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An outlier is an observation that deviates so much from other 
observations as to arouse suspicion that it was generated by a 
different mechanism (Hawkins, 1980).

A comprehensive treatment of outliers in the field of statistics
appears in Barnet and Lewis (1994). They provide a large list of 
outlier detection methods.These methods have two main 
drawbacks: 

First, almost all of them are for univariate data.
Second, all of them are distribution-based. Real-world data 

are commonly multivariate with unknown distribution. 



People in the data mining community got interested in outliers
after Knorr and Ng (1998) proposed a non-parametric
approach to outlier detection based on the distance of a 

instance to its nearest neighbors.  

Outlier detection a.k.a novelty detection has many 
applications among them: Fraud detection and network 
intrusion.

Frequently, outliers are removed to improve accuracy of the 
estimators. However, this practice is not recommendable 
because sometimes outliers can have very useful 
information. 



Univariate outliers

Let     be the mean and let s be standard deviation of the data 
distribution.  One observation  is declared as an outlier if lies outside 
of the interval

(1)
where  the value of  k is usually taken as 2 or 3. The justification of 

these values relies on the fact that assuming normal distribution one 
expects to have a 95.45% (99.75%, respectively) percent of the data 
on the interval centered in the mean with a semi-length equal to two 
(three, respectively) standard deviation.  

From equation (1), the observation x  is considered an outlier if 

(2)
rownames(bupa[abs(zbupa1)>2,])
[1] "38"  "69"  "97"  "122" "155" "212" "224" "237" "244" "323" "333"
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The problem with the above criteria is that  it assumes normal 
distribution of the data something that frequently does not occur. 
Furthermore, the mean and standard deviation are highly sensitive 
to outliers. 

The Boxplot (Tukey, 1977) is a graphical display for exploratory 
data analysis, where the outliers appear  tagged.  Two types of 
outliers are distinguished: mild outliers and extreme outliers. 

An observation x is declared  an extreme outlier if it lies outside 
of the interval (Q1-3×IQR, Q3+3×IQR),where IQR=Q3-Q1 is 
called the Interquartile Range.  An observation x is declared a
mild outlier if it lies outside of the interval (Q1-1.5×IQR, 
Q3+1.5×IQR). 

The numbers 1.5 and 3 are chosen by comparison with a normal 
distribution.  



outliers=boxplot(bupa$V1,plot=F)$out
nout=as.character(outliers)
boxplot(bupa$V1,col="blue")
for(i in 1:length(outliers))
{
text(outliers[i],as.character(which(bupa$V1==outlier
s[i])),cex=.8,pos=4)
}

Drawing a Boxplot
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Multivariate  Outliers

Let us consider a dataset D with p features and n instances. In a
supervised classification context, we must also know the classes to
which each of the instances belongs.

The objective is to detect all the instances that seem to be unusual,
these will be the multivariate outliers.

One might think that multivariate outliers can be detected based on
the univariate outliers in each feature, but this is not true. On the
other hand, an instance can have values that are outliers in several
features but the whole instance might not be a multivariate outlier.



A bi-dimensional outlier that is not an outlier in either of its
projections.



Detecting outliers for the four  features in class 1 of  the Iris data set 



Outliers in the 6 features of the first class for the  Bupa dataset



Methods to detect multivariate outliers

•Robust statistical-based outlier detection,

•Outlier detection by clustering, 

•Distance-based outlier detection, and 

•Density-based local outlier detection. 



Robust Statistical based outlier detection

Let  x be an observation of a multivariate data set consisting of n 
observations and p features. Let       be the centroid of the dataset, 
which is a p-dimensional vector with the means of each feature as 
components. Let X be the matrix of the original dataset with columns 
centered by their means. Then, the p×p matrix S=1/(n-1) X’X
represents the covariance matrix of the p features. The multivariate 
version of equation (2) is                                          

kD >−−= − )x(xS)x(xxx, 1')(2

where D2 is called the Mahalanobis square distance from x to the 
centroid of the dataset.  An observation with a large Mahalanobis 
distance can be considered as an outlier.

x



a=mahaout(bupa,1,T)
Ouliers given by the boxplot of the  Mahalanobis distance

190      316      317      345      183      335      205 
6.086927 6.012780 5.485214 4.923153 4.593790 4.570818 4.545537 

> boxplot(a)$out
190      316      317      345      183      335      205 

6.086927 6.012780 5.485214 4.923153 4.593790 4.570818 
4.545537 
> boxplot(a,col="red")
> 



Boxplot for the Mahalanobis distance for all instances in class 1 of Bupa
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Outliers in Bupa (class1) according to Mahalanobis 
distance 



Masking effect. It is said that an outlier masks a second one
that is close by if the latter can be considered an outlier by itself,
but not if it is considered along with the first one.
Equivalently after the deletion of one outlier, the other instance
may emerge as an outlier.

Swamping effect. It is said that an outlier swamps another
instance if the latter can be considered outlier only under the
presence of the first one. In other words after the deletion of
one outlier, the other outlier may become a “good” instance.

To deal with these effects a robust estimator of the Mahalanobis
distance is recommended.

Two effects of multivariate  outliers



The Hawkins-Bradu-Kass dataset

It has 4 attributes(3 predictors and one 
response) and 75 instances. The first 14 
instances are contaminated to turn  them 
in outliers.



The Masking effect of multivariate outliers in the Hawkins
data set (only one outlier out of 14 are detected)



Robust estimator of multivariate 
location and covariance matrices

The Minimum Volume Elipsoid (MVE) 
estimator, Rousseeuw(1983).
The Minimun Covariance Determinant
(MCD) estimator, Rousseeuw (1983).
The Donoho-Stahel estimator (1981).



The Minimum Volume Elipsoid (MVE) estimator is the center 
and the covariance of  a subsample size  h (h ≤ n) that 
minimizes the volume of the covariance matrix associated to the 
subsample. Formally, 

MVE=(               )* *,J JSx
where 
J={set of  h instances:                           for all K s. t. #(K)= h}.* *( ) ( )J KVol S Vol S≤

Vol(Sk)={|Sk|medi=1,2…h di
2}1/2, di represents the Mahalanobis 

distance of the i-th instance in Sk
The elipsoid is defined by                                        . 
The value of h can be thought of as the minimum number of 
instances which must not be outlying and usually 
h=[(n+p+1)/2], where [.] is the greatest integer function and p 
is the number of predictors.  

21 a)x(xS)'x(x ≤−− −



Outliers for the Hawkins dataset 
using MVE



b=robout(bupa,1,"mve",10)

Top outliers by frequency

25 148 167 168 175 182 183 189 190 205 261 311 312 316 317 326 343 345 
10  10  10  10  10  10  10  10  10  10   5  10  10  10  10  10  10  10 

Top outliers by outlyngness measure
316       190       205       317       182       168       189       175 

20.886944 19.706658 13.804491 12.930697 12.690761 10.947778 10.713039 
10.622882 

25       345       183       343       311       312       167       326 
9.316987  9.022665  8.915560  8.426077  8.156848  7.939317  7.667348  
7.377310 

148       261 
7.305656  6.656579 



Instances in the first class of Bupa ranked by theirs MVE estimators.



Plot of the instances in class 3 of Iris ranked by using a MVE estimator of 
theirs Mahalanobis distance



The Minimun Covariance Determinant (MCD)
estimator is defined by 

MCD=(              )

where J={set of  h instances:               for all K s. t. 
#(K)= h}. 
H is defined as in the MVE estimator and |S| 
denotes the determinant of S

* *,J JSx
* *| | | |J KS S≤



> b=robout(bupa,1,"mcd",10)
Loading required package: MASS 

Top outliers by frequency

25 148 167 168 175 182 183 189 190 205 261 311 312 316 317 326 335 343 
344 345 
10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10  10   8  10 

Top outliers by outlyngness measure
316       190       205       317       182       168       175       189 

19.462668 17.911479 12.984144 12.379654 11.566284 10.116878  9.958513  
9.638781 

25       183       345       343       311       312       326       167 
8.907643  8.899936  8.735489  7.583311  7.533905  7.372262  7.342308  
7.237911 

148       335       261       344 
6.863190  6.785321  6.558075  6.488697 



Instances in the first class of Bupa ranked by theirs MCD estimators.



Plot of the instances in class 3 of Iris ranked by using a MCD estimator of 
theirs Mahalanobis distance



Instance Class Frequency Outlyingness

44 1 10 6.5574

24 1 10 5.9604

69 2 10 6.2246

119 3 10 5.3908

132 3 7 4.3935

Top outliers per class in the Iris dataset by frequency and 
the outlyingness measure  using the  MCD estimator 



Detection of outliers using clustering

Scattered outliers will form a cluster of size 1 and clusters of 
small size can be considered as clustered outliers. There are a 
large number of clustering techniques. Here, we only 
considered the Partitioning around Medoids (PAM) method. It 
was  introduced by Kaufman and Rousseeuw (1990) uses k-
clustering on medoids to identify clusters.

The function pam in library cluster of R performs clustering by 
PAM . Self-organizing maps SOM also can be used.
bupa1=bupa[bupa[,7]==1,1:6]
pambupa1=pam(bupa1,20,stand=T)
pambupa1$clusinfo
bupa1[pambupa1$clustering==16,]



> pambupa1$clusinfo
size max_diss  av_diss diameter separation

[1,]    4 2.831622 1.472387 4.132538  1.0782113
[2,]   18 3.132019 1.287187 4.091354  0.7194979
[3,]   13 2.765870 1.282699 4.140111  0.7194979
[4,]    6 2.641598 1.340249 3.390138  1.1381321
[5,]    4 3.000214 2.056078 4.393341  2.0068724
[6,]    9 2.109355 1.098276 3.184331  0.4472404
[7,]    5 2.494665 1.555043 3.579272  1.2655316
[8,]   17 2.585376 1.217838 3.181508  0.8305449
[9,]    8 2.892715 1.691034 3.975708  1.1988504
[10,]   14 1.943327 1.332506 2.993509  0.4472404
[11,]    5 3.054875 1.435943 3.747178  1.6822584
[12,]   15 2.560942 1.330603 3.622406  1.0895113
[13,]    9 2.836937 1.874549 4.649333  1.1942510
[14,]    6 2.799898 2.063445 4.365481  2.6737346
[15,]    2 3.272551 1.636275 3.272551  3.4565653
[16,]    4 3.668182 2.297649 4.864836  3.0504605
[17,]    1 0.000000 0.000000 0.000000  5.5076072
[18,]    3 3.255083 1.664524 4.145253  2.5271266
[19,]    1 0.000000 0.000000 0.000000  4.7535354
[20,]    1 0.000000 0.000000 0.000000  4.8177808
> bupa1[pambupa1$clustering==19,]

V1 V2 V3 V4  V5 V6
316 99 86 58 42 203  6 



Instance Separation

190 5.507
317 4.817
316 4.753
182 3.456
205 3.456
335 3.255
189 3.050
345 3.050
343 3.050
312 3.050

Top outliers in the first class of the Bupa dataset 
detected by the PAM algorithm



Distance based outlier detection
Given a distance measure on a feature space, two different definitions of 
distance-based outliers are the following:

1. An instance x in a dataset D is an outlier with parameters p and λ if 
at least a fraction p of the objects are a distance greater than λ from 
x. (Knorr and Ng, 1997, 1998, Knorr et al. 2000). This definition has 
certain difficulties such as the determination of  λ and the lack of a 
ranking for the outliers. Thus an instance with very few neighbors 
within a distance λ can be regarded as strong outlier as an instance 
with more neighbors within a distance λ. 

2. Given the integer numbers k and n (k<n), outliers are the top n 
instances with the largest distance to their k-th nearest neighbor. 
(Ramaswamy et al., 2000). One shortcoming of this definition is that 
it only considers the distance to the k-th neighbor and ignores 
information about closer points. An alternative is to use the greatest 
average distance to the k nearest neighbors. The drawback of this 
alternative is that it takes longer to be calculated.



Distance-based outliers (cont.)

Formally, Object O in a 
dataset T is DB(p,D) 
outlier if  at least a 
fraction p of the objects 
in T are at least 
distance > D from O.

e.g., DB(.99, 5) implies 
that 99% of data points 
are > 5 units distance 
away 



Distance-based outliers (cont.)

Bay and Schwabacher (2003) proposed a 
simple nested loop algorithm that tries to 
reconcile definitions 1 and 2, and at the same 
time reduce the theoretical time complexity of 
O(kn2) to almost linear in n, at least 
experimentally.
The algorithm outputs m instances that have 
the greatest distance from their nearest k
neighbors. The value of m is given by the 
user.



Bay’s Algorithm
Input: k: number of nearest neighbors; n: number of outliers to return; D: dataset 
randomly ordered, BS: size of blocks in which D is divided.
1. Let distance(x,y) return the Euclidean distance between x and y. 
2. Let maxdist(x,Y) return the maximum distance between the instance x and the set 
of instances Y.
3. Let Closest(x,Y,k) return the k closest instances in Y to x. 
4. Let score(Neighbors(x),x) returns median distance to the k neighbors of x.
5. Begin
Set the cutoff for c pruning to 0 and the set of outliers O as φ.
NB←ceiling(# instances in D/BS)

While nb<NB {
Neighbors(b)←φ for all b in block Bnb
For each d in D {

For each b in Bnb, b≠d{
If |Neigbors(b)|<k or distance(b,d)<maxdist(b,Neighbors(b)){

Neighbors(b) ←Closest(b,Neighbors(b) ∪ d,k)
If(score(Neibghbors(b),b)<c){
Remove b from Bnb
}}}}

O←Top(B(nb) ∪ O, n) ; Keep only the top n outliers
c←min(score(o)) for all in O ; The cutoff is the score of the weakest outlier

}
end
Output: O, a set of outliers



Bay’s Algorithm – Nested loop with pruning rule

D1
D2
D3

score(bi)<
Cutoff?

Dataset D

k1       k2    k3
b1
b2
bi-1
bi+1
.
. New B

b1
b2
b3
b4
.
.
.

k1       k2    k3
d(b1,D1) d(b1,D2) d(b1,D3)

Block B

d(b3,D1)
d(b2,D1) d(b2,D2) d(b2,D3)

d(b3,D2) d(b3,D3)

Have k 
neighbors of  

each  bi
been found?

No

Yes

Next 
instance 
of D

b1
b2
b3
b4
…

Yes

No

Update the 
cutoff

Go to New 
Block

Calculate distance from 
all bi in B to each 
instance Di in D



Index  Med. Dist.
190   84.700
316   75.810
317   53.103
335   35.961
345   34.481
175   33.075
205   31.228
168   30.483
182 30.016
183 29.325

Outlier Detection using baysout( )
baysout(bupap[bupa[,7]= =1,1:6], blocks=10, num.out=10)



A example showing  the weakness of the distance-based method to detect 
outliers. O1 is detected but O2 is not detected.



Density-based local outliers

In this type of outliers the density of the neighbors of a given 
instance plays a key role (Breuning et al, 2000). Furthermore 
an instance is not explicitly classified as either outlier or non-
outlier; instead for each instance a local outlier factor (LOF) 
is computed which will give an indication of how strongly an 
instance can be an outlier. 

Definition 1. k-distance of an instance x
For any positive integer k, the k-distance of an instance x, 

denoted by k-distance(x), is defined as the distance 
d(x,y) between x and  an instance y ε D such that:

1. For at least k instances y’ ε D-{x} it holds that 
d(x,y’) ≤ d(x,y).

2.  for at most k-1 instances y’ ε D-{x} it holds that d(x,y’) < 
d(x,y).



Definition 2: k-distance neighborhood of an object p
Given the k-distance of x, the k-distance neighborhood of x 
contains every object whose distance from x is not greater 
than the k-distance, i.e

Nk-distance(x)={y ∈ D-{x} | d(x,y)≤k-distance(x)}

These objects y are called the k-nearest neighbors of x.

Definition 3. Reachability distance of an instance x w.r.t. 
instance y
Let k be a positive integer number. The reachability distance 
of the instance x with respect to the instance y is defined as 
reach-distk(x,y)=max{k-distance(y),d(x,y)}  



Reach-dist4(p1,o) y reach-dist4(p2,o)  for k=4 



The Local outlier factor (LOF) of an instance 
x is defined by 

where lrd(.) represents  the  Local reachability 
density of an instance. Given an instance x,
its lrd is defined as the inverse of the 
average reachability distance based on the 
MinPts-nearest neighbor of the instance x. 

( ) 1

( )
( )

( ) [ ]
| ( )|
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Algorithm for detection of  density-based local  
outliers 

Input: Dataset D, MinptsLB, MinptsUB
Let Maxlofevct=φ
For each   i in the interval [MinPtsLB, MinPtsUB]
{
1. Find the i nearest neighbors and their distance from each instance 
in D
2. Calculate the local reachability density for each instance in D
3. Compute the lof of each instance in D
4. Maxlofvect=max(maxlofvect, lof)
}

end
Output: Maxlofvect; the vector of maximum LOF’s



> lofbupa1=maxlof(bupa[bupa[,7]==1,-7],"lofbupa1",20,30)
> lofbupa1[order(lofbupa1,decreasing=T)][1:10]

316      190      183      317      326      205      335      175 
3.079764 3.026225 2.324484 2.156292 2.128578 2.089691 2.003301 

2.001225 
182      168 

1.992892 1.903069 
> 



Plot of the instances in class 1 of Bupa ranked according to the LOF 
outlyingness measure.



Summary of outliers in Bupa class 1
Method Outliers

Mahalanobis 190,316,317,345,183,335,205

MVE 316,190,205,317,182,168,189,175,25,345,1
83,343,311,312,167,326,148,261

MCD 316,190,205,317,182,168,189,175,25,345,1
83,343,311,312,167,326,148,261,344,335

PAM 190,317,316,182,205,335,345,312

Bay’s 190,316,317,205,175,168,182,189,25,167

LOF 316, 190,  183,  317, 326, 205 , 335, 175,  
182, 168 



Evaluating the effect of outliers

Two main aspects to consider in supervised classification are 
the estimation of the misclassification error rate and feature 
selection.

Three classifiers considered: LDA, KNN and Rpart (a 
decision tree classifier)

Two feature selection methods: SFS(wrapper) and 
Relief(filter).

Error  estimation method: 10-fold cross validation

Datasets: Iris.



Classifier Original 
Sample

Deleting
outliers

Deleting a 
random
subsample

LDA 2.02 1.54 2.30

KNN(k=1) 4.05 2.35 4.10

Rpart 6.69 2.90 7.32

The misclassification error rate for the LDA, knn and rpart 
classifiers in Iris using three different types of samples 



FS Method Original 
Sample

Deleting 
Outliers

Deleting a 
random 
subsample

SFS(LDA) 4,2 4,2 4,3

SFS(KNN) 4,3 4,3 4,3

SFS(Rpart) 4 4 4

Relief 2,3,4 4,3 4,3

Features selected in Iris using SFS and Relief for the 
three type of samples 



Classifier Original 
Sample

Deleting
outliers

Deleting a 
random
subsample

LDA 3.70 2.33 5.31

KNN(k=1) 4.01 1.87 4.80

Rpart 5.29 2.29 5.25

The misclassification error rate for the classifiers after 
feature selection in Iris using three different types of 
samples 



Some conclusions

There is not a unique method to detect 
all outliers.
There is not a major effect on the feature 
selection method. Relief seems to be 
more affected. 
LDA and KNN classifiers seem to be 
more affected by the outliers than the 
Rpart.
Use Visualization


