COMP 6838 Data Mining

Lecture 2 (based on Prof V. Kumar's notes)

Dr. Edgar Acuna Departmento de Matematicas

Universidad de Puerto Rico- Mayaguez math.uprm.edu/~edgar

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, characteristic, or feature
- A collection of attributes describe an object
 - Object is also known as record, case, sample, entity, or instance

Attributes

	1)			
	Tid	Refund	Marital Status	Taxable Income	Cheat
	1	Yes	Single	125K	No
	2	No	Married	100K	No
	3	No	Single	70K	No
	4	Yes	Married	120K	No
	5	No	Divorced	95K	Yes
	6	No	Married	60K	No
	7	Yes	Divorced	220K	No
	8	No	Single	85K	Yes
	9	No	Married	75K	No
_	10	No	Single	90K	Yes

Attributes

- Attribute values are numbers or symbols assigned to an attribute
- According to their scale of measurement, there are four different types of attributes: nominal, ordinal, Interval and Ratio.

Properties of Attribute Values

 The type of an attribute depends on which of the following properties it possesses:

```
Distinctness: = ≠
```

- Multiplication: * /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

Attribute Type	Description	Examples	Operations	
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ^2 test	
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests	
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	Temperature in Celsius or Fahrenheit, calendar dates,	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests	
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	monetary quantities, c age, mass, length, electrical current	geometric mean, harmonic mean, percent variation	

Attribute Level	Transformation	Comments
Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Ordinal	An order preserving change of values, i.e., $new_value = f(old_value)$ where f is a monotonic function.	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Interval	$new_value = f(old_value)$ where f is a continuous function. For linear function f , $new_value = a * old_value + b$ where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ratio	new_value = a * old_value	Like a change of scale: Feet to meters.

Discrete and Continuous Attributes

- Discrete Attribute
 - Has only a finite or countably infinite set of values
 - Examples: number of car sales per day, number of children in a family, number of certain word in a collection of documents.
 - Often represented as integer variables.
 - Binary attributes are a special case of discrete attributes.
 Example: fail, Pass.
- Continuous Attribute
 - Has real numbers as attribute values
 - Examples: temperature, height, or weight.
 - In practice, real values can only be measured and represented using a finite number of digits.

Types of data sets

Record

- Data Matrix
- Document Data
- Transaction Data

Graph

- Networks
- Molecular Structures

Ordered

- Spatial Data
- Temporal Data
- Genetic Sequence Data

Record Data

 Data that consists of a collection of records, each of which consists of a fixed set of attributes

7	Tid	Refund	Marital Status	Taxable Income	Cheat	
•	1	Yes	Single	125K	No	
2	2	No	Married	100K	No	
3	3	No	Single	70K	No	
4	4	Yes	Married	120K	No	
į	5	No	Divorced	95K	Yes	
6	6	No	Married	60K	No	
7	7	Yes	Divorced	220K	No	
8	8	No	Single	85K	Yes	
Ś	9	No	Married	75K	No	
•	10	No	Single	90K	Yes	

Data Matrix

- If data objects have the same fixed set of numeric attributes, then the data objects can be thought of as points in a multidimensional space, where each dimension represents a distinct attribute
- Such data set can be represented by an m by n matrix, where there are m rows, one for each object, and n columns, one for each attribute

Projection of x Load	Projection of y load	Distance	Load	Thickness
10.23	5.27	15.22	2.7	1.2
12.65	6.25	16.22	2.2	1.1

ESMA 6835

Document Data

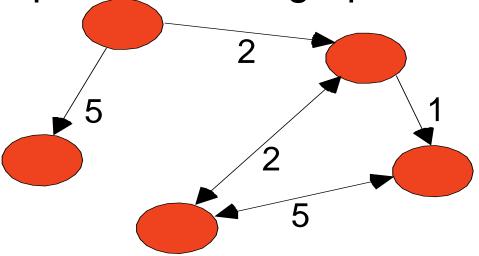
- Each document becomes a `term' vector,
 - each term is a component (attribute) of the vector,
 - the value of each component is the number of times the corresponding term occurs in the document.

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2 2 A CUID	2	0	3	0

ESMA 6835

Mineria de Datos

Edgar Acuna

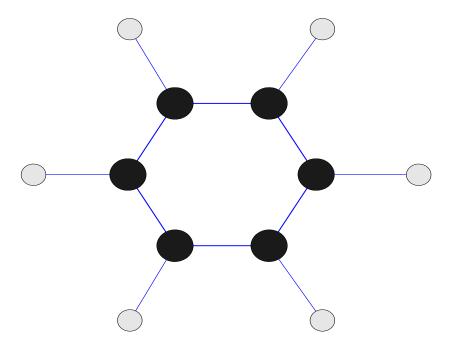

Transaction Data

- A special type of record data, where
 - each record (transaction) involves a set of items.
 - For example, consider a grocery store. The set of products purchased by a customer during one shopping trip constitute a transaction, while the individual products that were purchased are the items.

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graph Data

Examples: Generic graph


ESMA 6835

Mineria de Datos

Edgar Acuna

Graph Data

Benzene Molecule: C₆H₆

ESMA 6835

Mineria de Datos

Edgar Acuna

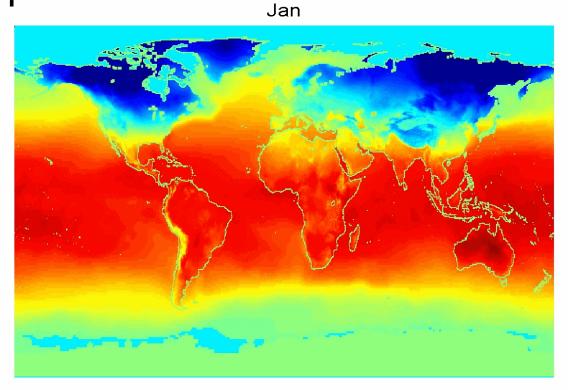
Ordered Data

Genomic sequence data

Basis

A=Adenina

C=Citosina


G=Guanina

T=Tianina

Ordered Data

Spatio-Temporal Data

Average Monthly Temperature of land and ocean

16

ESMA 6835 Mineria de Datos Edgar Acuna