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Discretization

Discretization:  A process that transforms Discretization:  A process that transforms 
quantitative data into qualitative data.

Some data mining algorithms only accept categorical g g y p g
attributes (LVF, FINCO, Naïve Bayes).
The learning process is often less efficient and less effective 

hen the data has onl q antitati e feat reswhen the data has only  quantitative features.
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> m > disc.ew(m,1:4)
V1  V2  V3  V4 V5

45 5.1 3.8 1.9 0.4  1
46 4.8 3.0 1.4 0.3  1

V1 V2 V3 V4 V5
45  1  3  1  1  1
46  1  2  1  1  1

47 5.1 3.8 1.6 0.2  1
48 4.6 3.2 1.4 0.2  1
49 5 3 3 7 1 5 0 2 1

47  1  3  1  1  1
48  1  2  1  1  1
49 1 3 1 1 149 5.3 3.7 1.5 0.2  1

50 5.0 3.3 1.4 0.2  1
51 7.0 3.2 4.7 1.4  2
52 6 4 3 2 4 5 1 5 2

49  1  3  1  1  1
50  1  2  1  1  1
51  2  2  2  2  2
52 2 2 2 2 252 6.4 3.2 4.5 1.5  2

53 6.9 3.1 4.9 1.5  2
54 5.5 2.3 4.0 1.3  2

52  2  2  2  2  2
53  2  2  2  2  2
54  1  1  2  2  2
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55 6.5 2.8 4.6 1.5  2 55  2  2  2  2  2



4The Discretization process. Liu et al. DM and KDD(2002)



Top-down (Splitting) versus Bottom-up(Merging)

Top-down methods start with an empty list of Top-down methods start with an empty list of 
cut-points (or split-points) and keep on adding 
new ones to the list by ‘splitting’ intervals as the y p g
discretization progresses. 
Bottom-up methods start with the complete list of p p
all the continuous values of the feature as cut-
points and remove some of them by ‘merging’ 
i l   h  di i i  intervals as the discretization progresses.
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Static vs. Dynamic Discretization

Dynamic discretization:  some classification Dynamic discretization:  some classification 
algorithms has built in mechanism to discretize 
continuous attributes ( for instance, decision trees: 
CART  C4 5)  Th  i  f   CART, C4.5). The continuous features are 
discretized during the classification process.
Static discretization: a pre preprocessing step in Static discretization: a pre-preprocessing step in 
the process of data mining. The continuous 
features are discretized prior to the classification 
task.
There is not a clear advantage of either method 
(Dougherty  Kohavi  and Sahami  1995)
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(Dougherty, Kohavi, and Sahami, 1995).



Supervised versus Unsupervised

Supervised methods are only applicable when mining p y pp g
data that are divided into classes. These methods refer to 
the class information when selecting discretization cut 
points.
Unsupervised methods do not use the class information. 
An unsupervised technique would not. 
Supervised methods can be further characterized as error-
b d b d b d b d h d

p
based, entropy-based or statistics-based. Error-based methods 
apply a learner to the transformed data and select the 
intervals that minimize error on the training data. In 
contrast  entropy based and statistics based methods contrast, entropy-based and statistics-based methods 
assess respectively the class entropy or some other 
statistic regarding the relationship between the intervals 
and the class.
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and the class.



Global versus Local

Global methods use all the space of instances for Global methods use all the space of instances for 
the discretization process.  
Local methods use only a subset of instances for y
the discretization process. It is related to dynamic 
discretization. A single attribute may be 
discretized into different intervals (Trees)discretized into different intervals (Trees).
Global techniques are more efficient, because 
only one discretization is used throughout the y g
entire data mining process, but local techniques 
may result in the discovery of more useful cut 
points
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points.



A classification of discretization methodsA classification of discretization methods

Merging Splitting

Supervised Unsupervised Unsupervised Supervised

Dependency Binning Entropy Binning
Dependency

Accuracy
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Chi-Merge
Chi2

Equal freq
Equal Width

MDL 1R



Evaluating a discretization method

The total number of intervals generated  A small The total number of intervals generated. A small 
number of intervals is good up to certain point.
The number of inconsistencies in the discretized The number of inconsistencies in the discretized 
dataset.  The inconsistency must decrease.
The predictive accuracy. The discretization The predictive accuracy. The discretization 
process must not have a major effect in the 
misclassification error rate.
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Equal width  intervals (binning)Equal width  intervals (binning)

Divide the range of each feature into k intervals of equal size 
if A and B are the lowest and highest values of the attribute, the width of 
intervals will be 

W = (B-A) / k
The inter al bo ndaries are atThe interval boundaries are at 

A+W, A+2W, … , A + (k-1)W
Ways to determine k:

S ’ F l k l ( 1) b f b i– Sturges’ Formula: k=log2(n+1), n: number of observations.
– Friedman-Diaconis’ Formula: W=2*IQR*n-1/3 , where IQR=Q3-Q1. Then 

k=(B-A)/W
Scott’s Formula: W=3 5*s*n 1/3 where s is the standard deviation Then– Scott s Formula: W=3.5*s*n-1/3, where s is the standard deviation. Then 
k=(B-A)/n.

Problems 
(a) Unsupervised
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– (a) Unsupervised 
– (b) Where does k come from? 
– (c)  Sensitive to outliers 



Ejemplo: Equal width  intervals 

> args(disc.ew)
function (data, varcon) 
NULL
> disc.ew(m,1:4)

V1 V2 V3 V4 V5V1 V2 V3 V4 V5
45  1  3  1  1  1
46  1  2  1  1  1
47  1  3  1  1  1
48  1  2  1  1  1
49  1  3  1  1  1
50  1  2  1  1  1
51  2  2  2  2  251  2  2  2  2  2
52  2  2  2  2  2
53  2  2  2  2  2
54  1  1  2  2  2
55  2  2  2  2  2
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55  2  2  2  2  2



Equal Frequency IntervalsEqual Frequency Intervals

Divide the range into k intervalsDivide the range into k intervals 
Each interval will contain approximately same number of 
samples.
Th di ti ti i th l i f tiThe discretization process ignores the class information.
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Ejemplo: Equal Frequency Intervals

> args(disc.ef)
function (data, varcon, k) 
NULL
> disc.ef(m,1:4,2)

V1 V2 V3 V4 V5V1 V2 V3 V4 V5
45  1  2  1  1  1
46  1  1  1  1  1
47  1  2  1  1  1
48  1  1  1  1  1
49  1  2  1  1  1
50  1  2  1  1  1
51  2  1  2  2  251  2  1  2  2  2
52  2  2  2  2  2
53  2  1  2  2  2
54  2  1  2  2  2
55  2  1  2  2  2
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55  2  1  2  2  2



Method 1R

Developed by Holte (1993)Developed by Holte (1993)
It is a supervised discretization method using binning.
After sorting the data, the range of continuous values is g g
divided into a number of disjoint intervals and the 
boundaries of those intervals is adjusted based on the 
class labels associated with the values of the featureclass labels associated with the values of the feature.
Each interval should contain a given minimum of 
instances ( 6 by default) with the exception of the last one.
The adjustment of the boundary continues until the next 
values belongs to a class different to the majority class in 
the adjacent interval
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the adjacent interval.



Example of 1R

Datos ordenados
bupat[1:50 1]bupat[1:50,1]
[1] 65 78 79 79 81 81 82 82 82 82 82 82 82 83 83 83 83 83 83 84 84 84 84 84 

84
[26] 84 84 84 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 85 86 86 86 86 

86
Asignando las clases y la clase mayoritaria
bupat[1:50,2]

[1] 2 1 2 2 2 1* 1 2 1 2 2 2 2 2 2 *1 2 2 2 1 2 2 *1 1 2 2 1 2 1 *2 2 2 2 2 2 2 2 2*[1] 2 1 2 2 2 1* 1 2 1 2 2 2 2 2 2 *1 2 2 2 1 2 2 *1 1 2 2 1 2 1 *2 2 2 2 2 2 2 2 2*
2                   2                           2                          1                        2

[39] 1 1 2 2 2 2 2 2 *1 1 2 1
2                      12                      1

Joint the adjacent intervals with the same majority class. 
Discretized data
1 1  1 1 1 1 1 1 1 1  1 1 1  1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 
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Ejemplo: Discretizacion 1R

> args(disc.1r)
function (data, convar, binsize = 6) 
NULL
> disc.1r(m,1:4)

V1 V2 V3 V4 V5V1 V2 V3 V4 V5
45  1  2  1  1  1
46  1  1  1  1  1
47  1  2  1  1  1
48  1  1  1  1  1
49  1  2  1  1  1
50  1  2  1  1  1
51  2  1  2  2  251  2  1  2  2  2
52  2  1  2  2  2
53  2  1  2  2  2
54  2  1  2  2  2
55  2  1  2  2  2
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55  2  1  2  2  2



Entropy Based Discretization

Fayyad and Irani (1993)ayyad a d a  ( 993)
Entropy based methods use the class-information 
present in the data. p
The entropy (or the information content) is 
calculated on the basis of the class label.  
Intuitively, it finds the best split so that the bins 
are as pure as possible, i.e. the majority of the 

l  i   bi  d t  h i  th   values in a bin correspond to having the same 
class label. Formally, it is characterized by finding 
the split with the maximal information gain  
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the split with the maximal information gain. 



Entropy-based Discretization (cont)Entropy based Discretization (cont)

Suppose we have the following (attribute-value/class) pp g ( / )
pairs. Let S denotes the 9 pairs given here. S = (0,Y), (4,Y), 
(12,Y), (16,N), (16,N), (18,Y), (24,N), (26,N), (28,N).
Let p1 = 4/9 be the fraction of pairs with class=Y, and p2 = p1 / p p2
5/9 be the fraction of pairs with class=N.
The Entropy (or the information content) for S is defined 
as:
Entropy(S) = - p1*log2(p1) – p2*log2(p2) .

In this case Entropy(S)=.991076.
If the entropy small  then the set is relatively pure  The If the entropy small, then the set is relatively pure. The 
smallest possible value is 0.
If the entropy is larger, then the set is mixed. The largest 
possible value is 1, which is obtained when p1=p2=.5
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possible value is 1, which is obtained when p1 p2 .5



Entropy Based Discretization(cont)

Given a set of samples S, if S is partitioned into two intervals S1 and p , p 1
S2 using boundary T, the entropy after partitioning is

E S T Ent EntS S S S( )
| |

( )
| |

( )= +1
1

2
2

where | | denotes cardinality. The boundary T are chosen from the 
midpoints of the atributes values, i e: {2, 8, 14, 16, 17, 21, 25, 27} 

E S T
S

Ent
S

EntS S( , )
| |

( )
| |

( )= +1 2

For instance if T: attribute value=14
S1= (0,P), (4,P), (12,P) and S2= (16,N), (16,N), (18,P), (24,N), (26,N), 

(28,N)
E(S,T)=(3/9)*E(S1)+(6/9)*E(S2)=3/9*0+(6/9)* 0.6500224
E(S,T)=.4333
Information gain of the split, Gain(S,T) = Entropy(S) - E(S,T). 

20

Gain=.9910-.4333=.5577



Entropy Based Discretization (cont)

Simlarly, for T: v=21 one obtainsSimlarly, for T: v 21 one obtains
Information Gain=.9910-.6121=.2789. Therefore v=14 is a 
better partition.
Th  l f thi  l ith  i  t  fi d th  lit ith th  The goal of this algorithm is to find the split with the 
maximum information gain. Maximal gain is obtained 
when E(S,T) is minimal. 
The best split(s) are found by examining all possible 
splits and then selecting the optimal split. The boundary 
that minimize the entropy function over all possible py p
boundaries is selected as a binary discretization.
The process is recursively applied to partitions obtained 
until some stopping criterion is met, e.g.,
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until some stopping criterion is met, e.g.,
Ent S E T S( ) ( , )− > δ



Entropy Based Discretization(cont)
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Here c is the number of classes in S, c1 is the number of classes 
in S and c is the n mber of classes in S This is called the

22

in S1 and c2 is the number of classes in S2. This is called the 
Minimum Description Length Principle (MDLP)



Ejemplo: Discretizacion usando Entropia con 
MDL

> args(disc.mentr)
function (data, vars) ( )
NULL
> disc.mentr(bupa,1:7)
The number of partitions for var 1   is : 1 
The cut points are: [1] 0
The number of partitions for var 2   is : 1 The number of partitions for var 2   is : 1 
The cut points are: [1] 0
The number of partitions for var 3   is : 1 
The cut points are: [1] 0
The number of partitions for var 4   is : 1 
The cut points are: [1] 0
The number of partitions for var 5   is : 2 
The cut points are: [1] 20.5
The number of partitions for var 6   is : 1 
The cut points are: [1] 0The cut points are: [1] 0

V1 V2 V3 V4 V5 V6 V7
1    1  1  1  1  2  1  1
2    1  1  1  1  2  1  2
3    1  1  1  1  2  1  2

1  1  1  1  2  1  2
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4 1  1  1  1  2  1  2
5 ……………………



ChiMerge (Kerber92) 

This discretization method uses a merging approach.g g pp
ChiMerge’s view: 

relative class frequencies should be fairly consistent within an q y
interval (otherwise should split)

dj i l h ld h i il l i ltwo adjacent intervals should not have similar relative class 
frequencies (otherwise should merge)
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χ2 Test and Discretization

χ2 is a statistical measure used to test the χ is a statistical measure used to test the 
hypothesis that two discrete attributes are 
statistically independent. y p
For two adjacent intervals, if  χ2 test concludes 
that the class is independent of the intervals, the p
intervals should be merged. If  χ2 test concludes 
that they are not independent, i.e., the difference 
i  l i  l  f  i  i i ll  in relative class frequency is statistically 
significant, the two intervals should remain 
separate
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separate.



The contingency table

Class 1 Class 2 SumsClass 1 Class 2 Sums

I l I A A RInterval I A11 A12 R1

Interval II A21 A22 R2

Sums C1 C2 N
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Computing χ2

Value can be computed as follows:p

2
2

11

2
χ =

==

−
∑∑ ij ijA E

Eijj

k

i

( )

11 == ijji

k = number of classes
Aij = number of samples in ith interval, jth class
Eij = expected frequency of Aij

= (Ri * Cj) / N
Ri = number of samples in ith intervali p
Cj = number of samples in jth class
N = total number of samples on the two intervals
If Eij=0 then set Eij to an small value for instance 1
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If Eij=0 then set Eij to an small value for instance .1



ChiMerge – El algoritmo

Compute the χ2 value for each pair of adjacent Compute the χ value for each pair of adjacent 
intervals
Merge the pair of adjacent intervals with the Merge the pair of adjacent intervals with the 
lowest χ2 value
Repeat  and until χ2 values of all adjacent Repeat  and until χ values of all adjacent 
pairs exceeds a threshold

Threshold: determined by the significance level
and degrees of freedom =number of classes -1
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Ejemplo
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Ejemplo (cont.)

Splitting initial values are middle between F-points
Mi i 2 i [7 5 8 5] & [8 5 10] ith l K 1Minimum χ2 is on [7.5,8.5] & [8.5,10], with class K=1

Class 1 Class2 Sums

Interval 
[7.5,8.5]

1 0 1

I l 1 0 1Interval 
[8.5,10]

1 0 1

Sums 2 0 2

Thus E11=1, E12=0~0.1, E21=1, E22=0~0.1, d=degrees of freedom=1

Sums 2 0 2
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Threshold (for α=10%)=2.706
Χ2=0.2. No significant differences merge



Ejemplo (cont.)

Contigency Tables for the intervals [0,10] and [10,42]

Class 1 Class2 Sums
Interval 4 1 5Interval 
[0,10]

4 1 5

Interval 1 3 4Interval 
[10,42]

1 3 4

Sums 5 4 9

Thus E11=2.78, E12=2.22, E21=2.22 E22=1.78, d=degrees of 
freedom=1 Threshold (for α=10%)=2.706
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Χ2=2.72. Significant differences No merging
FINAL RESULT: 3 intervals [0,10],[10,42],[42,60]

FI



Ejemplo: Discretizacion de Bupa

> args(chiMerge)
function (data, varcon, alpha = 0.1) 
NULL
> dbupa=chiMerge(bupa,1:6,.05)
> table(dbupa[,1])
1   2   3 

90 250   5 90 250   5 
> table(dbupa[,2])
1   2   3   4   5   6   7   8   9  10  11  12 
3   4   3  42   9  46 100  30   7   6  16  79 

> table(dbupa[,3])
1   2   3   4   5 1   2   3   4   5 

24  21 284   7   9 
> table(dbupa[,4])
1   2   3   4   5   6   7   8 

208  20  58   9  35   9   1   5 
> table(dbupa[,5])
1   2   3   4   5   6   7   8   9 
9  69  11  14  37 113  34   3  55 

> table(dbupa[,6])
1   2   3   4 
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1   2   3   4 
190  67  83   5 



Effects of Discretization

Experimental results indicate that  after Experimental results indicate that  after 
discretization

data size can be reduced (Rough sets).data size can be reduced  (Rough sets).
classification accuracy can be improved
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