plenty 

Diabetes No Low Plenty 

Vehicle No High Some 

German Some None Plenty 

Segment No High   Plenty 

 



Bagging Performance
Classical Kernel Adaptive KernelDataset

Single Bagged Ratio Single Bagged Ratio

Iris 3.53 3.60 1.018   4.47   4.26 0.953
Sonar 17.18 17.21 1.001 16.37 15.70 0.959
Glass 44.57 43.83 0.983 35.46 35.51 1.001
Heart-C 22.30 20.80 0.932 22.55 20.13 0.892
Bupa 40.75 40.61 0.996 37.51 37.45 0.998
Ionosphere 10.93 10.48 0.958 10.33 10.08 0.975
Crx 18.93 17.72 0.936 17.83 16.38 0.919
Breast-w 3.64 3.77 1.036   3.94   3.80 0.964
Diabetes 26.38 26.21 0.993 26.26 25.72 0.979
Vehicle 35.15 34.61 0.984 36.74 33.90 0.918
German 28.71 27.95 0.973 27.34 25.12 0.863
Segment 15.86 15.32 0.965 13.41 13.32 0.993
MEAN 0.981 0.951



Boosting Performance
Classical Kernel Adaptive KernelDataset

Single Boosted Ratio Single Boosted Ratio

Iris 3.53 4.93 1.396   4.47   5.00 1.118
Sonar 17.30 15.77 0.911 16.87 15.57 0.922
Glass 44.11 33.60 0.761 35.14 30.09 0.856
Heart-C 22.56 23.87 1.058 22.34 22.72 1.017
Bupa 40.75 37.79 0.927 37.51 36.78 0.980
Ionosphere 10.91 6.69 0.613 10.42 7.72 0.740
Crx 18.78 19.25 1.024 18.87 18.94 1.003
Breast-w 3.55 4.62 1.301   3.94   5.03 1.276
Diabetes 26.35 31.57 1.198 26.17 30.53 1.166
Vehicle 35.01 29.87 0.853 36.70 29.85 0.813
German 34.84 34.03 0.976 34.91 33.07 0.947
Segment 15.91 4.95 0.311 13.33 4.77 0.357
MEAN 0.944 0.933



Finite mixtures
Let Y=(Y1, Y2, Y3,..., Yn ), be a random sample of size n where Yj
is a random vector p-dimensional with density function
La función de densidad de Yi, puede ser escrita de la
forma:

Donde las son funciones de densidad y se denominan
componentes de la mezcla, el es vector de parámetros
desconocidos .
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Gaussian Mixture

In particular a mixture can have as components
Gaussian densities functions. That is

(2)

where

The density function (2) is called a Gaussian
mixture.
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Classification using Gaussian Mixtures 

The Gaussian mixture model for the j-th class has density 
function

( ) ( )∑
=

∑μφπ==
jR

1r
jrjr ,;Xjy/XP

This model has Rj components for the j-th class and the same
covariance matrix. The the posterior probability of belonging to the
j-th class is given by:
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Parameter Estimation
Like in the LDA case,  the parameter estimation is using 
Maximun Likelihood. The log-likelihood based on P(y, X) is

The EM algorithm is used to maximize the log-likelihood
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Previous results on GM classifiers

Hastie and Tibshirani (1994). Discriminant 
analysis by Gaussian mixtures
Ormoneit and Tresp (1995)



Resultados experimentales para el conjunto de
datos German

Rep 2 3 4 5
1 25.30% 24.10% 23.90% 23.60%
2 25.00% 23.50% 24.00% 25.90%
3 24.30% 24.40% 23.60% 24.30%
4 24.80% 23.80% 23.90% 23.10%
5 24.00% 24.40% 24.80% 23.80%
6 24.20% 23.50% 23.90% 23.90%
7 24.90% 24.20% 23.90% 23.10%
8 24.20% 24.20% 24.40% 24.80%
9 24.70% 22.90% 24.40% 25.30%
10 24.80% 23.10% 25.10% 25.50%
11 23.50% 24.40% 23.50% 24.10%
12 24.80% 24.40% 23.70% 25.20%
13 24.60% 23.10% 24.70% 25.40%
14 25.00% 23.00% 24.20% 23.70%
15 24.20% 24.30% 23.50% 24.80%

Single 24.62% 23.81% 24.19% 24.33%
24.60% 22.90% 23.20% 23.40%
23.80% 23.60% 23.50% 24.00%
24.20% 23.30% 23.80% 23.70%

P.Bagg 24.20% 23.27% 23.50% 23.70%
Ratio 0.98 0.98 0.97 0.97

Subclases

BAGG



dataset subclasses single Bagged ratio
iris 2 2.33 2.00 0.858
sonar 3 24.24 18.90 0.780
heart-c 5 18.46 16.57 0.898
Bupa 5 32.20 30.65 0.952
ionosfera 3 15.32 15.28 0.997
crx 3 13.69 13.17 0.962
Breast-w 3 4.30 3.70 0.860
Diabetes 5 25.50 24.09 0.945
Vehicle 4 20.18 17.53 0.869
German 5 24.33 23.7 0.974
Segment 6 7.19 5.71 0.794
MEAN 0.899



dataset subclasses single Boosting ratio
iris 2 2.33 2.00 0.858
sonar 3 24.24 20.86 0.861
heart-c 4 17.83 19.53 1.095
Bupa 2 33.07 32.93 0.996
ionosfera 3 15.32 16.07 1.049
crx 2 13.48 13.94 1.034
Breast-w 5 4.57 4.33 0.947
Diabetes 5 25.50 24.97 0.979
Vehicle 4 20.18 20.71 1.026
German 2 24.62 26.07 1.059
Segment 6 7.19 7.25 1.008
MEAN 0.992



Concluding Remarks

Increasing the number of bootstrapped 
samples for Bagging seems to improves the 
misclassification error for both types of 
classifiers.
Before feature selection, the adaptive kernel 
performs better than the standard kernel, but 
it requires at least three times more 
computing time.
After feature selection the performance of 
bagging deteriorates for both type of kernels.
Feature selection does a good job, because 
after that KDE classifiers gives lower ME 
saving computing time.



Future work
Analyze the effect of Bagging and Boosting
on the bias-variance decomposition of the
misclassification error for KDE classifiers.
Implementation of parallel computer
algorithms to build ensembles based on
KDE.
Implementation of parallel computer
algorithms to build ensembles based on
Gaussian Mixtures.


