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Supervised Classification:
• predicts categorical class labels
• classifies data (constructs a model) based on the training 

set and uses it in classifying new data
Prediction (Regression):  
• models continuous-valued functions, i.e., predicts unknown 

or missing values 
Typical Applications
• credit approval
• target marketing
• medical diagnosis
• treatment effectiveness analysis

Supervised Classification vs. 
Prediction



The Supervised classification 
problem
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Supervised Classification—A Two-
Step Process

Model construction: describing a set of predetermined 
classes
• Each tuple/sample is assumed to belong to a predefined class, 

as determined by the class label attribute
• The model is represented as classification rules, decision trees, 

or mathematical formulae
Model usage: for classifying future or unknown objects
• Estimate accuracy of the model

• The known label of test sample is compared with the 
classified result from the model

• Accuracy rate is the percentage of test set samples that are 
correctly classified by the model

• Test set is independent of training set, otherwise over-fitting 
will occur



Supervised classification 
methods

1. Linear Discriminant Analysis.
2. Nonlinear Methods: Quadratic Discrimination, 

Logistic Regression, Projection Pursuit.
3. Naive Bayes.
4. Decision Trees.
5. k-nearest neighbors
6. Classifiers based on kernel density estimation and 

gaussian mixtures.
7. Neural Networks: Multilayer perceptron. Radial Basis 

Function, Kohonen self-organizing map, Linear vector 
quantification.

8. Support vector machines.



Linear  Discriminant Analysis

Y
X1 X2 … Xp

1 X11 X21 …. Xp1

1 X12 X22 … Xp2

.. .. .. .. ..
1 X1n1 X2n1 … Xpn1

2 X1,n1+1 X2,n1+1 … Xp,n1+1

2 X1,n1+2 X2,n1+2 … Xp,n1+2

.. .. .. … ..
2 X1,n1+n2 X2,n1+n2 … Xp,n1+n2

Consider the following training sample with p features and two classes



Linear discriminant Analysis
Let        be the mean vector of the p features in class 1, and let    

be the corresponding mean vector for the class 2.
Let us consider μ1 and μ2 as the mean vector of the respective 

class populations
Let us assume that both populations have the same covariance 

matrix, ie Σ1=Σ2=Σ . This is  known as the homocedasticity 
property.

For now, we do not need to assume that the random vector of 
predictor x=(x1,…..xp) is normally distributed.

Linear discrimination is based on the following fact: An instance 
(object) x is assigned to the class C1 if 

D(x, C1)<D(x,C2)   (2.1) 
where D(x,Ci)=, for i=1,2, represents the squared Mahalanobis 

distance of x to the center of  the   Ci class.

1x 2x



Linear Discriminant Analysis (cont)

The  expression  (2.1) can be written as

(2.2)

Using the training sample, μi can be estimated  by      and  Σ is 
estimated by  S, the pooled covariance matrix, which is 
calculated by 

where, S1  and  S2  represent the sample covariance matrices of 
the random vector of predictors in each class. Therefore the 
sample version of (2.2) is given by 

(2.3)

The left hand side of expression (2.3) is called the linear 
discriminant function.
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Example: Bupa(features 4 and 5)

> sigma1=cov(bupa[bupa[,7]==1,c(4,5)])
> sigma1

V4        V5
V4  59.87759  143.1381
V5 143.13812 1103.9025
> sigma2=cov(bupa[bupa[,7]==2,c(4,5)])
> sigma2

V4        V5
V4 127.4371  241.0319
V5 241.0319 1807.8202
> sigma=(144*sigma1+199*sigma2)/343
> sigma

V4        V5
V4  99.07391  199.9336
V5 199.93361 1512.2979
>invsigma=solve(sigma)



Example Bupa(features 4 and 5)
>invsigma

V4           V5
V4  0.013766206 -0.001819964
V5 -0.001819964  0.000901854
> xbar1=mean(bupa[bupa[,7]==1,c(4,5)])
> xbar1

V4       V5 
22.78621 31.54483 
> xbar2=mean(bupa[bupa[,7]==2,c(4,5)])
> xbar2

V4    V5 
25.99 43.17 
> coeflda=t(xbar1-xbar2)%*%invsigma
> coeflda

V4           V5
[1,] -0.02294668 -0.004653421



Example Bupa(features 4 and 5)
>#Computing the independent term
>indlda=0.5*(xbar1-xbar2)%*%invsigma%*%(xbar1+xbar2)
>indlda
[1,] -0.7334659
>#Plot of the data points and the centroids of each class
>plot(bupa[bupa[,7]==1,4],bupa[bupa[,7]==1,5],col= "blue")
>points(bupa[bupa[,7]==2,4],bupa[bupa[,7]==2,5],col= "red")
>points(xbar1[1],xbar1[2],pch=19,col= "green")
>points(xbar2[1],xbar2[2],pch=19,col= "cyan")
>xbar1=mean(bupa[bupa[,7]==1,c(4,5)])
>#Plot of the discriminant linear function
> abline(indlda/coeflda[2],-coeflda[1]/coeflda[2])





LDA(Fisher, 1936)
Fisher obtained the linear discriminant function of equation (2.3) 

but following other way. He tried to find a linear combination of 
the features x’s that separates classes C1 and C2 at most as 
possible under the assumption of homogeneity of covariance 
matrices (Σ1=Σ2=Σ). More specifically, if  y=d'x then,  the 
squared distance between the mean of y in each class divided 
by the varianza of y  in each group is given by

(2.4).

This ratio is maximized when  d=Σ-1(μ 1-μ 2). This result is obtained 
by an application pf the Cauchy-Schwartz’s inequality (See Rao, 
C. R. Linear Statistical Inference and its applications, p. 60).
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LDA (cont)

The numerator is also called the sum of squares 
between groups (BSS), and the denominator is 
called the sum of squares within  groups (WSS). An 
estimate of the   d value is  S-1(        ). 
Fisher asigned an object x to class C1 if y=(         )' 
S-1 x is closer  to                              than to     .  The 
midpoint between y        is

Notice that y is closer       if y>                 , this yields 
the equation  (2.3).
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Tests for homogeneity of covariance 
matrices(homocedasticity)

The most well known test for cheking homocedasticity 
(homogeneity of covariance matrices) is the Bartlett test. This 
test is a modification of the likelihood ratio test, however it is 
subject to the assumption of multivariate normal distribution. It 
makes use of a Chi-Square distribution. Bartlett test is available 
in SAS. The Mardia test is one of several test to check 
multivariate normality.
Other alternative is to extent the Levene’s test for comparing 
the variance of several univariate populations.
Some statistical packages like SPSS use the Box’M test to 
check homocedasticity).



The Van Valen’s test for 
homocedasticity
It is easy to implement and requires only the use of a 
two-sample t-test. First, each feature need to be 
standarized and then the following values are computed

where xijk is the value of i-th instance for the  k-th feature in 
the j-th group. Mjk is the median of the j-th feature in the j-
th sample. Finally the sample mean of the dij’s for the j-th 
groups are compared. For datasets with two classes,  a 
two sample t-test assuming unequal variance can be 
used.  For more than two classes a F-test is needed. 
However is better to use the corresponding 
nonparametric tests: Wilcoxon and Kruskal-Wallis. The 
null hypothesis is that there is not homocedasticity.
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> vvalen(my.iris)

Kruskal-Wallis rank sum test

data:  testlist 
Kruskal-Wallis chi-squared = 2.1107, df = 2, p-value = 0.3481
Se acepta la hipotesis Nula No hay homocedasticidad.

> vvalen(bupa)

Kruskal-Wallis rank sum test

data:  testlist 
Kruskal-Wallis chi-squared = 10.1621, df = 1, p-value = 0.001434

Se rechaza la hipotesi Nula. Si hay Homocedasticicidad.



Mardia’s test for multivariate 
Normality (1970)
Consideremos que x’j (j=1,….n) representan las observaciones en la 

muestra de entrenamiento correspondiente a una clase particular C. Si 
se consideran p variables predictoras  entonces cada xj es un vector 
columna p-dimensional. Deseamos probar que el vector aleatorio 
X=(X1,…..Xp) se distribuye en forma normal multivariada en C.  
Mardia basa su prueba en las medidas de asimetría y kurtosis, cuyas 
estimaciones basadas en la muestra de entrenamiento están definidas 
como :

y

respectivamente. 
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Mardia’s test (cont)
Si la hipótesis nula Ho: x es normal multivariada en la clase C 

es cierta entonces se puede mostrar que para n grande 

con d=(p/6)(p+1)(p+2) grados de libertad, y 

La prueba de Hawkins (Technometrics, 1981) permite 
probar simultáneamente normalidad multivariada y 
homocedasticidad. No aparece en ningún programa 
estadístico. 
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Example: Iris

> mardia(miris,1)
mard1= 24.15508 
pvalue for m3= 0.2356838 
mard2= 0.7587116 
p-value for m4= 0.4480251 
There is  statistical evidence for normality 
> mardia(miris,2)
mard1= 23.70393 
pvalue for m3= 0.2555643 
mard2= -1.034219 
p-value for m4= 0.3010336
There is statistical evidence for normality 
> mardia(miris,3)
mard1= 24.72568 
pvalue for m3= 0.2121282 
mard2= -0.3384283 
p-value for m4= 0.7350404 
There is  statistical evidence for normality 



Example:Bupa

> mardia(bupa,1)
mard1= 420.9489 
pvalue for m3= 0 
mard2= 15.91613 
p-value for m4= 0 
There is not statistical evidence for normality 
> mardia(bupa,2)
mard1= 1178.14 
pvalue for m3= 0 
mard2= 37.50413 
p-value for m4= 0 
There is not statistical evidence for normality 



Supervised classification  from a 
Bayesian point of view
Suposse that we known beforehand the prior probabilities πi   (i=1, 

2,…G) that an object belongs to the class Ci . If n o any 
additional information then the best decision rule will classify 
the objetc as belonging to the class Ci if 

πi> πj  for     i=1,2,…..G,  i ≠j       (3.1)

However, usually some addtional information is known, such as a 
vector of measurements x made on the object to be classified. 
In this case we compare the probabality of belongonng to each 
class for an object with vecotr of measurements x and the 
object is classified as of class Ci if

P(Ci/x)>P(Cj/x) para todo i ≠j         (3.2)   
This decision rule is called the Bayes rule of minimum error.
Notice that i=argmaxk P(Ck/x) for all k in 1,2….G.



Bayesian Classification
The  probabillities P(Ci/x) are called posterior probabilities. 

Unfortunately rarely the posterior probabiities are known and 
they must be estimated. This ocuurs in logistic regression, 
decision trees classifiers, and neural networks.

A more convenient formulation of the former rule can be obtained 
by applying Bayes Theorem, which states that                                 

(3.3)

Therefore an object will be classified as of class Ci if

(3.4)

para todo i ≠j. That is, i=argmaxkf(x/Ck)πk
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If the class conditional densities  f(x/ Ci ) are known 
then the classification problem is solved, like it occurs 
in both  linear and quadratic discriminant. 
But sometimes the f(x/ Ci ) are unknown and they 
must be estimated sing the training sample. This is 
the case of k-nn classifiers, kernel density classifiers 
and gaussian mixtures classifiers.



Linear discriminant analysis as a 
Bayesian classifier

Let us consider  that we have two classes  C1 y C2 that follow 
a multivariate normal distribution, Np(u1,Σ1) and Np(u2,Σ2) 
respectively y que además tienen igual matriz de covarianza 
Σ1=Σ2 =Σ. Then the equation 3.4 can be written as 

(3.5)

Taking logarithms in both sides, one obtains

(3.6)
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After some simplifications one gets

(u1-u2)'Σ-1(x-1/2(u1+u2))> (3.7)

This inequality is similiar to the one given in (2.2), except by 
the term in the right hand side, but if we estimate the 
population parameters and in addition we consider that the 
prior probabilities are equal (π1=π2) then both expressions 
become the same. 
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LDA for more than two classes

For G classes, the LDA assigns an object with attributes vector x 
to the class i such that

i=argmaxk μ’kΣ-1x-(1/2) μ’kΣ-1 μ’k +Ln(πk)

For all k in 1,2,…G. As before the right hand-side is estimated 
using the training sample.



Example: Vehicle dataset
Library(MASS)
ldaveh=lda(vehicle[,1:18],vehicle[,19])
predict(ldaveh)$posterior
predict(ldaveh)$class
# Estimating the error rate
mean(vehicle[,19]!=predict(ldaveh)$class)
[1] 0.2021277

It is estimated that 20.21% of instances misclassified.



Quadratic discriminant analysis

It does not require the homocedasticity condition.
qdaveh=qda(vehicle[,1:18],vehicle[,19])
> mean(vehicle[,19]!=predict(qdaveh)$class)
[1] 0.08392435
> 

Notice that for the vehicle dataset qda performs better than lda 



The misclassification error rate

The misclassification error rate  R(d) is the probability 
that the classifier d classifies incorrectly an instance 
coming from a sample (test sample) obtained in a later 
stage than  the training sample. Also is called the True 
error or the actual error.
It is an unknown value that needs to be estimated.



Methods for estimation of the 
misclassification error rate

i) Resubstitution or Aparent Aparente (Smith, 1947). This is merely 
the proportion of instances in the training sample that are incorrectly 
classified by the classification rule. In general is an estimator too 
optimistic and it can lead to wrong conclusions if the number of 
instances is not large compared with the number of features. This 
estimator has a large bias.

ii) “Leave one out” estimation.  (Lachenbruch, 1965). In this case an 
instance is omitted from the training sample. Then the classifier is 
built and the prediction for the omitted instances is obtained. One 
must register if the instance was correctly or incorrectly classfied. 
The process is repeated for all the instances in the training sample 
and the estimation of the ME will be given by the proportion of 
instances incorrectly classified. This estimator has low bias but its 
variance tends to be large.



Examples of LOO
ldaveh=lda(vehicle[,1:18],vehicle[,19],CV=TRUE)
> mean(vehicle[,19]!=ldaveh$class)
[1] 0.2210402
> 
> ldabupa=lda(bupa[,1:6],bupa[,7])
> mean(bupa[,7]!=predict(ldabupa)$class)
[1] 0.2956522
> ldabupa1=lda(bupa[,1:6],bupa[,7],CV=TRUE)
> mean(bupa[,7]!=ldabupa1$class)
[1] 0.3014493
> 



Methods for estimation of the 
misclassification error rate
iii) Cross validation. (Stone, 1974) In this case the 

training sample is randomly divided in v parts (v=10 
is the most used). Then the classifier is built using all 
the parts but one. The omitted part is considered as 
the test sample and the predictions for each instance 
on it are found. The CV misclassification error rate is 
found by adding the misclassification on each part  
and dividing them by the total number of instances.  
The CV estimated has low bias but high variance. In 
order to reduce the variability we usually repeat the 
estimation several times.

The estimation of the variance of the CV estimator  is a 
hard problem (Bengio and Grandvalet, 2004).



Example:
cv10lda(vehicle,repet=10)
[1] 0.2192671
> cv10lda(vehicle,repet=20)
[1] 0.2206856
> 
iv) The holdout method. A percentage (70%) of the dataset is considered as 
the training sample and the remaining as the test sample. The classifier is 
evaluated in the test sample. The experiment is repeated several times and 
then the average is taken.
v) Bootstrapping. (Efron, 1983). In this method we generate several training 
samples by sampling with replacement from the original training sample. The 
idea is to reduce the bias of the  resubstitution error.
It is almost unbiased, but it has a large variance. Its computation cost is high.
There exist several variants of this method.


